Sample records for patchy vegetation types

  1. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    PubMed

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control are enhanced in more recently burnt vegetation. We suggest that patchy prescribed fire sustains functional diversity, and that controlled use of patchy fire to break up large expanses of mature vegetation will enhance ecosystem function.

  2. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect, central New Mexico

    USGS Publications Warehouse

    Bedford, D.R.; Small, E.E.

    2008-01-01

    Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.

  3. Oak woodland vegetation dynamics: a state and transition approach

    Treesearch

    Melvin R. George; Maximo F. Alonso

    2008-01-01

    California’s oak-woodlands are a complex, often multi-layered mosaic of grassland, shrubland, and woodland patches. While soil type and depth, topography, aspect, and geological substrate influence the distribution of these patches, disturbance and biological interactions are also important determinants of the patchy distribution of these plant communities. Fire...

  4. Vegetation Patchiness Enhances Hydrological Connectivity in River Deltas Below the Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Wright, K. A.; Hiatt, M. R.; Passalacqua, P.

    2017-12-01

    The humanitarian and ecological importance of coastal deltas has led many to research the factors influencing their ecogeomorphic evolution, in hopes of predicting the response of these regions to the growing number of natural and anthropogenic threats they face. One area of this effort, in which many unresolved questions remain, concerns the hydrological connectivity between the distributary channels and interdistributary islands, which field observations and numerical modeling have shown to be significant. Island vegetation is known to affect the degree of connectivity, but the effect of the spatial distribution of vegetation on connectivity remains an important question. This research aims to determine to what extent vegetation percent cover, patch size, and plant density affect connectivity in an idealized deltaic system. A 2D hydrodynamic model was used to numerically solve the shallow water equations in an idealized channel-island complex, modeled after Wax Lake Delta in Louisiana. For each model run, vegetation patches were distributed randomly throughout the islands according to a specified percent cover and patch size. Vegetation was modeled as a modified bed roughness, which was varied to represent a range of sparse-to-dense vegetation. To determine the effect of heterogeneity, the results of each patchy scenario were compared to results from a uniform run with the same spatially-averaged roughness. It was found that, while all patchy model runs demonstrated more channel-island connectivity than comparable uniform runs, this was particularly true when vegetation patches were dense and covered <50% of the island domain. Below this threshold, high-velocity pathways form in-between patches, greatly enhancing connectivity and transport capabilities. Above this threshold, however, little discrepancy is seen between patchy and uniform model runs. This threshold sits within the range of percent cover values observed in natural systems, and calculations show that these pathways affect shear stresses and residence time distributions in the deltaic islands, which can have implications for the fate and transport of sediment/nutrients. These results indicate that the spatial distribution of vegetation can have a notable impact on our ability to model connectivity in deltaic systems.

  5. Vegetation in drylands: Effects on wind flow and aeolian sediment transport

    USDA-ARS?s Scientific Manuscript database

    Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...

  6. Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico

    NASA Astrophysics Data System (ADS)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2015-12-01

    Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.

  7. Overland flow connectivity on planar patchy hillslopes - modified percolation theory approaches and combinatorial model of urns

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal

    2017-04-01

    Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.

  8. A versatile model for soft patchy particles with various patch arrangements.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  9. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  10. Inferring local competition intensity from patch size distributions: a test using biological soil crusts

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Dryland vegetation is inherently patchy. This patchiness goes on to impact ecology, hydrology, and biogeochemistry. Recently, researchers have proposed that dryland vegetation patch sizes follow a power law which is due to local plant facilitation. It is unknown what patch size distribution prevails when competition predominates over facilitation, or if such a pattern could be used to detect competition. We investigated this question in an alternative vegetation type, mosses and lichens of biological soil crusts, which exhibit a smaller scale patch-interpatch configuration. This micro-vegetation is characterized by competition for space. We proposed that multiplicative effects of genetics, environment and competition should result in a log-normal patch size distribution. When testing the prevalence of log-normal versus power law patch size distributions, we found that the log-normal was the better distribution in 53% of cases and a reasonable fit in 83%. In contrast, the power law was better in 39% of cases, and in 8% of instances both distributions fit equally well. We further hypothesized that the log-normal distribution parameters would be predictably influenced by competition strength. There was qualitative agreement between one of the distribution's parameters (μ) and a novel intransitive (lacking a 'best' competitor) competition index, suggesting that as intransitivity increases, patch sizes decrease. The correlation of μ with other competition indicators based on spatial segregation of species (the C-score) depended on aridity. In less arid sites, μ was negatively correlated with the C-score (suggesting smaller patches under stronger competition), while positive correlations (suggesting larger patches under stronger competition) were observed at more arid sites. We propose that this is due to an increasing prevalence of competition transitivity as aridity increases. These findings broaden the emerging theory surrounding dryland patch size distributions and, with refinement, may help us infer cryptic ecological processes from easily observed spatial patterns in the field.

  11. Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2017-04-01

    Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.

  12. Can landscape memory affect vegetation recovery in drylands?

    NASA Astrophysics Data System (ADS)

    Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max

    2016-04-01

    Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).

  13. Signals of impending change

    USGS Publications Warehouse

    Grace, James B.

    2017-01-01

    Society has an increasing awareness that there are finite limits to what we can expect the planet to absorb and still provide goods and services at current rates1. Both historical reconstructions and contemporary events continue to remind us that ecological regime changes are often abrupt rather than gradual. This reality motivates researchers who seek to discover leading indicators for impending ecosystem change. Berdugo et al.2 report an important advance in our ability to anticipate the conversion of arid lands from self-organized, self-maintaining and productive ecosystems, to a state characterized by disorganization and low functionality. Such conversions have important implications for our understanding of ‘desertification’ — which is a shift from arid to desert-like conditions.Theoretical studies have suggested that patterns in the patchiness of vegetation might indicate how close a system is to making an abrupt change to desert-like conditions3,4,5. Empirical studies, however, have tended to show instead that simply the total cover of vegetation, rather than its arrangement, often foretells the state of the system4,5,6,7,8,9. Berdugo et al.2 combine these competing ideas into one integrated perspective. They show how major environmental drivers, such as aridity, influence both vegetation cover and patchiness, as well as where self-organizing, stabilizing forces in the vegetation are likely to be found.

  14. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  15. Habitat diversity in uneven-aged northern hardwood stands: a case study

    Treesearch

    Laura S. Kenefic; Ralph D. Nyland

    2000-01-01

    Habitat characteristics were quantified in an empirically balanced uneven-aged northern hardwood stand in central New York. Canopy structure, wildlife trees, downed woody material, low cover, and richness and abundance of understory vegetation were assessed. High vertical structural diversity and low horizontal patchiness were associated with the single-tree selection...

  16. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    PubMed

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  17. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams.

    PubMed

    Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J

    2018-04-01

    Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  18. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.

  19. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    NASA Astrophysics Data System (ADS)

    Bochet, E.

    2014-10-01

    Since seeds are the principle means by which plants move across the landscapes, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals are (1) to offer an updated conceptual model of seed fate with a special attention to seed destiny in and on the soil, (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches and for plant community composition in arid and semiarid patchy ecosystems, and finally (3) to point out directions for future research. Our review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Seed susceptibility to be removed varies highly between species and is mainly related to seed traits, as seed size, seed shape, presence of appendages, and seed ability to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life, by favouring species with seeds able to resist erosion and by selecting for plant traits that prevent seed loss. Moreover, the interaction of seed transport by overland flow with the high seed trapping capacity of vegetated patches results in a "patch-to-patch" transport of seeds that plays a relevant role in vegetation establishment and patterning in arid and semiarid patchy ecosystems. Overall, this review shows how the knowledge about seed fate in overland flow can be used to explain a number of important characteristics of whole plant communities. It also underlines important gaps of knowledge that should be filled in. Future lines of research are proposed in order to broaden our understanding of the origin, maintenance and dynamics of patchiness in arid and semiarid ecosystems and to improve restoration success of intensively eroded ecosystems.

  20. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    NASA Astrophysics Data System (ADS)

    Bochet, E.

    2015-01-01

    Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist erosion and by selecting for plant traits that prevent seed loss. Moreover, the interaction of seed transport by overland flow with the high seed trapping capacity of vegetated patches results in a "patch-to-patch" transport of seeds that plays a relevant role in vegetation establishment and patterning in arid and semiarid patchy ecosystems. Overall, this review shows how the knowledge about seed fate in overland flow can be used to explain a number of important characteristics of whole plant communities. It also underlines important gaps in knowledge that should be filled in. Future lines of research are proposed in order to broaden our understanding of the origin, maintenance and dynamics of patchiness in arid and semiarid ecosystems and to improve restoration success of intensively eroded ecosystems. Among the most exciting challenges, empirical studies are needed to understand the relevance of short-distance seed displacements in the origin and maintenance of patchiness, addressing the feedbacks between structure and function and abiotic and biotic components, in order to validate existing models about the dynamics of arid and semiarid ecosystems and help to predict future changes under the scenarios of climate change.

  1. Evaluation of species richness estimators based on quantitative performance measures and sensitivity to patchiness and sample grain size

    NASA Astrophysics Data System (ADS)

    Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc

    2012-11-01

    Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling curves before explaining differences in diversity.

  2. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses.

    PubMed

    Ben-David, Eric A; Zaady, Eli; Sher, Yoni; Nejidat, Ali

    2011-06-01

    Arid and semi-arid ecosystems are often characterized by vegetation patchiness and variable availability of resources. Phospholipid fatty acid (PLFA) and 16S rRNA gene fragment analyses were used to compare the bulk soil microbial community structure at patchy arid and semi-arid landscapes. Multivariate analyses of the PLFA data and the 16S rRNA gene fragments were in agreement with each other, suggesting that the differences between bulk soil microbial communities were primarily related to shrub vs intershrub patches, irrespective of climatic or site differences. This suggests that the mere presence of a living shrub is the dominant driving factor for the differential adaptation of the microbial communities. Lipid markers suggested as indicators of Gram-positive bacteria were higher in soils under the shrub canopies, while markers suggested as indicators of cyanobacteria and anaerobic bacteria were elevated in the intershrub soils. Secondary differences between soil microbial communities were associated with intershrub characteristics and to a lesser extent with the shrub species. This study provides an insight into the multifaceted nature of the factors that shape the microbial community structure in patchy desert landscapes. It further suggests that these drivers not only act in concert but also in a way that is dependent on the aridity level. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Ecogeomorphology of semiarid rangelands: understanding and quantifying rates and feedbacks to prevent landscape degradation.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia

    2017-04-01

    In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.

  4. On the coupled use of sapflow and eddy covariance measurements: environmental impacts on the evapotranspiration of an heterogeneous - wild olives based - Sardinian ecosystem.

    NASA Astrophysics Data System (ADS)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram

    2015-04-01

    Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Results show the response of wild olives stomatal conductance to vapor pressure deficit that follow an exponential decrease. Interestingly the tree exposure impacts transpiration significantly, showing double rates for the trees in the south part of the wild olive clumps. The soil depth also affects ET dynamics due to the influence on water absorption of the root tree system. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the impact of climate dynamics on the ET estimates with the two tecniques.

  5. An update on remote measurement of soil moisture over vegetation using infrared temperature measurements: A FIFE perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1988-01-01

    Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.

  6. Integrodifference equations in patchy landscapes : II: population level consequences.

    PubMed

    Musgrave, Jeffrey; Lutscher, Frithjof

    2014-09-01

    We analyze integrodifference equations (IDEs) in patchy landscapes. Movement is described by a dispersal kernel that arises from a random walk model with patch dependent diffusion, settling, and mortality rates, and it incorporates individual behavior at an interface between two patch types. Growth follows a simple Beverton-Holt growth or linear decay. We obtain explicit formulae for the critical domain-size problem, and we illustrate how different individual behavior at the boundary between two patch types affects this quantity. We also study persistence conditions on an infinite, periodic, patchy landscape. We observe that if the population can persist on the landscape, the spatial profile of the invasion evolves into a discontinuous traveling periodic wave that moves with constant speed. Assuming linear determinacy, we calculate the dispersion relation and illustrate how movement behavior affects invasion speed. Numerical simulations justify our approach by showing a close correspondence between the spread rate obtained from the dispersion relation and from numerical simulations.

  7. Patchy colloidosomes - an emerging class of structures

    NASA Astrophysics Data System (ADS)

    Rozynek, Z.; Józefczak, A.

    2016-07-01

    A colloidosome, i.e., a selectively permeable capsule composed of colloidal particles forming a stable homogenous shell, is a tiny container that can be used for storage, transportation, and release of cargo species. There are many routes to preparing colloidosomes; dozens of examples of future applications of such colloidal capsules have been demonstrated. Their functionality can be further extended if the capsules are designed to have heterogeneous shells, i.e., one or more regions (patches) of a shell are composed of material with specific properties that differ from the rest of the shell. Such patchy colloidosomes, supplemented by functionalities similar to that offered by well-studied patchy particles, will surely possess advantageous properties when compared with their homogenous counterparts. For example, owing to specific interactions between patches, they either can self-assemble into complex structures; specifically adhere to a surface; release their cargo species in specific direction; or guided-align,-orient or -propel. Fabrication of patchy colloidal microcapsules has long been theorized by scientists able to design different models, but actual large-scale production remains a challenge. Until now, only a few methods for fabricating patchy colloidosomes have been demonstrated, and these include production by means of microfluidics and mechanical pipetting. The field of science related to fabrication and application of patchy colloidosomes is clearly unexplored, and we envision it blooming in the coming years.

  8. Molecular theory for self assembling mixtures of patchy colloids and colloids with spherically symmetric attractions: The single patch case

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.; Chapman, Walter G.

    2013-09-01

    In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.

  9. Desertification, resilience, and re-greening in the African Sahel - a matter of the observation period?

    NASA Astrophysics Data System (ADS)

    Kusserow, Hannelore

    2017-12-01

    Since the turn of the millennium various scientific publications have been discussing a re-greening of the Sahel after the 1980s drought mainly based on coarse-resolution satellite data. However, the author's own field studies suggest that the situation is far more complex and that both paradigms, the encroaching Sahara and the re-greening Sahel, need to be questioned.

    This paper discusses the concepts of desertification, resilience, and re-greening by addressing four main aspects: (i) the relevance of edaphic factors for a vegetation re-greening, (ii-iii) the importance of the selected observation period in the debate on Sahel greening or browning, and (iv) modifications in the vegetation pattern as possible indicators of ecosystem changes (shift from originally diffuse to contracted vegetation patterns).

    The data referred to in this paper cover a time period of more than 150 years and include the author's own research results from the early 1980s until today. A special emphasis, apart from fieldwork data and remote sensing data, is laid on the historical documents.

    The key findings summarised at the end show the following: (i) vegetation recovery predominantly depends on soil types; (ii) when discussing Sahel greening vs. Sahel browning, the majority of research papers only focus on post-drought conditions. Taking pre-drought conditions (before the 1980s) into account, however, is essential to fully understand the situation. Botanical investigations and remote-sensing-based time series clearly show a substantial decline in woody species diversity and cover density compared to pre-drought conditions; (iii) the self-organised patchiness of vegetation is considered to be an important indicator of ecosystem changes.

  10. Soil Water Balance and Vegetation Dynamics in two Contrasting Water-limited Mediterranean Ecosystems on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.; Corona, R.

    2011-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index PFTs are estimated during the Spring-Summer 2005. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics. For reaching the objectives an ecohydrologic model is also successfully used and applied to the case studies. It couples a vegetation dynamic model, which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model.

  11. The Ecohydrologic Role of Coexistence and Competition in Semiarid Hillslopes

    NASA Astrophysics Data System (ADS)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2015-12-01

    Through its influence on runoff and erosion-deposition processes, vegetation remarkably regulates different aspects of landscape dynamics. Here, the influence of different plant functional traits on the coexistence of different species in arid and semi-arid regions with patchy vegetation is investigated using an ecohydrology model. The model simulates coevolving changes in biomass patterns for two species, as well as overland flow and soil moisture dynamics. Vegetation patterns emerge as a result of facilitation (shading and infiltration) and competition mechanisms as well as varying seed dispersal strategies. The results show that the survival of only one species or the coexistence of both species not only strongly depends on environmental stresses, but also on differences in hillslope micro and macro topography. These vegetation patterns have very different hydrologic signatures and the potential to trigger remarkably different geomorphic responses. Based on these results we establish new hypothesis that will be used to further investigate the role of plant interspecific and intraspecific feedbacks on landscape coevolution processes.

  12. Quantifying soil surface change in degraded drylands: shrub encroachment and effects of fire and vegetation removal in a desert grassland

    USGS Publications Warehouse

    Sankey, Joel B.; Ravi, Sujith; Wallace, Cynthia S.A.; Webb, Robert H.; Huxman, Travis E.

    2012-01-01

    Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies have indicated that in the early stages of shrub encroachment, when there is sufficient herbaceous connectivity, fires (prescribed or natural) might provide some reversibility to the shrub encroachment process by negatively affecting shrub demography and homogenizing soil resources across patches within weeks to months after burning. A comprehensive understanding of longer term changes in microtopography and spatial patterning of soil properties following fire in shrub-encroached grasslands is desirable. Here, we investigate the changes in microtopography with LiDAR (light detection and ranging), vegetation recovery, and spatial pattering of soil properties in replicated burned, clipped, and control areas in a shrub-grass transition zone in the northern Chihuahuan Desert four years after prescribed fire or clipping. Results indicate a greater homogeneity in soil, microtopography, and vegetation patterning on burned relative to clipped and control treatments. Findings provide further evidence that disturbance by prescribed fire may allow for reversal of the shrub encroachment process, if the event occurs in the early stages of the vegetation shift. Improved understanding of longer-term effects of fire and associated changes in soil patterning can inform the use and role of fire in the context of changing disturbance regimes and climate.

  13. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients.

    PubMed

    Giordano, Jessica; Khung, Suonita; Duhamel, Alain; Hossein-Foucher, Claude; Bellèvre, Dimitri; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2017-04-01

    To compare lung perfusion in PAH and pCTEPH on dual-energy CT (DECT) examinations. Thirty-one patients with PAH (group 1; n = 19) and pCTEPH (group 2; n = 12) underwent a dual-energy chest CTA with reconstruction of diagnostic and perfusion images. Perfusion alterations were analysed at a segmental level. V/Q scintigraphy was available in 22 patients (group 1: 13/19; group 2: 9/12). CT perfusion was abnormal in 52.6 % of group 1 patients and in 100 % of group 2 patients (p = 0.0051). The patterns of perfusion alteration significantly differed between the two groups (p < 0.0001): (1) in group 1, 96.6 % of segments with abnormal perfusion showed patchy defects; (2) in group 2, the most frequent abnormalities consisted of patchy (58.5 %) and PE-type (37.5 %) defects. Paired comparison of CT perfusion and scintigraphy showed concordant findings in 76.9 % of group 1 (10/13) and 100 % of group 2 (9/9) patients, with a predominant or an exclusive patchy pattern in group 1 and a mixed pattern of abnormalities in group 2. Lung perfusion alterations at DECT are less frequent and more homogeneous in PAH than in pCTEPH, with a high level of concordant findings with V/Q scintigraphy. • Depiction of chronic pulmonary embolism exclusively located on peripheral arteries is difficult. • The main differential diagnosis of pCTEPH is PAH. • The pattern of DECT perfusion changes can help differentiate PAH and pCETPH. • In PAH, almost all segments with abnormal perfusion showed patchy defects. • In pCTEPH, patchy and PE-type defects were the most frequent abnormalities.

  14. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    PubMed

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  15. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    NASA Astrophysics Data System (ADS)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  16. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  17. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing

    USGS Publications Warehouse

    Fuhlendorf, S.D.; Harrell, W.C.; Engle, David M.; Hamilton, R.G.; Davis, C.A.; Leslie, David M.

    2006-01-01

    In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity. ?? 2006 by the Ecological Society of America.

  18. Seasonal variations in methane and nitrous oxide emissions factors in northern Australian savanna woodlands

    NASA Astrophysics Data System (ADS)

    Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity

    2010-05-01

    Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared to 0.15% in the sandstone heathland and pure Spinifex and Sorghum swords. The lower emission factors from the grasses compared to leaf litter can be entirely explained by higher combustion efficiency of grass fires. Emission of N2O were less dependent on combustion conditions; approximately 0.5% of fuel nitrogen was emitted as N2O, however there were no differences between early and late season fires or between vegetation classes. These results compare favorably with previous studies; the CH4-EF is similar to earlier measurements in open woodland, although the N2O-EF is lower than the value of 0.8% reported in previous work. Therefore we conclude that the proposed mitigation strategy is feasible and but the variation in EF with vegetation class calls for further quantification of EFs across all major vegetation types in the savanna regions.

  19. Mechanisms of nutrient retention and its relation to flow connectivity in river-floodplain corridors

    USGS Publications Warehouse

    Larsen, Laurel; Harvey, Judson; Maglio, Morgan M.

    2015-01-01

    Understanding heterogeneity or patchiness in the distribution of vegetation and retention of C and nutrients in river corridors is critical for setting priorities for river management and restoration. Several mechanisms of spatial differentiation in nutrient retention in river and floodplain corridors have been recognized, but few studies have distinguished their relative importance or established their role in long-term geomorphic change, nutrient retention, and connectivity with downstream systems. We evaluated the ability of 3 mechanisms (evapotranspiration focusing [EF], differential hydrologic exchange [DHE], and particulate nutrient redistribution [PNR]) to explain spatial patterns of P retention and function in the Everglades (Florida, USA). We used field measurements in sloughs and on slightly higher, more densely vegetated ridges to quantify P fluxes attributable to the 3 mechanisms. EF does not explain Everglades nutrient retention or P concentrations on ridges and in sloughs. However, DHE resulting from different periods of groundwater–surface-water connectivity across topographic elements is the primary cause of elevated P concentrations on ridges and completely explains interpatch differences in long-term P accumulation rates. With historical flow velocities, which were an order of magnitude higher than at present, PNR would have further increased the interpatch difference in long-term P retention rates nearly 2-fold. In conclusion, DHE and PNR are the dominant drivers of nutrient patchiness in the Everglades and are hypothesized to be important in P-limited river and floodplain corridors globally.

  20. Enforcement authority and vegetation change at Kumbhalgarh wildlife sanctuary, Rajasthan, India.

    PubMed

    Robbins, Paul F; Chhangani, Anil K; Rice, Jennifer; Trigosa, Erika; Mohnot, S M

    2007-09-01

    Land cover change in protected areas is often associated with human use, especially illicit extraction, but the direction and spatial distribution of such effects and their drivers are poorly understood. We analyze and explain the spatial distribution of vegetation change at the Kumbhalgarh Wildlife Sanctuary in the Aravalli range of Rajasthan, India using remotely sensed data and observation of conservation institutions. Two satellite images are examined in time series over the 13 years following the founding of the sanctuary through a cross-tabulation technique of dominant classes of vegetation density. The resulting change trajectories are compared for their relative distance to high-traffic forest entrance points for local users. The results show 28% of the study area undergoing change, though in multiple trajectories, with both increasing and decreasing density of vegetation in discrete patches. Areas of change are shown to be closer to entrance points than areas experiencing no change. The patchiness of change results from complex issues in local enforcement authority for middle and lower-level officials in Forest Department bureaucracy, leading to further questions about the efficacy and impact of use restrictions in Protected Areas.

  1. Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for Superhydrophobic Surfaces.

    PubMed

    Lou, Shuo; Wang, Junzheng; Yin, Xiaohong; Qu, Wenxiu; Song, Yuexiao; Xin, Feng; Qaraah, Fahim Abdo Ali

    2018-06-18

    Monodisperse patchy silica nanoparticles (PSNPs) less than 100 nm are prepared based on the seed-regrowth method using a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO-type block copolymer as a surface modifier. Well-defined patches are controllably synthesized through area-selective deposition of silica onto the surface of seeds. After colloidal PSNPs are further modified with trimethylchlorosilane, the advancing and receding contact angles of water for PSNPs are 168 ± 2° and 167 ± 2°, respectively. The superhydrophobic and transparent coatings on the various types of substrates are obtained by a simple drop-casting procedure. Additionally, almost the same superhydrophobicity can be achieved by using colloidal PSNPs via redispersing the powder of superhydrophobic PSNPs in ethanol.

  2. The Galaxy Menagerie from WISE

    NASA Image and Video Library

    2011-05-25

    A colorful collection of galaxy specimens from NASA Wide-field Infrared Survey Explorer mission showcases galaxies of several types, from elegant grand design spirals to more patchy flocculent spirals.

  3. The distribution of ticks (Acari: Ixodidae) of domestic livestock in Portugal.

    PubMed

    Estrada-Peña, Agustín; Santos-Silva, Maria Margarida

    2005-01-01

    This paper introduces the first countrywide faunistic study of the tick parasites on ruminants in Portugal. The aim of this study was to map accurately the distribution of the ticks Dermacentor marginatus, Rhipicephalus (Boophilus) annulatus, R. bursa, Hyalomma m. marginatum, H. lusitanicum and Ixodes ricinus in Portugal. Additional information about the abiotic preferences of these species has been obtained through the use of abiotic (temperature- and vegetation-derived) variables have been recorded from remotely sensed information at a nominal resolution of 1.1 km(2). A further aim was the development of predictive models of distribution using Classification and Regression Trees (CART) methodologies. Four species (R. annulatus, R. bursa, D. marginatus and H. m. marginatum) are mostly restricted to south-eastern parts of the country, under hot and dry climate conditions of Mediterranean type. H. lusitanicum has been collected almost only in the southern half of Portugal. I. ricinus has a very patchy distribution and is mainly associated with vegetation of Quercus spp., found in southern zones of the country, but it is present also in the more humid western part. A variable number of abiotic variables, mainly temperature derived, are able to describe the preferences of the tick species. It is remarkable that variables derived from maximum values of the Normalized Derived Vegetation Index (yearly or summer-derived) only apply to discriminate areas where I. ricinus has been collected. CART models are able to map the distribution of these ticks with accuracy ranging within 75.3 and 96.4% of actual positive sites.

  4. Evaluation of a Single-Beam Sonar System to Map Seagrass at Two Sites in Northern Puget Sound, Washington

    USGS Publications Warehouse

    Stevens, Andrew W.; Lacy, Jessica R.; Finlayson, David P.; Gelfenbaum, Guy

    2008-01-01

    Seagrass at two sites in northern Puget Sound, Possession Point and nearby Browns Bay, was mapped using both a single-beam sonar and underwater video camera. The acoustic and underwater video data were compared to evaluate the accuracy of acoustic estimates of seagrass cover. The accuracy of the acoustic method was calculated for three classifications of seagrass observed in underwater video: bare (no seagrass), patchy seagrass, and continuous seagrass. Acoustic and underwater video methods agreed in 92 percent and 74 percent of observations made in bare and continuous areas, respectively. However, in patchy seagrass, the agreement between acoustic and underwater video was poor (43 percent). The poor agreement between the two methods in areas with patchy seagrass is likely because the two instruments were not precisely colocated. The distribution of seagrass at the two sites differed both in overall percent vegetated and in the distribution of percent cover versus depth. On the basis of acoustic data, seagrass inhabited 0.29 km2 (19 percent of total area) at Possession Point and 0.043 km2 (5 percent of total area) at the Browns Bay study site. The depth distribution at the two sites was markedly different. Whereas the majority of seagrass at Possession Point occurred between -0.5 and -1.5 m MLLW, most seagrass at Browns Bay occurred at a greater depth, between -2.25 and -3.5 m MLLW. Further investigation of the anthropogenic and natural factors causing these differences in distribution is needed.

  5. Influence of land mosaic composition and structure on patchy populations: the case of the water vole (Arvicola sapidus) in Mediterranean farmland.

    PubMed

    Pita, Ricardo; Mira, António; Beja, Pedro

    2013-01-01

    The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change.

  6. A coupled vegetation/sediment transport model for dryland environments

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.

    2017-04-01

    Dryland regions are characterized by patchy vegetation, erodible surfaces, and erosive aeolian processes. Understanding how these constituent factors interact and shape landscape evolution is critical for managing potential environmental and anthropogenic impacts in drylands. However, modeling wind erosion on partially vegetated surfaces is a complex problem that has remained challenging for researchers. We present the new, coupled cellular automaton Vegetation and Sediment TrAnsport (ViSTA) model, which is designed to address fundamental questions about the development of arid and semiarid landscapes in a spatially explicit way. The technical aspects of the ViSTA model are described, including a new method for directly imposing oblique wind and transport directions onto a cell-based domain. Verification tests for the model are reported, including stable state solutions, the impact of drought and fire stress, wake flow dynamics, temporal scaling issues, and the impact of feedbacks between sediment movement and vegetation growth on landscape morphology. The model is then used to simulate an equilibrium nebkha dune field, and the resultant bed forms are shown to have very similar size and spacing characteristics to nebkhas observed in the Skeleton Coast, Namibia. The ViSTA model is a versatile geomorphological tool that could be used to predict threshold-related transitions in a range of dryland ecogeomorphic systems.

  7. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.

  8. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    PubMed

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  9. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline

    2014-02-20

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in themore » relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f{sub min}=27{sub −7}{sup +11}% over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.« less

  10. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  11. Influence of Land Mosaic Composition and Structure on Patchy Populations: The Case of the Water Vole (Arvicola sapidus) in Mediterranean Farmland

    PubMed Central

    Pita, Ricardo; Mira, António; Beja, Pedro

    2013-01-01

    The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change. PMID:23875014

  12. Constraints on patchy reionization from Planck CMB temperature trispectrum

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya

    2018-03-01

    We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2 σ . While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ˜0.5 as R ≳10 Mpc . Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.

  13. Skin color - patchy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  14. Ecohydrology and tipping points in semiarid australian rangelands

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.

    2017-12-01

    Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed

  15. Removing forest canopy cover restores a reptile assemblage.

    PubMed

    Pike, David A; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

  16. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution

    NASA Astrophysics Data System (ADS)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-

    2012-12-01

    The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.

  17. Interactions among livestock grazing, vegetation type, and fire behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007

    USGS Publications Warehouse

    Launchbaugh, Karen; Brammer, Bob; Brooks, Matthew L.; Bunting, Stephen C.; Clark, Patrick; Davison, Jay; Fleming, Mark; Kay, Ron; Pellant, Mike; Pyke, David A.

    2008-01-01

    A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land managers was called together by Tom Dyer, Idaho BLM State Director, to examine initial information from the Murphy Wildland Fire Complex in relation to plant communities and patterns of livestock grazing. Three approaches were used to examine this topic: (1) identify potential for livestock grazing to modify fuel loads and affect fire behavior using fire models applied to various vegetation types, fuel loads, and fire conditions; (2) compare levels of fuel consumed within and among major vegetation types; and (3) examine several observed lines of difference and discontinuity in fuel consumed to determine what factors created these contrasts. The team found that much of the Murphy Wildland Fire Complex burned under extreme fuel and weather conditions that likely overshadowed livestock grazing as a factor influencing fire extent and fuel consumption in many areas where these fires burned. Differences and abrupt contrast lines in the level of fuels consumed were affected mostly by the plant communities that existed on a site before fire. A few abrupt contrasts in burn severity coincided with apparent differences in grazing patterns of livestock, observed as fence-line contrasts. Fire modeling revealed that grazing in grassland vegetation can reduce surface rate of spread and fire-line intensity to a greater extent than in shrubland types. Under extreme fire conditions (low fuel moisture, high temperatures, and gusty winds), grazing applied at moderate utilization levels has limited or negligible effects on fire behavior. However, when weather and fuel-moisture conditions are less extreme, grazing may reduce the rate of spread and intensity of fires allowing for patchy burns with low levels of fuel consumption. The team suggested that targeted grazing to accomplish fuel objectives holds promise but requires detailed planning that includes clearly defined goals for fuel modification and appropriate monitoring to assess effectiveness. It was recommended that a pilot plan be devised to strategically place grazed blocks across a landscape to create fuel-reduction bands capable of influencing fire behavior. Also suggested was the development of a general technical report that highlights information and examples of how livestock grazing influences fire extent, severity, and intensity. Finally, the team encouraged continued research and monitoring of the effects of the Murphy Wildland Fire Complex. Much more can be learned from the effects of this extensive fire complex that may offer insight for future management decisions.

  18. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: Implications for climate change

    USGS Publications Warehouse

    Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.

    2008-01-01

    Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses between 7 and 25 mm). Thus, the heterogeneity of the desert landscape and the timing or the number of medium-sized pulses is expected to significantly impact desert soil C loss with climate change. ?? 2008 Springer Science+Business Media, LLC.

  19. Energy and Water Fluxes in Heterogeneous Mediterranean Water-limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Detto, M.; Katul, G.; Mancini, M.

    2005-12-01

    Research efforts in distributed eco-hydrologic models often fall in one of two categories: prognostic, in which predictions of root-zone soil moisture content and land surface fluxes is required for a projected radiative and precipitation forcing time series, or diagnostic in which the relationship between soil water status and atmospheric water vapor demand is to be derived for the various components of the landscape. The latter relationships are now receiving broad attention in climate change, hydrological, and ecological studies of arid and semi-arid ecosystems. This interest is now a central focus given the recognition that the component latent heat flux sensitivity to soil moisture decline can directly impact plant productivity, carbon and nutrient cycling, and ground water recharge. With projected shifts in precipitation statistics, mainly towards increased desertification, the "stability" of these ecosystems is highly dependent on their ability to uptake water at low soil moisture Here, we determine the relationship between soil water status and atmospheric water vapor demand for patchy landscapes within a semi-arid ecosystems using a combination remote sensing products and field experiments. In particular, we investigate how VIS/NIR measurements, in conjunction with standard micrometeorological data and ground based thermal infrared thermometers, provide "diagnostic" hydrologic relationship between soil water content and potential evapo-transpiration for the various components of the landscape. These experiments were conducted in the Orroli site, situated in the mid-west of Sardinia (Italy) within the Flumendosa river watershed, which is considered one of the most important water supply resources to the island. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives (/Olea sylvestris/) and cork oaks (/Quercus suber/), different shrubs (/Asparagus acutifolius, Rubus ulmifolius/) and herbaceous species (/Asphodelus microcarpus, Ferula comunis, Scolymus hispanicum/) that are present only during wet seasons. The bare soil is the dominant landcover (~70%) during the summer .

  20. Constraints on patchy reionization from Planck CMB temperature trispectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namikawa, Toshiya

    Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less

  1. Constraints on patchy reionization from Planck CMB temperature trispectrum

    DOE PAGES

    Namikawa, Toshiya

    2018-03-05

    Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less

  2. Carbon storage in the seagrass meadows of Gazi Bay, Kenya

    PubMed Central

    Githaiga, Michael N.; Kairo, James G.; Gilpin, Linda; Huxham, Mark

    2017-01-01

    Vegetated marine habitats are globally important carbon sinks, making a significant contribution towards mitigating climate change, and they provide a wide range of other ecosystem services. However, large gaps in knowledge remain, particularly for seagrass meadows in Africa. The present study estimated biomass and sediment organic carbon (Corg) stocks of four dominant seagrass species in Gazi Bay, Kenya. It compared sediment Corg between seagrass areas in vegetated and un-vegetated ‘controls’, using the naturally patchy occurence of seagrass at this site to test the impacts of seagrass growth on sediment Corg. It also explored relationships between the sediment and above-ground Corg, as well as between the total biomass and above-ground parameters. Sediment Corg was significantly different between species, range: 160.7–233.8 Mg C ha-1 (compared to the global range of 115.3 to 829.2 Mg C ha-1). Vegetated areas in all species had significantly higher sediment Corg compared with un-vegetated controls; the presence of seagrass increased Corg by 4–6 times. Biomass carbon differed significantly between species with means ranging between 4.8–7.1 Mg C ha-1 compared to the global range of 2.5–7.3 Mg C ha-1. To our knowledge, these are among the first results on seagrass sediment Corg to be reported from African seagrass beds; and contribute towards our understanding of the role of seagrass in global carbon dynamics. PMID:28489880

  3. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    NASA Astrophysics Data System (ADS)

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-01

    We propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particle types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. Our results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.

  4. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    DOE PAGES

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-02

    Here, we propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particlemore » types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. These results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.« less

  5. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment

    PubMed Central

    Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András

    2017-01-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065

  6. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment.

    PubMed

    Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne

    2017-11-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.

  7. Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse.

    PubMed

    Singh, Garima; Dal Grande, Francesco; Werth, Silke; Scheidegger, Christoph

    2015-01-01

    The effect of disturbance on symbiotic organisms such as lichens is particularly severe. In case of heterothallic lichen-forming fungi, disturbances may lead to unbalanced gene frequency and patchy distribution of mating types, thus inhibiting sexual reproduction and imposing clonality. The impact of disturbance on reproductive strategies and genetic diversity of clonal systems has so far received little attention. To infer the effects of disturbances on mating-type allele frequencies and population structure, we selected three populations in the Parc Jurassien Vaudois (Switzerland), which were affected by uneven-aged forestry, intensive logging and fire, respectively. We used microsatellite markers to infer genetic diversity, allelic richness and clonal diversity of the epiphytic lichen Lobaria pulmonaria and used L. pulmonaria-specific MAT1-1 and MAT1-2 markers to analyse the frequency and distribution of mating types of 889 individuals. Our study shows that stand-replacing disturbances affect the mating-type frequency and distribution, thus compromising the potential for sexual reproduction. The fire-disturbed area had a significantly lower genetic and genotypic diversity and a higher clonality. Furthermore, the majority of compatible mating pairs in this area were beyond the effective vegetative dispersal range of the species. We conclude that stand-replacing disturbances lead to lower chances of sex and symbiont reshuffling and thus have long-lasting negative consequences on the reproductive strategies and adaptive potential of epiphytic lichen symbioses. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Fire and aquatic ecosystems in forested biomes of North America

    USGS Publications Warehouse

    Gresswell, Robert E.

    1999-01-01

    Synthesis of the literature suggests that physical, chemical, and biological elements of a watershed interact with long-term climate to influence fire regime, and that these factors, in concordance with the postfire vegetation mosaic, combine with local-scale weather to govern the trajectory and magnitude of change following a fire event. Perturbation associated with hydrological processes is probably the primary factor influencing postfire persistence of fishes, benthic macroinvertebrates, and diatoms in fluvial systems. It is apparent that salmonids have evolved strategies to survive perturbations occurring at the frequency of wildland fires (100a??102 years), but local populations of a species may be more ephemeral. Habitat alteration probably has the greatest impact on individual organisms and local populations that are the least mobile, and reinvasion will be most rapid by aquatic organisms with high mobility. It is becoming increasingly apparent that during the past century fire suppression has altered fire regimes in some vegetation types, and consequently, the probability of large stand-replacing fires has increased in those areas. Current evidence suggests, however, that even in the case of extensive high-severity fires, local extirpation of fishes is patchy, and recolonization is rapid. Lasting detrimental effects on fish populations have been limited to areas where native populations have declined and become increasingly isolated because of anthropogenic activities. A strategy of protecting robust aquatic communities and restoring aquatic habitat structure and life history complexity in degraded areas may be the most effective means for insuring the persistence of native biota where the probability of large-scale fires has increased.

  9. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.

  10. Electroformation of Janus and patchy capsules

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Mikkelsen, Alexander; Dommersnes, Paul; Fossum, Jon Otto

    2014-05-01

    Janus and patchy particles have designed heterogeneous surfaces that consist of two or several patches with different materials properties. These particles are emerging as building blocks for a new class of soft matter and functional materials. Here we introduce a route for forming heterogeneous capsules by producing highly ordered jammed colloidal shells of various shapes with domains of controlled size and composition. These structures combine the functionalities offered by Janus or patchy particles, and those given by permeable shells such as colloidosomes. The simple assembly route involves the synergetic action of electro-hydrodynamic flow and electro-coalescence. We demonstrate that the method is robust and straightforwardly extendable to production of multi-patchy capsules. This forms a starting point for producing patchy colloidosomes with domains of anisotropic chemical surface properties, permeability or mixed liquid-solid phase domains, which could be exploited to produce functional emulsions, light and hollow supra-colloidosome structures, or scaffolds.

  11. Aeolian Sediment Trapping Efficiencies of Sparse Vegetation and its Ecohydrological Consequences in Drylands

    NASA Astrophysics Data System (ADS)

    Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.

    2016-12-01

    Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.

  12. Re-evaluation of temperature of replacement dolomitization in the Triassic Latemar platform with clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Müller, Inigo Andreas; Rodriguez-Blanco, Juan D.; Storck, Julian-Christopher; Benning, Liane G.; Wilson, Edith N.; Brack, Peter; Bernasconi, Stefano M.

    2017-04-01

    The Triassic Latemar platform shows different types of dolomitization styles including features such as dolomitized zones around basaltic dykes and patchy reddish or greyish dolomitization features in the central part of the platform. The processes leading to this partial dolomitization are still debated. Different geochemical tools were applied to determine the formation temperature of the patchy dolomite phases, thereby microthermometry on fluid inclusions and clumped isotope thermometry revealed significantly different temperature ranges (100 to 200 °C vs. 40 to 80 °C, from Wilson et al., 1990 and Ferry et al., 2011, respectively). We re-evaluated the origin of these patchy dolomites at Latemar using a new dolomite-specific clumped isotope temperature calibration based on dolomites synthetized in the laboratory at different temperatures. We directly compare the clumped isotope temperatures of patchy dolomites from Latemar with those obtained on the same samples by fluid inclusion microthermometry. With the new dolomite specific clumped isotope temperature calibration it is possible to determine more precisely the dolomite formation temperature and the oxygen isotope composition of the fluid source. Both are critical parameters for better constraining the origin of different dolomite fabrics on the Earth's surface and in ancient sediments. E.N. Wilson, L.A. Hardie and O.M. Phillips, 1990. Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: the Triassic Latemar buildup, northern Italy. American Journal of Science 290, 741-796. J.M. Ferry, B.H. Passey, C. Vasconcelos and J.M. Eiler, 2011. Formation of dolomite at 40-80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 39, 571-574.

  13. Multi-proxy records of Eocene vegetation and climatic dynamics from North America

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.; Stromberg, C. A.; Hyland, E.; Miller, L. A.

    2010-12-01

    The Eocene is characterized by a “thermal maximum” in the early part, and a shift to “icehouse” conditions by the end of the epoch. Consequently, this is an interesting time to look at vegetation dynamics and understanding plant responses to environmental change, especially as refinement of global climate models is needed if we are to understand future climate change impacts. Paleobotanical evidence, such as phytoliths (plant silica bodies), and paleoenvironmental indicators, such as paleosols, offer an opportunity to study vegetation composition and dynamics in the absence of macrofossils on a variety of spatial and temporal scales. To examine the interaction between paleoclimatic/paleoenvironmental changes and paleovegetation changes, we will compare and contrast two well-dated, high-resolution, multi-proxy records from North America. The margins of the Green River Basin system during the Early Eocene Climatic Optimum (53-50 Ma) are an extremely important location for understanding ecological composition and potential climatic drivers of North American floral diversification, because this area is widely considered the point of origin for many modern grass clades. We examined paleosols preserved in the fluvial, basin-margin Wasatch Formation preserved near South Pass, Wyoming. Field identification of the paleosols indicated a suite that includes Entisols, Inceptisols, and Alfisols. To reconstruct paleovegetation, pedogenic carbonates were analyzed isotopically, and samples were collected and extracted for phytoliths . By combining these paleobotanical proxies with quantitative climatic proxies on whole rock geochemistry, we will present an integrated vegetation-climate history of the EECO at the margins of the Green River Basin. Second, we will present high-resolution record of vegetation patterns based on phytoliths from a section of the Renova Formation, Timberhills region, Montana dated to 39.2 ± 3 Ma. The section is composed of Alfisols, Entisols, Inceptisols, and composite paleosols superimposed onto floodplain sediments. Phytoliths from 27 paleosol horizons were extracted to reconstruct a high-resolution vegetation history. Phytolith morphotypes are predominantly from forest plants, confirming the presence of forests in Montana ~40 Ma. Tropical elements such as palms (Arecaceae) and spiral gingers (Costaceae) are present throughout the section, suggesting this was a paratropical forest. The high-resolution sampling demonstrates that vegetation shifts between three main dominant plant types: woody forest plants, Costaceae, and grasses. The heterogeneity is likely due to succession and vegetation patchiness. High proportions of grasses are correlated with low numbers of aquatic biosilica (diatoms, sponge spicules, chrysophytes) that suggests that these grasses were tolerant of relatively drier conditions, while Costaceae today inhabit forest gaps and margins so represent a specific microhabitat associated with the forest plants. Taken in concert, these two new studies provide examples of high-resolution, multi-proxy records of paleovegetation that can be compared with regional paleoclimatic reconstructions to examine the interplay between climatic and biotic change.

  14. Possible linkage between supernovae, increased terrestrial lightning, and wildfire activity in the Late Miocene and Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Feulner, G.; Melott, A. L.; Kirsten, T.; von Bloh, W.

    2017-12-01

    Radioisotopes from deep-sea deposits show that Earth was affected by nearby supernovae about 2.5 and 8 million years ago. Recent modelling work shows that high-energy particles from these events resulted in greatly enhanced ionization of the troposphere. This could have led to an increase in wildfires via more frequent lightning. Here we show that published data on global fire activity from charcoal records reveal a marked increase in wildfires around the times of the supernova explosions. We use a dynamic global vegetation model to assess the impact of increased lightning frequency on vegetation patterns, finding a patchy global decrease in tree cover. Regionally, vegetation changes are particularly pronounced in western North America, the Mediterranean, Central Asia, Northern Indochina, subtropical South America, Africa and Australia, and notably East Africa, in agreement with empirical evidence for a global shift towards savannas during the Pleistocene. Our results demonstrate that moderately nearby supernovae have the potential to affect life on Earth even if they are too distant to initiate a mass extinction. Finally, we note that the shift from forest to savannah biomes in the East African Rift Valley region has been tentatively linked to hominin evolution in this region.

  15. Environmental impacts on the evapotranspiration of an water limited and heterogeneous Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Sperry, J. S.; Frank, J. M.; Reed, D. E.

    2014-12-01

    Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.

  16. Environmental impacts on the evapotranspiration of an water limited and heterogeneous Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Curreli, M.; Corona, R.; Oren, R.

    2015-12-01

    Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.

  17. Water release through plant roots: new insights into its consequences at the plant and ecosystem level.

    PubMed

    Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I

    2012-03-01

    Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. On the estimate of the transpiration in Mediterranean heterogeneous ecosystems with the coupled use of eddy covariance and sap flow techniques.

    NASA Astrophysics Data System (ADS)

    Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram

    2013-04-01

    Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated. From 2012 sap flow sensors based on the thermal Dissipation Method are installed on numerous trees around the tower. Preliminary results show first the need of careful use sap flow sensors outputs which are affected by errors in the estimates of their main parameters, mainly allometric relationships between, for instance, sapwood area, diameter, canopy cover area, which affect the upscale of the local tree measurements to the site plot larger scale. Finally we demonstrate that the sap flow sensors are essential for the estimate of ET in such dry conditions, typical of Mediterranean ecosystems.

  19. Patchy Particles of Block Copolymers from Interface-Engineered Emulsions

    NASA Astrophysics Data System (ADS)

    Ku, Kang Hee; Kim, Yongjoo; Yi, Gi-Ra; Jung, Yeon Sik; Kim, Bumjoon

    A simple method for creating soft patchy particles with a variety of three-dimensional shapes has been developed through the evaporation-induced assembly of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) in an oil-in-water emulsion. Depending on the particle volume, a series of patchy particles in the shapes of snowmen, dumbbells, triangles, tetrahedra, and raspberry can be prepared, which are then precisely tuned by modulating the interfacial interaction at the particle/water interface using a mixture of two different surfactants. Moreover, for a given interfacial interaction, the stretching penalty of the BCPs in the patchy particles can be systematically controlled by adding P4VP homopolymers, which decreases the number of patches of soft particles from multiple patches to a single patch but increases the size of the patch. Calculations based on the strong segregation theory supported the experimental observation of various soft patchy particles and identified the underlying principles of their formation with tunable 3D structures.

  20. Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds

    PubMed Central

    Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas

    2015-01-01

    We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613

  1. Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species.

    PubMed

    Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li

    2016-07-21

    Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.

  2. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  3. Stratigraphic framework of inner shelf storm-dominated sand ridges, Alabama EEZ: Implications for sequence stratigraphy, global climate change, and petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, D.J.; Parker, S.J.

    The Alabama exclusive economic zone (EEZ) contains an abundance of orthoquartzitic shelf sand ridges elongate northwest-southeast diagonally from the shoreline. Soft-sediment peels from 59 Vibracores[sup TM] from the Alabama inner shelf permit detailed description of sand ridge sedimentary structures, fabrics, and eight sea-floor sediment types. These overlie the pre-Holocene sequence boundary and lower Holocene transgressive sediments. In general, the ridges are capped by coarse stacked graded shelly sands, echinoid sands, and clean sands deposited well above storm wave base. The graded shelly sand microfacies, the most common sediment type, is inferred to represent shelf storm deposits because of its gradedmore » nature, sharp base, and variable thickness (0.1 to 4 m). Considerable patchiness of facies is found on a single sand ridge. The facies patchiness may result from the interplay between relict sediment distribution, present hydrodynamics and local difference in preserved shell content. Due to the microtidal regime of the Alabama EEZ and the prevalence of the graded sands on the ridge crests, the ridges are interpreted to be dominantly storm-wave in origin. This type of coarse, clean sandy deposit is a poorly studied yet important possible model for many shelf-sand petroleum reservoirs.« less

  4. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy Dennis J., Jr.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. Additional information is contained in the original extended abstract.

  5. Biotic Interactivity between Grazers and Plants: Relationships Contributing to Atmospheric Boundary Layer Dynamics.

    NASA Astrophysics Data System (ADS)

    Dyer, M. I.; Turner, C. L.; Seastedt, T. R.

    1998-04-01

    During 1987 and 1988 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) studies conducted in the tallgrass prairie of central Kansas, variations in ungulate grazing intensity produced a patchy spatial and temporal distribution of remaining vegetation. Equally variable plant regrowth patterns contributed further to a broad array of total primary production that resulted in a pronounced mosaic of grazing impacts. This regrowth potential, derived from a relative growth rate (RGR) equation comparing ungrazed and grazed plants, determines much of the ecosystem dynamics within and among the grazed pastures and between years. Rates of change in new plant growth (RGRg) ranged from 100% to +40%; however, 78% of the time in 1987 and 71% in 1988, productivity increased as a function of grazing intensity. Since plant growth potential in ungrazed (RGRug) and grazed systems (RGRg) have inherently different attributes, interactions with the abiotic environment may develop many uncertainties. Thus, changes in growth rates in grazed areas compared to ungrazed areas (RGRg) may impose major controls over system productivity and associated biological processes currently not accounted for in ecosystem models.Because FIFE microsite atmospheric boundary layer (ABL) studies did not directly incorporate grazing intensity into their design, Type I and Type II statistical errors may introduce significant uncertainties for understanding cause and effect in surface flux dynamics. As a consequence these uncertainties compromise the ability to extrapolate microsite ABL biophysical findings to other spatial and temporal scales.

  6. Effects of topoclimatic complexity on the composition of woody plant communities.

    PubMed

    Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Effects of topoclimatic complexity on the composition of woody plant communities

    PubMed Central

    Oldfather, Meagan F.; Britton, Matthew N.; Papper, Prahlad D.; Koontz, Michael J.; Halbur, Michelle M.; Dodge, Celeste; Flint, Alan L.; Flint, Lorriane E.; Ackerly, David D.

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. PMID:27339048

  8. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    PubMed

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-07

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.

  9. Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles

    DOE PAGES

    Wang, Xiaoguang; Miller, Daniel S.; de Pablo, Juan J.; ...

    2014-08-15

    The spontaneous positioning of colloids on the surfaces of micrometer-sized liquid crystal (LC) droplets and their subsequent polymerization offers the basis of a general and facile method for the synthesis of patchy microparticles. The existence of multiple local energetic minima, however, can generate kinetic traps for colloids on the surfaces of the LC droplets and result in heterogeneous populations of patchy microparticles. To address this issue, in this paper it is demonstrated that adsorbate-driven switching of the internal configurations of LC droplets can be used to sweep colloids to a single location on the LC droplet surfaces, thus resulting inmore » the synthesis of homogeneous populations of patchy microparticles. The surface-driven switching of the LC can be triggered by addition of surfactant or salts, and permits the synthesis of dipolar microparticles as well as “Janus-like” microparticles. Finally, by using magnetic colloids, the utility of the approach is illustrated by synthesizing magnetically responsive patchy microdroplets of LC with either dipolar or quadrupolar symmetry that exhibit distinct optical responses upon application of an external magnetic field.« less

  10. Soil nitrogen availability in the open steppe with Stipa tenacissima

    NASA Astrophysics Data System (ADS)

    Novosadova, Irena; Damian Ruiz Sinoga, Jose; Záhora, Jaroslav

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Iberian Peninsula and show a higher degree of variability in composition and structure (Maestre et al., 2007). Vegetation patchiness, which are seen as mosaics including vegetated and non-vegetated components, is a common feature of such open steppes (Valentin et al., 1999). Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). First, soil moisture is greater beneath the clumps, due to water harvesting through rainfall interception, uptake by roots from adjacent unvegetated areas and water redistribution from gaps to clumps (Bergkamp et al., 1999; Puigdefá bregas et al., 1999). Second, the canopy diminishes the intense solar radiation (Maestre et al., 2001) avoiding the sun-baking effect, which is an important factor for soil temperature change and physical disruption (Magid et al., 1999). Plant clumps either functioned as microbial hotspots where enhanced microbially driven ecosystem processes took place or as microbial banks capable of undergoing a burst of activity under favourable climatic conditions (Goberna et al., 2007). The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). On the other hand there exists experimental evidence of a non-patchy distribution of certain soil microbial properties in semi-arid Mediterranean patchy ecosystems (Goberna et al., 2007). The microbial nutrient release processes have a fundamental role in ecosystem functioning, particularly in Mediterranean areas, where nutrient availability, mainly nitrogen and phosphorous, represents a limiting factor (Sardans et al., 2005) together with water availability. Soil N availability has been found to affect plant water use efficiency (Sardans et al., 2008a). This strong link between N availability and water use efficiency makes particularly important the understanding of factors affecting soil N availability in Mediterranean ecosystems in view of the future predicted increasing drought in this area. Changes in the soil nitrogen availability in the open steppe with S. tenacissima were monitored over a two distinct period of time during the years 2008 and 2009 at a field site in semi-arid south-eastern Spain (Novosádová et al., 2010). The availability of ammonia-nitrogen and nitrate nitrogen was estimated in situ according to Binkley at Matson (1982) by the trapping of mineral N into the ion exchange resin inserted into special cover. The availability of soil ammonia-N as well as the availability of nitrate-N were in the 2008 year significantly influenced by the addition of different substrate (only 38% of control after the cellulose addition and 176% of control after the raw silk addition). In the following 2009 year was the N availability probably due to favorable soil moisture nearly the same in all experimental variants. The availability of ammonia-N was, in general, higher than the availability of nitrate-N, but the differences were less noticeable in 2008 year. It can be concluded, that the microbial competition for available nitrogen is very high and spatially and/or temporary significantly different.

  11. Effect of chronic oil pollution on salt-marsh nitrogen fixation (acetylene redution). [Spartina alterniflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, A.D.; Webb, K.L.

    1984-03-01

    Annual acetylene reduction rates associated with intertidal communities in a chronically oil polluted Virgina salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of the Spartina alterniflora zones; however, vegetation-associated acetylene reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to the Spartina patens zone. Intertidalmore » sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N/sub 2/ fixation activity averaged 2.23 mg N per m/sup 2/ per d (range = undetectable to 365 mg N per m/sup 2/ per d) in the untreated and 3.17 mg N per m/sup 2/ per d (range = undetectable to 564 mg N per m/sup 2/ per d) in the oil-treated marsh during the year. Vegetation-associated N/sub 2/ fixation activity yielded highest overall mean rates (156 mg N per M/sub 2/ per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates. 39 references, 2 figures, 5 tables.« less

  12. X-Ray Micro-CT Observations of Hydrate Pore Habit and Lattice Boltzmann Simulations on Permeability Evolution in Hydrate Bearing Sediments (HBS)

    NASA Astrophysics Data System (ADS)

    Chen, X.; Espinoza, N.; Verma, R.; Prodanovic, M.

    2017-12-01

    We use X-ray micro-computed tomography (μCT) to observe xenon hydrate growth. During xenon hydrate formation in a single pore and a sandpack, we observe heterogeneous (patchy) hydrate distribution at both pore (10 μm) and core scales (10 cm). These results present similarities with earlier observations on naturally occurring and synthetic hydrate-bearing sediment (HBS). Based on image analyses of xenon hydrate in the single pore, we find that, under the quasi-isothermal condition, the xenon volumetric growth rate versus overpressurization curve fits an Arrhenius type equation. Using the μCT images of HBS, we are able to calculate the permeability of HBS using a lattice Boltzmann method. We find the reduced permeability versus hydrate saturation curve fits a simple Corey-type model as suggested by earlier studies. However, patchy distribution of hydrate does not permit a straightforward interpretation of the saturation exponent. This work provides fundamental observations of hydrate growth and pore habit in sediments and how hydrate habit affects the hydraulic conductivity of HBS. Further implications can be extended to the strength, seismic velocities and electrical properties of HBS.

  13. Mapping the Gulf of Maine with side-scan sonar: A new bottom-type classification for complex seafloors

    USGS Publications Warehouse

    Barnhardt, W.A.; Kelley, J.T.; Dickson, S.M.; Belknap, D.F.

    1998-01-01

    The bedrock-framed seafloor in the northwestern Gulf of Maine is characterized by extreme changes in bathymetric relief and covered with a wide variety of surficial materials. Traditional methods of mapping cannot accurately represent the great heterogeneity of such a glaciated region. A new mapping scheme for complex seafloors, based primarily on the interpretation of side-scan sonar imagery, utilizes four easily recognized units: rock, gravel, sand and mud. In many places, however, the seafloor exhibits a complicated mixture or extremely 'patchy' distribution of the four basic units, which are too small to map individually. Twelve composite units, each a two-component mixture of the basic units, were established to represent this patchiness at a small scale (1:100,000). Using a geographic information system, these and all other available data (seismic profiles, grab samples, submersible dives and cores) were referenced to a common geographic base, superimposed on bathymetric contours and then integrated into surficial geologic maps of the regional inner continental shelf. This digital representation of the seafloor comprises a multidimensional, interactive model complete with explicit attributes (depth, bottom type) that allow for detailed analysis of marine environments.

  14. Dermoscopic clues to distinguish trichotillomania from patchy alopecia areata.

    PubMed

    Abraham, Leonardo Spagnol; Torres, Fernanda Nogueira; Azulay-Abulafia, Luna

    2010-01-01

    Trichotillomania and patchy alopecia areata have similar clinical and dermoscopic features. In trichotillomania, dermoscopy shows decreased hair density, short vellus hair, broken hairs with different shaft lengths, coiled hairs, short vellus hair, trichoptilosis, sparse yellow dots, which may or may not contain black dots and no exclamation mark hairs. In the case of patchy alopecia and broken hairs, the absence of exclamation mark hairs suggests a diagnosis of trichotillomania. On the other hand, the finding of yellow dots without black dots does not exclude it.

  15. Phenomapping of rangelands in South Africa using time series of RapidEye data

    NASA Astrophysics Data System (ADS)

    Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen

    2016-12-01

    Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 2011⿿2012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.

  16. How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia

    PubMed Central

    Robert, Elisabeth M. R.; Jambia, Abudhabi H.; Schmitz, Nele; De Ryck, Dennis J. R.; De Mey, Johan; Kairo, James G.; Dahdouh-Guebas, Farid; Beeckman, Hans; Koedam, Nico

    2014-01-01

    Background and Aims Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought. Methods Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year. Key Results Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment. Conclusions It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained. PMID:24510216

  17. Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found close to the burned R. officinalis stumps, where all soil samples showed water repellency, with mean WDPT of 68 seconds. Generally, we observed a sharp hydrophobic/hydrophilic boundary between the zones I (stump) and II (intermediate). Soil samples from bare soil (zone III) were entirely wettable. At control microsites, SWR was present only in one of the unburned R. officinalis samples. On the basis that unburned microsites are representative of the pre-fire conditions at the burned ones, these results imply that fire caused a significant increase in SWR occurrence at the soil surface. Field SMC showed statistically significant differences between the three zones. Both control and burned microsites showed the same trend, with an increasing gradient towards the outer zone. Furthermore, burned microsites showed larger differences in SMC between zone I and zone III (18% and 27%, respectively) than the unburned ones. It could be explained because at burned stumps, the largest persistence of water repellency and the highest SOM content might decrease the wettability of aggregates, slowing their rates of wetting, which might not occur at all during the rainstorms. In fact, there was obtained a significant and negative Pearson's correlation coefficients between SMC and WDPT, and between SMC and SOM at burned microsites. However, no correlation between field SMC and WDPT was found from control microsites. Moreover, at the burned microsites, the partial correlation analysis with SOM as control variable revealed that SMC and WDPT were influenced by the SOM. In addition, it is necessary to consider the existence of root channels with the development of preferential flow pathways, which could enhance deeper water infiltration in the stump areas. These results provide evidences of the importance of microsite soil surface properties on SMC variability on semiarid burned slopes. The existence of SWR and lowest SMC detected at burned stumps opposite to the highest SMC after rainfall and the absence of SWR in burned bare soil zones could be key factors for the differences in overland flow and erosional response of burned areas characterised by the patchiness of the vegetation cover.

  18. Non-scarring patchy alopecia in patients with systemic lupus erythematosus differs from that of alopecia areata.

    PubMed

    Ye, Y; Zhao, Y; Gong, Y; Zhang, X; Caulloo, S; Zhang, B; Cai, Z; Yang, J; McElwee, K J; Zhang, X

    2013-12-01

    Non-scaring patchy alopecia associated with systematic lupus erythematosus (SLE) is sometimes mis-diagnosed as alopecia areata (AA). Our aim was to differentiate non-scarring patchy SLE alopecia features from patchy AA. Clinical, dermatoscopic and histopathological data from 21 SLE patients with patchy alopecia were compared with data from 21 patients with patchy AA. Incomplete alopecia was common in SLE alopecia patches, while AA patches exhibited complete alopecia. Exclamation-mark hairs, black dots, broken hair and yellow dots were common to AA, while hair shaft thinning and hypopigmentation, angiotelectasis, peripilar sign, perifollicular red dots, white dots and honeycomb pigment patterns were more common in SLE. Interfollicular polymorphous vessels were the most common angiotelectasis presentation in the SLE alopecia patches, but interfollicular arborizing vessels were significantly more common in non-hair-loss-affected SLE regions and in AA hair-loss regions. During follow-up, increased vellus hair was the earliest feature that emerged after treatment both in SLE and AA, while the earliest feature that disappeared was hair shaft hypopigmentation in SLE and broken hair in AA. After treatment, no SLE patients had relapse of alopecia, while 41.7% of AA patients did. Distinct clinical, dermatoscopic and histopathological features were found in SLE-associated alopecia regions, which were different from those of AA. Serological autoantibody tests are of value to confirm the differential diagnosis. Local angiotelectasis and vasculitis close to hair follicles may be involved in the pathogenesis of alopecia in SLE.

  19. Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light.

    PubMed

    Arnold, Sarah E J; Chittka, Lars

    2012-07-01

    Patchy illumination presents foraging animals with a challenge, as the targets being sought may appear to vary in colour depending on the illumination, compromising target identification. We sought to explore how the bumblebee Bombus terrestris copes with tasks involving flower colour discrimination under patchy illumination. Light patches varied between unobscured daylight and leaf-shade, as a bee might encounter in and around woodland. Using a flight arena and coloured filters, as well as one or two different colours of artificial flower, we quantified how bees chose to forage when presented with foraging tasks under patchy illumination. Bees were better at discriminating a pair of similar colours under simulated unobscured daylight illumination than when foraging under leaf-shade illumination. Accordingly, we found that bees with prior experience of simulated daylight but not leaf-shade illumination initially preferred to forage in simulated daylight when all artificial flowers contained rewards as well as when only one colour was rewarding, whereas bees with prior experience of both illuminants did not exhibit this preference. Bees also switched between illuminants less than expected by chance. This means that bees prefer illumination conditions with which they are familiar, and in which rewarding flower colours are easily distinguishable from unrewarding ones. Under patchy illumination, colour discrimination performance was substantially poorer than in homogenous light. The bees' abilities at coping with patchy light may therefore impact on foraging behaviour in the wild, particularly in woodlands, where illumination can change over short spatial scales.

  20. Patchy particles made by colloidal fusion

    NASA Astrophysics Data System (ADS)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  1. Effect of grazing on vegetation and soil of the heuweltjieveld in the Succulent Karoo, South Africa

    NASA Astrophysics Data System (ADS)

    Schmiedel, Ute; Röwer, Inga Ute; Luther-Mosebach, Jona; Dengler, Jürgen; Oldeland, Jens; Gröngröft, Alexander

    2016-11-01

    We asked how historical and recent grazing intensity affect the patchy landscape of the heuweltjieveld in the semi-arid biodiversity hotspot Succulent Karoo. The study was carried out on a communal farmland 80 km south-west of Springbok, in Namaqualand. Heuweltjies are roughly circular earth mounds that are regularly distributed in this landscape. We sampled plant species and life-form composition, diversity measures, habitat and soil variables in 100 m2 plots, placed in three visually distinguishable heuweltjie zones (centre, fringe, and matrix) and distributed across grazing camps with different recent and historic grazing intensities. Differences between heuweltjie zones were assessed with ANOVAs and multiple linear regressions. The effect of past and recent grazing intensity on soil and plant variables was analysed by Generalized Linear Models for each heuweltjie zone separately. The three zones constituted clearly distinguishable units in terms of vegetation and soil characteristics. Soil pH and cover of annual plants increased from matrix to centres, while total vegetation cover, species richness and perennial plant cover decreased in the same direction. Historic (pre-2000) grazing patterns had the strongest effects on fringes, showing the strongest soil and vegetation-related signs of overutilization with increased stocking density. Centres showed signs of overutilization irrespective of the stocking density. The much shorter exposure to recent grazing pattern (post-2000), which was nearly inverse to the historic grazing pattern, showed increase of vegetation cover (centres) and species richness (matrix) with recent grazing intensity. We interpret these effects as still visible responses of the lower grazing intensity in these camps during the historic period. No recovery under recent grazing was observed at any of the zones. We conclude that irrespective of their conducive growing conditions, once transformed to a disturbed state, heuweltjie centres recover slowly, whereas the less impacted soil and vegetation of fringes are more responsive than centres and matrix.

  2. Progression of Myopic Maculopathy during 18-Year Follow-up.

    PubMed

    Fang, Yuxin; Yokoi, Tae; Nagaoka, Natsuko; Shinohara, Kosei; Onishi, Yuka; Ishida, Tomoka; Yoshida, Takeshi; Xu, Xian; Jonas, Jost B; Ohno-Matsui, Kyoko

    2018-06-01

    To examine the progression pattern of myopic maculopathy. Retrospective, observational case series. Highly myopic patients who had been followed up for 10 years or more. Using fundus photographs, myopic features were differentiated according to Meta-analysis of Pathologic Myopia (META-PM) Study Group recommendations. Progression pattern of maculopathy. The study included 810 eyes of 432 patients (mean age, 42.3±16.8 years; mean axial length, 28.8±1.9 mm; mean follow-up, 18.7±7.1 years). The progression rate of myopic maculopathy was 47.0 per 1000 eye-years. Within the pathologic myopia (PM) group (n = 521 eyes), progression of myopic maculopathy was associated with female gender (odds ratio [OR], 2.21; P = 0.001), older age (OR, 1.03; P = 0.002), longer axial length (OR, 1.20; P = 0.007), greater axial elongation (OR, 1.45; P = 0.005), and development of parapapillary atrophy (PPA; OR, 3.14; P < 0.001). Diffuse atrophy, found in 217 eyes without choroidal neovascularization (CNV) or lacquer cracks (LCs) at baseline, progressed in 111 (51%) eyes, leading to macular diffuse atrophy (n = 64; 64/111 or 58%), patchy atrophy (n = 59; 53%), myopic CNV (n = 18; 16%), LCs (n = 9; 5%), and patchy-related macular atrophy (n = 3; 3%). Patchy atrophy, detected in 63 eyes without CNV or LCs at baseline, showed progression in 60 eyes (95%), leading to enlargement of original patchy atrophy (n = 59; 59/60 or 98%), new patchy atrophy (n = 29; 48%), CNV-related macular atrophy (n = 13; 22%), and patchy-related macular atrophy (n = 5; 8%). Of 66 eyes with LCs, 43 eyes (65%) showed progression with development of new patchy atrophy (n = 38; 38/43 or 88%) and new LCs (n = 7; 16%). Reduction in best-corrected visual acuity (BCVA) was associated mainly (all P < 0.001) with the development of CNV or CNV-related macular atrophy and enlargement of macular atrophy. The most frequent progression patterns were an extension of peripapillary diffuse atrophy to macular diffuse atrophy in diffuse atrophy, enlargement of the original atrophic lesion in patchy atrophy, and development of patchy atrophy in LCs. Main risk factors for progression were older age, longer axial length, and development of PPA. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.

    PubMed

    Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C

    2014-03-25

    Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.

  4. Retrieval of seasonal dynamics of forest understory reflectance over a set of boreal, sub-boreal and temperate forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.

    2013-12-01

    Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.

  5. Computed tomography in pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, D.A.; Webb, W.R.; Gamsu, G.

    1989-05-01

    We studied the high resolution CT (HRCT) scans of 15 patients with biopsy-proven sarcoidosis and correlated the findings with pulmonary function tests (12 patients), 67Ga scans (10 patients), bronchoalveolar lavage (five patients), recent transbronchial biopsy (six patients), and recent open lung biopsy (three patients). The HRCT features included small nodules, thickened interlobular septa, patchy focal increase in lung density, honeycombing, and central conglomeration of vessels and bronchi. Active alveolitis was present by gallium scanning criteria in 5 of 10 cases. By bronchoalveolar lavage criteria, activity was present in three of five cases. Patchy increase in density may correlate with activemore » alveolitis as seen on /sup 67/Ga scanning. High resolution CT was better than chest X-radiography for demonstration of patchy increase in density and for distinguishing nodules from septal thickening. Both nodules and patchy density were partly reversible following therapy. Nodular densities seen on CT correlated with the presence of granulomata on histology. Resting pulmonary function tests correlated poorly with presence and extent of lung disease on HRCT. The presence on HRCT of focal fine nodules, patchy focal increase in lung density, and central crowding of bronchi and vessels should suggest the diagnosis of sarcoidosis. In some patients, HRCT can identify unsuspected parenchymal lung disease and document the reversible components of sarcoid lung disease.« less

  6. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  7. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes, and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions. Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical-biological-chemical interactions take place. Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain, yielding a framework for exploring the controls on spatially and temporally intermittent processes. The following discussion highlights only a few of the multitude of models which have yielded insight into the dynamics of plankton patchiness. In addition, this particular collection of examples is intended to furnish some exposure to the diversity of modeling approaches which can be brought to bear on the problem. These approaches range from abstract theoretical models intended to elucidate specific processes, to complex numerical formulations which can be used to actually simulate observed distributions in detail.

  8. Vegetation-induced spatial variability of soil redox properties in wetlands

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in wetlands. Authors are grateful to Hungarian Scientific research Fund (K100180)

  9. Predicting Coarse Sediment Transport from Patchy Beds in Ephemeral Channels

    DTIC Science & Technology

    2012-04-01

    ct u re s La b or at or y Brendan T. Yuill April 2012 Approved for public release; distribution is unlimited. ERDC/GSL TR-12-17 April...5  Figure 3. Photographic map of a section of the Lucky Hills channel bed without (A) and with ( B ) the...diagram of the Santa-Rita type flume looking upstream (A) and a close-up photograph of the slot-sampler looking downstream ( B

  10. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    PubMed

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  11. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Duan, Liangxia; Huang, Mingbin; Zhang, Luodan

    2016-06-01

    Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.

  12. Coastal wetlands, sea level, and the dimensions of geomorphic resilience

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2018-03-01

    Geomorphic system resilience is often perceived as an intrinsic property of system structure and interactions but is also related to idiosyncratic place and history factors. The importance of geographical and historical circumstances makes it difficult to generate categorical statements about geomorphic resilience. However, network-based analyses of system structure can be used to determine the dynamical stability (= resilience) based on generally applicable relationships and to determine scenarios of stability or instability. These provide guidelines for assessing place and history factors to assess resilience. A model of coastal wetlands is analyzed, based on interactions among relative sea level, wetland surface elevation, hydroperiod, vegetation, and sedimentation. The system is generally (but not always) dynamically unstable and non-resilient. Because of gradients of environmental factors and patchy distributions of microtopography and vegetation, a coastal wetland landscape may have extensive local variations in stability/resilience and in the key relationships that trigger instabilities. This is illustrated by a case study where dynamically unstable fragmentation is found in two nearby coastal wetlands in North Carolina's Neuse River estuary-Otter Creek Mouth and Anderson Creek. Neither is keeping pace with relative sea level rise, and both show unstable state transitions within the wetland system; but locally stable relationships exist within the wetland systems.

  13. How will wind and water erosion change in drylands in the future?

    NASA Astrophysics Data System (ADS)

    Okin, G. S.; Sala, O.; Vivoni, E. R.

    2017-12-01

    Drylands are characterized as much by high spatial and temporal variability as they are by low precipitation. Cover that is patchy at multiple scales allows connectivity for wind and water transport. Vegetation dynamics at interannual scales occurs in the context of community change (including woody encroachment) at decadal scales. Periods of drought alternate with relatively wet periods. Future predictions for the world's drylands are that many will become more arid, but near all will experience greater climate variability. This work explores how future variability will affect transport by wind and water, both of which are crucial elements of biotic-abiotic feedbacks that control community change in drylands. This work is based on long-term observations from the Jornada Long Term Ecological Research (LTER), but with lessons that are applicable elsewhere. We find strong relationships between vegetation community, precipitation and aeolian transport related to changes in connectivity. We further identify strong, scale-dependent relationships between precipitation and runoff. Thus, aeolian transport decreases with increasing annual precipitation and transport by water increases with annual precipitation, with the combined effect that increased variability in annual precipitation is likely to increase both water and wind transport. The consequence of this is that feedbacks associated with community change are likely to strengthen in the future.

  14. [Effects of road construction on regional vegetation types].

    PubMed

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  15. Status assessment and conservation plan for the Grasshopper Sparrow (Ammodramus savannarum)

    USGS Publications Warehouse

    Ruth, Janet M.

    2015-01-01

    The Grasshopper Sparrow (Ammodramus savannarum) breeds in grassland habitats throughout much of the U.S., southern and southeastern Canada, and northern Mexico. Additional subspecies are resident in Central America, northern South America, and the Caribbean. It winters primarily in the coastal states of the southeastern U.S., southern portions of the southwestern states, and in Mexico, Central America, and the Caribbean. The species prefers relatively open grassland with intermediate grass height and density and patchy bare ground; because it is widely distributed across different grassland types in North America, it selects different vegetation structure and species composition depending on what is available. In the winter, they use a broader range of grassland habitats including open grasslands, as well as weedy fields and grasslands with woody vegetation. Analyses show significant range-wide population declines from the late 1960s through the present, primarily caused by habitat loss, degradation, and fragmentation. Grasshopper Sparrow is still a relatively common and broadly distributed species, but because of significant population declines and stakeholder concerns, the species is considered of conservation concern nationally and at the state level for numerous states. Many factors, often related to different grassland management practices (e.g., grazing, burning, mowing, management of shrub encroachment, etc.) throughout the species’ range, have impacts on Grasshopper Sparrow distribution, abundance, and reproduction and may represent limiting factors or threats given steep declines in this species’ population. Because of the concerns for this species, Grasshopper Sparrow has been identified as a focal species by the U.S. Fish and Wildlife Service (USFWS) and this Status Assessment and Conservation Plan for Grasshopper Sparrow has been developed. Through literature searches and input from stakeholders across its range, this plan presents information about Grasshopper Sparrow population status, distribution, habitat needs, threats and limiting factors; synthesis of these resources has identified recommended action items addressing population status and trends, habitat conservation, management, research, inventory and monitoring, and education and outreach components that will facilitate Grasshopper Sparrow conservation across its full annual cycle.

  16. Soil moisture and wild olive tree transpiration relationship in a water-limited Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Curreli, M.; Montaldo, N.; Oren, R.

    2016-12-01

    Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots transfer water from pasture in conjunction whit deep roots uptake to recharge water in the stem.

  17. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.

  18. Predicting altered connectivity of patchy forests under group selection silviculture

    Treesearch

    Seth W. Bigelow; Sean A. Parks

    2010-01-01

    Group selection silviculture creates canopy openings that can alter connectivity in patchy forests, thereby affecting wildlife movement and fire behavior. We examined effects of group selection silviculture on percolation (presence of continuously forested routes across a landscape) in Sierra Nevada East-side pine forest in northern California, USA. Four ~ 250 ha...

  19. An evaluation of thematic mapper simulator data for the geobotanical discrimination of rock types in Southwest Oregon

    NASA Technical Reports Server (NTRS)

    Weinstock, K. J.; Morrissey, L. A.

    1984-01-01

    Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.

  20. Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media

    NASA Astrophysics Data System (ADS)

    Jinwei, Zhang; Handong, Huang; Chunhua, Wu; Sheng, Zhang; Gang, Wu; Fang, Chen

    2018-04-01

    Wave induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and micro-cracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low frequency limit and consistent with the isolated fracture model at high frequency limit. After the frequency dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analyzed through several numerical examples. We investigated three poroelastic cases: medium including pores and micro-cracks, media including pores, micro-cracks and fractures, media including pores and fractures. The frequency dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.

  1. Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Jinwei; Huang, Handong; Wu, Chunhua; Zhang, Sheng; Wu, Gang; Chen, Fang

    2018-07-01

    Wave-induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and microcracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low-frequency limit and consistent with the isolated fracture model at high-frequency limit. After the frequency-dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analysed through several numerical examples. We investigated three poroelastic cases: medium including pores and microcracks; media including pores, microcracks and fractures; media including pores and fractures. The frequency-dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.

  2. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  3. [Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia].

    PubMed

    Schmidt-Mumm, Udo; Vargas Ríos, Orlando

    2012-03-01

    Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia. High Andean paramo ecosystems are an important water resource for many towns, and major cities in this region. The aquatic and wetland vegetation of different paramo lakes, pond, swamps and bogs was studied according to the classical phytosociological approach, which is based on homogenous stands, but excludes any border phenomena or transitional zone. The present research aimed at determining the aquatic and wetland vegetation along different moisture gradients. A total of 89 species in 30 transects were reported, of which Crassula venezuelensis, Carex honplandii, Callitriche nubigena, Eleocharis macrostachya, Ranunculus flagelliformis, R. nubigenus, Eleocharis stenocarpa, Galium ascendens y Alopecurus aequalis were present in more than one third of the transects. Numerical classification and indicator species analysis resulted in the definition of the next 18 communities: 1) Calamagrostis effusa, 2) Sphagnum cuspidatum, 3) Cyperus rufus, 4) Eleocharis stenocarpa, 5) Carex acutata, 6) Poa annua,7) Valeriana sp., 8) Ranunculus flagelliformis, 9) Carex bonplandii, 10) Festuca andicola. 11) Muhlenbergia fustigiata, 12) Elatine paramoana, 13) Isoëtes palmeri, 14) Crassula venezuelensis, 15) Lilaeopsis macloviana, 16) Callitriche nubigena, 17) Potamogeton paramoanus and 18) Potamogeton illinoensis. The ordination of communities reveals the presence of three different aquatic-terrestrial gradients which are related to the life form structure of species that characterized the various communities. We concluded that patchiness and heterogeneity of the vegetation is mainly the result of alterations caused by human activities (burning, cattle raise and material extraction for road and dam construction).

  4. Effects of foliage litter of a pioneer shrub (Artemisia halodendron) on germination from the soil seedbank in a semi-arid sandy grassland in China.

    PubMed

    Luo, Yongqing; Zhao, Xueyong; Li, Yuqiang; Wang, Tao

    2017-11-01

    Vegetation recovery during succession is an important process for ecological restoration of the soil, especially in degraded sandy land. However, the driving mechanisms, such as how a pioneer species competes with other species, is uncertain. In China's Horqin Sandy Land, Artemisia halodendron is an important shrub that is common on semi-fixed dunes, where it replaces Agriophyllum squarrosum during succession, and is an important indicator species of the second stage of dune stabilization. However, how it outcompetes other species is still unclear. In this study, we conducted a seed bank germination experiment using soil from the native habitats of A. halodendron on semi-fixed dunes. We covered the soil with foliage litter of A. halodendron at a range of concentrations. Seed germination and seedling growth were strongly affected by the foliage litter. Seed germination and seedling growth were not harmed by a low concentration (≤50 g m -2 ) of the foliage litter but severely inhibited by high concentrations (≥100 g m -2 ). Strong allelopathy, indicated by decreased germination, increased seedling loss, and decreased plant biomass, appeared during the later stages of germination (after about 20 days of incubation). Our results suggest that as a pioneer shrub during the vegetation succession that occurs during dune stabilization, A. halodendron outcompeted other species through the allelopathic effect of its foliage litter. This helps to explain the patchy distribution and heterogeneity of vegetation communities in the Horqin Sandy Land.

  5. Turbulent unmixing: how marine turbulence drives patchy distributions of motile phytoplankton

    NASA Astrophysics Data System (ADS)

    Durham, William; Climent, Eric; Barry, Michael; de Lillo, Filippo; Boffetta, Guido; Cencini, Massimo; Stocker, Roman

    2013-11-01

    Centimeter-scale patchiness in the distribution of phytoplankton increases the efficacy of many important ecological interactions in the marine food web. We show that turbulent fluid motion, usually synonymous with mixing, instead triggers intense small-scale patchiness in the distribution of motile phytoplankton. We use a suite of experiments, direct numerical simulations of turbulence, and analytical tools to show that turbulent shear and acceleration directs the motility of cells towards well-defined regions of flow, increasing local cell concentrations more than ten fold. This motility-driven `unmixing' offers an explanation for why motile cells are often more patchily distributed than non-motile cells and provides a mechanistic framework to understand how turbulence, whose strength varies profoundly in marine environments, impacts ocean productivity.

  6. Modeling the Crystallization of Proteins

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Kumar, Sanat; Garde, Shekhar

    2007-03-01

    We have used molecular dynamics and monte carlo simulations to understand the pathway to protein crystallization. We find that models which ignore the patchy nature of protein-protein interactions only crystallize inside the metastable gas-lqiuid coexistence region. In this regime they crystallize through the formation of a critical nucleus. In contrast, when patchiness is introduced we find that there is no need to be inside this metastable gas-liquid boundary. Rather, crystallization occurs through an intermediate which is composed of disordered aggregates. These are formed by patchy interactions. Further, there appears to be no need for the formation of a critical nucleus. Thus the pathways for crystallization are strongly controlled by the nature of protein-protein interactions, in good agreement with current experiments.

  7. Physical properties of Meridiani Sinus-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars (30 degrees N to 20 degrees S, 57 degrees E to 75 degrees W) using enhanced color images and Mars Consortium data identified four major color/albedo units in the dark, reddish-gray regions that form the classical dark albedo markings of Mars, including Meridiani Sinus. The darkest, least red (relatively 'blue') materials form splotches (some with dune forms) in craters, inter-crater depressions, and part of Valles Marineris. These form the 'Dark Blue' Meridiani unit. Abundant materials that have higher albedos and are somewhat redder than the 'Dark Blue' unit have uniquely high green/(violet + red) color ratios in Viking Orbiter images. These materials, named 'Green-blue' Meridiani surround and mix with 'Dark Blue' Meridiani patches and are abundant on crater rims and local elevations. Discontinuous, patchy deposits with still higher albedos and much redder colors have morphologies classified of the Type Ib bright depositional dust streaks and sheets that were classified by Thomas et al. These dust deposits, which appear to be optically thin and patchy and are darker and not as red as other Type Ib dust deposits on Mars, and their Meridiani substrates, were designated the 'Red' Meridiani unit. Distinctive deposits that form highly eroded mesas and escarpments in northern Meridiani Sinus were named 'Light Blue' Meridiani, since they are not as red as other materials with moderately high albedos. Large areas dominated by these units form Meridiani Province in the central equatorial region of Mars.

  8. Experimental trampling of vegetation. I. Relationship between trampling intensity and vegetation response

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times. Response to trampling was assessed by determining vegetation cover 2 weeks after trampling and 1 year after trampling.2. Response varied significantly with trampling intensity and vegetation type. Trampling...

  9. An approach for detecting five typical vegetation types on the Chinese Loess Plateau using Landsat TM data.

    PubMed

    Wang, Zhi-Jie; Jiao, Ju-Ying; Lei, Bo; Su, Yuan

    2015-09-01

    Remote sensing can provide large-scale spatial data for the detection of vegetation types. In this study, two shortwave infrared spectral bands (TM5 and TM7) and one visible spectral band (TM3) of Landsat 5 TM data were used to detect five typical vegetation types (communities dominated by Bothriochloa ischaemum, Artemisia gmelinii, Hippophae rhamnoides, Robinia pseudoacacia, and Quercus liaotungensis) using 270 field survey data in the Yanhe watershed on the Loess Plateau. The relationships between 200 field data points and their corresponding radiance reflectance were analyzed, and the equation termed the vegetation type index (VTI) was generated. The VTI values of five vegetation types were calculated, and the accuracy was tested using the remaining 70 field data points. The applicability of VTI was also tested by the distribution of vegetation type of two small watersheds in the Yanhe watershed and field sample data collected from other regions (Ziwuling Region, Huangling County, and Luochuan County) on the Loess Plateau. The results showed that the VTI can effectively detect the five vegetation types with an average accuracy exceeding 80 % and a representativeness above 85 %. As a new approach for monitoring vegetation types using remote sensing at a larger regional scale, VTI can play an important role in the assessment of vegetation restoration and in the investigation of the spatial distribution and community diversity of vegetation on the Loess Plateau.

  10. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were carried out one week after wildfire in the summer-wet season (February 2014) and repeated six months (in July 2014, during the winter-dry season) and twelve months after the wildfire (in February 2015, during the following summer-wet season). Soil physicochemical analyses were undertaken according to standard methods. Rs was measured with a 6400-09 portable soil CO2 flux chamber attached to a LI-COR 6400. Soil temperature was measured with a thermometer attached to the LI-COR and soil moisture with a portable Moisture Probe MP406. Both temperature and moisture were measured directly adjacent to the collars and simultaneously with Rs at a depth of 5 cm. Results and discussion Larger rates of Rs were found in the burnt areas compared to those unburnt. However, Rs showed a large variation among vegetation types in both burnt and unburnt areas for each time period following fire and Rs and soil organic C were consistently higher under Eucalyptus trees. Environmental factors (temperature and moisture) could explain a large fraction of Rs variability and therefore the roles of both water availability and temperature are critical to explain the CO2 fluxes in these environments. Yet, these relations are variable and change across vegetation types, indicating that specific models need to be used to accurately estimate Rs rates. This study demonstrates the importance of assessing CO2 fluxes following fire considering both environmental factors and vegetation types. This is particularly important in heterogeneous semi-arid areas that are characterized by patchy vegetation distribution where CO2 fluxes can be largely underestimated. References Granged, A.J.P., Jordán, A., Zavala, L.M, Muñoz-Rojas, M., Mataix-Solera, J., 2011. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 167-168, 125-134. Muñoz-Rojas, M., Lewandrowski, W., Martini, D., Erickson, T., Merritt, D., Dixon, K. 2015. Seasonal dynamics of soil CO2 efflux in biodiverse semi-arid ecosystems of Western Australia. Geophysical Research. Abstracts Vol. 17, EGU2015-3961-1, EGU General Assembly. Muñoz-Rojas, M., Erickson, T.E., Martini, D., Dixon, K.W., Merritt, D.J. 2016. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological indicators 63,14-22. Oyonarte, C., Rey, A., Raimundo, J., Miralles, I., Escribano, P., 2012. The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: spatial variability and controlling factors. Ecological Indicators 14, 40-49. Van Groenigen, K.J., Qi, X., Osenberg, C.W., Luo, Y., Hungate, B.A., 2014. Faster Decomposition under Increased Atmospheric CO2 Limits Soil Carbon Storage. Science 344, 508 Willaarts, B.A., Oyonarte, C., Muñoz-Rojas, M., Ibáñez, J.J. and Aguilera, P.A. 2015. Environmental Factors Controlling Soil Organic Carbon Stocks in Two Contrasting Mediterranean Climatic Areas of Southern Spain. Land Degradation and Development (on-line). DOI: 10.1002/ldr.2417

  11. Geographic distance affects dispersal of the patchy distributed greater long-tailed hamster (Tscherskia triton).

    PubMed

    Xue, Huiliang; Zhong, Min; Xu, Jinhui; Xu, Laixiang

    2014-01-01

    Dispersal is a fundamental process in ecology influencing the genetic structure and the viability of populations. Understanding how variable factors influence the dispersal of the population is becoming an important question in animal ecology. To date, geographic distance and geographic barriers are often considered as main factors impacting dispersal, but their effects are variable depending on different conditions. In general, geographic barriers affect more significantly than geographic distance on dispersal. In rapidly expanding populations, however, geographic barriers have less effect on dispersal than geographic distance. The effects of both geographic distance and geographic barriers in low-density populations with patchy distributions are poorly understood. By using a panel of 10 microsatellite loci we investigated the genetic structure of three patchy-distributed populations of the Greater long-tailed hamster (Tscherskia triton) from Raoyang, Guan and Shunyi counties of the North China Plain. The results showed that (i) high genetic diversity and differentiation exist in three geographic populations with patchy distributions; (ii) gene flow occurs among these three populations with physical barriers of Beijing city and Hutuo River, which potentially restricted the dispersal of the animal; (iii) the gene flow is negatively correlated with the geographic distance, while the genetic distance shows the positive correlation. Our results suggest that the effect of the physical barriers is conditional-dependent, including barrier capacity or individual potentially dispersal ability. Geographic distance also acts as an important factor affecting dispersal for the patchy distributed geographic populations. So, gene flow is effective, even at relatively long distances, in balancing the effect of geographic barrier in this study.

  12. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire is very dynamic (Cerdà 1998b). Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References Belmonte Serrato, F., Romero Díaz, A., López Bermúdez, F., Hernández Laguna, E. 1999. Óptimo de cobertura vegetal en relación a las pérdidas de suelo por erosión hídrica y las pérdidas de lluvia por interceptación. Papeles de Geografía 30, 5-15. Cammeraat, E., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semiarid environment. Ecohydrology, 3: 421-430. 10.1002/eco.161 Cerdà, A. 1997a. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36, 37-51. Cerdà, A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A.1997b. Soil erosion after land abandonment in a semiarid environment of Southeastern Spain. Arid Soil Research and Rehabilitation, 11, 163-176. Garcia-Estringana, P., Alonso-Blázquez, N., Alegre, J. 2010b. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology 389, 363-372. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010a. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  13. Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement

    Treesearch

    Curtis H. Flather; Michael Bevers

    2002-01-01

    A discrete reaction-diffusion model was used to estimate long-term equilibrium populations of a hypothetical species inhabiting patchy landscapes to examine the relative importance of habitat amount and arrangement in explaining population size. When examined over a broad range of habitat amounts and arrangements, population size was largely determined by a pure amount...

  14. Multi-scale effects of resource patchiness on foraging behaviour and habitat use by longnose dace, Rhinichthys cataractae

    Treesearch

    Andrew R. Thompson; J. Todd Petty; Gary D. Grossman

    2001-01-01

    1. We examined the response of a predatory benthic fish, the longnose dace (Rhinichthys cataractae), to patchiness in the distribution of benthic macroinvertebrates on cobbles at three hierarchical spatial scales during summer and autumn 1996, and spring 1997 in a southern Appalachian stream. 2. At the primary scale (four to five individual cobbles...

  15. Surface heating and patchiness in the coastal ocean off central California during a wind relaxation event

    NASA Technical Reports Server (NTRS)

    Ramp, Steven R.; Garwood, Roland W.; Snow, Richard L.; Davis, Curtiss O.

    1991-01-01

    The difference between the temperature of the ocean at 4-cm and 2-m depth was continuously monitored during a cruise to the coastal transition zone off Point Arena, California, during June 1987. The two temperatures were coincident most of the time but diverged during one nearshore leg of the cruise where large temperature differences of up to 4.7 C were observed between the 4-cm and 2-m sensors, in areas which were separated by regions where the two temperatures were coincident as usual. The spatial scale of this 'patchy' thermal structure was about 5-10 km. A mixed layer model (Garwood, 1977) was used to simulate the near surface stratification when forced by the observed wind stress, surface heating, and optical clarity of the water. The model produced a thin strongly stratified surface layer at stations where exceptionally high turbidity was observed but did not produce such features otherwise. This simple model could not explain the horizontal patchiness in the thermal structure, which was likely due to patchiness in the near-surface chlorophyll distributions or to submesoscale variability of the surface wind stress.

  16. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.

  17. Vegetative Incompatibility and the Mating-Type Locus in the Cellular Slime Mold DICTYOSTELIUM DISCOIDEUM

    PubMed Central

    Robson, Gillian E.; Williams, Keith L.

    1979-01-01

    The genetic basis of vegetative incompatibility in the cellular slime mold, Dictyostelium discoideum, is elucidated. Vegetatively compatible haploid strains from parasexual diploids at a frequency of between 10-6 and 10-5, whereas "escaped" diploids are formed between vegetatively incompatible strains at a frequency of ∼10-8. There is probably only a single vegetative incompatibility site, which appears to be located at, or closely linked to, the mating-type locus. The nature of the vegetative incompatibility is deduced from parasexual diploid formation between wild isolates and tester strains of each mating type, examination of the frequency of formation of "escaped" diploids formed between vegetatively incompatible strains, and examination of the mating type and vegetative incompatibility of haploid segregants obtained from "escaped" diploids. PMID:17248984

  18. The consequences of trampling disturbance in two vegetation types at the Wyoming Nature Conservancy's Sweetwater River project area

    Treesearch

    Christopher A. Monz; Tami Pokorny; Jerry Freilich; Sharon Kehoe; Dayna Ayers-Baumeister

    2000-01-01

    The consequences of human trampling disturbance on two codominant vegetation types at the Wyoming Nature Conservancy’s Sweetwater Preserve were examined. Small trampling lanes (1.5m x 0.5m) were established in both vegetation types and trampling treatments ranging from 0 to 800 passes were applied. Artemisia (Sagebrush) vegetation type was more...

  19. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  20. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    PubMed

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Multiscale sampling of plant diversity: Effects of minimum mapping unit size

    USGS Publications Warehouse

    Stohlgren, T.J.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.

    1997-01-01

    Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.

  2. Developing digital vegetation for central hardwood forest types: A case study from Leslie County, KY

    Treesearch

    Bo Song; Wei-lun Tsai; Chiao-ying Chou; Thomas M. Williams; William Conner; Brian J. Williams

    2011-01-01

    Digital vegetation is the computerized representation, with either virtual images or animations, of vegetation types and conditions based on current measurements or ecological models. Digital vegetation can be useful in evaluating past, present, or future land use; changes in vegetation linked to climate change; or restoration efforts. Digital vegetation can be...

  3. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited)

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.

    2013-12-01

    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of reverting to civil war. Finally, the patchy and heterogeneous arrangement of vegetation in dryland areas sometimes complicates the extraction of phenological signals using existing remote sensing data. We conclude by demonstrating how the phenological analysis of a range of dryland land cover classes benefits from the availability of synthetic images at Landsat spatial resolution and MODIS time intervals.

  4. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico.

    PubMed

    Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  5. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment.

    PubMed

    Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda

    2013-01-01

    The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR (mean= 90.6%) and LE (mean = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.

  6. THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Line, Michael R.; Parmentier, Vivien, E-mail: mrline@ucsc.edu

    2016-03-20

    We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1–1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the “patchy cloud-high mean molecular weight” degeneracy exists. We also explore the degeneracy ofmore » nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.« less

  7. Vegetation types on acid soils of Micronesia

    Treesearch

    Marjorie C. Falanruw; Thomas G.. Cole; Craig D. Whitesell

    1987-01-01

    The soils and vegetation of the Caroline high islands, Federated States of Micronesia, are being mapped by the U.S. Department of Agriculture's Forest Service and Soil Conservation Service. By the end of 1987, vegetation maps and reports on Kosrae, Pohnpei, Yap, four Truk Islands, and Palau are expected to be available. To compare soil types with vegetation types...

  8. The pitcher plant flesh fly exhibits a mixture of patchy and metapopulation attributes.

    PubMed

    Rasic, Gordana; Keyghobadi, Nusha

    2012-01-01

    We investigated the pattern of spatial genetic structure and the extent of gene flow in the pitcher plant flesh fly Fletcherimyia fletcheri, the largest member of the inquiline community of the purple pitcher plant Sarracenia purpurea. Using microsatellite loci, we tested the theoretical predictions of different hypothesized population models (patchy population, metapopulation, or isolated populations) among 11 bogs in Algonquin Provincial Park (Canada). Our results revealed that the pitcher plant flesh fly exhibits a mixture of patchy and metapopulation characteristics. There is significant differentiation among bogs and limited gene flow at larger spatial scales, but local populations do not experience frequent local extinctions/recolonizations. Our findings suggest a strong dispersal ability and stable population sizes in F. fletcheri, providing novel insights into the ecology of this member of a unique ecological microcosm.

  9. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    PubMed

    Dunwiddie, Peter W; Martin, R Adam

    2016-01-01

    Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae). This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable microsites to focus rare species plantings, survival and efficiency may be significantly enhanced.

  10. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.

    2016-01-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  11. Potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal changes in dryland environments

    NASA Astrophysics Data System (ADS)

    Foerster, Saskia; Wilczok, Charlotte; Brosinsky, Arlena; Kroll, Anja; Segl, Karl; Francke, Till

    2014-05-01

    Many drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken and Croke 2007). The identification of sediment source areas and the way they connect to the channel network are essential to environmental management (Reid et al. 2007), especially where high erosion and sediment delivery rates occur. Vegetation cover and its spatial and temporal pattern is one of the main factors affecting sediment connectivity. This is particularly true for patchy vegetation covers typical for dryland environments. While many connectivity studies are based on field-derived data, the potential of remotely-sensed data for sediment connectivity analyses has not yet been fully exploited. Recent advances in remote sensing allow for quantitative, spatially explicit, catchment-wide derivation of surface information to be used in connectivity analyses. These advances include a continuous increase in spatial image resolution to comprise processes at the plot to hillslope to catchment scale, an increase in the temporal resolution to cover seasonal and long-term changes and an increase in the spectral resolution enabling the discrimination of dry and green vegetation fractions from soil surfaces in heterogeneous dryland landscapes. The utilization of remotely-sensed data for connectivity studies raises questions on what type of information is required, how scale of sediment flux and image resolution match, how the connectivity information can be incorporated into water and sediment transport models and how this improves model predictions. The objective of this study is to demonstrate the potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal change at the example of a mesoscale dryland catchment in the Spanish Pyrenees. Here, sediment connectivity pathways have been mapped for two adjacent sub-catchments (approx. 70 km²) of the Isábena River in different seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. Fractional cover of green and dry vegetation, bare soil and rock were derived by applying a Multiple Endmember Spectral Mixture Analysis approach applied to a hyperspectral image dataset. Sediment connectivity was mapped using the Index of Connectivity (Borselli et al. 2008), in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighing factor (in this study, the cover and management factor of the RUSLE). The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in summer than in spring. The studied sub-catchments show a slightly different connectivity behaviour reflecting the different land cover proportions and their spatial configuration. Future work includes the incorporation of sediment connectivity information into a hydrological model (WASA-SED, Mueller et al. 2010) to better reflect connectivity processes and testing the sensitivity of the model to different input data.

  12. Genetic drift and collective dispersal can result in chaotic genetic patchiness.

    PubMed

    Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M

    2013-06-01

    Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  13. The present flora and vegetation of the moraines of the Klutlan Glacier, Yukon Territory, Canada: A study in plant succession*1

    NASA Astrophysics Data System (ADS)

    Birks, H. J. B.

    1980-07-01

    The flora and vegetation of six ice-cored moraines of the Klutlan Glacier were analyzed in 65 plots by European plant-sociological techniques. The age of each plot was estimated from annual growth rings of shrubs or trees in the plots. Nine major vegetation types are distinguished: Crepis nana, Dryas drummondii, Hedysarum mackenzii, Hedysarum-Salix, Salix-Shepherdia canadensis, Picea-Salix, Picea-Arctostaphylos, Picea-Ledum, and Picea-Rhytidium. These contain plants aged 2-6, 9-23, 10-20, 24-30, 32-58, 58-80, 96-178, 177-240, and >163- >339 yr, respectively. Six other vegetation types are described from windthrow areas, drainage channels, volcanic tephra slopes, lake margins, fens, and drained lakes. The major vegetation types reflect a vegetational succession related to moraine age and stability, with the Crepis nana type as the pioneer vegetation developing through the other vegetation types to the Picea-Rhytidium type on the oldest moraines. Changes in species diversity and soil development, particularly humus accumulation, parallel the vegetational succession. This succession differs from patterns of revegetation of deglaciated landscapes in Alaska and British Columbia today and in Minnesota in late-Wisconsin times because of differences in climate, plant migration, and local ecology.

  14. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    USGS Publications Warehouse

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table showing AA results. The suite of products also includes a database of vegetation plots, verification sites, and AA sites; digital pictures of field sites; field data sheets; aerial photographic imagery; hardcopy and digital maps; and a geodatabase of vegetation types and land cover (map layer), fieldwork locations (vegetation plots, verification sites, and AA sites), aerial photographic index, project boundary, and metadata. All geospatial products are projected in Universal Transverse Mercator, Zone 17, by using the North American Datum of 1983. Information on the NPS VIP and completed park mapping projects are located on the Internet at and .

  15. Pitfalls of mapping a large Turkish consanguineous family with vertical monilethrix inheritance.

    PubMed

    Celep, F; Uzumcu, A; Sonmez, F M; Uyguner, O; Balci, Y Isik; Bahadir, S; Karaguzel, A

    2009-01-01

    Monilethrix, a rare autosomal dominant disease characterized by hair fragility and follicular hyperkeratosis, is caused by mutations in three type II hair cortex keratins. The human keratin family comprises 54 members, 28 type I and 26 type II. The phenotype shows variable penetrance and results in hair fragility and patchy dystrophic alopecia. In our study, Monilethrix was diagnosed on the basis of clinical characteristics and microscopic examination in a family with 11 affected members. Haplotype analysis was performed by three Simple Tandem Repeat markers (STR) and KRT86 gene was sequenced for the identification of the disease causing mutation. In the results of this, autosomal dominant mutation (E402K) in exon 7 of KRT86 gene was identified as a cause of Moniltherix in the large family from Turkey.

  16. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    NASA Astrophysics Data System (ADS)

    Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, Arijit; Singh, Sarnam; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, Ch. Sudhakar; Gupta, Stutee; Pujar, Girish; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, Poonam; Singh, J. S.; Chitale, Vishwas; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, Deepak; Karnatak, Harish; Saran, Sameer; Giriraj, A.; Padalia, Hitendra; Kale, Manish; Nandy, Subrato; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, Chiranjibi; Singh, D. K.; Devagiri, G. M.; Talukdar, Gautam; Panigrahy, Rabindra K.; Singh, Harnam; Sharma, J. R.; Haridasan, K.; Trivedi, Shivam; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, Madhura; Nagabhatla, Nidhi; Prasad, Nupoor; Tripathi, O. P.; Prasad, P. Rama Chandra; Dash, Pushpa; Qureshi, Qamer; Tripathi, S. K.; Ramesh, B. R.; Gowda, Balakrishnan; Tomar, Sanjay; Romshoo, Shakil; Giriraj, Shilpa; Ravan, Shirish A.; Behera, Soumit Kumar; Paul, Subrato; Das, Ashesh Kumar; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, Uma; Menon, A. R. R.; Srivastava, Gaurav; Neeti; Sharma, Subrat; Mohapatra, U. B.; Peddi, Ashok; Rashid, Humayun; Salroo, Irfan; Krishna, P. Hari; Hajra, P. K.; Vergheese, A. O.; Matin, Shafique; Chaudhary, Swapnil A.; Ghosh, Sonali; Lakshmi, Udaya; Rawat, Deepshikha; Ambastha, Kalpana; Malik, Akhtar H.; Devi, B. S. S.; Gowda, Balakrishna; Sharma, K. C.; Mukharjee, Prashant; Sharma, Ajay; Davidar, Priya; Raju, R. R. Venkata; Katewa, S. S.; Kant, Shashi; Raju, Vatsavaya S.; Uniyal, B. P.; Debnath, Bijan; Rout, D. K.; Thapa, Rajesh; Joseph, Shijo; Chhetri, Pradeep; Ramachandran, Reshma M.

    2015-07-01

    A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge's life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).

  17. Remote sensing-based characterization, 2-m, Plant Functional Type Distributions, Barrow Environmental Observatory, 2010

    DOE Data Explorer

    Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest

    2014-01-01

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  18. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis.

    PubMed

    Wang, Ping-Yu; Fang, Jun-Chao; Gao, Zong-Hua; Zhang, Can; Xie, Shu-Yang

    2016-01-01

    Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta-analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Searches of MEDLINE and EMBASE for reports of prospective cohort studies published from 1 January 1966 to 21 July 2014 were carried out, checking reference lists, hand-searching journals and contacting experts. The primary analysis included a total of 23 (11 + 12) articles. The pooled maximum-adjusted relative risk of type 2 diabetes for the highest intake vs the lowest intake were 0.91 (95% confidence interval [CI] 0.87-0.96) for total fruits, 0.75 (95% CI 0.66-0.84) for blueberries, 0.87 (95% CI 0.81-0.93) for green leafy vegetables, 0.72 (95% CI 0.57-0.90) for yellow vegetables, 0.82 (95% CI 0.67-0.99) for cruciferous vegetables and 0.93 (95% CI 0.88-0.99) for fruit fiber in these high-quality studies in which scores were seven or greater, and 0.87 (95% CI 0.80-0.94) for vegetable fiber in studies with a follow-up period of 10 years or more. A higher intake of fruit, especially berries, and green leafy vegetables, yellow vegetables, cruciferous vegetables or their fiber is associated with a lower risk of type 2 diabetes.

  19. A biophysical basis for patchy mortality during heat waves.

    PubMed

    Mislan, K A S; Wethey, David S

    2015-04-01

    Extreme heat events cause patchy mortality in many habitats. We examine biophysical mechanisms responsible for patchy mortality in beds of the competitively dominant ecosystem engineer, the marine mussel Mytilus californianus, on the west coast of the United States. We used a biophysical model to predict daily fluctuations in body temperature at sites from southern California to Washington and used results of laboratory experiments on thermal tolerance to determine mortality rates from body temperature. In our model, we varied the rate of thermal conduction within mussel beds and found that this factor can account for large differences in body temperature and consequent mortality during heat waves. Mussel beds provide structural habitat for other species and increase local biodiversity, but, as sessile organisms, they are particularly vulnerable to extreme weather conditions. Identifying critical biophysical mechanisms related to mortality and ecological performance will improve our ability to predict the effects of climate change on these vulnerable ecosystems.

  20. Rotational Brownian Dynamics simulations of clathrin cage formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithmmore » to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.« less

  1. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies

    PubMed Central

    Li, Min; Fan, Yingli; Zhang, Xiaowei; Hou, Wenshang; Tang, Zhenyu

    2014-01-01

    Objective To clarify and quantify the potential dose–response association between the intake of fruit and vegetables and risk of type 2 diabetes. Design Meta-analysis and systematic review of prospective cohort studies. Data source Studies published before February 2014 identified through electronic searches using PubMed and Embase. Eligibility criteria for selecting studies Prospective cohort studies with relative risks and 95% CIs for type 2 diabetes according to the intake of fruit, vegetables, or fruit and vegetables. Results A total of 10 articles including 13 comparisons with 24 013 cases of type 2 diabetes and 434 342 participants were included in the meta-analysis. Evidence of curve linear associations was seen between fruit and green leafy vegetables consumption and risk of type 2 diabetes (p=0.059 and p=0.036 for non-linearity, respectively). The summary relative risk of type 2 diabetes for an increase of 1 serving fruit consumed/day was 0.93 (95% CI 0.88 to 0.99) without heterogeneity among studies (p=0.477, I2=0%). For vegetables, the combined relative risk of type 2 diabetes for an increase of 1 serving consumed/day was 0.90 (95% CI 0.80 to 1.01) with moderate heterogeneity among studies (p=0.002, I2=66.5%). For green leafy vegetables, the summary relative risk of type 2 diabetes for an increase of 0.2 serving consumed/day was 0.87 (95% CI 0.81 to 0.93) without heterogeneity among studies (p=0.496, I2=0%). The combined estimates showed no significant benefits of increasing the consumption of fruit and vegetables combined. Conclusions Higher fruit or green leafy vegetables intake is associated with a significantly reduced risk of type 2 diabetes. PMID:25377009

  2. Inventory and monitoring of natural vegetation and related resources in an arid environment: A comprehensive evaluation of ERTS-1 imagery. [Arizona

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Johnson, J. R.; Mouat, D. A.; Pyott, W. T.

    1974-01-01

    The author has identified the following significant results. A vegetation classification, with 31 types and compatible with remote sensing applications, was developed for the test site. Terrain features can be used to discriminate vegetation types. Elevation and macrorelief interpretations were successful on ERTS photos, although for macrorelief, high sun angle stereoscopic interpretations were better than low sun angle monoscopic interpretations. Using spectral reflectivity, several vegetation types were characterized in terms of patterns of signature change. ERTS MSS digital data were used to discriminate vegetation classes at the association level and at the alliance level when image contrasts were high or low, respectively. An imagery comparison technique was developed to test image complexity and image groupability. In two stage sampling of vegetation types, ERTS plus high altitude photos were highly satisfactory for estimating kind and extent of types present, and for providing a mapping base.

  3. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban grassland fragments, as well as to determine the potential for the use of LFA in decision-making involving the conservation of grassland fragments. The results indicated that the occurrence, size and characteristics of vegetated patches, and especially the presence of litter abundances, were the main factors determining differences in the LFA indices. Furthermore, mowing resulted in the overall fine-scale biophysical indices being higher for some of the urban grassland fragments. This implied that it is not necessarily the influence of urbanisation entailing high or low resource conserving patchiness and patch quality, but rather the management practices associated with urban and exurban areas. Therefore, from a conservation point of view, the grassland fragments in the City of Potchefstroom are just as conservable (on a biophysical function level involving soil processes) than the more "natural" exurban grassland fragments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Dynamics of skimming flow in the wake of a vegetation patch

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome R.; Wiggs, Giles F. S.; Bailey, Richard M.

    2016-09-01

    Dryland vegetation is often spatially patchy, and so affects wind flow in complex ways. Theoretical models and wind tunnel testing have shown that skimming flow develops above vegetation patches at high plant densities, resulting in little or no wind erosion in these zones. Understanding the dynamics of skimming flow is therefore important for predicting sediment transport and bedform development in dryland areas. However, no field-based data are available describing turbulent airflow dynamics in the wake of vegetation patches. In this study, turbulent wind flow was examined using high-frequency (10 Hz) sonic anemometry at four measurement heights (0.30 m, 0.55 m, 1.10 m and 1.65 m) along a transect in the lee of an extensive patch of shrubs (z = 1.10 m height) in Namibia. Spatial variations in mean wind velocity, horizontal Reynolds stresses and coherent turbulent structures were analysed. We found that wind velocity in the wake of the patch effectively recovered over ∼12 patch heights (h) downwind, which is 2-5 h longer than previously reported recovery lengths for individual vegetation elements and two-dimensional wind fences. This longer recovery can be attributed to a lack of flow moving around the obstacle in the patch case. The step-change in roughness between the patch canopy and the bare surface in its wake resulted in an initial peak in resultant horizontal shear stress (τr) followed by significant decrease downwind. In contrast to τr , horizontal normal Reynolds stress (u‧2 ‾) progressively increased along the patch wake. A separation of the upper shear layer at the leeside edge of the patch was observed, and a convergence of τr curves implies the formation of a constant stress layer by ∼20 h downwind. The use of τr at multiple heights is found to be a useful tool for identifying flow equilibration in complex aerodynamic regimes. Quadrant analysis revealed elevated frequencies of Q2 (ejection) and Q4 (sweep) events in the immediate lee of the patch, which contributed to the observed high levels of shear stress. The increasing downwind contribution of Q1 (outward interaction) events, which coincides with greater u‧2 ‾ and wind velocity, suggests that sediment transport potential increases with greater distance from the patch edge. Determining realistic, field-derived constraints on turbulent airflow dynamics in the wakes of vegetation patches is crucial for accurately parameterising sediment transport potential in larger-scale dryland landscape models. This will help to improve our understanding of how semi-vegetated desert surfaces might react to future environmental and anthropogenic stresses.

  5. [Responses of alpine grassland landscape in the source region of Shule River Basin to topographical factors and frozen ground types].

    PubMed

    Chen, Jian-Jun; Yi, Shu-Hua; Qin, Yu; Wang, Xiao-Yun

    2014-06-01

    This paper retrieved the fractional vegetation cover of alpine grassland in the source region of the Shule River Basin based on Chinese environmental satellite (HJ-1A/1B) images and field data, and analyzed the response of the vegetation cover to topographic factors and types of frozen ground. The results showed that the vegetation coverage of this region was low with large spatial heterogeneity and high degree of dispersion. The landscape consisted mainly of non-vegetation surface types, eg. ice, snow, the bare rock gravel land and bare land. Slopes and aspects were the main limiting factors of vegetation distribution. The average vegetation coverage decreased with the increase of slope. The average vegetation coverage was the lowest on the sunny slope, and the highest on the shady slope. There were significant differences of vegetation coverage among different types of frozen ground. The distribution of vegetation coverage presented a reversed "U" curve trend by extremely stable permafrost, stable permafrost, sub-stable permafrost, transition permafrost, unstable permafrost and seasonal frost, and the average vegetation coverage was the highest in the sub-stable permafrost.

  6. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  7. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes

    PubMed Central

    Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo

    2014-01-01

    The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes. PMID:24426184

  8. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes.

    PubMed

    Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo

    2014-01-01

    The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes.

  9. The tri-soil experiment: do plants discriminate among vegetation soil types?

    USDA-ARS?s Scientific Manuscript database

    We tested if rooting mass and root nutrient uptake of cheatgrass (Bromus tectorum) or creeping wildrye (Leymus triticoides) were influenced by vegetation soil type. Three soil types (A horizons), similar in gross physical and chemical properties, were freshly-collected. The soils varied in the veget...

  10. Estimation of vegetation-type areas by linear measurement

    Treesearch

    A.A. Hasel

    1941-01-01

    Maps are very useful in providing a picture of the location of vegetation types, but mapping as a method for determining type areas may be inadequate or costly. The measurement of vegetation type areas by means of line surveys is discussed in the following article, and the method is tested in connection with detailed studies on plots. The results indicate that the...

  11. Robotic ecological mapping: Habitats and the search for life in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Warren-Rhodes, K.; Weinstein, S.; Piatek, J. L.; Dohm, J.; Hock, A.; Minkley, E.; Pane, D.; Ernst, L. A.; Fisher, G.; Emani, S.; Waggoner, A. S.; Cabrol, N. A.; Wettergreen, D. S.; Grin, E.; Coppin, P.; Diaz, Chong; Moersch, J.; Oril, G. G.; Smith, T.; Stubbs, K.; Thomas, G.; Wagner, M.; Wyatt, M.; Boyle, L. Ng

    2007-12-01

    As part of the three-year `Life in the Atacama' (LITA) project, plant and microbial abundance were mapped within three sites in the Atacama Desert, Chile, using an automated robotic rover. On-board fluorescence imaging of six biological signatures (e.g., chlorophyll, DNA, proteins) was used to assess abundance, based on a percent positive sample rating system and standardized robotic ecological transects. The percent positive rating system scored each sample based on the measured signal strength (0 for no signal to 2 for strong signal) for each biological signature relative to the total rating possible. The 2005 field experiment results show that percent positive ratings varied significantly across Site D (coastal site with fog), with patchy zones of high abundance correlated with orbital and microscale habitat types (heaved surface crust and gravel bars); alluvial fan habitats generally had lower abundance. Non-random multi-scale biological patchiness also characterized interior desert Sites E and F, with relatively high abundance associated with (paleo)aqueous habitats such as playas. Localized variables, including topography, played an important, albeit complex, role in microbial spatial distribution. Site D biosignature trends correlated with culturable soil bacteria, with MPN ranging from 10-1000 CFU/g-soil, and chlorophyll ratings accurately mapped lichen/moss abundance (Site D) and higher plant (Site F) distributions. Climate also affected biological patchiness, with significant correlation shown between abundance and (rover) air relative humidity, while lichen patterns were linked to the presence of fog. Rover biological mapping results across sites parallel longitudinal W-E wet/dry/wet Atacama climate trends. Overall, the study highlights the success of targeting of aqueous-associated habitats identifiable from orbital geology and mineralogy. The LITA experience also suggests the terrestrial study of life and its distribution, particularly the fields of landscape ecology and ecohydrology, hold critical lessons for the search for life on other planets. Their applications to robotic sampling strategies on Mars should be further exploited.

  12. Exchange of soil moisture between patches of wild-olive and pasture sustains evapotranspiration of a Mediterranean ecosystem in both wet and dry seasons

    NASA Astrophysics Data System (ADS)

    Curreli, M.; Montaldo, N.; Oren, R.

    2017-12-01

    Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers in the inter-tree areas. This consents trees to remain physiologically active during very dry conditions and represent a mechanism of facilitation of the coexistence of tree-grass system.

  13. Does a shift in host plants trigger speciation in the Alpine leaf beetle Oreina speciosissima (Coleoptera, Chrysomelidae)?

    PubMed

    Borer, Matthias; van Noort, Tom; Arrigo, Nils; Buerki, Sven; Alvarez, Nadir

    2011-10-20

    Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle. While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework. The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.

  14. Canines as sentinel species for assessing chronic exposures to air pollutants: part 1. Respiratory pathology.

    PubMed

    Calderón-Garcidueñas, L; Mora-Tiscareño, A; Fordham, L A; Chung, C J; García, R; Osnaya, N; Hernández, J; Acuña, H; Gambling, T M; Villarreal-Calderón, A; Carson, J; Koren, H S; Devlin, R B

    2001-06-01

    A complex mixture of air pollutants is present in the ambient air in urban areas. People, animals, and vegetation are chronically and sequentially exposed to outdoor pollutants. The objective of this first of 2 studies is to evaluate by light and electron microscopy the lungs of Mexico City dogs and compare the results to those of 3 less polluted cities in MEXICO: One hundred fifty-two clinically healthy stray mongrel dogs (91 males/61 females), including 43 dogs from 3 less polluted cities, and 109 from southwest and northeast metropolitian Mexico City (SWMMC, NEMMC) were studied. Lungs of dogs living in Mexico City and Cuernavaca exhibited patchy chronic mononuclear cell infiltrates along with macrophages loaded with particulate matter (PM) surrounding the bronchiolar walls and extending into adjacent vascular structures; bronchiolar epithelial and smooth muscle hyperplasia, peribronchiolar fibrosis, microthrombi, and capillary and venule polymorphonuclear leukocytes (PMN) margination. Ultrafine PM was seen in alveolar type I and II cells, endothelial cells, interstitial macrophages (Mtheta), and intravascular Mtheta-like cells. Bronchoalveolar lavage showed significant numbers of alveolar macrophages undergoing proliferation. Exposure to complex mixtures of pollutants-predominantly particulate matter and ozone-is causing lung structural changes induced by the sustained inflammatory process and resulting in airway and vascular remodeling and altered repair. Cytokines released from both, circulating inflammatory and resident lung cells in response to endothelial and epithelial injury may be playing a role in the pathology described here. Deep concern exists for the potential of an increasing rise in lung diseases in child populations exposed to Mexico City's environment.

  15. National Park Service Vegetation Mapping Inventory Program: Appalachian National Scenic Trail vegetation mapping project

    USGS Publications Warehouse

    Hop, Kevin D.; Strassman, Andrew C.; Hall, Mark; Menard, Shannon; Largay, Ery; Sattler, Stephanie; Hoy, Erin E.; Ruhser, Janis; Hlavacek, Enrika; Dieck, Jennifer

    2017-01-01

    The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program classifies, describes, and maps existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Northeast Temperate Network, and NPS Appalachian National Scenic Trail (APPA) have completed vegetation classification and mapping of APPA for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of APPA and to determine how best to map the vegetation types by using aerial imagery. Analyses of data from 1,618 vegetation plots were used to describe USNVC associations of APPA. Data from 289 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Data from 269 validation sites were collected to assess vegetation mapping prior to submitting the vegetation map for accuracy assessment (AA). Data from 3,265 AA sites were collected, of which 3,204 were used to test accuracy of the vegetation map layer. The collective of these datasets affirmed 280 USNVC associations for the APPA vegetation mapping project.To map the vegetation and land cover of APPA, 169 map classes were developed. The 169 map classes consist of 150 that represent natural (including ruderal) vegetation types in the USNVC, 11 that represent cultural (agricultural and developed) vegetation types in the USNVC, 5 that represent natural landscapes with catastrophic disturbance or some other modification to natural vegetation preventing accurate classification in the USNVC, and 3 that represent nonvegetated water (non-USNVC). Features were interpreted from viewing 4-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). (Digital aerial imagery was collected each fall during 2009–11 to capture leaf-phenology change of hardwood trees across the latitudinal range of APPA.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in GIS. Polygon units were mapped to either a 0.5-hectare (ha) or 0.25-ha minimum mapping unit, depending on vegetation type or scenario; however, polygon units were mapped to 0.1 ha for alpine vegetation.A geodatabase containing various feature-class layers and tables provide locations and support data to USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, validation sites, AA sites, project boundary extent and zones, and aerial image centers and flight lines. The feature-class layer and related tables of the vegetation map layer provide 30,395 polygons of detailed attribute data covering 110,919.7 ha, with an average polygon size of 3.6 ha; the vegetation map coincides closely with the administrative boundary for APPA.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 28,242 polygons (92.9% of polygons) and cover 106,413.0 ha (95.9%) of the map extent for APPA. The map layer indicates APPA to be 92.4% forest and woodland (102,480.8 ha), 1.7% shrubland (1866.3 ha), and 1.8% herbaceous cover (2,065.9 ha). Map classes representing park-special vegetation (undefined in the USNVC) apply to 58 polygons (0.2% of polygons) and cover 404.3 ha (0.4%) of the map extent. Map classes representing USNVC cultural types apply to 1,777 polygons (5.8% of polygons) and cover 2,516.3 ha (2.3%) of the map extent. Map classes representing nonvegetated water (non-USNVC) apply to 332 polygons (1.1% of polygons) and cover 1,586.2 ha (1.4%) of the map extent.

  16. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  17. The Climate change impact on the water balance and use efficiency of two contrasting water limited Mediterranean ecosystems in Sardinia

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Corona, Roberto; Albertson, John

    2016-04-01

    Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Often deforestation activities have been more intensive along the plan and alluvial river valleys, where deep soils are well suited for agricultural and grass became the primary PFT, while more natural woody vegetation (trees and shrubs) survived in the steep hillslopes and mountain areas, where soil thickness is low, i.e. less attractive for agricultural. Hence, Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with also different characteristics (texture, hydraulic properties, depth), highly impacting water resources. Mediterranean regions suffer water scarcity produced in part by natural (e.g., climate variations) influences. For instance, in the Flumendosa basin water reservoir system, which plays a primary role in the water supply for much of southern Sardinia, the average annual input from stream discharge in the latter part of the 20th century was less than half the historic average rate. The precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. Indeed, precipitation decreased in winter months, which are crucial for reservoirs recharge through runoff. At the same time air temperature increased during the spring-summer season, when the precipitation slightly increased. The IPCC models predicts a further increase of drought in the Mediterranean region during winter, increasing the uncertainty on the future of the water resources system of these regions. Hence, there is the need to investigate the role of the PFT vegetation dynamics on the soil water budget of these ecosystems in the context of the climate change, and predict hydrologic variables for climate change scenarios. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The two case study sites are within the Flumendosa river basin, with similar height a.s.l., and close (distance of 4 km). But the first site is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types with wild olive trees and C3 herbaceous (grass) species and the soil thickness varies from 15-40 cm. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated from 2003. An ecohydrologic model is successfully tested to the case studies. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Model is first used for simulating historically land surface fluxes from 1922 at the two sites. Climate change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series altered by IPCC meteorological change predictions. The VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios at the two sites. Results demonstrate that contrasting climate change effects (decrease of winter precipitation vs increase of spring-summer air temperature) are significantly impacting land surface interactions (evapotranspiration and runoff dynamics) but with different effects on the two contrasting sites, due to the key role of the soil depth. Water resources predictions are worrying in both sites, with further decrease of runoff and water resources.

  18. How biophysical interactions associated with sub- and mesoscale structures and migration behavior affect planktonic larvae of the spiny lobster in the Juan Fernández Ridge: A modeling approach

    NASA Astrophysics Data System (ADS)

    Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos

    2018-03-01

    The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching deformation, and slight convergence. Stretching deformation flow appeared to be triggered by the eddy-eddy interactions and the Robinson Island barrier effect, and it likely promotes the aggregation of the spiny lobster larvae in the Juan Fernández system. These results highlighted the importance of the coupled effect of physical (mesoscale and submesoscale oceanographic features) and biological processes (DVM) in the generation of larval patchiness and concentration of spiny lobster larvae around the JFR, which could be key for their survival and retention in those waters.

  19. Airphoto assessment of changes in aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Philipson, W. R.; Russel, A. E.

    1977-01-01

    Large scale, multiyear, color and color infrared aerial photographs were used to evaluate changes in aquatic vegetation that have accompanied a reduction in phosphorus inputs to a phosphorus-limited, eutrophic lake in New York State. The study showed that the distribution of emergent, floating and submersed vegetation could be determined with little or no concurrent ground data; that various emergent and floating types could be separated and, with limited field checks, identified; and that different submersed types are generally not separable. Major vegetative types are characterized by spectral and nonspectral features, and a classification is developed for compiling time-sequential vegetation maps.

  20. How Tight is the Linkage Between Trees and Trout?

    Treesearch

    Margaret A. Wilzbach

    1989-01-01

    This paper explores the tightness of the linkage between stream-dwelling salmonids and ripar ian vegetation. Comparison of original distributions of salmonid species with that of vegetation types shows that distribution within a given salmonid species is not limited to a specific vegetation type, and that different salmonid species cooccur within a given vegetation...

  1. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular, we need to develop larger-scale and longer-term research to identify the underlying mechanisms that produce the patterns of bird responses to fire in sagebrush ecosystems.

  2. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  3. Classification and description of world formation types. Part II (Description of formation types)

    Treesearch

    D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; J.P. Saucier; G. Fults; E. Helmer

    2012-01-01

    A vegetation-ecologic classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types (Faber-Langendoen et al. 2012). This approach can help support international, national and subnational...

  4. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    PubMed

    Wang, Zhiwei; Wang, Qian; Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions.

  5. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas

    PubMed Central

    Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions. PMID:28068392

  6. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels

    PubMed Central

    Zero, Victoria H.; Barocas, Adi; Jochimsen, Denim M.; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R.; Castillo, Jessica A.; Evans Mack, Diane; Linnell, Mark A.; Pigg, Rachel M.; Hoisington-Lopez, Jessica; Spear, Stephen F.; Murphy, Melanie A.; Waits, Lisette P.

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions. PMID:28659969

  7. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels.

    PubMed

    Zero, Victoria H; Barocas, Adi; Jochimsen, Denim M; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R; Castillo, Jessica A; Evans Mack, Diane; Linnell, Mark A; Pigg, Rachel M; Hoisington-Lopez, Jessica; Spear, Stephen F; Murphy, Melanie A; Waits, Lisette P

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel ( Urocitellus brunneus) and the southern Idaho ground squirrel ( U. endemicus ), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions.

  8. Association between fruit, vegetable, seafood, and dairy intake and a reduction in the prevalence of type 2 diabetes in Qingdao, China.

    PubMed

    Liang, Jiwei; Zhang, Yanlei; Xue, Aili; Sun, Jianping; Song, Xin; Xue, Bai; Ji, Fuling; Gao, Weiguo; He, Liang; Pang, Zengchang; Qiao, Qing; Ning, Feng

    2017-03-01

    Fruit, vegetable, seafood, and dairy intake may reduce the risk of type 2 diabetes, but this relationship is unclear. We aimed to examine the associations between fruit, vegetable, seafood, and dairy intake and type 2 diabetes prevalence in a Chinese population. A total of 4,343 individuals aged 35-74 years participated in a population-based cross-sectional study in Qingdao, China. The frequency and quantity of fruit, vegetable, seafood, and dairy intake were determined using a standard food frequency questionnaire. Diabetes was classified according to the WHO/IDF 2006 criteria. Logistic regression analysis was employed to estimate odds ratio (OR) for type 2 diabetes in relation to fruit, vegetable, seafood, and dairy intake in a multivariable model. The multivariate-adjusted ORs (95% confidence interval) for the presence of type 2 diabetes were 0.68 (0.46-0.98), 0.50 (0.37-0.68), and 0.91 (0.66-1.25), respectively, for the highest versus the lowest groups regarding total fruit and vegetable, fruit or vegetable intake in women. The ORs for type 2 diabetes prevalence regarding the quantity of fruit and vegetable, fruit, and yogurt intake were 0.88 (0.78-0.99), 0.71 (0.61-0.82), and 0.56 (0.32-0.98) in women, but not in men. Seafood consumption was inversely associated with diabetes risk in men, but not in women; the corresponding figures were 0.58 (0.35-0.96) and 0.92 (0.63-1.36), respectively. Fruit, vegetable, and yogurt intake in women and seafood intake in men were inversely associated with type 2 diabetes prevalence in this Chinese population. These findings require confirmation in a prospective study.

  9. What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil?

    PubMed

    Neves, S P S; Funch, R; Conceição, A A; Miranda, L A P; Funch, L S

    2016-06-01

    A transect was used to examine the environmental and biological descriptors of a compact vegetation mosaic in the Chapada Diamantina in northeastern Brazil, including the floristic composition, spectrum of plant life forms, rainfall, and soil properties that defined areas of cerrado (Brazilian savanna), caatinga (seasonally dry tropical forest thorny, deciduous shrub/arboreal vegetation) and cerrado-caatinga transition vegetation. The floristic survey was made monthly from April/2009 to March/2012. A dendrogram of similarity was generated using the Jaccard Index based on a matrix of the species that occurred in at least two of the vegetation types examined. The proportions of life forms in each vegetation type were compared using the chi-square test. Composite soil samples were analyzed by simple variance (ANOVA) to examine relationships between soil parameters of each vegetation type and the transition area. The monthly precipitation levels in each vegetation type were measured and compared using the chi-square test. A total of 323 species of angiosperms were collected distributed in 193 genera and 54 families. The dendrogram demonstrated strong difference between the floristic compositions of the cerrado and caatinga, sharing 2% similarity. The chi-square test did not demonstrate any significant statistical differences between the monthly values of recorded rainfall. The organic matter and clay contents of the soilsin the caatinga increased while sand decreased, and the proportions of therophyte, hemicryptophyte, and chamaephyte life forms decreased and phanerophytes increased. We can therefore conclude that the floristic composition and the spectrum of life forms combined to define the cerrado and caatinga vegetation along the transect examined, with soil being the principal conditioning factor determining the different vegetation types, independent of precipitation levels.

  10. Experimental trampling of vegetation. II. Predictors of resistance and resilience

    Treesearch

    David N. Cole

    1995-01-01

    1. Experimental trampling was conducted in 18 vegetation types in five separate mountain regions in the United States. Each type was trampled 0-500 times and vegetation response was assessed 2 weeks and 1 year after trampling. 2. The response of vegetation to trampling is expressed in terms of three indices: resistance, tolerance and resilience. Resistance...

  11. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Treesearch

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  12. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a fivefold variation in tundra LUE was observed. LUE calculated from the functional type cover fractions was also correlated to a spectral vegetation index developed to detect vegetation chlorophyll content. The concurrence of these alternate methods suggest that hyperspectral remote sensing can distinguish functionally distinct vegetation types and can be used to develop regional estimates of photosynthetic LUE in tundra landscapes.

  13. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth

    2012-01-01

    Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.

  14. Relationships between forest cutting and understory vegetation: an overview of eastern hardwood stands

    Treesearch

    Hewlette S. Crawford

    1976-01-01

    The impacts of forest cutting upon understory vegetation were evaluated for Ozark oak-hickory and Appalachian oak-pine stands. These findings were related to similar information from other eastern forest types. Production of understory vegetation is related to stand type, stand structure, stand disturbance, and site. Stand type, structure, and site operate together to...

  15. Shaken, but not stirred: how vortical flow drives small-scale aggregations of gyrotactic phytoplankton

    NASA Astrophysics Data System (ADS)

    Barry, Michael; Durham, William; Climent, Eric; Stocker, Roman

    2011-11-01

    Coastal ocean observations reveal that motile phytoplankton form aggregations at the Kolmogorov scale (mm-cm), whereas non-motile cells do not. We propose a new mechanism for the formation of this small-scale patchiness based on the interplay of turbulence and gyrotactic motility. Counterintuitively, turbulence does not stir a plankton suspension to homogeneity but drives aggregations instead. Through controlled laboratory experiments we show that the alga Heterosigma akashiwo rapidly forms aggregations in a cavity-driven vortical flow that approximates Kolmogorov eddies. Gyrotactic motility is found to be the key ingredient for aggregation, as non-motile cells remain randomly distributed. Observations are in remarkable agreement with a 3D model, and the validity of this mechanism for generating patchiness has been extended to realistic turbulent flows using Direct Numerical Simulations. Because small-scale patchiness influences rates of predation, sexual reproduction, infection, and nutrient competition, this result indicates that gyrotactic motility can profoundly affect phytoplankton ecology.

  16. Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Yang, B.; Donovan, E.; Liang, J.; Grono, E.

    2016-12-01

    In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.

  17. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.

  18. Isolated in an ocean of grass: low levels of gene flow between termite subpopulations.

    PubMed

    Schmidt, Anna M; Jacklyn, Peter; Korb, Judith

    2013-04-01

    Habitat fragmentation is one of the most important causes of biodiversity loss, but many species are distributed in naturally patchy habitats. Such species are often organized in highly dynamic metapopulations or in patchy populations with high gene flow between subpopulations. Yet, there are also species that exist in stable patchy habitats with small subpopulations and presumably low dispersal rates. Here, we present population genetic data for the 'magnetic' termite Amitermes meridionalis, which show that short distances between subpopulations do not hinder exceptionally strong genetic differentiation (FST : 0.339; RST : 0.636). Despite the strong genetic differentiation between subpopulations, we did not find evidence for genetic impoverishment. We propose that loss of genetic diversity might be counteracted by a long colony life with low colony turnover. Indeed, we found evidence for the inheritance of colonies by so-called 'replacement reproductives'. Inhabiting a mound for several generations might result in loss of gene diversity within a colony but maintenance of gene diversity at the subpopulation level. © 2013 Blackwell Publishing Ltd.

  19. FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model

    NASA Astrophysics Data System (ADS)

    Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco

    2007-08-01

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.

  20. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  1. Table of Phenylalanine Content of Foods: Comparative Analysis of Data Compiled in Food Composition Tables.

    PubMed

    Araújo, Ana Claudia Marquim F; Araújo, Wilma M C; Marquez, Ursula M Lanfer; Akutsu, Rita; Nakano, Eduardo Y

    2017-01-01

    Knowing the phenylalanine (Phe) content of foods is essential for managing the diet of patients with phenylketonuria. Data on the Phe content of foods are scarce and sometimes vary between different Food Composition Tables (FCT). Brazil created its own table of the Phe contents of fruits and vegetables based exclusively on the chemical analysis of protein content, considering that proteins contain 3-4% Phe (TCFA/ANVISA). This study compared the protein and Phe contents of vegetables and fruits provided by the TCFA/ANVISA with those listed in international food composition tables. The Phe content of 71 fruits and vegetables listed in TCFA/ANVISA was classified into four subgroups, and the Wilcoxon nonparametric test compared the Phe and mean protein contents provided by the FCTs. All tests considered the bilateral hypothesis, and the level of significance was set at 5%. The Spearman's correlation coefficient measured the statistical dependence between Phe and protein contents. The mean Phe content was <50 mg Phe/100 g for 15 fruits; >50 mg/100 g for 11 type-A vegetables; <50 mg/100 g for 8 type-B vegetables; ≤50 mg/100 g for 7 type-C vegetables. The percentage of Phe in protein varied from 3.13 ± 1.03% to 3.74 ± 2.55% in fruits; 3.33 ± 1.41 to 4.82 ± 1.17 in type-A vegetables; 3.46 ± 1.25% to 4.83 ± 2.46 in type-B vegetables; and 3.14% ± 1.49 to 4.62% ± 2.26 in type-C vegetables. The Phe and protein contents provided by most FCTs were positively correlated, suggesting that it is possible to estimate the Phe content of fruits by multiplying its protein content by 3%. For type-A, -B, and -C vegetables, 4% may be used.

  2. Landscape metrics as functional traits in plants: perspectives from a glacier foreland

    PubMed Central

    Dainese, Matteo; Krüsi, Bertil O.; McCollin, Duncan

    2017-01-01

    Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data. PMID:28785514

  3. Landscape metrics as functional traits in plants: perspectives from a glacier foreland.

    PubMed

    Sitzia, Tommaso; Dainese, Matteo; Krüsi, Bertil O; McCollin, Duncan

    2017-01-01

    Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.

  4. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  5. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  6. Rapid Characterisation of Vegetation Structure to Predict Refugia and Climate Change Impacts across a Global Biodiversity Hotspot

    PubMed Central

    Schut, Antonius G. T.; Wardell-Johnson, Grant W.; Yates, Colin J.; Keppel, Gunnar; Baran, Ireneusz; Franklin, Steven E.; Hopper, Stephen D.; Van Niel, Kimberley P.; Mucina, Ladislav; Byrne, Margaret

    2014-01-01

    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia. PMID:24416149

  7. Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot.

    PubMed

    Schut, Antonius G T; Wardell-Johnson, Grant W; Yates, Colin J; Keppel, Gunnar; Baran, Ireneusz; Franklin, Steven E; Hopper, Stephen D; Van Niel, Kimberley P; Mucina, Ladislav; Byrne, Margaret

    2014-01-01

    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R(2) of 0.8-0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia.

  8. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    DOEpatents

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  9. [Vegetation spatial and temporal dynamic characteristics based on NDVI time series trajectories in grassland opencast coal mining].

    PubMed

    Jia, Duo; Wang, Cang Jiao; Mu, Shou Guo; Zhao, Hua

    2017-06-18

    The spatiotemporal dynamic patterns of vegetation in mining area are still unclear. This study utilized time series trajectory segmentation algorithm to fit Landsat NDVI time series which generated from fusion images at the most prosperous period of growth based on ESTARFM algorithm. Combining with the shape features of the fitted trajectory, this paper extracted five vegetation dynamic patterns including pre-disturbance type, continuous disturbance type, stabilization after disturbance type, stabilization between disturbance and recovery type, and recovery after disturbance type. The result indicated that recovery after disturbance type was the dominant vegetation change pattern among the five types of vegetation dynamic pattern, which accounted for 55.2% of the total number of pixels. The follows were stabilization after disturbance type and continuous disturbance type, accounting for 25.6% and 11.0%, respectively. The pre-disturbance type and stabilization between disturbance and recovery type accounted for 3.5% and 4.7%, respectively. Vegetation disturbance mainly occurred from 2004 to 2009 in Shengli mining area. The onset time of stable state was 2008 and the spatial locations mainlydistributed in open-pit stope and waste dump. The reco-very state mainly started since the year of 2008 and 2010, while the areas were small and mainly distributed at the periphery of open-pit stope and waste dump. Duration of disturbance was mainly 1 year. The duration of stable period usually sustained 7 years. The duration of recovery state of the type of stabilization between disturbances continued 2 to 5 years, while the type of recovery after disturbance often sustained 8 years.

  10. National Park Service Vegetation Mapping Inventory Program: Natchez Trace Parkway vegetation mapping project report

    USGS Publications Warehouse

    Hop, Kevin D.; Strassman, Andrew C.; Nordman, Carl; Pyne, Milo; White, Rickie; Jakusz, Joseph; Hoy, Erin E.; Dieck, Jennifer

    2016-01-01

    The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Gulf Coast Network, and NPS Natchez Trace Parkway (NATR; also referred to as Parkway) have completed vegetation classification and mapping of NATR for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of NATR and to determine how best to map them by using aerial imagery. Analyses of data from 589 vegetation plots had been used to describe an initial 99 USNVC associations in the Parkway; this classification work was completed prior to beginning this NATR vegetation mapping project. Data were collected during this project from another eight quick plots to support new vegetation types not previously identified at the Parkway. Data from 120 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Furthermore, data from 900 accuracy assessment (AA) sites were collected (of which 894 were used to test accuracy of the vegetation map layer). The collective of all these datasets resulted in affirming 122 USNVC associations at NATR.To map the vegetation and open water of NATR, 63 map classes were developed. including the following: 54 map classes represent natural (including ruderal) vegetation types in the USNVC, 5 map classes represent cultural (agricultural and developed) vegetation types in the USNVC, 3 map classes represent nonvegetation open-water bodies (non-USNVC), and 1 map class represents landscapes that had received tornado damage a few months prior to the time of aerial imagery collection. Features were interpreted from viewing 4-band digital aerial imagery by means of digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems. (The aerial imagery was collected during mid-October 2011 for the northern reach of the Parkway and mid-November 2011 for the southern reach of the Parkway to capture peak leaf-phenology of trees.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in geographic information systems. Polygon units were mapped to either a 0.5 hectare (ha) or 0.25 ha minimum mapping unit, depending on vegetation type or scenario.A geodatabase containing various feature-class layers and tables present the locations of USNVC vegetation types (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial image centers. The feature-class layer and related tables for the vegetation map provide 13,529 polygons of detailed attribute data covering 21,655.5 ha, with an average polygon size of 1.6 ha; the vegetation map coincides closely with the administrative boundary for NATR.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 12,648 polygons (93.5% of polygons) and cover 18,542.7 ha (85.6%) of the map extent for NATR. The map layer indicates the Parkway to be 70.5% forest and woodland (15,258.7 ha), 0.3% shrubland (63.0 ha), and 14.9% herbaceous cover (3,221.0 ha). Map classes representing USNVC cultural types apply to 678 polygons (5.0% of polygons) and cover 2,413.9 ha (11.1%) of the map extent.

  11. Vegetation disturbance and maintenance of diversity in intermittently flooded Carolina Bays in South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkman, L.K.; Sharitz, R.R.

    1994-02-01

    The authors manipulated the fire regime and soil disturbance in four grass-dominated Carolina bay wetlands during a prolonged drought period and examined vegetation composition and cover within dominant vegetation types prior to and after treatments. The authors used the seedling emergence technique to determine the role of the seed bank in the recovery process. Burning did not affect richness, evenness, or diversity (all vegetation types combined); however, soil tillage increased diversity, including both evenness and richness. Percent similarity of the vegetation before and after disturbance was greater in the burning treatment than in the tillage treatment, probably due to greatermore » disruption of the rhizomes of the perennial vegetation by tillage. Vegetation types varied in degree of recovery, although dominance was not altered by either treatment. Several native fugitive species increased following disturbance, indicating that species coexistence in these Carolina bay wetlands depends on the life history characteristics of residual vegetation, as well as that of seed bank species.« less

  12. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  13. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  14. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.

    PubMed

    Sun, Jian; Qin, Xiaojing; Yang, Jun

    2016-01-01

    The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management.

  15. Vegetation Impacts on Near Bank Flows

    NASA Astrophysics Data System (ADS)

    Hopkinson, L. C.; Wynn, T. M.

    2008-12-01

    Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. A significant sediment source to streams, streambank retreat, has largely been ignored. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research is to evaluate the effects of streambank vegetation on near bank flows and boundary shear stress. A flume experiment was conducted comparing three distinct streambank vegetation types: trees, shrubs, and grass. A second order prototype stream (Tom's Creek in Blacksburg, VA), with individual reaches dominated by the vegetation treatments was modeled using a fixed-bed Froude-scale modeling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Simulated vegetation (e.g. woven grass mat and wooden dowels) was attached in locations identified in a field survey. Velocity profiles perpendicular to the flume model boundary will be evaluated along five cross sections for each vegetation treatment. Reynolds, law of the wall, and turbulent kinetic energy shear stresses will be analyzed using velocity measurements made with a three-dimensional acoustic Doppler velocimeter (ADV). Velocity profiles perpendicular to the flume model streambank will also be evaluated. The velocity profiles will be compared among vegetation types to see if profiles are similar along the bank face. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.

  16. Inventory and monitoring of natural vegetation and related resources in an arid environment

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Johnson, J. R.; Mouat, D. A.

    1973-01-01

    The author has identified the following significant results. A vegetation classification has been established for the test site (approx. 8300 sq km); 31 types are recognized. Some relationships existing among vegetation types and associated terrain features have been characterized. Terrain features can be used to discriminate vegetation types. Macrorelief interpretations on ERTS-1 imagery can be performed with greater accuracy when using high sun angle stereoscopic viewing rather than low sun angle monoscopic viewing. Some plant phenological changes are being recorded by the MSS system.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luczkovich, J.J.; Wagner, T.W.; Michalek, J.L.

    In order to monitor changes caused by local and global human actions to a coral reef ecosystem, we sea-truthed a natural color Landsat TM image prepared for a coastal region of the northwestern Dominican Republic and recorded average water depth, precise geographical positions, and bottom types (seagrass, 15 sites; coral reef, ten sites; and sand, six sites). There were no significant differences in depth for the bottom type groups. The depths ranged from 0 to 16.1 m. Mean digital counts of seagrass and coral reef sites did not differ significantly in any band. A multivariate analysis of variance using allmore » three bands gave similar results. A ratio of the green/blue bands (TM 2/TM 1) showed there was a spectral shift associated with increasing depth, but not bottom type. Due to small-scale patchiness, seagrass and coral areas were difficult to distinguish, but sandy areas can be distinguished using Landsat TM imagery and our methods. 12 refs.« less

  18. Participation of Xenopus Elr-type Proteins in Vegetal mRNA Localization during Oogenesis*

    PubMed Central

    Arthur, Patrick K.; Claussen, Maike; Koch, Susanne; Tarbashevich, Katsiaryna; Jahn, Olaf; Pieler, Tomas

    2009-01-01

    Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes. PMID:19458392

  19. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural vegetation showed the strongest correlation with drought index. There existed definite correlations among the climatic factors. If the correlations among the climatic factors were ignored, the significant level of the correlations between NDVI and climatic factors would be somewhat reduced.

  20. The effects of mesquite invasion on a southeastern Arizona grassland bird community

    USGS Publications Warehouse

    Lloyd, J.; Mannan, R.W.; DeStefano, S.; Kirkpatrick, C.

    1998-01-01

    We determined which vegetal features influenced the distribution and abundance of grassland birds at the Buenos Aires National Wildlife Refuge, Arizona. The density and distribution of mesquite (Prosopis velutina) exerted the strongest influence on the grassland bird community. Abundances of Pyrrhuloxia (Cardinalis sinuatus; r2 = 0.363, P = 0.025) and Lucy's Warbler (Vermivora luciae; r2 = 0.348, P = 0.04), and total abundance of birds (r2 = 0.358, P = 0.04) were positively correlated with increasing density of mesquite (Prosopis velutina), whereas abundance of Cactus Wren (Campylorhynchus brunneicapillus; r2 = 0.452, P = 0.02) was negatively correlated with increasing mesquite density. Abundance of Loggerhead Shrike (Lanius ludovicianus; r2 = 0.693, P < 0.001) was positively correlated with an increasing patchiness of mesquite. Shrub-dependent bird species dominated the community, accounting for 12 of the 18 species and 557 of the 815 individuals detected. Species relying on extensive areas of open grassland were largely absent from the study area, perhaps a result of the recent invasion of mesquite into this semi-desert grassland.

  1. Experimental Setup for Evaluation of the Protective Technical Measures Against the Slopes Degradation Along Linear Construction Sites

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Zumr, David; Neumann, Martin; Lidmila, Martin; Dufka, Dušan

    2017-04-01

    Soil erosion of the slopes along the linear construction sites, such as railroads, roads, pipelines or watercourses, is usually underestimated by the construction companies and controlling authorities. But under certain circumstances, when the construction site is not maintained and protected properly, a large amounts of soil may be transported from the sites to the surrounding environment during the intensive rainfall. Transported sediment, often carrying adsorbed pollutants, may reach watercourses and cause water recipient siltation and pollution. Within the applied research project we investigate ways of low cost, quick and easy technical measures that would help to protect the slopes against the splash erosion, rills development and sliding. The methodology is based on testing of various permeable covers, sheets, anchoring and patchy vegetation on a plot and hillslope scales. In this contribution we will present the experimental plot setup, consisting of large soil blocks encapsulated in the monitored steel containers and nozzle rainfall simulator. The presentation is funded by the Technological Agency of the Czech Republic (research project TH02030428) and an internal student CTU grant.

  2. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  4. Nationwide classification of forest types of India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K

    2015-12-01

    India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.

  5. Ecosystem services: Urban parks under a magnifying glass.

    PubMed

    Mexia, Teresa; Vieira, Joana; Príncipe, Adriana; Anjos, Andreia; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Santos-Reis, Margarida; Correia, Otília; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    Urban areas' population has grown during the last century and it is expected that over 60% of the world population will live in cities by 2050. Urban parks provide several ecosystem services that are valuable to the well-being of city-dwellers and they are also considered a nature-based solution to tackle multiple environmental problems in cities. However, the type and amount of ecosystem services provided will vary with each park vegetation type, even within same the park. Our main goal was to quantify the trade-offs in ecosystem services associated to different vegetation types, using a spatially detailed approach. Rather than relying solely on general vegetation typologies, we took a more ecologically oriented approach, by explicitly considering different units of vegetation structure and composition. This was demonstrated in a large park (44ha) located in the city of Almada (Lisbon metropolitan area, Portugal), where six vegetation units were mapped in detail and six ecosystem services were evaluated: carbon sequestration, seed dispersal, erosion prevention, water purification, air purification and habitat quality. The results showed that, when looking at the park in detail, some ecosystem services varied greatly with vegetation type. Carbon sequestration was positively influenced by tree density, independently of species composition. Seed dispersal potential was higher in lawns, and mixed forest provided the highest amount of habitat quality. Air purification service was slightly higher in mixed forest, but was high in all vegetation types, probably due to low background pollution, and both water purification and erosion prevention were high in all vegetation types. Knowing the type, location, and amount of ecosystem services provided by each vegetation type can help to improve management options based on ecosystem services trade-offs and looking for win-win situations. The trade-offs are, for example, very clear for carbon: tree planting will boost carbon sequestration regardless of species, but may not be enough to increase habitat quality. Moreover, it may also negatively influence seed dispersal service. Informed practitioners can use this ecological knowledge to promote the role of urban parks as a nature-based solution to provide multiple ecosystem services, and ultimately improve the design and management of the green infrastructure. This will also improve the science of Ecosystem Services, acknowledging that the type of vegetation matters for the provision of ecosystem services and trade-offs analysis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Grassland plant composition alters vehicular disturbance effects in Kansas, USA.

    PubMed

    Dickson, Timothy L; Wilsey, Brian J; Busby, Ryan R; Gebhart, Dick L

    2008-05-01

    Many "natural" areas are exposed to military or recreational off-road vehicles. The interactive effects of different types of vehicular disturbance on vegetation have rarely been examined, and it has been proposed that some vegetation types are less susceptible to vehicular disturbance than others. At Fort Riley, Kansas, we experimentally tested how different plant community types changed after disturbance from an M1A1 Abrams tank driven at different speeds and turning angles during different seasons. The greatest vegetation change was observed because of driving in the spring in wet soils and the interaction of turning while driving fast (vegetation change was measured with Bray-Curtis dissimilarity). We found that less vegetation change occurred in communities with high amounts of native prairie vegetation than in communities with high amounts of introduced C(3) grasses, which is the first experimental evidence we are aware of that suggests plant communities dominated by introduced C(3) grasses changed more because of vehicular disturbance than communities dominated by native prairie grasses. We also found that vegetation changed linearly with vehicular disturbance intensity, suggesting that at least initially there was no catastrophic shift in vegetation beyond a certain disturbance intensity threshold. Overall, the intensity of vehicular disturbance appeared to play the greatest role in vegetation change, but the plant community type also played a strong role and this should be considered in land use planning. The reasons for greater vegetation change in introduced C(3) grass dominated areas deserve further study.

  7. Characterizing Exterior and Interior Tropical Forest Structure Variability with Full-Waveform Airborne LIDAR Data in Lopé, Gabon

    NASA Astrophysics Data System (ADS)

    Marselis, S.; Tang, H.; Blair, J. B.; Hofton, M. A.; Armston, J.; Dubayah, R.

    2017-12-01

    Terrestrial ecotones, transition zones between ecological systems, have been identified as important regions to monitor the effects of environmental and human pressures on ecosystems. To observe such changes, the variability in vegetation horizontal and vertical structure must be characterized. The objective of this study is to quantify changes in vegetation structure in a tropical forest-savanna mosaic using airborne waveform lidar data. The study area is located in the northern part of the Lopé National Park in Gabon and is comprised of the vegetation types: savanna, colonizing forest, monodominant Okoumé forest, young Marantaceae forest and mixed Marantaceae forest. The lidar data were collected by the Land Vegetation and Ice Sensor (LVIS) in early March 2016, during the AfriSAR campaign. Metrics derived from the LVIS waveforms were then used to classify the five main vegetation types and characterize observed structural variability within types and across ecotones. Several supervised and unsupervised classification alogrithms, in combination with statistical analysis, were applied. The investigated methods are promising in their use to directly describe the structural variability within and between different vegetation types, map these vegetation types and the extent and location of their transition zones, and to characterize, among other attributes, the sharpness and width of such ecotones. These results provide important information in ecosystem studies as these methods can be used to study changes in vegetation structure, species-specific habitat, or the effects of deforestation and other human and natural pressures on the exterior and interior forest structure. These methods thus provide ample opportunity to assess the vegetation structure in degraded and second growth tropical forests to explore effects of e.g. grazing, logging or fragmentation. From this study we can conclude that lidar waveform remote sensing is highly useful in distinguishing vegetation types and their transition zones which will be increasingly important when assessing the impact of natural and human pressures on the world's tropical forests.

  8. Classification and description of world formation types

    Treesearch

    D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; G. Fults; Eileen Helmer

    2016-01-01

    An ecological vegetation classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classification efforts. The...

  9. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  10. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  11. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons

    2015-04-01

    Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 <ɛ <10 ) provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ-1 and the ratio of charges on the particles, showing good agreement with experimental observations.

  12. Vegetable and Fruit Intake and Fracture-Related Hospitalisations: A Prospective Study of Older Women

    PubMed Central

    Blekkenhorst, Lauren C.; Hodgson, Jonathan M.; Lewis, Joshua R.; Devine, Amanda; Woodman, Richard J.; Lim, Wai H.; Wong, Germaine; Zhu, Kun; Bondonno, Catherine P.; Ward, Natalie C.; Prince, Richard L.

    2017-01-01

    The importance of vegetable and fruit intakes for the prevention of fracture in older women is not well understood. Few studies have explored vegetable and fruit intakes separately, or the associations of specific types of vegetables and fruits with fracture hospitalisations. The objective of this study was to examine the associations of vegetable and fruit intakes, separately, and specific types of vegetables and fruits with fracture-related hospitalisations in a prospective cohort of women aged ≥70 years. Vegetable and fruit intakes were assessed at baseline (1998) in 1468 women using a food frequency questionnaire. The incidence of fracture-related hospitalisations over 14.5 years of follow-up was determined using the Hospital Morbidity Data Collection, linked via the Western Australian Data Linkage System. Fractures were identified in 415 (28.3%) women, of which 158 (10.8%) were hip fractures. Higher intakes of vegetables, but not fruits, were associated with lower fracture incidence. In multivariable-adjusted models for vegetable types, cruciferous and allium vegetables were inversely associated with all fractures, with a hazard ratio (HR) (95% confidence interval) of 0.72 (0.54, 0.95) and 0.66 (0.49, 0.88), respectively, for the highest vs. lowest quartiles. Increasing vegetable intake, with an emphasis on cruciferous and allium vegetables, may prevent fractures in older postmenopausal women. PMID:28524097

  13. Hydraulic redistribution in a Mediterranean wild olive-pasture ecosystem: A key to tree survival and a limit to tree-patch size.

    NASA Astrophysics Data System (ADS)

    Curreli, Matteo; Montaldo, Nicola; Oren, Ram

    2017-04-01

    In water-limited environments, such as certain Mediterranean ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots, growing vertically, and shallower lateral roots, extending beyond the crown projection of tree clumps into zones of seasonal vegetative cover. In such ecosystems, therefore, the balance between soil water under tree canopy versus that in treeless patches plays a crucial role on sustaining tree physiological performance and surface water fluxes during drought periods. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps, herbaceous species, drying to bare soil in late spring. The climate is Mediterranean maritime with long droughts from May to October, and an historical mean yearly rain of about 670 mm concentrated in the autumn and winter months. Soil depth varies from 10 to 50 cm, with underlying fractured rocky layer of basalt. From 2003, a 10 meters micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. leaf and soil skin temperature, radiations, air humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in patches with pasture vegetation alternating with bare soil in the dry season). Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. In 2015, to estimate plant water use and in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed for estimating sap flow in stems of wild olives trees, 40 cm aboveground, in representative trees over the eddy-covariance foot-print. The combined data of sap flow, soil water content, and eddy covariance, revealed hydraulic redistribution system through the plant and the soil at different layers, allowing to quantify the reliance of the system on different horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the water content in the upper layer. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers. This buffering, attained by long recharge time of shallow soil, allow woody vegetation to remain physiologically active during very dry conditions. The hydraulically redistributed water is the main source of water for evapotranspiration in the dry summer, and its relevance increases with decreasing water availability. Thus, the spatial coverage and distribution of tree clumps is regulated by the soil water available in the inter-tree clump areas, suggesting that, if Mediterranean areas dry as predicted by IPCC, the proportion of an area occupied by tree clumps will shrink in the future, with predictable consequences to ecosystem services.

  14. Key landscape ecology metrics for assessing climate change adaptation options: Rate of change and patchiness of impacts

    USGS Publications Warehouse

    López-Hoffman, Laura; Breshears, David D.; Allen, Craig D.; Miller, Marc L.

    2013-01-01

    Under a changing climate, devising strategies to help stakeholders adapt to alterations to ecosystems and their services is of utmost importance. In western North America, diminished snowpack and river flows are causing relatively gradual, homogeneous (system-wide) changes in ecosystems and services. In addition, increased climate variability is also accelerating the incidence of abrupt and patchy disturbances such as fires, floods and droughts. This paper posits that two key variables often considered in landscape ecology—the rate of change and the degree of patchiness of change—can aid in developing climate change adaptation strategies. We use two examples from the “borderland” region of the southwestern United States and northwestern Mexico. In piñon-juniper woodland die-offs that occurred in the southwestern United States during the 2000s, ecosystem services suddenly crashed in some parts of the system while remaining unaffected in other locations. The precise timing and location of die-offs was uncertain. On the other hand, slower, homogeneous change, such as the expected declines in water supply to the Colorado River delta, will likely impact the entire ecosystem, with ecosystem services everywhere in the delta subject to alteration, and all users likely exposed. The rapidity and spatial heterogeneity of faster, patchy climate change exemplified by tree die-off suggests that decision-makers and local stakeholders would be wise to operate under a Rawlsian “veil of ignorance,” and implement adaptation strategies that allow ecosystem service users to equitably share the risk of sudden loss of ecosystem services before actual ecosystem changes occur. On the other hand, in the case of slower, homogeneous, system-wide impacts to ecosystem services as exemplified by the Colorado River delta, adaptation strategies can be implemented after the changes begin, but will require a fundamental rethinking of how ecosystems and services are used and valued. In sum, understanding how the rate of change and degree of patchiness of change will constrain adaptive options is a critical consideration in preparing for climate change.

  15. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades

    USGS Publications Warehouse

    Willard, D.A.; Weimer, L.M.; Riegel, W.L.

    2001-01-01

    Analysis of 170 pollen assemblages from surface samples in eight vegetation types in the Florida Everglades indicates that these wetland sub-environments are distinguishable from the pollen record and that they are useful proxies for hydrologic and edaphic parameters. Vegetation types sampled include sawgrass marshes, cattail marshes, sloughs with floating aquatics, wet prairies, brackish marshes, tree islands, cypress swamps, and mangrove forests. The distribution of these vegetation types is controlled by specific environmental parameters, such as hydrologic regime, nutrient availability, disturbance level, substrate type, and salinity; ecotones between vegetation types may be sharp. Using R-mode cluster analysis of pollen data, we identified diagnostic species groupings; Q-mode cluster analysis was used to differentiate pollen signatures of each vegetation type. Cluster analysis and the modern analog technique were applied to interpret vegetational and environmental trends over the last two millennia at a site in Water Conservation Area 3A. The results show that close modern analogs exist for assemblages in the core and indicate past hydrologic changes at the site, correlated with both climatic and land-use changes. The ability to differentiate marshes with different hydrologic and edaphic requirements using the pollen record facilitates assessment of relative impacts of climatic and anthropogenic changes on this wetland ecosystem on smaller spatial and temporal scales than previously were possible. ?? 2001 Elsevier Science B.V.

  16. Consumption of vegetables and their relation with ultra-processed foods in Brazil

    PubMed Central

    Canella, Daniela Silva; Louzada, Maria Laura da Costa; Claro, Rafael Moreira; Costa, Janaina Calu; Bandoni, Daniel Henrique; Levy, Renata Bertazzi; Martins, Ana Paula Bortoletto

    2018-01-01

    ABSTRACT OBJECTIVE To characterize the household purchase and the individual consumption of vegetables in Brazil and to analyze their relation with the consumption of ultra-processed foods. METHODS We have used data on the purchase of food for household consumption and individual consumption from the 2008–2009 Brazilian Household Budget Survey. The Brazilian Household Budget Survey studied the purchase of food of 55,970 households and the food consumption of 34,003 individuals aged 10 years and over. The foods of interest in this study were vegetables (excluding roots and tubers) and ultra-processed foods. We have described the amount of vegetables (grams) purchased and consumed by all Brazilians and according to the quintiles of caloric intake of ultra-processed food. To this end, we have calculated the crude and predicted values obtained by regression models adjusted for sociodemographic variables. We have analyzed the most commonly purchased types of vegetables (% in the total amount) and, in relation to individual food consumption, the variety of vegetables consumed (absolute number), the participation (%) of the types of culinary preparations based on vegetables, and the time of consumption. RESULTS The adjusted mean household purchase of vegetables was 42.9 g/per capita/day. The adjusted mean individual consumption was 46.1 g. There was an inverse relation between household purchase and individual consumption of vegetables and ultra-processed foods. Ten types of vegetables account for more than 80% of the total amount usually purchased. The variety consumed was, on average, 1.08 type/per capita/day. Approximately 60% of the vegetables were eaten raw, and the amount consumed at lunch was twice that consumed at dinner; individuals with higher consumption of ultra-processed foods tended to consume even less vegetables at dinner. CONCLUSIONS The consumption of vegetables in Brazil is insufficient, and this is worse among individuals with higher consumption of ultra-processed foods. The most frequent habit was to consume raw vegetables at lunch and with limited variety. PMID:29791530

  17. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J. M.; Bachetti, M.; Barret, D.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations.more » Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.« less

  18. Dynamics of motile phytoplankton in turbulence: Laboratory investigation of microscale patchiness

    NASA Astrophysics Data System (ADS)

    Crimaldi, J. P.; True, A.; Stocker, R.

    2016-02-01

    Phytoplankton represent the basis of oceanic life and play a critical role in biogeochemical cycles. While phytoplankton are traditionally studied in bulk, their collective impact stems from cell-level processes and interactions at the microscale. A fundamental element that determines these interactions is the small-scale spatial distribution of individual cells: this directly determines the local cell concentration and the probability that two cells contact or interact with each other. The traditional, bulk perspective on phytoplankton distributions is that turbulence acts to smear out patchiness and locally homogenizes the distributions. However, recent numerical simulations suggest that the action of turbulence on motile phytoplankton may be precisely the opposite: by biasing the swimming direction of cells through the action of viscous torques, turbulence is predicted to generate strong patchiness at small scales. Flow-mediated patch formation has been demonstrated experimentally in simple laminar flows, but has never been tested experimentally in turbulence. In this talk we report on preliminary laboratory experiments performed in a purpose-built flow facility that uses a pair of computer-controlled oscillating grids to generate approximately homogenous isotropic 3D turbulence. Turbulent flow characteristics and dissipation rates are first quantified using particle image velocimetry (PIV). Then, 2D distributions of the motile dinoflagellate Heterosigma akashiwo are imaged using planar laser-induced fluorescence (PLIF). Analysis of imaged phytoplankton distributions for patchiness is performed using a Voronoi tessellation approach. Results suggest that motile phytoplankton distributions differ from those of passive particles. Furthermore, computed values for the patch enhancement factor are shown to be roughly consistent with those of previous DNS predictions.

  19. Effects of Re-vegetation on Herbaceous Species Composition and Biological Soil Crusts Development in a Coal Mine Dumping Site

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Peng; Hu, Yigang; Huang, Lei

    2016-02-01

    Despite the critical roles of plant species' diversity and biological soil crusts (BSCs) in arid and semi-arid ecosystems, the restoration of the diversity of herbaceous species and BSCs are rarely discussed during the process of vegetation restoration of anthropogenically damaged areas in these regions. In this study, the herbaceous plant species composition, along with the BSCs coverage and thicknesses, was investigated at six different re-vegetation type sites, and the natural vegetation site of the Heidaigou open pit coal mine in China's Inner Mongolia Autonomous Region was used as a reference. The highest total species richness (16), as well as the species richness (4.4), occurred in the Tree and Herbaceous vegetation type site. The species composition similarities between the restored sites and the reference site were shown to be very low, and ranged from 0.09 to 0.42. Also, among the restored sites, the similarities of the species were fairly high and similar, and ranged from 0.45 to 0.93. The density and height of the re-vegetated woody plants were significantly correlated with the indexes of the diversity of the species. The Shrub vegetation type site showed the greatest total coverage (80 %) of BSCs and algae crust coverage (48 %). The Shrub and Herbaceous type had the greatest thicknesses of BSCs, with as much as 3.06 mm observed, which was followed by 2.64 mm for the Shrub type. There was a significant correlation observed between the coverage of the total BSCs, and the total vegetation and herbaceous vegetation coverage, as well as between the algae crust coverage and the herbaceous vegetation coverage. It has been suggested that the re-vegetated dwarf woody plant species (such as shrubs and semi-shrubs) should be chosen for the optimal methods of the restoration of herbaceous species diversity at dumping sites, and these should be planted with low density. Furthermore, the effects of vegetation coverage on the colonization and development the BSCs should be considered in order to reconstruct the vegetation in disturbed environments, such as mine dumpsites in arid areas.

  20. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments.

    PubMed

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.

  1. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    PubMed Central

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in complex landscapes. PMID:26901569

  2. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    PubMed Central

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments. PMID:24816849

  3. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season

    PubMed Central

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-01-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human activity. The specific areas that require this protection may vary across snowy plover life history stages. PMID:23610630

  4. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.

  5. Classification of simple vegetation types using POLSAR image data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1993-01-01

    Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

  6. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    USGS Publications Warehouse

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of the six most abundant alien species at Theodore Roosevelt National Park had distributions unrelated to disturbance. We recommend that vegetation type be explicitly taken into account when designing monitoring plans for alien species in natural areas.

  7. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.

  8. Observing patchy reionization with future CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  9. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  10. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGES

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  11. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  12. Bone mineral density in patients with alopecia areata treated with long-term intralesional corticosteroids.

    PubMed

    Samrao, Aman; Fu, Jennifer M; Harris, Steven T; Price, Vera H

    2013-02-01

    Intralesional corticosteroid injections are a common treatment for patchy alopecia areata, the most prevalent subtype of this autoimmune hair disorder. To date, no studies have examined the potential adverse effects of this therapy on bone mineral density (BMD). In this retrospective, cross-sectional case series, 18 patients with patchy alopecia areata treated at 4- to 8-week intervals with intralesional triamcinolone acetonide for at least 20 months were evaluated for BMD using dual-energy x-ray absorptiometry (DXA). Follow-up DXA measurements were obtained in those with abnormal findings. Nine out of 18 patients (50%) had abnormal DXA results. Patients with the following risk factors were more likely to have abnormal BMD: age older than 50 years, body mass index less than 18.5 kg/m2, lack of weight-bearing exercise, smoking history, postmenopausal status, past stress fracture, family history of osteopenia or osteoporosis, and a cumulative intralesional triamcinolone acetonide dose of greater than 500 mg. Patients with patchy alopecia areata who receive chronic intralesional triamcinolone acetonide therapy should be counseled on preventive measures for osteoporosis and monitored for effects on BMD.

  13. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    PubMed Central

    Xu, Gu; Li, Guifang; LI, Xianya; Liang, Yi; Feng, Zhechuan

    2017-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts. PMID:28181529

  14. The Change in the area of various land covers on the Tibetan Plateau during 1957-2015

    NASA Astrophysics Data System (ADS)

    Cuo, Lan; Zhang, Yongxin

    2017-04-01

    With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.

  15. [The variability of vegetation beginning date of greenness period in spring in the north-south transect of eastern China based on NOAA NDVI].

    PubMed

    Wang, Zhi; Liu, Shi-rong; Sun, Peng-sen; Guo, Zhi-hua; Zhou, Lian-di

    2010-10-01

    NDVI based on NOAA/AVHRR from 1982 to 2003 are used to monitor variable rules for the growing season in spring of vegetation in the north-south transect of eastern China (NSTEC). The following, mainly, are included: (1) The changing speed of greenness period in spring of most regions in NSTEC is slow and correlation with the year is not distinct; (2) The regions in which greenness period in spring distinctly change mainly presented an advance; (3) The regions in which inter-annual fluctuation of greenness period in spring is over 10 days were found in 3 kinds of areas: the area covered with agricultural vegetation types; the areas covered with evergreen vegetation types; the areas covered with steppe vegetation types; (4) changes of vegetation greenness period in spring have spatio-temporal patterns.

  16. Microsporum canis infection in three familial cases with tinea capitis and tinea corporis.

    PubMed

    Yin, Bin; Xiao, Yuling; Ran, Yuping; Kang, Daoxian; Dai, Yaling; Lama, Jebina

    2013-10-01

    We report a familial infection caused by Microsporum canis. The first two patients were a 30-year-old female and her son, a 5-year-old boy, who came in contact with a pet dog at a farm house. The boy then suffered from hair loss for 3 months. There were circular and patchy alopecia with diffuse scaling on his scalp. Meanwhile, his mother also developed patchy erythema and scaling on her face. Several weeks later, the boy's sister, a 4-year-old girl, was noted to have inconspicuous scaly plaques in the center of her scalp. The development of tinea capitis in the two children and tinea corporis in their mother were diagnosed based on the positive KOH examination. Morphologic characteristics and sequencing of the internal transcribed spacers 1 and 2, amplified from primary culture isolates, confirmed that their infections were caused by the zoophilic M. canis. Repetitive sequence-based molecular typing using the DiversiLab system secreted enzymatic activity analysis, and antifungal susceptibility indicated that these isolates might share the same source. The boy and girl were cured by the treatment with oral itraconazole and topical naftifine-ketoconazole cream after washing the hair with 2 % ketoconazole shampoo, and their mother was successfully treated by terbinafine orally in combination with topical application of naftifine-ketoconazole cream.

  17. Vegetation of the Elwha River estuary: Chapter 8 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Shafroth, Patrick B.; Fuentes, Tracy L.; Pritekel, Cynthia; Beirne, Matthew M.; Beauchamp, Vanessa B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The Elwha River estuary supports one of the most diverse coastal wetland complexes yet described in the Salish Sea region, in terms of vegetation types and plant species richness. Using a combination of aerial imagery and vegetation plot sampling, we identified 6 primary vegetation types and 121 plant species in a 39.7 ha area. Most of the estuary is dominated by woody vegetation types, with mixed riparian forest being the most abundant (20 ha), followed by riparian shrub (6.3 ha) and willow-alder forest (3.9 ha). The shrub-emergent marsh transition vegetation type was fourth most abundant (2.2 ha), followed by minor amounts of dunegrass (1.75 ha) and emergent marsh (0.2 ha). This chapter documents the abundance, distribution, and floristics of these six vegetation types, including plant species richness, life form, species origin (native or introduced), and species wetland indicator status. These data will serve as a baseline to which future changes can be compared, following the impending removal of Glines Canyon and Elwha Dams upstream on the Elwha River. Dam removals may alter many of the processes, materials, and biotic interactions that influence the estuary plant communities, including hydrology, salinity, sediment and wood transport, nutrients, and plant-microbe interactions.

  18. Four years of UAS Imagery Reveals Vegetation Change Due to Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    DelGreco, J. L.; Herrick, C.; Varner, R. K.; McArthur, K. J.; McCalley, C. K.; Garnello, A.; Finnell, D.; Anderson, S. M.; Crill, P. M.; Palace, M. W.

    2017-12-01

    Warming trends in sub-arctic regions have resulted in thawing of permafrost which in turn induces change in vegetation across peatlands. Collapse of palsas (i.e. permafrost plateaus) has also been correlated to increases in methane (CH4) emissions to the atmosphere. Vegetation change provides new microenvironments that promote CH4 production and emission, specifically through plant interactions and structure. By quantifying the changes in vegetation at the landscape scale, we will be able to understand the impact of thaw on CH4 emissions in these complex and climate sensitive northern ecosystems. We combine field-based measurements of vegetation composition and high resolution Unmanned Aerial Systems (UAS) imagery to characterize vegetation change in a sub-arctic mire. At Stordalen Mire (1 km x 0.5 km), Abisko, Sweden, we flew a fixed-wing UAS in July of each year between 2014 and 2017. High precision GPS ground control points were used to georeference the imagery. Seventy-five randomized square-meter plots were measured for vegetation composition and individually classified into one of five cover types, each representing a different stage of permafrost degradation. With this training data, each year of imagery was classified by cover type. The developed cover type maps were also used to estimate CH4 emissions across the mire based on average flux CH4 rates from each cover type obtained from flux chamber measurements collected at the mire. This four year comparison of vegetation cover and methane emissions has indicated a rapid response to permafrost thaw and changes in emissions. Estimation of vegetation cover types is vital in our understanding of the evolution of northern peatlands and its future role in the global carbon cycle.

  19. Classification and description of world formation types. Part. I (Introduction)

    Treesearch

    D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; J.-P. Saucier; G. Fults; E. Helmer

    2012-01-01

    A vegetation-ecologic classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types (Faber-Langendoen et al. 2012). This approach can help support international, national and subnational...

  20. Which Food Security Determinants Predict Adequate Vegetable Consumption among Rural Western Australian Children?

    PubMed Central

    Godrich, Stephanie L.; Lo, Johnny; Davies, Christina R.; Darby, Jill; Devine, Amanda

    2017-01-01

    Improving the suboptimal vegetable consumption among the majority of Australian children is imperative in reducing chronic disease risk. The objective of this research was to determine whether there was a relationship between food security determinants (FSD) (i.e., food availability, access, and utilisation dimensions) and adequate vegetable consumption among children living in regional and remote Western Australia (WA). Caregiver-child dyads (n = 256) living in non-metropolitan/rural WA completed cross-sectional surveys that included questions on FSD, demographics and usual vegetable intake. A total of 187 dyads were included in analyses, which included descriptive and logistic regression analyses via IBM SPSS (version 23). A total of 13.4% of children in this sample had adequate vegetable intake. FSD that met inclusion criteria (p ≤ 0.20) for multivariable regression analyses included price; promotion; quality; location of food outlets; variety of vegetable types; financial resources; and transport to outlets. After adjustment for potential demographic confounders, the FSD that predicted adequate vegetable consumption were, variety of vegetable types consumed (p = 0.007), promotion (p = 0.017), location of food outlets (p = 0.027), and price (p = 0.043). Food retail outlets should ensure that adequate varieties of vegetable types (i.e., fresh, frozen, tinned) are available, vegetable messages should be promoted through food retail outlets and in community settings, towns should include a range of vegetable purchasing options, increase their reliance on a local food supply and increase transport options to enable affordable vegetable purchasing. PMID:28054955

  1. Which Food Security Determinants Predict Adequate Vegetable Consumption among Rural Western Australian Children?

    PubMed

    Godrich, Stephanie L; Lo, Johnny; Davies, Christina R; Darby, Jill; Devine, Amanda

    2017-01-03

    Improving the suboptimal vegetable consumption among the majority of Australian children is imperative in reducing chronic disease risk. The objective of this research was to determine whether there was a relationship between food security determinants (FSD) (i.e., food availability, access, and utilisation dimensions) and adequate vegetable consumption among children living in regional and remote Western Australia (WA). Caregiver-child dyads ( n = 256) living in non-metropolitan/rural WA completed cross-sectional surveys that included questions on FSD, demographics and usual vegetable intake. A total of 187 dyads were included in analyses, which included descriptive and logistic regression analyses via IBM SPSS (version 23). A total of 13.4% of children in this sample had adequate vegetable intake. FSD that met inclusion criteria ( p ≤ 0.20) for multivariable regression analyses included price; promotion; quality; location of food outlets; variety of vegetable types; financial resources; and transport to outlets. After adjustment for potential demographic confounders, the FSD that predicted adequate vegetable consumption were, variety of vegetable types consumed ( p = 0.007), promotion ( p = 0.017), location of food outlets ( p = 0.027), and price ( p = 0.043). Food retail outlets should ensure that adequate varieties of vegetable types (i.e., fresh, frozen, tinned) are available, vegetable messages should be promoted through food retail outlets and in community settings, towns should include a range of vegetable purchasing options, increase their reliance on a local food supply and increase transport options to enable affordable vegetable purchasing.

  2. Aspen community types of the Intermountain Region

    Treesearch

    Walter F. Mueggler

    1988-01-01

    This vegetation classification is based upon existing community structure and composition in the aspen-dominated forests of the Intermountain Region of the Forest Service. The 56 community types occur within eight tree-cover types. A diagnostic key using indicator species facilitates field identification of the community types. Vegetational composition, productivity,...

  3. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.

  4. Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models

    PubMed Central

    de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús

    2012-01-01

    Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused. PMID:22911808

  5. Microlithiasis associated with chronic bronchopneumonia in a cat.

    PubMed

    Brummer, D G; French, T W; Cline, J M

    1989-04-15

    Chronic bronchopneumonia associated with microlithiasis was diagnosed in a 9-year-old domestic shorthair cat with a 3-month history of coughing and dyspnea. Thoracic radiography revealed multifocal patchy alveolar infiltrates in all lung fields. Numerous acellular, concentrically laminated, periodic acid-Schiff-positive microliths were seen in mucus from tracheal washing. Microliths were composed primarily of calcium carbonate. A definite cause could not be identified. There was no response to treatment and the cat was euthanatized. Marked type-II alveolar cell proliferation, peribronchiolar smooth muscle proliferation, and alveolar microlithiasis were seen histologically. Microliths are rarely encountered in tracheal washings from companion animals. Their pathophysiologic properties and meaning remain to be established.

  6. LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia

    NASA Technical Reports Server (NTRS)

    Hellden, U.; Akersten, I.

    1977-01-01

    Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.

  7. Multi-discipline resource inventory of soils, vegetation and geology

    NASA Technical Reports Server (NTRS)

    Simonson, G. H. (Principal Investigator); Paine, D. P.; Lawrence, R. D.; Norgren, J. A.; Pyott, W. Y.; Herzog, J. H.; Murray, R. J.; Rogers, R.

    1973-01-01

    The author has identified the following significant results. Computer classification of natural vegetation, in the vicinity of Big Summit Prairie, Crook County, Oregon was carried out using MSS digital data. Impure training sets, representing eleven vegetation types plus water, were selected from within the area to be classified. Close correlations were visually observed between vegetation types mapped from the large scale photographs and the computer classification of the ERTS data (Frame 1021-18151, 13 August 1972).

  8. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    PubMed

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  9. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    PubMed Central

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  10. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables.

    PubMed

    van Hoek, Angela H A M; Veenman, Christiaan; van Overbeek, Wendy M; Lynch, Gretta; de Roda Husman, Ana Maria; Blaak, Hetty

    2015-07-02

    In total 1216 vegetables obtained from Dutch stores during 2012 and 2013 were analysed to determine the prevalence of 3rd-generation cephalosporin (3GC) resistant bacteria on soil-grown fresh produce possibly consumed raw. Vegetables grown conventionally and organically, from Dutch as well as foreign origin were compared. Included were the following vegetable types; blanched celery (n=192), bunched carrots (n=190), butterhead lettuce (n=137), chicory (n=96), endive (n=188), iceberg lettuce (n=193) and radish (n=120). Overall, 3GC-resistant Enterobacteriaceae were detected on 5.2% of vegetables. Based on primary habitat and mechanism of 3GC-resistance, these bacteria could be divided into four groups: ESBL-producing faecal species (Escherichia coli, Enterobacter spp.), AmpC-producing faecal species (Citrobacter freundii, Enterobacter spp.), ESBL-producing environmental species (Pantoea spp., Rahnella aquatilis, Serratia fonticola), and AmpC-producing environmental species (Cedecca spp., Hafnia alvei, Pantoea spp., Serratia plymuthica), which were detected on 0.8%, 1.2%, 2.6% and 0.4% of the vegetables analysed, respectively. Contamination with faecal 3GC-resistant bacteria was most frequently observed in root and bulb vegetables (average prevalence 4.4%), and less frequently in stem vegetables (prevalence 1.6%) and leafy greens (average prevalence 0.6%). In Dutch stores, only four of the included vegetable types (blanched celery, bunched carrots, endive, iceberg lettuce) were available in all four possible variants: Dutch/conventional, Dutch/organic, foreign/conventional, foreign/organic. With respect to these vegetable types, no statistically significant difference was observed in prevalence of 3GC-resistant Enterobacteriaceae between country of origin or cultivation type (5.2%, 5.7%, 5.7% and 3.3%, respectively). Vegetables consumed raw may be a source of dissemination of 3GC-resistant Enterobacteriaceae and their resistance genes to humans. The magnitude of the associated public health risk presumably depends on the types of bacteria that are ingested, i.e., faecal or environmental species, and may therefore be higher for root and bulb vegetables compared to leafy greens. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Fang, Xuening; Zhao, Wenwu; Wang, Lixin; Feng, Qiang; Ding, Jingyi; Liu, Yuanxin; Zhang, Xiao

    2016-08-01

    Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80-500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120-140 and 480-500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80-220 cm); (ii) a transition layer (220-400 cm); and (iii) a stable layer (400-500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.

  12. Microwave model prediction and verifications for vegetated terrain

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1985-01-01

    To understand the scattering properties of a deciduous and a coniferous type vegetation scattering models were developed assuming either a disc type leaf or a needle type leaf. The major effort is to calculate the corresponding scattering phase functions and then each of the functions is used in a radiative transfer formulation to compute the scattering intensity and consequently the scattering coefficient. The radiative transfer formulation takes into account the irregular ground surface by including the rough soil surface in the boundary condition. Thus, the scattering model accounts for volume scattering inside the vegetation layer, the surface scattering from the ground and the interaction between scattering from the soil surface and the vegetation volume. The contribution to backscattering by each of the three scattering mechanisms is illustrated along with the effects of each layer or surface parameter. The major difference between the two types of vegetation is that when the incident wavelength is comparable to the size of the leaf there is a peak appearing in the mid angular region of the backscattering curve for the disc type leaf whereas it is a dip in the same region for a needle type leaf.

  13. Spatial distribution of soil properties on a landslide in Taiwan: effects of movement types and vegetation

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Chen; Cheng, Chih-Hsin

    2017-04-01

    Landslides are critical natural disturbances in tropical and temperate areas and exert immense impacts on forest ecosystems and soil properties. The impacts of landslides on soil properties not only vary with their movement type, scale, or location but also have great spatial variation inside landslide. In this study, the effects of movement type (erosion and deposition) and succeeding vegetation on soil properties inside a landslide scar were evaluated. The study site was located in Chiufenernshan, central Taiwan. The landslide was triggered by the Chi-Chi Earthquake (Ritch magnitude 7.3) in 1999. A huge amount of waste debris (30 million m3) was moved along the sliding slope (with a tipping degree at 26o) and deposited in the lower parts. Total area size of landslide scar was 200 ha and about 30 - 50 m depth waste material was eroded/deposited in the upper/lower scar areas. After 17 years, the succeeding vegetation varied inside landslide scar. The erosion areas were covered with grass (Miscanthus floridulus) or left barren in some slopes. In contrast, a secondary forest, dominated with Trema orientalis, Lithocarpus konishii, Mallotus paniculatus, and Smilax bracteata, developed in the deposition areas. We collected soil samples in different landscape areas including (i) erosion areas without vegetation, (ii) erosion areas with grass vegetation, (iii) deposition areas, and (iv) adjacent undisturbed areas. Our results indicated that the erosion areas had higher bulk density, rock fragment and pH value, but less soil organic carbon, total nitrogen, total phosphorus and N-mineralization rate than both deposition and adjacent undisturbed areas. The soil properties without vegetation even showed the extreme end compared to the soils with grass vegetation. Soils at the deposition zone had similar rock fragment, bulk density, soil pH, soil organic carbon and N-mineralization rate values to the undisturbed site (p > 0.05). We speculate that movement types could determine the initial establishment of vegetation types and then influence soil properties under vegetation succession. Therefore, both waste movement types and vegetation and their interactions play important roles on soil properties.

  14. Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors

    USGS Publications Warehouse

    Stewart, R.E.; Kantrud, H.A.

    1972-01-01

    Measurements of specific conductance provide an adequate indication of the average salinity of surface waters in natural ponds and lakes of the northern .prairie region. Yearly and seasonal variations in specific conductance were much greater in brackish and subsaline wetlands than in fresh-water areas. The principal vegetational types. Land-use practices of varying brackish to saline wetlands were sulfates and chlorides of sodium and magnesium. In less saline waters, carbonate and bicarbonate salts of calcium and potassium were of greater importance, but as salinity increased, the proportion of these compounds decreased rapidly.A major environmental factor controlling the establishment of marsh and aquatic vegetation is the permanence of surface water. Permanence is a measure of the extent to which surface water persists at a given site. Varying degrees of water permanence during the growing season led to the establishment of distinct vegetational types, which were differentiated primarily on the 'basis of community structure or life form of the dominant vegetation.Salinity of surface waters was closely correlated with differences in species composition of plant communities found in the principal vegetational types. Land-use practices of varying degrees of intensity also had a secondary influence on species composition. Since an unstable water chemistry is characteristic of most prairie ponds and lakes, it is more reliable to use the plant communities as indicators of average salinity than to use single measurements of specific conductance.Characteristic species of wetland vegetational types occupied the central deeper parts of pond and lake basins or occurred as concentric peripheral bands. The wetland vegetational types are wetland low-prairie, wet-meadow, shallow-marsh emergent, deep-marsh emergent, fen emergent, submerged and floating, natural drawdown, cropland drawdown, and cropland tillage vegetation. Combinations of species (plant associations) within these vegetational types were placed in one of six salinity categories designated as fresh, slightly brackish, moderately brackish, brackish, subsaline, and saline. Salt tolerance apparently varied greatly among the various marsh and aquatic plants since the num'ber of species represented in moderately brackish to saline communities decreased markedly with increased salinity of the surface water environment.

  15. Plant biomass in the Tanana River Basin, Alaska.

    Treesearch

    Bert R. Mead

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is...

  16. Nutrients and biomass spatial patterns in alpine tundra ecosystem on Changbai Mountains, Northeast China.

    PubMed

    Wu, Gang; Jiang, Ping; Wei, Jing; Shao, Hongbo

    2007-11-15

    Biomass and nutrients were investigated in 2003, 2004 and 2005 growing seasons by using a chronosequence of five vegetation types in alpine tundra on Changbai Mountains. The objective of this study was to test whether nutrients at biointerfaces were significant differences among five vegetation types. The biomass and elevation are highly related (biomass=-237.3ln(elevation)+494.36; R(2)=0.8092; p<0.05). There were no significant differences in phosphorus (P) and sulphur (S) concentrations of roots, stems and leaves among five vegetation types while there are significant differences in nitrogen (N) and P stocks of roots, stems and leaves and in S stock of stems and leaves among typical alpine tundra vegetation (TA), meadow alpine tundra vegetation (MA), and swamp alpine tundra vegetation (SA) (p<0.05). Vegetation nutrients stock is averagely 72.46kg hm(-2), and N, P, S stocks are 48.55, 10.33 and 13.61kg hm(-2), respectively. Soil N and S concentrations in MA are significantly higher than those in other four soil types. P is higher in SA (p<0.05). Soil nutrients stock (0-20cm) is averagely 39.59t hm(-2), and N, P, S stocks are 23.74, 5.86 and 9.99t hm(-2), respectively.

  17. Relationship of young-of-the-year northern pike to aquatic vegetation types in backwaters of the upper Mississippi River

    USGS Publications Warehouse

    Holland, L.E.; Huston, M.L.

    1984-01-01

    The association of young-of-the-year northern pike (Esox lucius) with different aquatic plant types (e.g., submerged, emergent, floating) was studied to evaluate the impacts of a potential loss of backwaters on available fish nursery habitats in the upper Mississippi River. Eight biweekly collections were made at each of six representative lentic habitats in Navigation Pool 7. In the spring, average catches of northern pike from areas with submerged vegetation were nearly three times greater than from areas with emergent vegetation, and more than 10 times greater than from an area with no vegetation. This pattern was consistent until late summer, when the young became more common in the more highly oxygenated, less heavily vegetated waters. Food and growth were examined as possible indicators for the selection of areas with submerged vegetation over other habitats. Food varied among fish in the different vegetation types; however, no significant patterns of improved growth or condition were apparent. Young northern pike apparently were successful, opportunistic feeders. Although preference for habitats with submerged vegetation was seemingly not related to food, the overall production of young was clearly best in these habitats.

  18. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have drastic and lasting impacts on these unique ecosystems.

  19. Terrestrial vegetation redistribution and carbon balance under climate change

    PubMed Central

    Lucht, Wolfgang; Schaphoff, Sibyll; Erbrecht, Tim; Heyder, Ursula; Cramer, Wolfgang

    2006-01-01

    Background Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100. PMID:16930462

  20. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.

    PubMed

    Xu, Hao-Jie; Wang, Xin-Ping; Yang, Tai-Bao

    2017-02-01

    Central Eurasian vegetation is critical for the regional ecological security and the global carbon cycle. However, climatic impacts on vegetation growth in Central Eurasia are uncertain. The reason for this uncertainty lies in the fact that the response of vegetation to climate change showed nonlinearity, seasonality and differences among plant functional types. Based on remotely sensed vegetation index and in-situ meteorological data for the years 1982-2013, in conjunction with the latest land cover type product, we analyzed how vegetation growth trend varied across different seasons and evaluated vegetation response to climate variables at regional, biome and pixel scales. We found a persistent increase in the growing season NDVI over Central Eurasia during 1982-1994, whereas this greening trend has stalled since the mid-1990s in response to increased water deficit. The stalled trend in the growing season NDVI was largely attributed by summer and autumn NDVI changes. Enhanced spring vegetation growth after 2002 was caused by rapid spring warming. The response of vegetation to climatic factors varied in different seasons. Precipitation was the main climate driver for the growing season and summer vegetation growth. Changes in temperature and precipitation during winter and spring controlled the spring vegetation growth. Autumn vegetation growth was mainly dependent on the vegetation growth in summer. We found diverse responses of different vegetation types to climate drivers in Central Eurasia. Forests were more responsive to temperature than to precipitation. Grassland and desert vegetation responded more strongly to precipitation than to temperature in summer but more strongly to temperature than to precipitation in spring. In addition, the growth of desert vegetation was more dependent on winter precipitation than that of grasslands. This study has important implications for improving the performance of terrestrial ecosystem models to predict future vegetation response to climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    PubMed

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  2. Serving a variety of vegetables and fruit as a snack increased intake in preschool children.

    PubMed

    Roe, Liane S; Meengs, Jennifer S; Birch, Leann L; Rolls, Barbara J

    2013-09-01

    Although serving a greater variety of food increases intake, this effect has not been well studied as a strategy to encourage consumption of vegetables and fruit in preschool children. This study examined whether providing a variety of familiar vegetables or fruit to preschool children as a snack would lead to increased selection and intake. In a crossover design, 61 children (aged 3-5 y) ate a snack in their childcare facility on 8 afternoons. At 4 snack times, the children were offered vegetables: either a single type (cucumber, sweet pepper, or tomato) or a variety of all 3 types. At 4 other snack times, the children were offered fruit (apple, peach, pineapple, or all 3 types). Uniform-sized pieces were served family style, and children selected and ate as much as they desired. Offering a variety of vegetables or fruit increased the likelihood of selection (P < 0.0001); children chose some pieces in 94% of snacks with variety and in 70% of snacks without variety. Serving a variety also increased consumption of both vegetables and fruit (P < 0.0002); the mean (±SEM) increase was 31 ± 5 g, about one-sixth the recommended daily amount. Independent of the variety effect, children were less likely to select vegetables than fruit (P < 0.0001), and the mean intake was substantially less for vegetables than for fruit (22 ± 1 compared with 84 ± 3 g). Providing a variety of vegetables and fruit as a snack led to increased consumption of both food types in a childcare facility. Serving a variety of vegetables or fruit as a snack could help preschool children meet recommended intakes. This trial was registered at clinicaltrials.gov as NCT01557218.

  3. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    PubMed

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.

  4. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    PubMed Central

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  5. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient

    USGS Publications Warehouse

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L.

    2012-01-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.

  6. Serving a variety of vegetables and fruit as a snack increased intake in preschool children123

    PubMed Central

    Meengs, Jennifer S; Birch, Leann L; Rolls, Barbara J

    2013-01-01

    Background: Although serving a greater variety of food increases intake, this effect has not been well studied as a strategy to encourage consumption of vegetables and fruit in preschool children. Objective: This study examined whether providing a variety of familiar vegetables or fruit to preschool children as a snack would lead to increased selection and intake. Design: In a crossover design, 61 children (aged 3–5 y) ate a snack in their childcare facility on 8 afternoons. At 4 snack times, the children were offered vegetables: either a single type (cucumber, sweet pepper, or tomato) or a variety of all 3 types. At 4 other snack times, the children were offered fruit (apple, peach, pineapple, or all 3 types). Uniform-sized pieces were served family style, and children selected and ate as much as they desired. Results: Offering a variety of vegetables or fruit increased the likelihood of selection (P < 0.0001); children chose some pieces in 94% of snacks with variety and in 70% of snacks without variety. Serving a variety also increased consumption of both vegetables and fruit (P < 0.0002); the mean (±SEM) increase was 31 ± 5 g, about one-sixth the recommended daily amount. Independent of the variety effect, children were less likely to select vegetables than fruit (P < 0.0001), and the mean intake was substantially less for vegetables than for fruit (22 ± 1 compared with 84 ± 3 g). Conclusions: Providing a variety of vegetables and fruit as a snack led to increased consumption of both food types in a childcare facility. Serving a variety of vegetables or fruit as a snack could help preschool children meet recommended intakes. This trial was registered at clinicaltrials.gov as NCT01557218. PMID:23902783

  7. Inventory and monitoring of natural vegetation and related resources in an arid environment by the use of ERTS-A imagery

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The southern Arizona test site includes vegetation representing shrub types of the Sonoran and Chihuahuan Deserts and Arizona chaparral. Also represented are grassland types of the desert grassland, juniper, and oak woodland types, and coniferous forest types. Relationships between plant species and selected terrain features are given along with the terrain feature classes used for the analyses. The purpose for determining the degree to which such relationships exist is to develop a body of knowledge to constitute the associated evidence that a photointerpreter may consult when interpreting vegetation subjects on small scale imagery. Imagery of this scale class contains little image detail which can be interpreted directly in terms of vegetation. On the other hand, some terrain features are the most salient features of that same imagery. Exploitation of those features for vegetation identification, inventory, and analysis can be accomplished only after establishing the existence of ecological relationships.

  8. Repair of dentin defects from DSPP knockout mice by PILP mineralization

    PubMed Central

    Nurrohman, H.; Saeki, K.; Carneiro, K.; Chien, Y.C.; Djomehri, S.; Ho, S.P.; Qin, C.; Marshall, S.J.; Gower, L.B.; Marshall, G.W.; Habelitz, S.

    2016-01-01

    Dentinogenesis imperfecta type II (DGI-II) lacks intrafibrillar mineral with severe compromise of dentin mechanical properties. A Dspp knockout (Dspp−/−) mouse, with a phenotype similar to that of human DGI-II, was used to determine if poly-L-aspartic acid [poly(ASP)] in the “polymer-induced liquid-precursor” (PILP) system can restore its mechanical properties. Dentin from six-week old Dspp−/− and wild-type mice was treated with CaP solution containing poly(ASP) for up to 14 days. Elastic modulus and hardness before and after treatment were correlated with mineralization from Micro x-ray computed tomography (Micro-XCT). Transmission electron microscopy (TEM)/Selected area electron diffraction (SAED) were used to compare matrix mineralization and crystallography. Mechanical properties of the Dspp−/− dentin were significantly less than wild-type dentin and recovered significantly (P < 0.05) after PILP-treatment, reaching values comparable to wild-type dentin. Micro-XCT showed mineral recovery similar to wild-type dentin after PILP-treatment. TEM/SAED showed repair of patchy mineralization and complete mineralization of defective dentin. This approach may lead to new strategies for hard tissue repair. PMID:27239097

  9. Assessment of heterogeneity in types of vegetables served by main household food preparers and food decision influencers.

    PubMed

    Yi, Sunghwan; Kanetkar, Vinay; Brauer, Paula

    2015-10-01

    While vegetables are often studied as one food group, global measures may mask variation in the types and forms of vegetables preferred by different individuals. To explore preferences for and perceptions of vegetables, we assessed main food preparers based on their preparation of eight specific vegetables and mushrooms. An online self-report survey. Ontario, Canada. Measures included perceived benefits and obstacles of vegetables, convenience orientation and variety seeking in meal preparation. Of the 4517 randomly selected consumers who received the invitation, 1013 responded to the survey (22·4 % response). Data from the main food preparers were analysed (n 756). Latent profile analysis indicated three segments of food preparers. More open to new recipes, the 'crucifer lover' segment (13 %) prepared and consumed substantially more Brussels sprouts, broccoli and asparagus than the other segments. Although similar to the 'average consumer' segment (54 %) in many ways, the 'frozen vegetable user' segment (33 %) used significantly more frozen vegetables than the other segments due to higher prioritization of time and convenience in meal preparation and stronger 'healthy=not tasty' perception. Perception of specific vegetables on taste, healthiness, ease of preparation and cost varied significantly across the three consumer segments. Crucifer lovers also differed with respect to shopping and cooking habits compared with the frozen vegetable users. The substantial heterogeneity in the types of vegetables consumed and perceptions across the three consumer segments has implications for the development of new approaches to promoting these foods.

  10. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  11. Viscoelastic representation of surface waves in patchy saturated poroelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi

    2014-08-01

    Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.

  12. Patchy gold coated Fe3O4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors.

    PubMed

    Zhang, Xin; Bao, Ning; Luo, Xiliang; Ding, Shou-Nian

    2018-05-10

    In this work, novel multifunctional patchy gold coated Fe 3 O 4 hybrid nanoparticles (PG-Fe 3 O 4 NPs) have been successfully synthesized in aqueous medium via a facile adsorption-reduction method. A rational formation mechanism has been proposed by monitoring the morphological evolution. The PG-Fe 3 O 4 NPs retained the good magnetic property and exhibited excellent catalytical effeciency towards the electrochemical reduction of hydrogen peroxide. Chronoamperometric and amperometric experiments indicated a relatively high catalytic rate constant of 3.13 × 10 5 M -1 s -1 , a high sensitivity of 578.87 µA mM -1 cm -2 and a low Michaelis-Menten constant of 462 µM. Meanwhile, the introduction of patchy gold could help biofunctionalization via Au-S bond for different biodetection and biosensing purposes. Here, as an example, thiol-terminated aptamers were immobilized onto the patchy gold part as a signal probe to detect carcinoembryonic antigen (CEA). A related paper-based bipolar electrode-electrochemiluminescence (pBPE-ECL) aptasensor was fabricated as the low-cost, disposable and miniature platform. To improve the sensitivity, Au nanodendrites were electrodeposited at the BPE cathode as the matrix for Apt1 immobilization. This aptasensor showed a wide linear range of 0.1 pg mL -1 -15 ng mL -1 with a low detection limit of 0.03 pg mL -1 , remaining competitive against other ones, and also demonstrating the PG-Fe 3 O 4 NPs have promising potential for catalysis and bioassays. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Classification of the forest vegetation on the National Forests of Arizona and New Mexico

    Treesearch

    Robert R. Alexander; Frank Ronco

    1987-01-01

    Forest vegetation classified by habitat types and community types in Arizona and New Mexico are tabulated. Eleven series and 123 habitat and community types are identified; however, these habitat types and community types have been grouped into a lesser number of categories having similar characteristics or synonymous names. The table includes the name, location,...

  14. Critical thickness ratio for buckled and wrinkled fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Dai, Hui-Hui; Liu, Yang

    2014-11-01

    This work aims at establishing the geometrical constraint for buckled and wrinkled shapes by modeling a fruit/vegetable with exocarp and sarcocarp as a hyperelastic layer-substrate structure subjected to uniaxial compression. A careful analysis on the derived bifurcation condition leads to the finding of a critical thickness ratio which separates the buckling and wrinkling modes, and remarkably, which is independent of the material stiffnesses. More specifically, it is found that if the thickness ratio is smaller than this critical value a fruit/vegetable should be in a buckled shape (under a sufficient stress); if a fruit/vegetable is in a wrinkled shape the thickness ratio is always larger than this critical value. To verify the theoretical prediction, we consider four types of buckled fruits/vegetables and four types of wrinkled fruits/vegetables with three samples in each type. The geometrical parameters for the 24 samples are measured and it is found that indeed all the data fall into the theoretically predicted buckling or wrinkling domains.

  15. Simulated climate change: The interaction between vegetation type and microhabitat temperatures at Ny Alesund, Svalbard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulson, S.; Hodkinson, I.D.; Stathdee, A.

    1993-01-01

    Small polythene tents were used to simulate the effects of climate warming on two contrasting vegetation types (polar semi-desert and tundra heath) at Ny Alesund, Spitzbergen, Svalbard. Temperature microclimates are compared within and without tents and between sites with contrasting vegetation types. Summer temperatures were increased by about 5[degrees]C in the vegetation mat and by about 2[degrees]C in the soil at 3 cm depth. Cumulative day degrees above zero were enhanced by around 35% in the vegetation and by around 9% in the soil. Soil temperatures were greatly influenced by the nature of the overlying vegetation, which at one ofmore » the sites appeared to act as an efficient thermal insulator, preventing heat conductance into the soil from above and enhancing thermal contact between the upper soil layer and the cooling permafrost below. The significance of the observed temperature differences for the ecology of the plants and invertebrates is discussed. 21 refs., 3 figs., 2 tabs.« less

  16. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    USGS Publications Warehouse

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of the six most abundant alien species at Theodore Roosevelt National Park had distributions unrelated to disturbance. We recommend that vegetation type be explicitly taken into account when designing monitoring plans for alien species in natural areas.

  17. LANDFIRE 2015 Remap – Utilization of Remotely Sensed Data to Classify Existing Vegetation Type and Structure to Support Strategic Planning and Tactical Response

    USGS Publications Warehouse

    Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis

    2017-01-01

    The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.

  18. BOUNDARY SHEAR STRESS ALONG VEGETATED STREAMBANKS

    EPA Science Inventory

    This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The resu...

  19. Chapter 3: Status and trends of vegetation

    Treesearch

    James M. Guldin; Frank R. Thompson; Lynda L. Richards; Kyra C. Harper

    1999-01-01

    This chapter provides information about the vegetation cover of the Assessment area. The types and areal extent of vegetation in the Highlands are of interest for many reasons. Vegetation cover largely determines the availability of habitat for terrestrial animals, plants, and other organisms. Vegetation cover strongly influences what uses {e.g., timber, forage,...

  20. Self-assembly of bimodal particles inside emulsion droplets

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin

    2010-08-01

    Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.

  1. The use of marine reserves in evaluating the dive fishery for the warty sea cucumber, Parastichopus parvimensis in California, U.S.A

    USGS Publications Warehouse

    Schroeder, S.C.; Reed, D.C.; Kushner, D.J.; Estes, J.A.; Ono, D.S.

    2001-01-01

    In this paper we describe an instance of unusual, agonistic behavior in a flock of migrant Short-billed Dowitchers (Limnodromus griseus) . We compare this behavior to that of other flocks feeding at the same time at other locations in the same estuary and then present evidence suggesting that this behavior resulted from the patchy distribution of the probable foraging resource of this flock, eggs of the horseshoe crab (Limulus polyphemus). We propose that an extremely patchy resource has increased the agonistic behavior within the flock by increasing the variation in foraging success among individuals.

  2. 308-nm excimer laser for the treatment of alopecia areata.

    PubMed

    Al-Mutairi, Nawaf

    2007-12-01

    Alopecia areata is loss of hair from localized or diffuse areas of hair-bearing area of the skin. Recently there are reports of efficacy of the 308-nm excimer radiation for this condition. To study the effect of the 308-nm excimer laser in the treatment of alopecia areata. Eighteen patients with 42 recalcitrant patches (including 1 adult with alopecia totalis) were enrolled in this study. The lesions were treated with the 308-nm excimer laser twice a week for a period of 12 weeks; one lesion on each patient was left as a control for comparison. There were 7 males and 11 females in this study. Regrowth of hair was observed in 17 (41.5%) patches. Thirteen of the 18 lesions in scalp showed a complete regrowth of hair. The extremity regions failed to show a response. Atopic diatheses had an unfavorable effect on the outcome in our patients. The 308-nm excimer laser is an effective therapeutic option for patchy alopecia areata of the scalp and for some cases with patchy alopecia areata of the beard area. It does not work for patchy alopecia areata of the extremities.

  3. Plant and Root Growth Responses to Heterogeneous Supplies of Soil Water in Two Coastal Shrubs of California.

    NASA Astrophysics Data System (ADS)

    Cole, S.; Mahall, B. E.

    2007-05-01

    Much effort has been focused on identifying plant and root growth responses to heterogeneous supplies of soil nutrients. However, in many circumstances, soil water may limit plant growth and it too can have a patchy distribution. In our research we asked: 1) What is the ecological significance of soil moisture heterogeneity to plant growth in a California coastal dune habitat? 2) How does growth of whole plants and roots respond to soil moisture heterogeneity? and 3) Can roots of these species sense and grow towards moisture-rich areas (hydrotropism) in a natural medium? To address these questions: we conducted comparative field studies of water relations and growth of Artemisia californica and Eriogonum parvifolium; we performed a growth rate study of roots and plants in experimental pots with either patchy or homogeneous distributions of soil water; and we analyzed individual root growth in sand-filled observation chambers in response to moisture-rich patches and resultant soil water gradients. In the field, correlations between daily photosynthetic rates, active leaf display and predawn xylem pressure potentials (ΨPD) indicated that access to water limited growth in A. californica and E. parvifolium. These species, common in habit and habitat, differed in their ability to access water with E. parvifolium having overall higher ΨPD than A. californica (repeated measures ANOVA, P < 0.01). Our growth rate study revealed that patchy supplies of water did not reduce the relative growth rate or average size of E. parvifolium (two-tailed t-tests, P > 0.25). It appears that modified partitioning of growth both at the whole plant and root system level permitted E. parvifolium to maintain growth in patchy soil water conditions. We found that E. parvifolium increased allocation to roots and proliferated in moisture-rich patches in the patchy soil water treatment. Root length density and the proportion of root mass present in the patch was 20- to >100-fold greater in and near the moisture-rich patch than in a comparable but drier soil location (one-tailed matched pairs t-tests, P ≤ 0.05). While root hydrotropism could be a means by which plants are able to locate moisture-rich patches, from our chamber studies we found no compelling evidence for hydrotropic root behavior in seedlings of these two dune shrubs and suggest that roots instead may encounter patches of soil water serendipitously.

  4. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    NASA Astrophysics Data System (ADS)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or surrounding steep slopes. The rare local endemic Convolvulus gracillimus still occurs in surrounding dry slopes. Ailanthus altissima is an invasive introduced tree largely occupied disturbed habitats and slopes of the valley associated with large number of ruderals belonging to genera Amaranthus, Bassia, Chenopodium, Echinochloa, Heliotropium, Tribulus etc. Restoration plan include 1. Study of past biological and geomorphological conditions of the area based on remnants of vegetation and aerial and satellite imaginary data 2. Survey of present environmental conditions of the area including identification native and introduced plants and animals, assessing the degree of originality of existing vegetation and cultural landscapes and abiotic factors. 3. Soil reclamation and topography improvements towards cultivation and/or formation of natural vegetation.

  5. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  6. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness considered to be fragmentation effects may be general consequences of patch discontinuity and are ubiquitous in naturally heterogeneous systems. There was no evidence for the effects of patch shape and distance to contiguous woodland in juniper woodland, suggesting edge effects and dependence upon regional species pools are characteristics of fragmented agricultural systems. Natural patch mosaics may provide benchmarks for evaluating fragmentation effects and managing forests by mimicking natural landscape patterns. ?? 2007 The Zoological Society of London.

  7. What determines tree mortality in dry environments? A multi-perspective approach.

    PubMed

    Dorman, Michael; Svoray, Tal; Perevolotsky, Avi; Moshe, Yitzhak; Sarris, Dimitrios

    2015-06-01

    Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.

  8. Circumscribing campo rupestre - megadiverse Brazilian rocky montane savanas.

    PubMed

    Alves, R J V; Silva, N G; Oliveira, J A; Medeiros, D

    2014-05-01

    Currently campo rupestre (CR) is a name accepted and used internationally by botanists, zoologists, and other naturalists, usually applied to a very specific ecosystem, despite the lack of a consensual published circumscription. We present a tentative geographic circumscription of the term, combining data on climate, geology, geomorphology, soil, flora, fauna and vegetation. The circumscription of campo rupestre proposed herein is based on the following premises: (1) the classification of vegetation is not an exact science, and it is difficult to attain a high degree of consensus to the circumscription of vegetation names; (2) despite this, vegetation classification is useful for conservation and management. It is thus desirable to circumscribe vegetation types with the greatest attainable precision; (3) there is a need to preserve all montane and rocky vegetation types, regardless of classification, biome, etc; (4) the CRs are formed by a complex mosaic of vegetation types including rock-dwelling, psammophilous, aquatic, epiphytic, and penumbral plant communities. Campos rupestres stricto sensu are a Neotropical, azonal vegetation complex endemic to Brazil, forming a mosaic of rocky mountaintop "archipelagos" inserted within a matrix of zonal vegetation, mainly in the Cerrado and Caatinga provinces of the Brazilian Shield (southeastern, northeastern and central-western regions), occurring mainly above 900 m asl. up to altitudes exceeding 2000 m, having measured annual precipitation between 800 and 1500 mm, and an arid season of two to five months.

  9. On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers

    NASA Astrophysics Data System (ADS)

    Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena

    Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.

  10. The Effects of Liking Norms and Descriptive Norms on Vegetable Consumption: A Randomized Experiment

    PubMed Central

    Thomas, Jason M.; Liu, Jinyu; Robinson, Eric L.; Aveyard, Paul; Herman, C. Peter; Higgs, Suzanne

    2016-01-01

    There is evidence that social norm messages can be used to promote the selection of fruit and vegetables in low habitual consumers of these foods but it is unclear whether this effect is sustained over time. It is also unclear whether information about others' liking for a food (liking norm) could have the same effect. Using a 2 × 5 × 2 experimental design we investigated the effects of exposure to various messages on later intake from a food buffet and whether any effects were sustained 24 h after exposure in both low and high consumers of vegetables. There were three factors: delay (immediate food selection vs. food selection 24 h after exposure), message type (liking norm, descriptive norm, health message, vegetable variety condition, and neutral control message), and habitual consumption (low vs. high). The buffet consisted of three raw vegetables, three energy-dense foods, and two dips. For vegetables and non-vegetables there were no main effects of message type, nor any main effect of delay. There was a significant message × habitual vegetable consumption interaction for vegetable consumption; however, follow up tests did not yield any significant effects. Examining each food individually, there were no main effects of message type, nor any main effect of delay, for any of the foods; however, there was a message × habitual vegetable consumption interaction for broccoli. Consumption of broccoli in the health message and descriptive norm conditions did not differ from the control neutral condition. However, habitually low consumers of vegetables increased their consumption of broccoli in the vegetable variety and liking norm conditions relative to habitual low vegetable consumers in the neutral control condition (p < 0.05). Further, investigation of the effects of the liking norm and vegetable variety condition on vegetable intake is warranted. This trial is listed as NCT02618174 at clinicaltrials.gov. PMID:27065913

  11. The ecological variations in thermal infrared emissivity of vegetation. [in Texas, Arizona, New Mexico, and Mexico

    NASA Technical Reports Server (NTRS)

    Arp, G. K.; Phinney, D. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.

  12. Insights on the criteria of selection of vegetable and mineral dielectric fluids used in power transformers on the basis of their biodegradability and toxicity assessments.

    PubMed

    Módenes, Aparecido Nivaldo; Sanderson, Karina; Trigueros, Daniela Estelita Goes; Schuelter, Adilson Ricken; Espinoza-Quiñones, Fernando Rodolfo; Neves, Camila Vargas; Zanão Junior, Luiz Antônio; Kroumov, Alexander Dimitrov

    2018-05-01

    Leakage of transformer dielectric fluids is a concern because it may pose a risk of environmental contamination. In this study, the deleterious effects of vegetable and mineral dielectric fluids in water bodies were investigated using biodegradability and acute toxicity tests with Danio rerio and Artemia salina. Regarding biodegradability, all four tested vegetable oils (soy, canola, sunflower and crambe) were considered as easily biodegradable, presenting degradation rates significantly higher than the Lubrax-type mineral fluid. Acute toxicity tests were performed in two separate experiments without solution renewal. In the first experiment, the organisms were exposed in direct contact to different concentrations of vegetable (soy) and mineral (Lubrax) oils. Total soy-type vegetable oil has a higher toxic effect than Lubrax-type mineral oil. In the second experiment, the organisms were exposed to increasing percentages of the water-soluble fraction (WSF) of both types of tested oils. The LC 50 values for the water-soluble fraction of the Lubrax-type mineral oil were about 5 and 8% for the Danio rerio and Artemia salina bioindicators, respectively, whereas the vegetable oil did not present toxic effect, regardless of its WSF. These results have shown that a strict selection of dielectric fluids and monitoring the leakage from power transformers is a serious duty of environmental protection agencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    PubMed Central

    Saqib, Hafiz Sohaib Ahmed; You, Minsheng

    2017-01-01

    Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741

  14. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  15. Sensitivity analysis of the Commonly Used Drought Indices on the different land use Types - Case Study over Turkey

    NASA Astrophysics Data System (ADS)

    Ersoy, E. N.; Hüsami Afşar, M.; Bulut, B.; Onen, A.; Yilmaz, M. T.

    2017-12-01

    Droughts are climatic phenomenon that may impact large and small regions alike for long or short time periods and influence society in terms of industrial, agricultural, domestic and many more aspects. The characteristics of the droughts are commonly investigated using indices like Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI). On the other hand, these indices may not necessarily yield similar performance over different vegetation types. The aim is to analyze the sensitivity of drought indices (SPI, SPEI, PDSI) to vegetation types over different climatic regions in Turkey. Here the magnitude of the drought severity is measured using MODIS NDVI data, while the vegetation type (e.g., non-irrigated arable lands, vineyards, fruit trees and berry plantations, olive groves, pastures, land principally occupied by agriculture) information is obtained using CORINE land cover classification. This study has compared the drought characteristics and vegetation conditions on different land use types using remotely sensed datasets (e.g., CORINE land use data, MODIS NDVI), and commonly used drought indices between 2000 and 2016 using gauge based precipitation and temperature measurements.

  16. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  17. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  18. Determination of plant characteristics used in discharge capacity assessment of Turkey Creek watershed on South Carolina coastal plain, USA

    Treesearch

    Dorota Miroslaw-Swiatek; Devendra M. Amatya

    2011-01-01

    Riparian vegetation type, composition, structure, and its abundance on floodplains exert a strong influence on riparian surface and subsurface hydrology and discharges of rivers and streams. The conditions of flood waters flow in such valley types are shaped by the existing vegetation cover. In this study, on the basis of vegetation inventory in four selected and...

  19. The influence of parent material on vegetation response 15 years after the Dude Fire, Arizona

    Treesearch

    Jackson M. Leonard; Alvin L. Medina; Daniel G. Neary; Aregai Tecle

    2015-01-01

    This study examined the effects of two types of parent material, sandstone and limestone, on the response of vegetation growth after the 1990 Dude Fire in central Arizona. The operating hypothesis of the study was that, given the right conditions, severe wildfire can trigger vegetation type conversion. Overall, three patterns emerged: (1) oak density increased by 413%...

  20. Consumer Acceptance Comparison Between Seasoned and Unseasoned Vegetables

    PubMed Central

    Feng, Yiming; Albiol Tapia, Marta; Okada, Kyle; Castaneda Lazo, Nuria Blanca; Chapman‐Novakofski, Karen; Phillips, Carter

    2018-01-01

    Abstract Recent findings show that approximately 87% of the U.S. population fail to meet the vegetable intake recommendations, with unpleasant taste of vegetables being listed as the primary reason for this shortfall. In this study, spice and herb seasoning was used to enhance palatability of vegetables, in order to increase consumer acceptance. In total, 749 panelists were screened and recruited as specific vegetable likers of the vegetable being tested or general vegetable likers. Four sessions were designed to evaluate the effect of seasoning within each type of vegetable, including broccoli, cauliflower, carrot, and green bean. Each panelist was only allowed to participate in one test session to evaluate only one vegetable type, so as to mitigate potential learning effect. Overall, the results showed that seasoned vegetables were significantly preferred over unseasoned vegetables (P < 0.001), indicating the sensory properties were significantly improved with seasoning. When general vegetable likers and specific vegetable likers were compared in terms of their preference between seasoned and unseasoned vegetables, the pattern varied across different vegetables; however, general trend of seasoned vegetable being preferred remained. The findings from this study demonstrate the effect of seasoning in enhancing consumer liking of vegetables, which may lead to increased consumption to be assessed in future studies. Practical Application To improve the sensory properties of vegetables, masking the bitter taste of vegetables using spice and herb seasoning are gaining increasing attention. Our findings suggest that the overall liking of vegetables could be improved by incorporating spice and herb seasonings that are specifically formulated for each vegetable. Ultimately, developing and commercializing spice and herb seasonings may aid to increase vegetable consumption, as well as expanding the vegetable seasoning market. PMID:29337353

  1. Consumer Acceptance Comparison Between Seasoned and Unseasoned Vegetables.

    PubMed

    Feng, Yiming; Albiol Tapia, Marta; Okada, Kyle; Castaneda Lazo, Nuria Blanca; Chapman-Novakofski, Karen; Phillips, Carter; Lee, Soo-Yeun

    2018-02-01

    Recent findings show that approximately 87% of the U.S. population fail to meet the vegetable intake recommendations, with unpleasant taste of vegetables being listed as the primary reason for this shortfall. In this study, spice and herb seasoning was used to enhance palatability of vegetables, in order to increase consumer acceptance. In total, 749 panelists were screened and recruited as specific vegetable likers of the vegetable being tested or general vegetable likers. Four sessions were designed to evaluate the effect of seasoning within each type of vegetable, including broccoli, cauliflower, carrot, and green bean. Each panelist was only allowed to participate in one test session to evaluate only one vegetable type, so as to mitigate potential learning effect. Overall, the results showed that seasoned vegetables were significantly preferred over unseasoned vegetables (P < 0.001), indicating the sensory properties were significantly improved with seasoning. When general vegetable likers and specific vegetable likers were compared in terms of their preference between seasoned and unseasoned vegetables, the pattern varied across different vegetables; however, general trend of seasoned vegetable being preferred remained. The findings from this study demonstrate the effect of seasoning in enhancing consumer liking of vegetables, which may lead to increased consumption to be assessed in future studies. To improve the sensory properties of vegetables, masking the bitter taste of vegetables using spice and herb seasoning are gaining increasing attention. Our findings suggest that the overall liking of vegetables could be improved by incorporating spice and herb seasonings that are specifically formulated for each vegetable. Ultimately, developing and commercializing spice and herb seasonings may aid to increase vegetable consumption, as well as expanding the vegetable seasoning market. © 2018 The Authors Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  2. A study to explore the use of orbital remote sensing to determine native arid plant distribution. [Arizona Regional Ecological Test Site

    NASA Technical Reports Server (NTRS)

    Mcginnies, W. G. (Principal Investigator); Lepley, L. K.; Haase, E. F.; Conn, J. S.; Musick, H. B.; Foster, K. E.

    1974-01-01

    The author has identified the following significant results. It is possible to determine, from ERTS imagery, native arid plant distribution. Using techniques of multispectral masking and extensive fieldwork, three native vegetation communities were defined and mapped in the Avra Valley study area. A map was made of the Yuma area with the aid of ground truth correlations between areas of desert pavement visible on ERTS images and unique vegetation types. With the exception of the Yuma soil-vegetation correlation phenomena, only very gross differentiations of desert vegetation communities can be made from ERTS data. Vegetation communities with obvious vegetation density differences such as saguaro-paloverde, creosote bush, and riparian vegetation can be separated on the Avra Valley imagery while more similar communities such as creosote bush and saltbush could not be differentiated. It is suggested that large differences in vegetation density are needed before the signatures of two different vegetation types can be differentiated on ERTS imagery. This is due to the relatively insignificant contribution of vegetation to the total radiometric signature of a given desert scene. Where more detailed information concerning the vegetation of arid regions is required, large scale imagery is appropriate.

  3. The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger

    NASA Astrophysics Data System (ADS)

    Bromley, J.; Brouwer, J.; Barker, A. P.; Gaze, S. R.; Valentine, C.

    1997-11-01

    The surface hydrology of a semi-arid area of patterned vegetation in south-west Niger is described. In this region alternating bands of vegetation and bare ground aligned along the contours of a gently sloping terrain give rise to a phenomenon known as `brousse tigrée' (tiger bush). At the selected study site the vegetation bands are 10-30 m wide, separated by 50-100-m-wide bands of bare ground. Five species of shrub dominate, Guiera senegalensis, Combretum micranthum, C. nigricans, Acacia ataxacantha and A. macrostachya. Herbaceous vegetation is generally limited to the upslope edges of vegetation bands. A comprehensive field programme was undertaken to investigate the hydrology. Topographic, vegetation and surface feature surveys were carried out in conjunction with the measurement of rainfall, surface and subsurface hydraulic conductivity, particle size and soil moisture content. Four types of vegetation class are recognised, each tending to occupy a constant position relative to the others and to the regional slope. In a downslope direction the classes are: bare ground, grassy open bush, closed bush, bare open bush, bare ground etc. The nature of the ground surface is closely linked to the vegetation class. Over the bare, bare open and grassy open classes various types of surface crust are present with each type of crust tending to occupy a constant position on the regional slope relative to the vegetation class and other crust types. Below closed bush crusts are generally absent. The typical downslope sequence from the downslope boundary of a vegetation band is: structural (sieving) crust→erosion crust→(gravel crust)→sedimentation crust→microphytic sedimentation crust→no crust→sieving crust, etc. It is also shown that these crust types are dynamic and evolve from one to the other as hydrological conditions change. Hydraulic conductivities of surface crusts are low, typically falling within the range 10 -6-10 -7 m s -1. The presence of large expanses of crust over bare regions tends to generate run-off, which moves down the regional slope to be intercepted and pond within and just upslope of vegetated areas. Such run-off concentrates rainfall by a factor of up to 3.7 below vegetated areas. This concentration combined with an absence of crust development in closed bush areas promotes rapid infiltration below and just upslope of vegetation bands. In this way the hydrology of the area operates to ensure that the bulk of the rain which falls is directed as quickly as possible to the areas where it is most needed to support the existing vegetation.

  4. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health?

    PubMed

    Nabulo, G; Black, C R; Craigon, J; Young, S D

    2012-03-01

    Concentrations of potentially toxic elements were measured in soils and five contrasting tropical leafy vegetables grown in a replicated field trial at five contaminated urban agriculture sites in Kampala City, Uganda. Soil contamination at each site could be tentatively ascribed to known waste disposal practices. There was considerable variation in metal uptake between vegetable types. Washing leafy vegetables reduced chromium and lead concentrations but exogenous contamination of leaves also depended on vegetable type, with Gynandropsis gynandra L. showing a marked tendency to accumulate Pb and Cr. For the worst case scenario of children consuming unwashed vegetables, some metal 'hazard quotient' (HQ) limits (1.0) were violated at four of the five sites studied. For the 25 'site-vegetable' combinations assessed, the HQ for Pb exceeded 1.0 in 36% of cases. A vegetable-specific site screening tool based on soil extraction with 0.01 M CaCl(2) and extrapolation to provide HQ values was assessed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effect of the method of preparation for consumption on calcium retention, calcium:phosphorus ratio, nutrient density and recommended daily allowance in fourteen vegetables.

    PubMed

    Słupski, Jacek; Gębczyński, Piotr; Korus, Anna; Lisiewska, Zofia

    2014-06-01

    The aim of this work was to evaluate calcium retention in 14 species of vegetable (from four usable groups). The material investigated consisted of raw and boiled fresh vegetables and two types of frozen product prepared for consumption after 12-month storage: one traditionally produced; the other obtained using the modified method (convenience food). The highest calcium content was found in leafy vegetables, followed (in descending order) by leguminous, root and brassica vegetables. The proportion by weight of Ca to P was highest in leafy vegetables and decreased with calcium retention despite the fact that levels of phosphorus were highest in leguminous and lowest in leafy vegetables. The nutrient density (ND%) of calcium for adults exceeded 100 for each individual vegetable species. The recommended daily allowance (RDA) percentage value varied between 23.04 (kale) and 1.46 (white cauliflower). Of the three types of product, ND and RDA values were generally greater in the frozen convenience products.

  6. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  7. [Distribution patterns and pollution assessments of heavy metals in the Spartina alterniflora salt-marsh wetland of Rudong, Jiangsu province].

    PubMed

    Zhang, Long-Hui; Du, Yong-Fen; Wang, Dan-Dan; Gao, Shu; Gao, Wen-Hua

    2014-06-01

    To understand the ecological impact of Spartina alterniflora on the coastal wetland environment, field survey was carried out in July, 2010, over the intertidal areas of Rudong coast, Jiangsu province; sediment samples were collected from a series of stations with different conditions of vegetation cover and S. alterniflora growth. The contents of eight heavy metals, together with sediment composition and total organic carbon were analyzed to reveal the distribution patterns of the heavy metals. Environmental quality status was evaluated using both the index of geoaccumulation (I(geo)) and the index of the Håkanson ecological risk. The analytical results showed that the average contents of Pb, Cd, As, Hg, Cr, Cu, Ni and Zn were below the standard for the Category I sediment quality, among which Cd, Hg, Ni and Zn exceeded the sediment background value of the region. On the whole, the contents of eight heavy metals in vegetation areas were higher than those associated with the adjacent bare flat areas. These data sets indicate a non-polluted condition in term of I(geo) estimation; however, a critical state of low to moderate degrees of pollution and a low level of risk were deduced according to the index of the Håkanson potential ecological risk. Both indices suggested that the pollution level of Hg and Cd were the highest among the eight metals measured. Along the transection from seaward to landward, the contents of As, Cu and Hg, their indices of I(geo) and Håkanson ecological risk all showed an increasing tread, in accordance with the condition of vegetation cover. Along the coastline with S. alterniflora being distributed in patchiness, all metal contents and their ecological risk level values for the marshes were higher than those for the unvegetated sediments nearby; moreover, except for Hg, other seven metals exhibited relatively low values than those in the shore-normal section with a better S. alterniflora growth. These findings indicate that S. alterniflora is one of important factors to enrich the heavy metal in tidal flat sediment. Thus, ecological risk of the heavy metal is reduced or blocked, due to the filtering effect of salt-marsh, which prevents metals from entering the open sea directly. The distribution of heavy metal is influenced by a combination of colonization time of vegetation, chemical form of metals and their origins.

  8. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. A reconstituted color infrared image covering the western Seward Peninsula was used for identifying vegetation types by simple visual examination. The image was taken by ERTS-1 approximately 1120 hours on August 1, 1972. Seven major colors were identified. Four of these were matched with four units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal wet tundra; gray - alpine barrens. In the bright red color, two phases, violet and orange, were recognized and tentatively ascribed to differences in species composition in the shrub thicket type. The three colors which had no map unit equivalents were interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. It was concluded that the image provides a considerable amount of information regarding the distribution of vegetation types, even at so simple a leval of analysis. It was also concluded that sequential imagery of this type could provide useful information on vegetation fires and phenologic events.

  9. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Treesearch

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  10. Chorological classification approach for species and ecosystem conservation practice

    NASA Astrophysics Data System (ADS)

    Rogova, T. V.; Kozevnikova, M. V.; Prokhorov, V. E.; Timofeeva, N. O.

    2018-01-01

    The habitat type allocation approach based on the EUNIS Habitat Classification and the JUICE version 7 software is used for the conservation of species and ecosystem biodiversity. Using the vegetation plots of the Vegetation Database of Tatarstan, included in the EVA (European Vegetation Archive) and GIVD (Global Index of Vegetation-plots Databases) types of habitats of dry meadows and steppes are distinguished by differing compositions of the leading families composing their flora - Asteraceae, Fabaceae, Poaceae and Rosaceae. E12a - Semi-dry perennial calcareous grassland, and E12b - Perennial calcareous grassland and basic steppes were identified. The selected group of relevés that do not correspond to any of the EUNIS types can be considered specific for ecotone forest-steppe landscapes of the southeast of the Republic of Tatarstan. In all types of studied habitats, rare and protected plant species are noted, most of which are South-East-European-Asian species.

  11. Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza.

    PubMed

    Haselwandter, K; Read, D J

    1980-04-01

    Types of root infection were analysed in healthy dominant and sub-dominant plants of zonal and azonal vegetation above the timberline in the Central and Northern Calcareous Alps of Austria. In the open nival zone vegetation, infection by fungi of the Rhizoctonia type was predominant, vesicular-arbuscular mycorrhizal infection, which was mostly of the fine endophyte (Glomus tenuis) type, being light and mainly restricted to grasses in closed vegetation patches. More extensive Glomus tenuis infection was found in the alpine grass heath, but in Carex, Rhizoctonia was again the most important fungus. The ericaceous plants of the dwarf shrub heath have typical ericoid infection, but quantitative analysis reveals a decrease of infection intensity with increase of altitude. The possible function of the various types of root infection are discussed, and the status of Rhizoctonia as a possible mycorrhizal fungus is considered.

  12. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  13. Indirect Short- and Long-Term Effects of Aboveground Invertebrate and Vertebrate Herbivores on Soil Microarthropod Communities

    PubMed Central

    Vandegehuchte, Martijn L.; Raschein, Ursina; Schütz, Martin; Gwiazdowicz, Dariusz J.; Risch, Anita C.

    2015-01-01

    Recognition is growing that besides ungulates, small vertebrate and invertebrate herbivores are important drivers of grassland functioning. Even though soil microarthropods play key roles in several soil processes, effects of herbivores—especially those of smaller body size—on their communities are not well understood. Therefore, we progressively excluded large, medium and small vertebrate and invertebrate herbivores for three growing seasons using size-selective fences in two vegetation types in subalpine grasslands; short-grass and tall-grass vegetation generated by high and low historical levels of ungulate grazing. Herbivore exclusions generally had few effects on microarthropod communities, but exclusion of all herbivore groups resulted in decreased total springtail and Poduromorpha richness compared with exclusion of only ungulates and medium-sized mammals, regardless of vegetation type. The tall-grass vegetation had a higher total springtail richness and mesostigmatid mite abundance than the short-grass vegetation and a different oribatid mite community composition. Although several biotic and abiotic variables differed between the exclusion treatments and vegetation types, effects on soil microarthropods were best explained by differences in nutrient and fibre content of the previous year’s vegetation, a proxy for litter quality, and to a lesser extent soil temperature. After three growing seasons, smaller herbivores had a stronger impact on these functionally important soil microarthropod communities than large herbivores. Over longer time-scales, however, large grazers created two different vegetation types and thereby influenced microarthropod communities bottom-up, e.g. by altering resource quality. Hence, both short- and long-term consequences of herbivory affected the structure of the soil microarthropod community. PMID:25738942

  14. Surface patterning of nanoparticles with polymer patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  15. Surface patterning of nanoparticles with polymer patches

    DOE PAGES

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; ...

    2016-08-24

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  16. Surface patterning of nanoparticles with polymer patches

    NASA Astrophysics Data System (ADS)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia

    2016-10-01

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

  17. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes

    NASA Technical Reports Server (NTRS)

    Chase, P. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Bands 6 and 7 have fine structure as obtained by proper selection of digital levels in processing the CCT's. This is contrary to the imagery density received. This means that the small lakes can be classified in IR for different types of water masses. At least four distinct water masses have been determined for test lakes. They are shoreline, shallow water, and two deep waters. One deep water is patchy and presents difficulty in training set selection. The excellent weather and a completely successful field test form a significant happening. It required 12 orbits over the test area before perfect weather occurred.

  18. Soil nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji.

    PubMed

    Hirose, T; Tateno, M

    1984-02-01

    The spatial pattern of soil nitrogen was analyzed for a patchy vegetation formed by the colonization of Polygonum cuspidatum in a volcanic "desert" on Mt. Fuji. Soils were sampled radially from the bare ground to the center of the patch, and analyses were done for bulk density, water content, soil acidity, organic matter, organic nitrogen, and ammonium and nitrate nitrogen. The soils matured with succession from the bare ground through P. cuspidatum to Miscanthus oligostachyus and Aster ageratoides sites: bulk density decreased, and water content, organic matter, organic nitrogen, and ammonium nitrogen increased. Nitrate nitrogen showed the highest values at the P. cuspidatum site. Application of principal component analysis to the soil data discriminated two component factors which control the variation of soil characteristics: the first factor is related to soil formation and the second factor to nitrogen mineralization and nitrification. The effect of soil formation on nitrogen mineralization and nitrification was analyzed with a first-order kinetic model. The decreasing trends with soil formation in the ratios of mineral to organic nitrogen and of nitrate to ammonium nitrogen could be accounted for by the higher activity of immobilization by microorganisms and uptake by plants in the more mature ecosystem.

  19. Relationships between vegetation and terrain variables in southeastern Arizona. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mouat, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Relationships were established between eight terrain variables and plant species and 31 vegetation types. Certain plant species are better than others for differentiating or discriminating groups of specified terrain variables. Certain terrain variables are better than others for differentiating or discriminating groups of vegetation types. Stepwise discriminant analysis was shown to be a useful tool in plant ecological studies.

  20. A Comparison of AIS Data with Other Aircraft and Ground Data for the Geobotanical Discrimination of Rock Types in Southwest Oregon

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.

    1985-01-01

    The use of remote sensing techniques for the geobotanical discrimination of rock types is predicated upon a number of factors. These include an understanding of vegetation response to environmental (especially geochemical) conditions, the establishment of correlations between those vegetation factors and environmental factors, and the use of appropriate remote sensing techniques to discriminate the vegetation.

  1. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation

    USGS Publications Warehouse

    Middleton, Beth A.

    2016-01-01

    CONCLUSIONS: Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation.

  2. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    PubMed Central

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810

  3. Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales

    USGS Publications Warehouse

    Stohlgren, T.J.; Chong, G.W.; Schell, L.D.; Rimar, K.A.; Otsuki, Yuka; Lee, M.; Kalkhan, M.A.; Villa, C.A.

    2002-01-01

    Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.

  4. Dynamics of population densities and vegetation associations of Anopheles albimanus larvae in a coastal area of southern Chiapas, Mexico.

    PubMed

    Rodríguez, A D; Rodríguez, M H; Meza, R A; Hernández, J E; Rejmankova, E; Savage, H M; Roberts, D R; Pope, K O; Legters, L

    1993-03-01

    Spatial and seasonal variations on Anopheles albimanus larval densities and their plant associations were investigated in larval habitats in southern Mexico between April 1989 and May 1990. Thirty-four plant groups were dominant in larval habitats. Dense larval populations were associated with 3 genera of plants, Cynodon, Echinocloa and Fimbristylis and no larvae were found in habitats with Salvinia and Rhizophora. Low significant positive or negative associations were documented with the other 12 plant genera. Larval habitats were classified according to the morphology of their dominant plants. Higher larval densities were observed in the groups characterized by relatively short emergent vegetation. The distribution of habitat-types within 5 identified vegetation units showed a significantly dependent relationship. For the entire study period, highest larval densities were detected in flooded pasture/grassland vegetation units. For all vegetation units, higher larval densities were found when the dominant plant type covered between 25-50% of the breeding site. The integration of data from habitat-types into vegetation units did not result in loss of information.

  5. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  6. Species Composition at the Sub-Meter Level in Discontinuous Permafrost in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Anderson, S. M.; Palace, M. W.; Layne, M.; Varner, R. K.; Crill, P. M.

    2013-12-01

    Northern latitudes are experiencing rapid warming. Wetlands underlain by permafrost are particularly vulnerable to warming which results in changes in vegetative cover. Specific species have been associated with greenhouse gas emissions therefore knowledge of species compositional shift allows for the systematic change and quantification of emissions and changes in such emissions. Species composition varies on the sub-meter scale based on topography and other microsite environmental parameters. This complexity and the need to scale vegetation to the landscape level proves vital in our estimation of carbon dioxide (CO2) and methane (CH4) emissions and dynamics. Stordalen Mire (68°21'N, 18°49'E) in Abisko and is located at the edge of discontinuous permafrost zone. This provides a unique opportunity to analyze multiple vegetation communities in a close proximity. To do this, we randomly selected 25 1x1 meter plots that were representative of five major cover types: Semi-wet, wet, hummock, tall graminoid, and tall shrub. We used a quadrat with 64 sub plots and measured areal percent cover for 24 species. We collected ground based remote sensing (RS) at each plot to determine species composition using an ADC-lite (near infrared, red, green) and GoPro (red, blue, green). We normalized each image based on a Teflon white chip placed in each image. Textural analysis was conducted on each image for entropy, angular second momentum, and lacunarity. A logistic regression was developed to examine vegetation cover types and remote sensing parameters. We used a multiple linear regression using forwards stepwise variable selection. We found statistical difference in species composition and diversity indices between vegetation cover types. In addition, we were able to build regression model to significantly estimate vegetation cover type as well as percent cover for specific key vegetative species. This ground-based remote sensing allows for quick quantification of vegetation cover and species and also provides the framework for scaling to satellite image data to estimate species composition and shift on the landscape level. To determine diversity within our plots we calculated species richness and Shannon Index. We found that there were statistically different species composition within each vegetation cover type and also determined which species were indicative for cover type. Our logistical regression was able to significantly classify vegetation cover types based on RS parameters. Our multiple regression analysis indicated Betunla nana (Dwarf Birch) (r2= .48, p=<0.0001) and Sphagnum (r2=0.59, p=<0.0001) were statistically significant with respect to RS parameters. We suggest that ground based remote sensing methods may provide a unique and efficient method to quantify vegetation across the landscape in northern latitude wetlands.

  7. Vegetable variety: an effective strategy to increase vegetable intake in adults

    PubMed Central

    Meengs, Jennifer S.; Roe, Liane S.; Rolls, Barbara J.

    2012-01-01

    Effective strategies are needed to increase vegetable intake in accordance with health recommendations. Previous research has shown that increasing the variety of foods leads to increased consumption, yet this strategy has not been investigated for promoting vegetable intake. This cross-over study tested whether filling half the plate with a variety of vegetables influences vegetable consumption and meal energy intake. Once a week for 4 weeks, a meal of pasta and cooked vegetables was consumed ad libitum by 66 adults (34 women; 32 men). The meals were varied in the type of vegetables offered; at three meals 600 g of a single vegetable was served (broccoli, carrots, or snap peas) and at one meal 200 g of each of the three vegetables was served side by side. The experiment was conducted in 2008 and 2009 and data were analyzed using a mixed linear model with repeated measures. The results showed that serving a variety of vegetables increased vegetable intake at the meal (P<0.0001). Subjects ate more vegetables when served the variety than when served any single type; the mean increase was 48±6 g, or more than one-half serving. This increase remained significant when intake of the variety of vegetables was compared to the preferred vegetable of each participant (mean 25±8 g; P=0.002). Vegetable intake was not significantly related to energy intake at the meal. The results of this study demonstrate that increasing the variety of low-energy-dense vegetables served at a meal can be used as a strategy to increase vegetable intake. PMID:22818729

  8. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet.

    PubMed

    Beidokhti, Maliheh Najari; Jäger, Anna K

    2017-04-06

    Type 2 diabetes is the most common type of diabetes and its prevalence is rapidly increasing throughout the world. Modifications of lifestyle such as suitable diet and exercise programs along with pharmacotherapy and education of patients are beneficial therapies for patients with type 2 diabetes. The ethnopharmacological use of herbal medicines, many of them part of our diet as spices, vegetables and fruits, has been developed for the treatment of diabetes due to inexpensiveness, easy availability and few side effects. Our aim is to present a review for researchers who are interested in the biologically active dietary plants traditionally utilized in the treatment of diabetes. Information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed, Sci Finder and Cochrane. Common and scientific name of the fruits, vegetables, beverages, oils and spices and the words 'antidiabetic', 'hypoglycemic', 'anti-hyperglycemic', 'type 2 diabetes' were used as keywords for search. Certain fruits and vegetables are functional foods and their consumption reduces the incidence of type 2 diabetes. Hypoglycemic effects of fruits and vegetables may be due to their inducing nature on pancreatic β-cells for insulin secretion, or bioactive compounds such as flavonoids, alkaloids and anthocyanins, which act as insulin-like molecules or insulin secretagogues. This write-up covers hypoglycemic, anti-hyperglycemic and anti-diabetic activities of some dietary fruits, vegetables, beverages, oils and spices and their active hypoglycemic constituents. Including such plant species in the diet might improve management of type 2 diabetes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. 75 FR 62387 - Pesticide Product Registrations; Conditional Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... soil fumigant use on soil that will be used to grow fruiting vegetable (tomato, pepper, and eggplant... vegetable (tomato, pepper, and eggplant), cucurbit vegetable (cucumber, squash (all types), and melon (all...

  10. Effects of total and green vegetable intakes on glycated hemoglobin A1c and triglycerides in elderly patients with type 2 diabetes mellitus: the Japanese Elderly Intervention Trial.

    PubMed

    Takahashi, Keiko; Kamada, Chiemi; Yoshimura, Hidenori; Okumura, Ryota; Iimuro, Satoshi; Ohashi, Yasuo; Araki, Atsushi; Umegaki, Hiroyuki; Sakurai, Takashi; Yoshimura, Yukio; Ito, Hideki

    2012-04-01

    Many reports have shown that vegetable intake is effective in inhibiting the onset and progression of diabetes mellitus, although the amount of vegetable intake required to be effective remains as unclear. The present study therefore aimed to clarify the relationship between the amount of vegetable intake and glycated hemoglobin A1c (HbA1c) and other metabolic parameters using male Japanese type 2 diabetic patients aged 65 years or older as subjects. Participants were 417 male type 2 diabetic patients aged 65 years or older enrolled in the Japanese Elderly Diabetes Intervention Trial. Dietary intakes were measured by using the Food Frequency Questionnaires method. The patients were divided into five groups by their daily total vegetable intake (A1: ~100 g, A2: 100~150 g, A3: 150~200 g, A4: 200~300 g, A5: 300 g~), and compared HbA1c and other metabolic parameters. Furthermore, the relationship between daily green vegetable intake and HbA1c and other metabolic parameters were examined among five groups divided by quintile methods. There were significant decreases in HbA1c, triglycerides and waist circumference with an increase of total vegetable intake. A significant decrease of HbA1c levels was observed in patients with a daily total vegetable intake of 150 g or more. Furthermore, there was a significant decrease of serum triglyceride levels in patients with a total vegetable intake of 200 g or more. HbA1c levels showed a decreasing tendency with the increase of green vegetable intake, and HbA1c levels in the Q1 group (green vegetable intake: less than 40 g) was significantly higher than those in the other four groups (anovaP = 0.025). In addition, there were significant decreases of body mass index, triglyceride levels and waist circumference with the increase of green vegetable intake. Triglyceride levels decreased significantly from the Q3 group (green vegetable intake: 70 g or more) to the Q5 group (green vegetable intake: 130 g or more; anovaP = 0.016). In the group with a lower intake of total vegetables and green vegetables, the protein energy ratio decreased significantly. As a result, the fat energy ratio and energy intake tended to increase with the decrease of total and green vegetable intakes. Furthermore, intake of grains, sweets and alcoholic beverages increased with the decrease of total vegetable intake. In contrast, intake of nuts, potatoes, sugar, legumes, fruit, seaweed and fish increased with the increase of total vegetable intake Daily total vegetable intake of 200 g or more, and green vegetable intake of 70 g or more correlated with improved control of HbA1c and triglyceride levels in elderly type 2 diabetes patients through achieving a well-balanced diet. © 2012 Japan Geriatrics Society.

  11. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    NASA Astrophysics Data System (ADS)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be created with multiple vegetation types.

  12. Vegetative and geologic mapping of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H.; Shapiro, L. H.; Belon, A. E.

    1973-01-01

    ERTS-1 scene 1009-22095 (Western Seward Peninsula, Alaska) has been studied, partly as a training exercise, to evaluate whether direct visual examination of individual and custom color-composite prints can provide new information on the vegetation and geology of this relatively well known area of Alaska. The vegetation analysis reveals seven major vegetation types, only four of which are described on existing vegetation maps. In addition, the ERTS analysis provides greater detail than the existing maps on the areal distribution of vegetation types. The geologic analysis demonstrates that most of the major rock units and geomorphic boundaries shown on the available geologic maps could also be identified on the ERTS data. Several major high-angle faults were observed, but the zones of thrust faults which are much less obvious.

  13. Long-term monitoring of stream bank stability under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  14. Laboratory Evaluation of Australian Ration Packs

    DTIC Science & Technology

    1988-10-01

    shortage of vitamin concentrates for fortification. Chicken & Vegetables, Beef Meatballs with Bacon & Vegetables and Lamb & Vegetables with Rosemary...MENU ITEM NAME Salt Salt % Salt of % Users* % g Ration responding Total "too salty" A Beef and Vegetables 1.2 2.7 15.5 Ham and Egg 1.5 1.7 10.0 TOTAL...1.4 6.2 Luncheon Meat Type 1 2.1 4.7 21.2 9 Beef Soup and Gravy Base 50.6 3.4 15.2 TOTAL 9.5 42.6 E Corned Beef Type E 2.6 5.7 25.4 15 Beef and Egg 1.1

  15. Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Rameau, Julien; Rosa, Robert J. De

    Here, we present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10more » $${M}_{\\mathrm{Jup}}$$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated L P (3.76 μm) and new M S (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of –5.83 to –5.93 ($$\\mathrm{log}L/{L}_{\\odot }$$), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 $${M}_{\\oplus }$$.« less

  16. Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet

    DOE PAGES

    Rajan, Abhijith; Rameau, Julien; Rosa, Robert J. De; ...

    2017-06-16

    Here, we present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10more » $${M}_{\\mathrm{Jup}}$$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated L P (3.76 μm) and new M S (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of –5.83 to –5.93 ($$\\mathrm{log}L/{L}_{\\odot }$$), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 $${M}_{\\oplus }$$.« less

  17. Complementing endozoochorous seed dispersal patterns by donkeys and goats in a semi-natural island ecosystem.

    PubMed

    Treitler, Julia Tabea; Drissen, Tim; Stadtmann, Robin; Zerbe, Stefan; Mantilla-Contreras, Jasmin

    2017-12-19

    Endozoochory is, in grazing systems, a substantial vector for seed dispersal. It can play an important role in vegetation dynamics, especially in colonization processes through seed input on the vegetation and on the soil seed bank. We investigated the endozoochorous seed input of donkeys and goats on a semi-natural island ecosystem in the Mediterranean. Through germination experiments, we assessed the viable seed content of the dung of these grazing animals to estimate their suitability and efficiency for seed dispersal of the vegetation types of the island. We show different dispersal patterns of donkeys and goats. Goats disperse a high number of diaspores from shrubs while donkeys disperse more diaspores of grasses. In addition, goats disperse plants of greater growth height and donkeys plants of shorter height. These dispersal patterns are in accordance with the vegetation types of which donkeys and goats disperse indicator species. Both, donkeys and goats, feed on and disperse species of the vegetation types, open grassland and temporarily wet grassland. In addition, goats feed on and disperse diagnostic species of the semi-open maquis and preforest formations. Overall, our results show that donkeys and goats are complementing each other in their endozoochorous seed dispersal potential. This emphasizes the importance of both grazing animals for the vegetation dynamics of the semi-natural island ecosystem. Therefore, the adaption of the goat management to a traditional land management based on directed transhumance might maintain and enrich vegetation types.

  18. Fugitive dust mitigation for PM{sub 10} attainment in the western Mojave Desert: Recommendations on revegetation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantz, D.A.; Vaughn, D.L.; Roberts, E.

    1997-12-31

    Methods to suppress fugitive dust and associated violations of federal PM{sub 10} standards in the western Mojave Desert, following removal of native vegetation by tillage or overgrazing, have been under investigation by a multi-agency task force for several years. Interim recommendations are now possible for this area of high winds, low rainfall, and mostly arable soil with patchy blowing sand. There can be no guarantee of success in any revegetation program in the desert, but the greatest probability of success in this area can be attained by using the native shrub Atriplex canescens, whether direct seeded or transplanted. No additionalmore » nitrogen should be added, and excess nitrogen should be removed if possible, perhaps by a preliminary cropping of barley. This will itself stabilize the soil surface in the short term. Young plants should be protected from herbivory and the harsh elements by using plastic cones. Irrigation is helpful if available. In areas located near native populations of rabbitbrush annual plant cover should be burned but no tillage or other soil disturbance should be imposed, as this facilitates invasion of annual species, including russian thistle, and prevents establishment of rabbitbrush. In sandy areas, seeding with Indian ricegrass may be more effective than with A. canescens. For immediate, short-term, mitigation of blowing dust, furrowing alone and installation of windfences may be effective. Rainfall exhibits high annual variability in arid regions. Absence of fugitive dust emissions in rainy periods, associated with ground cover by annual vegetation, is unlikely to survive several years of low, but normal, rainfall. It is precisely during those periods when rainfall is adequate that long-term revegetation with shrubs has the best chance of success.« less

  19. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical

    PubMed Central

    Lawes, Michael J.; Fisher, Diana O.; Johnson, Chris N.; Blomberg, Simon P.; Frank, Anke S. K.; Fritz, Susanne A.; McCallum, Hamish; VanDerWal, Jeremy; Abbott, Brett N.; Legge, Sarah; Letnic, Mike; Thomas, Colette R.; Thurgate, Nikki; Fisher, Alaric; Gordon, Iain J.; Kutt, Alex

    2015-01-01

    Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south. PMID:26111037

  20. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical.

    PubMed

    Lawes, Michael J; Fisher, Diana O; Johnson, Chris N; Blomberg, Simon P; Frank, Anke S K; Fritz, Susanne A; McCallum, Hamish; VanDerWal, Jeremy; Abbott, Brett N; Legge, Sarah; Letnic, Mike; Thomas, Colette R; Thurgate, Nikki; Fisher, Alaric; Gordon, Iain J; Kutt, Alex

    2015-01-01

    Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.

  1. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    PubMed Central

    Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities. PMID:27652001

  2. Mechanisms That Generate Resource Pulses in a Fluctuating Wetland

    PubMed Central

    Botson, Bryan A.; Gawlik, Dale E.; Trexler, Joel C.

    2016-01-01

    Animals living in patchy environments may depend on resource pulses to meet the high energetic demands of breeding. We developed two primary a priori hypotheses to examine relationships between three categories of wading bird prey biomass and covariates hypothesized to affect the concentration of aquatic fauna, a pulsed resource for breeding wading bird populations during the dry season. The fish concentration hypothesis proposed that local-scale processes concentrate wet-season fish biomass into patches in the dry season, whereas the fish production hypothesis states that the amount of dry-season fish biomass reflects fish biomass production during the preceding wet season. We sampled prey in drying pools at 405 sites throughout the Florida Everglades between December and May from 2006–2010 to test these hypotheses. The models that explained variation in dry-season fish biomass included water-level recession rate, wet-season biomass, microtopography, submerged vegetation, and the interaction between wet-season biomass and recession rate. Crayfish (Procambarus spp.) biomass was positively associated with wet-season crayfish biomass, moderate water depth, dense submerged aquatic vegetation, thin flocculent layer and a short interval of time since the last dry-down. Grass shrimp (Palaemonetes paludosus) biomass increased with increasing rates of water level recession, supporting our impression that shrimp, like fish, form seasonal concentrations. Strong support for wet-season fish and crayfish biomass in the top models confirmed the importance of wet-season standing stock to concentrations of fish and crayfish the following dry season. Additionally, the importance of recession rate and microtopography showed that local scale abiotic factors transformed fish production into the high quality foraging patches on which apex predators depended. PMID:27448023

  3. Role of vegetation in interplay of climate, soil and groundwater recharge in a global dataset

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Jackson, R. B.

    2010-12-01

    Groundwater is an essential resource for people and ecosystems worldwide. Our capacity to ameliorate predicted global water shortages and to maintain sustainable water supplies depend on a better understanding of the controls of recharge and how vegetation change may affect recharge mechanisms. The goals of this study are to quantify the importance of vegetation as a dominant control on recharge globally and to compare the importance of vegetation with other hydrologically important variables, including climate and soil. We based our global analysis on > 500 recharge estimates from the literature that contained information on vegetation, soil and climate or location. Plant functional types significantly affected groundwater recharge rates substantially. After climatic factors (water inputs, PET, and seasonality), vegetation types explained about 15% of the residuals in the dataset. Across all climatic factors, croplands had the highest recharge rates, followed by grasslands, scrublands and woodlands (average recharge: 75, 63, 30, 22 mm/yr respectively). Recharge under woodlands showed the most nonlinear response to water inputs. Differences in recharge between the vegetation types were more exaggerated at arid climates and in clay soils, indicating greater biological control on soil water fluxes in these conditions. Our results shows that vegetation greatly affects recharge rates globally and alters relationship between recharge and physical variables allowing us to better predict recharge rates globally.

  4. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985-2011

    NASA Astrophysics Data System (ADS)

    Raynolds, Martha K.; Walker, Donald A.

    2016-08-01

    Satellite data from the circumpolar Arctic have shown increases in vegetation indices correlated to warming air temperatures (e.g. Bhatt et al 2013 Remote Sensing 5 4229-54). However, more information is needed at finer scales to relate the satellite trends to vegetation changes on the ground. We examined changes using Landsat TM and ETM+ data between 1985 and 2011 in the central Alaska North Slope region, where the vegetation and landscapes are relatively well-known and mapped. We calculated trends in the normalized difference vegetation index (NDVI) and tasseled-cap transformation indices, and related them to high-resolution aerial photographs, ground studies, and vegetation maps. Significant, mostly negative, changes in NDVI occurred in 7.3% of the area, with greater change in aquatic and barren types. Large reflectance changes due to erosion, deposition and lake drainage were evident. Oil industry-related changes such as construction of artificial islands, roads, and gravel pads were also easily identified. Regional trends showed decreases in NDVI for most vegetation types, but increases in tasseled-cap greenness (56% of study area, greatest for vegetation types with high shrub cover) and tasseled-cap wetness (11% of area), consistent with documented degradation of polygon ice wedges, indicating that increasing cover of water may be masking increases in vegetation when summarized using the water-sensitive NDVI.

  5. Detecting Patchy Reionization in the Cosmic Microwave Background.

    PubMed

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  6. Mid Miocene Terrestrial Ecosystems: Information from Mammalian Herbivore Communities.

    NASA Astrophysics Data System (ADS)

    Janis, C. M.; Damuth, J.; Theodor, J. M.

    2001-05-01

    In present day ecosystems the numbers and proportions of different kinds of ecologically distinct ungulates (hoofed mammals) provide an indicator of the nature of the vegetation in the habitat. Different vegetation types (such as forest, savanna, or grassland) are characteristically associated with different arrays of ungulates, with species exhibiting differences in diet, body size, and type of digestive fermentation system. These biological attributes can also be inferred for fossil ungulate species, the first two from quantitative assessment of skull and dental anatomy, and the last from phylogenetic affinity. Thus fossil ungulate communities may be used as indicators of the vegetation types of the habitats in which they lived. Vegetation types, in turn, are determined largely by a number of physical environmental factors. Typical ungulate communities of the late early to early middle Miocene (17 - 15 Ma) from the Great Plains of North America contained a diversity of browsing (leaf-eating) and grazing (grass-eating) species, with proportions of dietary types and a diversity of body sizes indicative of a woodland savanna habitat. Paleobotanical evidence also indicates a woodland savanna type of vegetation. However, these communities included a much larger number of ungulate species than can be found in any present-day community. The "excess" ungulate species were primarily browsers. Throughout the rest of the middle Miocene both species numbers and the proportion of browsers in ungulate communities appear to have declined steadily. During this decline in browser species the numbers of grazer species remained relatively constant. Within-community species numbers comparable to the present day were attained by the late Miocene. We suggest that the early Miocene browser-rich communities, and their subsequent decline, carry an important paleoenvironmental signal. In particular, communities "over rich" in browsers may reflect higher levels of primary productivity in mid Miocene vegetation types in comparison with corresponding, structurally equivalent present-day vegetation types. The observed decline in species numbers may represent a gradual decline in terrestrial primary productivity, which would be consistent with one current hypothesis of a mid-Miocene decrease in atmospheric carbon dioxide concentrations from higher mid-Cenozoic values.

  7. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  8. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China.

    PubMed

    Su, Rina; Cheng, Junhui; Chen, Dima; Bai, Yongfei; Jin, Hua; Chao, Lumengqiqige; Wang, Zhijun; Li, Junqing

    2017-02-28

    Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.

  9. Accuracy assessment of percent canopy cover, cover type, and size class

    Treesearch

    H. T. Schreuder; S. Bain; R. C. Czaplewski

    2003-01-01

    Truth for vegetation cover percent and type is obtained from very large-scale photography (VLSP), stand structure as measured by size classes, and vegetation types from a combination of VLSP and ground sampling. We recommend using the Kappa statistic with bootstrap confidence intervals for overall accuracy, and similarly bootstrap confidence intervals for percent...

  10. The vegetative communities associated with mammals of the South. Chapter 2

    Treesearch

    Beverly Collins; Philip E. Hyatt; Margaret K. Trani

    2007-01-01

    This chapter describes the ecoregions and vegetation types associated with mammals of the South. The distribution of mammals in the South reflects historic biogeographical processes as well as physiography and vegetation.

  11. Soil-vegetation relationships on a banded ironstone 'island', Carajás Plateau, Brazilian Eastern Amazonia.

    PubMed

    Nunes, Jaquelina A; Schaefer, Carlos E G R; Ferreira Júnior, Walnir G; Neri, Andreza V; Correa, Guilherme R; Enright, Neal J

    2015-01-01

    Vegetation and soil properties of an iron-rich canga (laterite) island on the largest outcrop of banded-iron formation in Serra de Carajás (eastern Amazonia, Brazil) were studied along a topographic gradient (738-762 m asl), and analyzed to test the hypothesis that soil chemical and physical attributes play a key role in the structure and floristic composition of these plant communities. Soil and vegetation were sampled in eight replicate plots within each of the four vegetation types. Surface (0-10 cm) soil samples from each plot were analyzed for basic cations, N, P and plant species density for all species was recorded. CCA ordination analysis showed a strong separation between forest and non-forest sites on the first axis, and between herbaceous and shrubby campo rupestre on the second axis. The four vegetation types shared few plant species, which was attributed to their distinctive soil environments and filtering of their constituent species by chemical, physical and hydrological constraints. Thus, we can infer that Edaphic (pedological) factors are crucial in explaining the types and distributions of campo rupestre vegetation associated with ferruginous ironstone uplands (Canga) in Carajás, eastern Amazonia, therefore the soil properties are the main drivers of vegetation composition and structure on these ironstone islands.

  12. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes.

    PubMed

    Leong, Misha; Roderick, George K

    2015-01-01

    Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.

  13. Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities

    PubMed Central

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.

    2014-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  14. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.

    PubMed

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul

    2015-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index

    PubMed Central

    Wang, Cong; Li, Jing; Wu, Shanlong; Xia, Chuanfu

    2017-01-01

    Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the leaf area index (LAI) are the most widely used vegetation parameters for remote-sensing phenology extraction, this paper aims to assess the differences in phenological information extracted from EVI and LAI time series and to explore whether either index performs well for all vegetation types on a large scale. To this end, a GLASS (Global Land Surface Satellite Product)-LAI-based phenology product (GLP) was generated using the same algorithm as the MODIS (Moderate Resolution Imaging Spectroradiometer)-EVI phenology product (MLCD) over China from 2001 to 2012. The two phenology products were compared in China for different vegetation types and evaluated using ground observations. The results show that the ratio of missing data is 8.3% for the GLP, which is less than the 22.8% for the MLCD. The differences between the GLP and the MLCD become stronger as the latitude decreases, which also vary among different vegetation types. The start of the growing season (SOS) of the GLP is earlier than that of the MLCD in most vegetation types, and the end of the growing season (EOS) of the GLP is generally later than that of the MLCD. Based on ground observations, it can be suggested that the GLP performs better than the MLCD in evergreen needleleaved forests and croplands, while the MLCD performs better than the GLP in shrublands and grasslands. PMID:28867773

  16. Forest vegetation of the Black Hills National Forest of South Dakota and Wyoming: A habitat type classification

    Treesearch

    George R. Hoffman; Robert R. Alexander

    1987-01-01

    A vegetation classification based on concepts and methods developed by Daubenmire was used to identify 12 forest habitat types and one shrub habitat type in the Black Hills. Included were two habitat types in the Quercus macrocarpa series, seven in the Pinus ponderosa series, one in the Populus tremuloides series, two in the Picea glaucci series, and one in the...

  17. Vegetable variety: an effective strategy to increase vegetable intake in adults.

    PubMed

    Meengs, Jennifer S; Roe, Liane S; Rolls, Barbara J

    2012-08-01

    Effective strategies are needed to increase vegetable intake in accordance with health recommendations. Previous research has shown that increasing the variety of foods leads to increased consumption, yet this strategy has not been investigated for promoting vegetable intake. This crossover study, conducted in 2008 and 2009, tested whether filling half the plate with a variety of vegetables influences vegetable consumption and meal energy intake. Once a week for 4 weeks, a meal of pasta and cooked vegetables was consumed ad libitum by 66 adults (34 women, 32 men). The meals were varied in the type of vegetables offered: at three meals 600 g of a single vegetable was served (broccoli, carrots, or snap peas) and at one meal 200 g of each of the three vegetables was served side by side. Data were analyzed using a mixed linear model with repeated measures. In this study, serving a variety of vegetables increased vegetable intake at the meal (P<0.0001). Subjects ate more vegetables when served the variety than when served any single type; the mean increase was 48±6 g, or more than one-half serving. This increase remained significant when intake of the variety of vegetables was compared with the preferred vegetable of each participant (mean 25±8 g; P=0.002). Vegetable intake was not significantly related to energy intake at the meal. The results of this study demonstrate that increasing the variety of low-energy-dense vegetables served at a meal can be used as a strategy to increase vegetable intake. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  18. Understanding Patchy Landscape Dynamics: Towards a Landscape Language

    PubMed Central

    Gaucherel, Cédric; Boudon, Frédéric; Houet, Thomas; Castets, Mathieu; Godin, Christophe

    2012-01-01

    Patchy landscapes driven by human decisions and/or natural forces are still a challenge to be understood and modelled. No attempt has been made up to now to describe them by a coherent framework and to formalize landscape changing rules. Overcoming this lacuna was our first objective here, and this was largely based on the notion of Rewriting Systems, also called Formal Grammars. We used complicated scenarios of agricultural dynamics to model landscapes and to write their corresponding driving rule equations. Our second objective was to illustrate the relevance of this landscape language concept for landscape modelling through various grassland managements, with the final aim to assess their respective impacts on biological conservation. For this purpose, we made the assumptions that a higher grassland appearance frequency and higher land cover connectivity are favourable to species conservation. Ecological results revealed that dairy and beef livestock production systems are more favourable to wild species than is hog farming, although in different ways. Methodological results allowed us to efficiently model and formalize these landscape dynamics. This study demonstrates the applicability of the Rewriting System framework to the modelling of agricultural landscapes and, hopefully, to other patchy landscapes. The newly defined grammar is able to explain changes that are neither necessarily local nor Markovian, and opens a way to analytical modelling of landscape dynamics. PMID:23049935

  19. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  20. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications.

    PubMed

    Makaremi, Maziyar; Pasbakhsh, Pooria; Cavallaro, Giuseppe; Lazzara, Giuseppe; Aw, Yoong Kit; Lee, Sui Mae; Milioto, Stefana

    2017-05-24

    Pectin bionanocomposite films filled with various concentrations of two different types of halloysite nanotubes were prepared and characterized in this study as potential films for food packaging applications. The two types of halloysite nanotubes were long and thin (patch) (200-30 000 nm length) and short and stubby (Matauri Bay) (50-3000 nm length) with different morphological, physical, and dispersibility properties. Both matrix (pectin) and reinforcer (halloysite nanotubes) used in this study are considered as biocompatible, natural, and low-cost materials. Various characterization tests including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, release kinetics, contact angle, and dynamic mechanical analysis were performed to evaluate the performance of the pectin films. Exceptional thermal, tensile, and contact angle properties have been achieved for films reinforced by patch halloysite nanotubes due to the patchy and lengthy nature of these tubes, which form a bird nest structure in the pectin matrix. Matauri Bay halloysite nanotubes were dispersed uniformly and individually in the matrix in low and even high halloysite nanotube concentrations. Furthermore, salicylic acid as a biocidal agent was encapsulated in the halloysite nanotubes lumen to control its release kinetics. On this basis, halloysite nanotubes/salicylic acid hybrids were dispersed into the pectin matrix to develop functional biofilms with antimicrobial properties that can be extended over time. Results revealed that shorter nanotubes (Matauri Bay) had better ability for the encapsulation of salicylic acid into their lumen, while patchy structure and longer tubes of patch halloysite nanotubes made the encapsulation process more difficult, as they might need more time and energy to be fully loaded by salicylic acid. Moreover, antimicrobial activity of the films against four different strains of Gram-positive and Gram-negative bacteria indicated the effective antimicrobial properties of pectin/halloysite functionalized films and their potential to be used for food packaging applications.

  1. Fuel dynamics and fire behaviour in Australian mallee and heath vegetation

    Treesearch

    Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson

    2007-01-01

    In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...

  2. SPRUCE Vegetation Phenology in Experimental Plots from Phenocam Imagery, 2015-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Andrew D.; Hufkens, Koen; Milliman, Thomas

    This data set consists of PhenoCam data from the SPRUCE experiment from the beginning of whole ecosystem warming in August 2015 through the end of 2017. Digital cameras, or phenocams, installed in each SPRUCE enclosure track seasonal variation in vegetation “greenness”, a proxy for vegetation phenology and associated physiological activity. Regions of interest (ROIs) were defined for vegetation types (1) Picea trees (EN, evergreen needleleaf); (2) Larix trees (DN, deciduous needleleaf); and (3) the mixed shrub layer (SH, shrubs). This data set consists of two sets of data files: (1) standard “3-day summary product files” for each camera and eachmore » ROI (i.e. vegetation type), characterizing vegetation color at a 3-day time step and (2) a “transition date file” containing the estimated “greenness rising” (spring) and “greenness falling” (autumn) transition dates.« less

  3. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study.

    PubMed

    Freitas, Juliana Ribeirão de; Bennie, Jon; Mantovani, Waldir; Gaston, Kevin J

    2017-01-01

    Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern.

  4. Evaluating CMIP5 Simulations of Historical Continental Climate with Koeppen Bioclimatic Metrics

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Bonfils, C.

    2013-12-01

    The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by their annual cycles of continental temperature (T) and precipitation (P), considered together. The locations or areas of Koeppen vegetation types derived from observational data thus can provide concise metrical standards for simultaneously evaluating climate simulations of T and P in naturally defined regions. The CMIP5 models' collective ability to correctly represent two variables that are critically important for living organisms at regional scales is therefore central to this evaluation. For this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of the 1980-1999 period. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of each vegetation type, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are generally most deficient in simulating: 1) climates of drier Koeppen zones (e.g. desert, savanna, grassland, steppe vegetation types) located in the southwestern U.S. and Mexico, eastern Europe, southern Africa, and central Australia; 2) climates of regions such as central Asia and western South America where topography plays a key role. Details of regional T or P biases in selected simulations that exemplify general model performance problems also will be presented. Acknowledgments: This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Map of Koeppen vegetation types derived from observed T and P.

  5. Functional assessment of the fundus autofluorescence pattern in Best vitelliform macular dystrophy.

    PubMed

    Parodi, Maurizio Battaglia; Iacono, Pierluigi; Del Turco, Claudia; Triolo, Giacinto; Bandello, Francesco

    2016-07-01

    To identify the fundus autofluorescence (FAF) patterns in Best vitelliform macular dystrophy (VMD). Patients affected by VMD in vitelliform, pseudohypopyon, and vitelliruptive stages underwent a complete ophthalmological examination, including best-corrected visual acuity (BCVA), short-wavelength FAF (SW-FAF), near-infrared FAF (NIR-FAF) and microperimetry. the identification of the correlation between SW-FAF and NIR-FAF patterns of the foveal region with BCVA, and central retinal sensitivity in eyes affected by VMD. The secondary outcomes included the definition of the frequency of foveal patterns on SW-FAF and NIR-FAF. Thirty-seven of 64 (58 %), 8 of 64 (12.5 %) and 19 of 64 (29.5 %) eyes showed vitelliform, pseudohypopyon, and vitelliruptive stages respectively. Three main FAF patterns were identified on both techniques: hyper-autofluorescent pattern, hypo-autofluorescent pattern, and patchy pattern. BCVA was significantly different in eyes with hypo-autofluorescent and patchy patterns with respect to eyes showing a hyper-autofluorescent pattern. Similar differences were registered in the FS according to SW-FAF classification. However, the FS differed in each subgroup in the NIR-FAF analysis. Subgroup analyses were performed on the patchy pattern, combining FAF and fundus abnormalities. Considering both FAF techniques, the BCVA differed between the vitelliform and pseudohypopyon stages, and between the vitelliform and vitelliruptive stages. In the NIR-FAF classification, there was a significant statistical difference in the FS between each subgroup; in the SW-FAF, there was a significant difference between the vitelliform and pseudohypopyon stages and the vitelliform and vitelliruptive stages. Three main FAF patterns can be identified in VMD. The patchy pattern is the most frequent, accounting for 70 % of eyes on SW-FAF and 80 % of eyes on NIR-FAF. A tighter correlation links the classification of NIR-FAF patterns and FS. Longitudinal investigations are warranted to evaluate the course of FAF patterns and their role in disease monitoring.

  6. Comparison of azelaic acid and anthralin for the therapy of patchy alopecia areata: a pilot study.

    PubMed

    Sasmaz, Sezai; Arican, Ozer

    2005-01-01

    Although topical azelaic acid has been previously used for the treatment of alopecia, no controlled trials of azelaic acid for this condition have been conducted to date. The goal of this study was to determine the efficacy, tolerability, and safety of azelaic acid treatment in patients with patchy alopecia areata (AA) in comparison with anthralin (dithranol) treatment. This study included 31 subjects with patchy AA who did not receive any treatment for at least 1 month prior to the study. Demographic and clinical characteristics of these subjects were recorded at baseline. Subjects were randomized to apply either 20% azelaic acid (15 subjects) or 0.5% anthralin (16 subjects) for 12 consecutive weeks. In a subsequent 8-week follow-up period no cream was applied. Two independent investigators performed an efficacy evaluation with clinical examination using a terminal hair regrowth score (RGS) with a scale ranging from 0 (inadequate response) to 2 (complete response) at week 20. Partial response was accepted as score 1. Both groups were well matched for the relevant demographic and clinical indicators affecting treatment response at baseline. All subjects completed the trial. At week 20 the RGS was 1.27 +/- 0.9 in the azelaic acid group versus 1.37 +/- 0.8 in the anthralin group (p > 0.05). A complete response was observed in 53.3% of cases in the azelaic acid group (8 of 15) compared with 56.2% (9 of 16) in the anthralin group (p > 0.05). No serious adverse events were observed in either group during the study. The present pilot study showed that the use of azelaic acid gave similar results to anthralin with regard to hair regrowth, and that it can be an effective topical therapy for patchy AA. More extensive trials are necessary, however, to reach a definitive conclusion.

  7. Resource distribution influences positive edge effects in a seagrass fish.

    PubMed

    Macreadie, Peter I; Hindell, Jeremy S; Keough, Michael J; Jenkins, Gregory P; Connolly, Rod M

    2010-07-01

    According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass edges due to greater food availability, and provide experimental support for the resource distribution model as an explanation for edge effects.

  8. Runoff and erosion in a pinon-juniper woodland: Influence of vegetation patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, K.D.; Wilcox, B.P.; Breshears, D.D.

    1999-12-01

    In many semiarid regions, runoff and erosion differ according to vegetation patch type. These differences, although hypothesized to fundamentally affect ecological processes, have been poorly quantified. In a semiarid pinion-juniper woodland [Pinus edulis Engelm. and Juniperus monosperma (Engelm) Sarg.] in northern New Mexico, the authors measured runoff and erosion from the three patch types that compose these woodlands: Canopy patches (those beneath woody plants), vegetated patched in intercanopy areas, and bare patches in intercanopy areas. The bare intercanopy patches exhibited the highest rates, followed by vegetated intercanopy patches and then by canopy patches. Large convective summer storms, though relatively infrequent,more » generated much of the runoff and most of the sediment; prolonged frontal storms were capable of generating considerable runoff but little sediment. A portion of the runoff and most of the sediment generated from bare intercanopy patches was redistributed down-slope, probably to adjacent vegetated intercanopy patches, demonstrating connectivity between these two patch types. Their results indicate that there are significant and important differences in runoff and sediment production from the three patch types; that bare intercanopy patches act as sources of both water and sediment for the vegetated intercanopy patches; and that the transfer of water and sediment at small scales is both frequent enough and substantial enough to be considered ecologically significant.« less

  9. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.

  10. Special-Status Plant Species Surveys and Vegetation Mapping at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R E

    This report presents the results of Jones & Stokes special-status plant surveys and vegetation mapping for the University of California, Lawrence Livermore National Laboratory (LLNL). Special-status plant surveys were conducted at Site 300 in April to May 1997 and in March to April 2002. Eight special-status plants were identified at Site 300: large-flowered fiddleneck, big tarplant, diamond-petaled poppy, round-leaved filaree, gypsum-loving larkspur, California androsace, stinkbells, and hogwallow starfish. Maps identifying the locations of these species, a discussion of the occurrence of these species at Site 300, and a checklist of the flora of Site 300 are presented. A reconnaissance surveymore » of the LLNL Livermore Site was conducted in June 2002. This survey concluded that no special-status plants occur at the Livermore Site. Vegetation mapping was conducted in 2001 at Site 300 to update a previous vegetation study done in 1986. The purpose of the vegetation mapping was to update and to delineate more precisely the boundaries between vegetation types and to map vegetation types that previously were not mapped. The vegetation map is presented with a discussion of the vegetation classification used.« less

  11. Development of freeze dried vegetables

    NASA Technical Reports Server (NTRS)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  12. Survival and growth of foodborne pathogens in minimally processed vegetables at 4 and 15 °C.

    PubMed

    Tian, Jun-Qi; Bae, Young-Min; Choi, Na-Young; Kang, Dong-Hyun; Heu, Sunggi; Lee, Sun-Young

    2012-01-01

    We conducted this study to investigate the survival and growth of pathogens on fresh vegetables stored at 4 and 15 °C. Vegetables (romaine lettuce, iceberg lettuce, perilla leaves, and sprouts) were inoculated with 4 pathogens (Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157:H7) and stored at 2 different temperatures for different periods of time (3, 6, 9, 12, and 15 d at 4 °C and 1, 2, 3, 5, and 7 d at 15 °C). Populations of the 4 pathogens tended to increase on all vegetables stored at 15 °C for 7 d. Populations of E. coli O157:H7 and S. Typhimurium increased significantly, by approximately 2 log₁₀ CFU/g, on loose and head lettuce stored at 15 °C for 1 d. No significant differences were observed in the growth of different pathogens on vegetables stored at 4 °C for 15 d. E. coli O157:H7 did not survive on sprouts stored at 15 or 4 °C. The survival and growth of food pathogens on fresh vegetables were very different depending on the pathogen type and storage temperature. Survivals and growth of pathogens on various vegetables at 4 and 15 °C were observed in this study. Survivals and growth of pathogens on vegetables were different depending on the pathogen type and storage temperature. Therefore, vegetables should be stored under refrigerated conditions (below 4 °C) prior to consumption. This recommendation may vary depending on the type of vegetable. © 2011 Institute of Food Technologists®

  13. Species-area curves indicate the importance of habitats' contributions to regional biodiversity

    USGS Publications Warehouse

    Chong, G.W.; Stohlgren, T.J.

    2007-01-01

    We examined species-area curves, species composition and similarity (Jaccard's coefficients), and species richness in 17 vegetation types to develop a composite index of a vegetation type's contribution to regional species richness. We collected data from 1 to 1000 m2 scales in 147 nested plots in Rocky Mountain National Park, Colorado, USA to compare three species-area curve models' abilities to estimate the number of species observed in each vegetation type. The log(species)-log(area) curve had the largest adjusted coefficients of determination (r2 values) in 12 of the 17 types, followed by the species-log(area) curve with five of the highest values. When the slopes of the curves were corrected for species overlap among plots with Jaccard's coefficients, the species-log(area) curves estimated values closest to those observed. We combined information from species-area curves and measures of heterogeneity with information on the area covered by each vegetation type and found that the types making the greatest contributions to regional biodiversity covered the smallest areas. This approach may provide an accurate and relatively rapid way to rank hotspots of plant diversity within regions of interest.

  14. Remote sensing of plant functional types.

    PubMed

    Ustin, Susan L; Gamon, John A

    2010-06-01

    Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.

  15. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  16. Spatial and temporal variation in soil and vegetation impacts on campsites: Delaware Water Gap National Recreation Area

    USGS Publications Warehouse

    Marion, J.L.; Cole, D.N.

    1996-01-01

    We studied the impacts of camping on soil and vegetation at Delaware Water Gap National Recreation Area. We assessed the magnitude of impact on campsites that varied in amount of use and in topographic position. We also evaluated change over a 5-yr period on long-established, recently opened, and recently closed campsites, as well as on plots subjected to experimental trampling. Campsite impacts were intense and spatially variable. Amount of use and topographic position explained some of this variation. Soil and vegetation conditions changed rapidly when campsites were initially opened to use and when they were closed to use. Changes were less pronounced on the long-established campsites that remained open to use. In the trampling experiments, impact varied greatly with trampling intensity and between vegetation types. An open-canopy grassland vegetation type was much more resistant to trampling than a forb-dominated forest vegetation type. Campsite impacts increased rapidly with initial disturbance, stabilized with ongoing disturbance, and-in contrast to what has been found in most other studies-decreased rapidly once disturbance was terminated. Implications of these results for campsite management strategies, such as use concentration or dispersal, and rotation or closure of campsites, are discussed.

  17. Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins

    PubMed Central

    del Jesus, Manuel; Foti, Romano; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often without a compelling justification. Maximum entropy production (MEP), rooted in thermodynamics principles, provides a tool to justify the choice of the objective function controlling vegetation organization. The application of MEP at the ecosystem scale results in maximum productivity (i.e., maximum canopy photosynthesis) as the thermodynamic limit toward which the organization of vegetation appears to evolve. Maximum productivity, which incorporates complex hydrologic feedbacks, allows us to reproduce the spatial macroscopic organization of functional types of vegetation in a thoroughly monitored river basin, without the need for a reductionist description of the underlying microscopic dynamics. The methodology incorporates the stochastic characteristics of precipitation and the associated soil moisture on a spatially disaggregated framework. Our results suggest that the spatial organization of functional vegetation types in river basins naturally evolves toward configurations corresponding to dynamically accessible local maxima of the maximum productivity of the ecosystem. PMID:23213227

  18. Effects of land preparation and artificial vegetation on soil moisture variation in a loess hilly catchment of China

    NASA Astrophysics Data System (ADS)

    Feng, Tianjiao; Wei, Wei; Chen, Liding; Yu, Yang

    2017-04-01

    In the dryland regions, soil moisture is the main factor to determine vegetation growth and ecosystem restoration. Land preparation and vegetation restoration are the principal means for improving soil water content(SWC). Thus, it is important to analyze the coupling role of these two means on soil moisture. In this study, soil moisture were monitored at a semi-arid loess hilly catchment of China, during the growing season of 2014 and 2015. Four different land preparation methods (level ditches, fish-scale pits, adverse grade tablelands and level benches)and vegetation types(Prunus armeniaca, Platycladus orientalis, Platycladus orientalis and Caragana microphylla) were included in the experimental design. Our results showed that: (1)Soil moisture content differed across land preparation types, which is higher for fish-scale pits and decreased in the order of level ditches and adverse grade tablelands.(2) Rainwater harvesting capacity of fish-scale pits is greater than adverse grade tablelands. However the water holding capacity is much higher at soils prepared with the adverse grade tablelands method than the ones prepared by fish-scale pits methods. (3) When land preparation method is similar, vegetation play a key role in soil moisture variation. For example, the mean soil moisture under a Platycladus orientalis field is 26.72% higher than a Pinus tabulaeformis field, with the same land preparation methods. (4)Soil moisture in deeper soil layers is more affected by changes in the vegetation cover while soil moisture in the shallower layers is more affected by the variation in the land preparation methods. Therefore, we suggest that vegetation types such as: Platycladus orientalisor as well as soil preparation methods such as level ditch and fish-scale pit are the most appropriate vegetation cover and land preparation methods for landscape restoration in semi-arid loess hilly area. This conclusion was made based on the vegetation type and land preparation with the best water-holding capacity.

  19. On the use of tower-flux measurements to assess the performance of global ecosystem models

    NASA Astrophysics Data System (ADS)

    El Maayar, M.; Kucharik, C.

    2003-04-01

    Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the measurement sites are used to run the model. The generic runs were performed for the number of years equal to the current age of the forests, initialized with no vegetation and a soil carbon density equal to zero.

  20. A new map of standardized terrestrial ecosystems of Africa

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; Warner, Harumi; Larwanou, Mahamane; Kelbessa, Ensermu; Bekele, Tamrat; Kehl, Harald; Amena, Ruba; Andriamasimanana, Rado; Ba, Taibou; Benson, Laurence; Boucher, Timothy; Brown, Matthew; Cress, Jill J.; Dassering, Oueddo; Friesen, Beverly A.; Gachathi, Francis; Houcine, Sebei; Keita, Mahamadou; Khamala, Erick; Marangu, Dan; Mokua, Fredrick; Morou, Boube; Mucina, Ladislav; Mugisha, Samuel; Mwavu, Edward; Rutherford, Michael; Sanou, Patrice; Syampungani, Stephen; Tomor, Bojoi; Vall, Abdallahi Ould Mohamed; Vande Weghe, Jean Pierre; Wangui, Eunice; Waruingi, Lucy

    2013-01-01

    Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In addition to creating several rich, new continent-wide biophysical datalayers describing African vegetation and ecosystems, our intention was to explore feasible approaches to rapidly moving this type of standardized, continent-wide, ecosystem classification and mapping effort forward.

  1. Habitat choice by juvenile cod ( Gadus morhua L.) on sandy soft bottoms with different vegetation types

    NASA Astrophysics Data System (ADS)

    Borg, Å.; Pihl, L.; Wennhage, H.

    1997-08-01

    Habitat choice by juvenile cod ( Gadus morhua L.) on sandy bottoms with different vegetation types was studied in laboratory. The experiment was conducted day and night in flow-through tanks on two different size-classes of cod (7-13 and 17-28 cm TL). Four habitats, typical of shallow soft bottoms on the Swedish west coast: Fucus vesiculosus, Zostera marina, Cladophora sp. and bare sand, were set up pair-wise in six combinations. The main difference between habitats in this study was vegetation structure, since all parameters except vegetation type was considered equal for both sides of the experimental tanks and natural prey was eliminated. The results showed a difference in habitat utilization by juvenile cod between day (light) and night (dark). During day time the fishes showed a significant preference for vegetation, while nocturnally no significant choice of habitat was made. Both size-classes preferred Fucus, considered the most complex habitat in this study, when this was available. The smaller size-class seemed to be able to utilize the other vegetation types as well, always preferring vegetation over sand. Larger juvenile cod, on the other hand, appeared to be restricted to Fucus. This difference in habitat choice by the two size-classes might be due to a greater dependence on shelter from predation by the smaller juveniles, causing them to associate more strongly with vegetation. The larger juveniles avoided Cladophora, since they might have difficulties in entering the compact structure of this filamentous algae. Availability of vegetation at day time, as a predation refuge, as well as of open sandy areas for feeding during night, thus seems to be important for juvenile cod. It is concluded that eutrophication-induced changes in habitat structure, such as increased dominance by filamentous algae, could alter the availability of predation refuges and foraging habitats for juvenile cod.

  2. Vulnerability of forest vegetation to anthropogenic climate change in China.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang

    2018-04-15

    China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Grassland restoration with and without fire: evidence from a tree-removal experiment.

    PubMed

    Halpern, Charles B; Haugo, Ryan D; Antos, Joseph A; Kaas, Sheena S; Kilanowski, Allyssa L

    2012-03-01

    Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.

  4. Expedient Metrics to Describe Plant Community Change Across Gradients of Anthropogenic Influence

    NASA Astrophysics Data System (ADS)

    Marcelino, José A. P.; Weber, Everett; Silva, Luís; Garcia, Patrícia V.; Soares, António O.

    2014-11-01

    Human influence associated with land use may cause considerable biodiversity losses, namely in oceanic islands such as the Azores. Our goal was to identify plant indicator species across two gradients of increasing anthropogenic influence and management (arborescent and herbaceous communities) and determine similarity between plant communities of uncategorized vegetation plots to those in reference gradients using metrics derived from R programming. We intend to test and provide an expedient way to determine the conservation value of a given uncategorized vegetation plot based on the number of native, endemic, introduced, and invasive indicator species present. Using the metric IndVal, plant taxa with a significant indicator value for each community type in the two anthropogenic gradients were determined. A new metric, ComVal, was developed to assess the similarity of an uncategorized vegetation plot toward a reference community type, based on (i) the percentage of pre-defined indicator species from reference communities present in the vegetation plots, and (ii) the percentage of indicator species, specific to a given reference community type, present in the vegetation plot. Using a data resampling approach, the communities were randomly used as training or validation sets to classify vegetation plots based on ComVal. The percentage match with reference community types ranged from 77 to 100 % and from 79 to 100 %, for herbaceous and arborescent vegetation plots, respectively. Both IndVal and ComVal are part of a suite of useful tools characterizing plant communities and plant community change along gradients of anthropogenic influence without a priori knowledge of their biology and ecology.

  5. Improving the Projections of Vegetation Biogeography by Integrating Climate Envelope Models and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Case, M. J.; Kim, J. B.

    2015-12-01

    Assessing changes in vegetation is increasingly important for conservation planning in the face of climate change. Dynamic global vegetation models (DGVMs) are important tools for assessing such changes. DGVMs have been applied at regional scales to create projections of range expansions and contractions of plant functional types. Many DGVMs use a number of algorithms to determine the biogeography of plant functional types. One such DGVM, MC2, uses a series of decision trees based on bioclimatic thresholds while others, such as LPJ, use constraining emergent properties with a limited set of bioclimatic threshold-based rules. Although both approaches have been used widely, we demonstrate that these biogeography outputs perform poorly at continental scales when compared to existing potential vegetation maps. Specifically, we found that with MC2, the algorithm for determining leaf physiognomy is too simplistic to capture arid and semi-arid vegetation in much of the western U.S., as well as is the algorithm for determining the broadleaf and needleleaf mix in the Southeast. With LPJ, we found that the bioclimatic thresholds used to allow seedling establishment are too broad and fail to capture regional-scale biogeography of the plant functional types. In response, we demonstrate a new approach to determining the biogeography of plant functional types by integrating the climatic thresholds produced for individual tree species by a series of climate envelope models with the biogeography algorithms of MC2 and LPJ. Using this approach, we find that MC2 and LPJ perform considerably better when compared to potential vegetation maps.

  6. COASTAL SUBMERGED VEGETATION: AQUATIC HABITAT RESEARCH

    EPA Science Inventory

    Aquatic vegetation is one of the most widespread and important types of aquatic habitat, in part because of the exceptional productivity of the plants. Aquatic vegetation also strongly influences local physical and chemical habitat conditions of significance to fish and shellfis...

  7. The vegetation of the Grand River/Cedar River, Sioux, and Ashland Districts of the Custer National Forest: a habitat type classification.

    Treesearch

    Paul L. Hansen; George R. Hoffman

    1988-01-01

    A vegetation classification was developed, using the methods and concepts of Daubenmire, on the Ashland, Sioux, and Grand River/Cedar River Districts of the Custer National Forest. Of the 26 habitat types delimited and described, eight were steppe, nine shrub-steppe, four woodland, and five forest. Two community types also were described. A key to the habitat types and...

  8. Mercury cycling in agricultural and managed wetlands of California: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos

    2014-01-01

    The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.

  9. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships.

    PubMed

    Gómez-Mendoza, L; Galicia, L; Cuevas-Fernández, M L; Magaña, V; Gómez, G; Palacio-Prieto, J L

    2008-07-01

    Variations in the normalized vegetation index (NDVI) for the state of Oaxaca, in southern Mexico, were analyzed in terms of precipitation anomalies for the period 1997-2003. Using 10-day averages in NDVI data, obtained from AVHRR satellite information, the response of six types of vegetation to intra-annual and inter-annual fluctuations in precipitation were examined. The onset and temporal evolution of the greening period were studied in terms of precipitation variations through spectral analysis (coherence and phase). The results indicate that extremely dry periods, such as those observed in 1997 and 2001, resulted in low values of NDVI for much of Oaxaca, while good precipitation periods produced a rapid response (20-30 days of delay) from a stressed to a non-stressed condition in most vegetation types. One of these rapid changes occurred during the transition from dry to wet conditions during the summer of 1998. As in many parts of the tropics and subtropics, the NDVI reflects low frequency variations in precipitation on several spatial scales. Even after long dry periods (2001-2002), the various regional vegetation types are capable of recovering when a good rainy season takes place, indicating that vegetation types such as the evergreen forests in the high parts of Oaxaca respond better to rainfall characteristics (timing, amount) than to temperature changes, as is the case in most mid-latitudes. This finding may be relevant to prepare climate change scenarios for forests, where increases in surface temperature and precipitation anomalies are expected.

  10. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management

    NASA Astrophysics Data System (ADS)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  11. Statistical analysis of Thematic Mapper Simulator data for the geobotanical discrimination of rock types in southwest Oregon

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.

    1984-01-01

    An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.

  12. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.

  13. Vegetation of Upper Coastal Plain Depression Wetlands: Environmental Templates and Wetland Dynamics Within A Landscape Framework

    Treesearch

    Diane De Steven; Maureen M. Toner

    2004-01-01

    Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across...

  14. Chapter 8 - Mapping existing vegetation composition and structure for the LANDFIRE Prototype Project

    Treesearch

    Zhiliang Zhu; James Vogelmann; Donald Ohlen; Jay Kost; Xuexia Chen; Brian Tolk

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required the mapping of existing vegetation composition (cover type) and structural stages at a 30-m spatial resolution to provide baseline vegetation data for the development of wildland fuel maps and for comparison to simulated historical vegetation reference...

  15. The importance of environment vs. disturbance in the vegetation mosaic of central Arizona

    Treesearch

    Cynthia D. Huebner; John L. Vankat

    2003-01-01

    The vegetation of central Arizona is a mosaic of four vegetation types: chaparral, chaparral grassland, woodland, and woodland grassland. We analysed ten environmental variables, three disturbance variables, and five disturbance indicators to answer the question: What is the relative importance of environment and disturbance in explaining the vegetation pattern of our...

  16. Plant species coalition groups of Zion National Park: An individualistic, floristic alternative to vegetation classification

    Treesearch

    Jeffrey E. Ott; Stewart C. Sanderson; E. Durant McArthur

    2015-01-01

    Vegetation surveys at Zion National Park (Zion), Utah, have contributed to our understanding of plant community patterns and their relationship to environmental factors. Previous authors used vegetation plot data to characterize vegetation types at Zion following conventional procedures that emphasize spatial discreteness and dominant species. We developed and applied...

  17. Dynamics of plankton populations in upwelling areas. [by remote sensors

    NASA Technical Reports Server (NTRS)

    Szekielda, K.

    1974-01-01

    Recent investigations of the upwelling area along the NW Coast of Africa which include studies with satellites are discussed. The detection of patchiness in temperature and plankton distribution in the upwelling area is of special interest because they can be investigated from space synoptically with repeated coverage. The recent satellite missions provide recordings in the infrared region of the electromagnetic spectrum (EMR) as well as in the visible part. The information from those two parts of the EMR is useful for establishing the sea surface temperature and plankton distribution in upwelling areas. The temperature distribution as observed with infrared sensors and the patchiness in plankton patterns are discussed as observed with the most recent satellites, namely the Earth Resources Technology Satellite (ERTS) and NOAA-2.

  18. Functionalized patchy particles using colloidal lenses

    NASA Astrophysics Data System (ADS)

    Middleton, Christine

    2014-03-01

    Colloidal assembly had been limited by the isotropic, nonspecific nature of interactions between spherical colloidal particles. By giving particles patches functionalized with single stranded DNA, these interactions can be made both directional and specific. We create patchy particles by adding patches to spherical emulsion droplets using the depletion interaction. First we make polystyrene particles in the shape of contact lenses to be the patches. The lenses are functionalized with single stranded DNA on their convex side. Then we put the lenses on the surface of oil emulsion droplets using the depletion interaction, creating a patch (or multiple patches) on the surface of each emulsion droplet. The emulsion droplets can now interact with each other in a specific, directional way through DNA functionalized patches.

  19. Water, CO2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Newman, S.; Stolper, E.

    1992-01-01

    Rare melt inclusions ~100 ??m in diameter trapped near the boundaries of corroded patchy zones in plagioclase phenocrysts from Plinian pumice of three Holocene eruptions were analyzed by IR spectroscopy for molecular H2O, OH groups, and CO2 and by electron microprobe for Cl and F. The three rhyodacitic eruptions, each of which began with a Plinian phase, occurred over ~200 yr. The Llao Rock and Cleetwood eruptions ended with degassed lava flows and the subsequent climatic eruption with voluminous ignimbrite. Location of melt inclusions near boundaries of patchy zones, which are mantled by oscillatory-zoned overgrowths, suggests that their H2O concentrations represent magmatic values significantly before eruption. -from Authors

  20. Reconnection at the earth's magnetopause - Magnetic field observations and flux transfer events

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1984-01-01

    Theoretical models of plasma acceleration by magnetic-field-line reconnection at the earth magnetopause and the high-resolution three-dimensional plasma measurements obtained with the ISEE satellites are compared and illustrated with diagrams, graphs, drawings, and histograms. The history of reconnection theory and the results of early satellite observations are summarized; the thickness of the magnetopause current layer is discussed; problems in analyzing the polarization of current-layer rotation are considered; and the flux-transfer events responsible for periods of patchy reconnection are characterized in detail. The need for further observations and refinements of the theory to explain the initiation of reconnection and identify the mechanism determining whether it is patchy or steady-state is indicated.

  1. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  2. Evapotranspiration and canopy resistance at an undeveloped prairie in a humid subtropical climate

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    Reliable estimates of evapotranspiration from areas of wildland vegetation are needed for many types of water-resource investigations. However, little is known about surface fluxes from many areally important vegetation types, and relatively few comparisons have been made to examine how well evapotranspiration models can predict evapotranspiration for soil-, climate-, or vegetation-types that differ from those under which the models have been calibrated. In this investigation at a prairie site in west-central Florida, latent heat flux (??E) computed from the energy balance and alternatively by eddy covariance during a 15-month period differed by 4 percent and 7 percent on hourly and daily time scales, respectively. Annual evapotranspiration computed from the energy balance and by eddy covariance were 978 and 944 mm, respectively. An hourly Penman-Monteith (PM) evapotranspiration model with stomatal control predicated on water-vapor-pressure deficit at canopy level, incoming solar radiation intensity, and soil water deficit was developed and calibrated using surface fluxes from eddy covariance. Model-predicted ??E agreed closely with ??E computed from the energy balance except when moisture from dew or precipitation covered vegetation surfaces. Finally, an hourly PM model developed for an Amazonian pasture predicted ??E for the Florida prairie with unexpected reliability. Additional comparisons of PM-type models that have been developed for differing types of short vegetation could aid in assessing interchangeability of such models.

  3. [Variation of soil organic carbon under different vegetation types in Karst Mountain areas of Guizhou Province, southwest China].

    PubMed

    Liao, Hong-kai; Long, Jian

    2011-09-01

    This paper studied the variation characteristics of soil organic carbon (SOC) and different particle sizes soil particulate organic carbon (POC) in normal soil and in micro-habitats under different vegetation types in typical Karst mountain areas of southwest Guizhou. Under different vegetation types, the SOC content in normal soil and in micro-habitats was all in the order of bare land < grass < shrub < forest, with the variation range being 7.18-43.42 g x kg(-1) in normal soil and being 6.62-46.47 g x kg(-1) and 9.01-52.07 g x kg(-1) in earth surface and stone pit, respectively. The POC/MOC (mineral-associated organic carbon) ratio under different vegetation types was in the order of bare land < grass < forest < shrub. Under the same vegetation types, the POC/MOC in stone pit was the highest, as compared to that in normal soil and in earth surface. In the process of bare land-grass-shrub-forest, the contents of different particle sizes soil POC increased, while the SOC mainly existed in the forms of sand- and silt organic carbon, indicating that in Karst region, soil carbon sequestration and SOC stability were weak, soil was easily subjected to outside interference and led to organic carbon running off, and thus, soil quality had the risk of decline or degradation.

  4. Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley

    PubMed Central

    Rubin, Aurélie

    2016-01-01

    Background and Aims Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps. Findings Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 μmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 μmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols). Conclusions Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity. PMID:27685955

  5. Density, aggregation, and body size of northern pikeminnow preying on juvenile salmonids in a large river

    USGS Publications Warehouse

    Petersen, J.H.

    2001-01-01

    Predation by northern pikeminnow Ptychocheilus oregonensis on juvenile salmonids Oncorhynchus spp. occurred probably during brief feeding bouts since diets were either dominated by salmonids (>80% by weight), or contained other prey types and few salmonids (<5%). In samples where salmonids had been consumed, large rather than small predators were more likely to have captured salmonids. Transects with higher catch-per-unit of effort of predators also had higher incidences of salmonids in predator guts. Predators in two of three reservoir areas were distributed more contagiously if they had preyed recently on salmonids. Spatial and temporal patchiness of salmonid prey may be generating differences in local density, aggregation, and body size of their predators in this large river.

  6. Alopecia secondary to mesotherapy.

    PubMed

    Duque-Estrada, Bruna; Vincenzi, Colombina; Misciali, Cosimo; Tosti, Antonella

    2009-10-01

    Mesotherapy has recently become an advertised method for the treatment of different types of alopecia despite the lack of any data regarding its efficacy and possible side effects. The substances injected into the scalp include "cocktails" of natural plant extracts, homoeopathic agents, vitamins, vasodilators, and drugs that may stimulate hair growth, such as finasteride and minoxidil. We report two cases of patchy alopecia that developed after mesotherapy for the treatment of androgenetic alopecia. In the first patient, alopecia developed after injections of the heparinoid vasodilator mesoglycan; the 3-month follow-up examination revealed a small residual area of cicatricial alopecia. The second patient developed reversible alopecia after multiple scalp injections of homeopathic agents. These cases underline the possible risks of mesotherapy as a therapeutic technique for hair loss.

  7. Sheet-like assemblies of spherical particles with point-symmetrical patches.

    PubMed

    Mani, Ethayaraja; Sanz, Eduardo; Roy, Soumyajit; Dijkstra, Marjolein; Groenewold, Jan; Kegel, Willem K

    2012-04-14

    We report a computational study on the spontaneous self-assembly of spherical particles into two-dimensional crystals. The experimental observation of such structures stabilized by spherical objects appeared paradoxical so far. We implement patchy interactions with the patches point-symmetrically (icosahedral and cubic) arranged on the surface of the particle. In these conditions, preference for self-assembly into sheet-like structures is observed. We explain our findings in terms of the inherent symmetry of the patches and the competition between binding energy and vibrational entropy. The simulation results explain why hollow spherical shells observed in some Keplerate-type polyoxometalates (POM) appear. Our results also provide an explanation for the experimentally observed layer-by-layer growth of apoferritin--a quasi-spherical protein.

  8. Biodiversity: Aspen stands have the lead, but will nonnative species take over?

    Treesearch

    Geneva W. Chong; Sara E. Simonson; Thomas J. Stohlgren; Mohammed A. Kalkhan

    2001-01-01

    We investigated vascular plant and butterfly diversity in Rocky Mountain National Park. We identified 188 vascular plant species unique to the aspen vegetation type. The slope of the mean species-area curve for the aspen vegetation type was the steepest of the 10 types sampled, thus, an increase in aspen area could have much greater positive impacts on plant species...

  9. Examining the feasibility of implementing behavioural economics strategies that encourage home dinner vegetable intake among low-income children.

    PubMed

    Leak, Tashara M; Swenson, Alison; Rendahl, Aaron; Vickers, Zata; Mykerezi, Elton; Redden, Joseph P; Mann, Traci; Reicks, Marla

    2017-06-01

    To examine the feasibility of implementing nine behavioural economics-informed strategies, or 'nudges', that aimed to encourage home dinner vegetable intake among low-income children. Caregivers were assigned six of nine strategies and implemented one new strategy per week (i.e. 6 weeks) during three dinner meals. Caregivers recorded child dinner vegetable intake on the nights of strategy implementation and rated the level of difficulty for assigned strategies. Baseline data on home vegetable availability and child vegetable liking were collected to assess overall strategy feasibility. Participants' homes in a large Midwestern metropolitan area, USA. Low-income caregiver/child (aged 9-12 years) dyads (n 39). Pairwise comparisons showed that child dinner vegetable intake for the strategy 'Serve at least two vegetables with dinner meals' was greater than intake for each of two other strategies: 'Pair vegetables with other foods the child likes' and 'Eat dinner together with an adult(s) modelling vegetable consumption'. Overall, caregivers' mean rating of difficulty for implementing strategies was 2·6 (1='not difficult', 10='very difficult'). Households had a mean of ten different types of vegetables available. Children reported a rating ≥5 for seventeen types of vegetable on a labelled hedonic scale (1='hate it', 5-6='it's okay', 10='like it a lot'). Behavioural economics-informed strategies are feasible to implement during dinner meals, with some strategies differing by how much they influence vegetable intake among low-income children in the home.

  10. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    PubMed

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  11. Wilderness ecology: the upland plant communities, woody browse production, and small mammals of two adjacent 33-year-old wildfire areas of northeastern Minnesota.

    Treesearch

    Lewis F. Ohmann; Charles T. Cushwa; Roger E. Lake; James R. Beer; Robert B. Brander

    1973-01-01

    In three parts, classifies the upland vegetation into four community types; describes the measurements of browse and gives yields by different species; and describes the relation of small mammal populations to vegetative community types.

  12. Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases

    NASA Technical Reports Server (NTRS)

    Matthews, E.

    1984-01-01

    A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.

  13. Vegetation dynamics and responses to climate change and human activities in Central Asia.

    PubMed

    Jiang, Liangliang; Guli Jiapaer; Bao, Anming; Guo, Hao; Ndayisaba, Felix

    2017-12-01

    Knowledge of the current changes and dynamics of different types of vegetation in relation to climatic changes and anthropogenic activities is critical for developing adaptation strategies to address the challenges posed by climate change and human activities for ecosystems. Based on a regression analysis and the Hurst exponent index method, this research investigated the spatial and temporal characteristics and relationships between vegetation greenness and climatic factors in Central Asia using the Normalized Difference Vegetation Index (NDVI) and gridded high-resolution station (land) data for the period 1984-2013. Further analysis distinguished between the effects of climatic change and those of human activities on vegetation dynamics by means of a residual analysis trend method. The results show that vegetation pixels significantly decreased for shrubs and sparse vegetation compared with those for the other vegetation types and that the degradation of sparse vegetation was more serious in the Karakum and Kyzylkum Deserts, the Ustyurt Plateau and the wetland delta of the Large Aral Sea than in other regions. The Hurst exponent results indicated that forests are more sustainable than grasslands, shrubs and sparse vegetation. Precipitation is the main factor affecting vegetation growth in the Kazakhskiy Melkosopochnik. Moreover, temperature is a controlling factor that influences the seasonal variation of vegetation greenness in the mountains and the Aral Sea basin. Drought is the main factor affecting vegetation degradation as a result of both increased temperature and decreased precipitation in the Kyzylkum Desert and the northern Ustyurt Plateau. The residual analysis highlighted that sparse vegetation and the degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the wetland delta of the Large Aral Sea were mainly triggered by human activities: the excessive exploitation of water resources in the upstream areas of the Amu Darya basin and oil and natural gas extraction in the southern part of the Karakum Desert and the southern Ustyurt Plateau. The results also indicated that after the collapse of the Soviet Union, abandoned pastures gave rise to increased vegetation in eastern Kazakhstan, Kyrgyzstan and Tajikistan, and abandoned croplands reverted to grasslands in northern Kazakhstan, leading to a decrease in cropland greenness. Shrubs and sparse vegetation were extremely sensitive to short-term climatic variations, and our results demonstrated that these vegetation types were the most seriously degraded by human activities. Therefore, regional governments should strive to restore vegetation to sustain this fragile arid ecological environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort.

    PubMed

    Donovan, Geoffrey H; Gatziolis, Demetrios; Longley, Ian; Douwes, Jeroen

    2018-05-07

    We assessed the association between the natural environment and asthma in 49,956 New Zealand children born in 1998 and followed up until 2016 using routinely collected data. Children who lived in greener areas, as measured by the normalized difference vegetation index, were less likely to be asthmatic: a 1 s.d. increase in normalized difference vegetation index was associated with a 6.0% (95% CI 1.9-9.9%) lower risk of asthma. Vegetation diversity was also protective: a 1 s.d. increase in the number of natural land-cover types in a child's residential meshblock was associated with a 6.7% (95% CI 1.5-11.5%) lower risk. However, not all land-cover types were protective. A 1 s.d. increase in the area covered by gorse (Ulex europaeus) or exotic conifers, both non-native, low-biodiversity land-cover types, was associated with a 3.2% (95% CI 0.0-6.0%) and 4.2% (95% CI 0.9-7.5%) increased risk of asthma, respectively. The results suggest that exposure to greenness and vegetation diversity may be protective of asthma.

  15. Patterns of non-embolic transient monocular visual field loss.

    PubMed

    Petzold, Axel; Islam, Niaz; Plant, G T

    2013-07-01

    The aim of this study was to systematically describe the semiology of non-embolic transient monocular visual field loss (neTMVL). We conducted a retrospective case note analysis of patients from Moorfields Eye Hospital (1995-2007). The variables analysed were age, age of onset, gender, past medical history or family history of migraine, eye affected, onset, duration and offset, perception (pattern, positive and negative symptoms), associated headache and autonomic symptoms, attack frequency, and treatment response to nifedipine. We identified 77 patients (28 male and 49 female). Mean age of onset was 37 years (range 14-77 years). The neTMVL was limited to the right eye in 36 % to the left in 47 % and occurred independently in either eye in 5 % of cases. A past medical history of migraine was present in 12 % and a family history in 8 %. Headache followed neTMVL in 14 % and was associated with autonomic features in 3 %. The neTMB was perceived as grey in 35 %, white in 21 %, black in 16 % and as phosphenes in 9 %. Most frequently neTMVL was patchy 20 %. Recovery of vision frequently resembled attack onset in reverse. In 3 patients without associated headache the loss of vision was permanent. Treatment with nifedipine was initiated in 13 patients with an attack frequency of more than one per week and reduced the attack frequency in all. In conclusion, this large series of patients with neTMVL permits classification into five types of reversible visual field loss (grey, white, black, phosphenes, patchy). Treatment response to nifidipine suggests some attacks to be caused by vasospasm.

  16. The emergence densities of annual cicadas (Hemiptera: Cicadidae) increase with sapling density and are greater near edges in a bottomland hardwood forest.

    PubMed

    Chiavacci, Scott J; Bednarz, James C; McKay, Tanja

    2014-08-01

    The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.

  17. Shrublands and Soil Erosion. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    García Estríngana, Pablo; Dunkerley, David; Cerdà, Artemi

    2014-05-01

    Shrublands and Soil Erosion. An State-of-the-Art Arid and semiarid regions occupy two-fifth of the continents (Reynolds et al., 2007). These regions are characterized by dry climatic conditions, recurrent droughts and a scant rainfall pattern with a marked seasonality and a high inter-annual variability which makes water to be a scant resource and vegetation to follow a high variability spatial distribution pattern (Breshears et al., 1998; Cecchi et al., 2006; Dunkerley, 2008). These conditions make these areas more sensitive to climate change (Rowell, 2005) and to land use change as a consequence of land abandonment (Poyatos et al., 2003; Delgado et al., 2010; García-Ruiz, 2010), increasing the risk of desertification (Puigdefábregas and Mendizabal, 1998; Geeson et al., 2002), in such a way that 65-70% of arid and semiarid areas are vulnerable to this degradation process (UNEP, 1991). Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensity or slope (Ziadat and Taimeh, 2013) the plant cover is the main factor that controls the soil erosion, controlling the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012; Haregeweyn, 2013). Soil erosion show non-sustainable rates under these regions, such as under Mediterranean conditions (Cerdà et al., 2010) and on agriculture land (Cerdà et al; 2007; 2009) due to climatic conditions, to parent material and to the roughed terrain (Romero Díaz et al., 2010). The traditional impact of grazing, of extremely intense fires, of ploughing and the widespread use of herbicides on agriculture, the increase of the road and railway embankments and the agricultural land abandonment cause vegetation removal. Canopy cover partitions rainfall reducing the amount of water reaching the soil and the kinetic energy of rainfall drops, protecting the soil against the impact of rainfall drops. Vegetation distribution controls the exposure of soils to rainfall drops affecting soil erosion (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). The lost of vegetation can trigger Desertification (Izzo et al., 2013) because soil erosion is highly dependent on the effective rainfall striking soil particles (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). Shrubs are the most characteristic vegetation type in semiarid and arid ecosystems all over the world (Tomaselli, 1981; Kummerrow, 1989), typical of intermediate stages of most vegetation succession series, being the first in terms of dominant vegetation coverage, occupying 24% of drylands, followed by crop vegetation with 20% (Reynolds et al., 2007). Moreover, shrub vegetation covers the soil permanently, being able to adapt to very unfavourable conditions like droughts, frosts, non-fertile soils,… improving the soil quality due to their capacity to activate organic matter cycles supplying greater amounts of litter (Alegre et al., 2004). Shrubs have complex root systems, inducing changes in soil properties and increasing soil macroporosity (indirect effects) that increase infiltration reducing runoff and the soil loss (Garcia-Estringana et al., 2010). Shrubs improve the infiltration capacity of soils (Cerdà, 1997), even in the most difficult conditions (Marques et al., 2005), the water retention capacity (Ruiz Sinoga et al., 2010) and the runoff and sediment redistribution. Shrub vegetation has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Francis and Thornes, 1990; Barea et al., 1996; Romero Díaz, 2003; Cerdà and Doerr, 2007). But the majority of revegetation programmes in arid and semiarid regions still ignores the great potential of this type of vegetation. Romero Díaz et al. (2010) indicated that 99% of revegetation programmes carried out by public authorities in Spain used fast growing tree vegetation (Pinus sp. and Eucalyptus sp.) that grow faster in non-fertile soils resisting to isolation. But the introduction of these species is conducted using aggressive techniques like terracing, changing topography and making more vulnerable terrain to soil loss, with erosion rates one or two order of magnitude greater than other shrublands naturally recovered (Romero Díaz et al., 2010). In relation to tree vegetation shrubs cover the soil faster, being very efficient in reducing runoff and soil erosion (Kummerow, 1989; Haase et al., 2000), not being necessary aggressive techniques for revegetation operations. The land use is the key factor that determines the soil loss and the vegetation recovery which can contribute to reduce the soil and water losses. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the abandonment. The natural vegetation recovery is the most effective way to regenerate degraded soils although under arid and semiarid climatic conditions this process is delayed due to the water stress and soil degradation and revegetation programmes are carried out. A firm commitment for shrub vegetation is necessary for improving soil recovery in semiarid and arid lands. Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA243857 and RECARE FP7 project 603498 supported this research. References Alegre, J., Alonso-Blázquez, N., de Andrés, F., Tenorio, J.L., Ayerbe, L. 2004. Revegetation and reclamation of soils using wild leguminous shrubs in cold semiarid Mediterranean conditions: Litterfall and carbon and nitrogen returns under two aridity regimes. Plant and Soil 263, 203-112. Barea, J.M., Requena, N., Jimenez, I. 1996. A revegetation strategy based on the management of arbuscular mycorrhizae, Rhizobium and rhizobacteria for the reclamation of desertified Mediterranean shrubland ecosystems. In: Mycorrhization of Forest Plants under Arid and Semi-arid Conditions and Desertification Control in the Mediterranean, CIHEAM-IAMZ, Zaragoza, pp. 75-86. Breshears, D.D., Nyhan, J.W., Heil, C.E., Wilcox, B.P. 1998. Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159, 1010-1017. Cammeraat, E.L.H., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology 3, 421-430. Cecchi, G.A., Kröpfl, A.I., Villasuso, N.M., Distel, R.A. 2006. Stemflow and soil water redistribution in intact and disturbed plants of Larrea divaricata in southern Argentina. Arid Land Research and Management 20, 209-217. Cerdà, A. 1997. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments 36, 37-51. Cerdà, A. 1998. Relationship between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25, 123-134. Cerdà, A., Imeson, A.C., Poesen, J., 2007. Soil Water Erosion in Rural Areas. Catena special issue 71, 191- 252. Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J., 2009. Soil Erosion and Agriculture. Soil and Tillage Research 106, 107-108. Cerdà, A., Hooke, J., Romero-Diaz, A., Montanarella, L., Lavee, H., 2010. Soil erosion on Mediterranean type-ecosystems. Land Degradation and Development 21, 71-74. Cerdà, A., Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 2325-2336. doi: 10.1016/j.catena.2008.03.010. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Delgado J, Llorens P, Nord G, Calder IR, Gallart F. 2010. Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: the Cardener River basin (NE Spain). Journal of Hydrology 383: 125-134. DOI: 10.1016/j.jhydrol.2009.07.024 Dunkerley, D. 2008. Intra-storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia. Hydrological Processes 22, 1985-1995. Francis, C., Thornes, J.B. 1990. Matorral: Erosion and reclamation. En: Albaladejo, J., Stocking,, M.A., Díaz, E. (Eds.), Degradación y regeneración del suelo en condiciones ambientales mediterráneas. Consejo Superior de Investigaciones Científicas, Murcia, pp. 87-116. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Geeson, N., Brandt, C.J., Thornes, J.B. 2002. Mediterranean desertification: a mosaic of processes and responses. John Wiley & Sons, LTD, 433 pp. Haase, P., Pugnaire, F.I., Clark, S.C., Incoll, L.D. 2000. Photosynthetic rate and canopy development in the drought-deciduous shrub Anthyllis cytisoides L. Journal of Arid Environments 46, 79-91. Haile, G.W., Fetene, M. 2012. Assessment of soil erosion hazard in Kilie catchment, East Shoa, Ethiopia. Land Degradation and Development 23, 293-306. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/ SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Izzo, M., Araujo, N., Aucelli, P. P. C., Maratea, A., and Sánchez, A. 2013. Land sensitivity to Desertification in the Dominican Republic: an adaptation of the ESA methodology. Land Degradation & Development, 24: 486-498. DOI 10.1002/ldr.2241 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Kummerrow, J. 1989. Structural aspects of shrubs in Mediterranean type plant communities. In: Bellot, J. (Ed.), Jornadas Sobre las Bases Ecológicas para la Gestión de Ecosistemas Terrestres. Options Méditerranéens. Série Séminaires. CIHEAM IAMZ, Zaragoza, Vol. 3, pp. 5-11. Marques, M.J., Jiménez, L., Pérez-Rodríguez, R., García-Ormaechea, S., Bienes, R. 2005. Reducing water erosion in a gypsic soil by combined use of organic amendment and shrub revegetation. Land Degradation and Development 16, 339-350. Miao, C. Y., Yang, L., Chen, X. H., Gao, Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degradation & Development, 23: 62- 71. DOI 10.1002/ldr.1050 Poyatos R, Llorens P, Piñol J, Rubio C. 2008. Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Annals of Forest Science 65: 306/301-306/313. DOI: 10.1051/forest:2008003 Prokop, P., Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147 Puigdefábregas, J., Mendizábal, T. 1998. Perspectives on desertification: western Mediterranean. Journal of Arid Environments 39, 209-224. Reynolds, J.F., Maestre, F.T., Kemp, P.R., Stafford-Smith, D.M., Lambin, E. 2007. Natural and human dimensions of land degradation in drylands: causes and consequences. In: Canadell, J.G., Pataki, D.E., Pitelka. L.F. (Eds.) Terrestrial Ecosystems in a Changing World, Global Change - The IGBP Series, pp. 247-259. Romero Díaz, A. 2003 Influencia de la litología en las consecuencias del abandono de tierras de cultivo en medio Mediterráneos semiáridos. Papeles de Geografía 38, 151-165. Romero Díaz, A., Belmonte Serrato, F., Ruiz-Sinoga, J.D. 2010. The geomorphic impact of afforestations on soil erosion in Southeast Spain. Land Degradation and Development 21, 188-195.Rowell, 2005 Ruiz Sinoga, J.D., Romero Díaz, A., Ferre Bueno, E., Martínez Murillo, J.F. 2010. The role of soil surface conditions in regulating runoff and erosion processes on a metamorphic hillslope (Southern Spain). Soil surface conditions, runoff and erosion in Southern Spain. Catena 80, 131-139. Tomaselli, R. 1981. Main physiognomic types and geographic distribution of shrub systems related to Mediterranean climates. In: di Castri, F., Goodall, D.W., Specht, R. (Eds.), Ecosystems of the world: Mediterranean-type shrublands. Elsevier, Amsterdam, Netherlands, pp. 95-106. UNEP. 1991. Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification. United Nations Environment Programme (UNEP). Nairobi. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  18. Disturbance of natural vegetation by camping: experimental applications of low-level stress

    Treesearch

    David N. Cole

    1995-01-01

    Previously undisturbed sites in four different vegetation types were camped on for one night and for four nights. Changes in vegetation cover and vegetation height were measured after camping and one year later. Results are presented separately for different campsite zones-parts of the site where campers slept, cooked meals, and stored their packs. Just one night of...

  19. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Treesearch

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  20. Vegetation species diversity inside and outside exclosures in sagebrush, salt desert shrub, and aspen communities

    Treesearch

    W. A. Laycock; Dale Bartos

    1999-01-01

    Vegetation was sampled inside and outside eight exclosures in salt desert shrub and sagebrush vegetation types in Southwestern Wyoming and eight exclosures in aspen vegetation in southern Utah. Only species richness has been examined thus far. Five of the eight Wyoming exclosures had an average of 11% more plant species present outside the exclosure than inside.

  1. Recovery of endemic dragonflies after removal of invasive alien trees.

    PubMed

    Samways, Michael J; Sharratt, Norma J

    2010-02-01

    Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.

  2. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  3. Impacts of vegetation cover on soil respiration in a North Eastern Siberian tundra landscape

    NASA Astrophysics Data System (ADS)

    Curasi, S. R.; Rocha, A. V.; Natali, S.

    2017-12-01

    Changes in Arctic tundra vegetation composition will help determine the future carbon (C) balance of these systems under conditions of climate change. Changes in Arctic tundra vegetation communities will alter both the productivity and the type and quality of organic matter inputs to soil in these systems. Tundra soil decomposition rates are controlled by both the environmental conditions and the organic matter inputs into the system. In order to investigate the impact of vegetation cover on soil respiration and ecosystem C cycling more broadly we surveyed and sampled a number of sites overlain by different vegetation types and with varying levels of shrub cover in a tundra landscape along the eastern bank of the Kolyma River (Sakha Republic, Russia). We then began a long-term incubation of these soils under different temperature treatments. We conclude that site level conditions as well as vegetation cover and growth form play an important role in influencing soil respiration. This work highlights the role vegetation growth forms and productivity may play in the balance of future tundra ecosystem C cycling. It has broader applicability to those interested in predicating the impacts of climate change and shifts in vegetation species composition on the tundra C cycle.

  4. A new world natural vegetation map for global change studies.

    PubMed

    Lapola, David M; Oyama, Marcos D; Nobre, Carlos A; Sampaio, Gilvan

    2008-06-01

    We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).

  5. Seasonal fecundity and source-sink status of shrub-nesting birds in a southwestern riparian corridor

    USGS Publications Warehouse

    Brand, L.A.; Noon, B.R.

    2011-01-01

    Saltcedar (Tamarix spp.) has increasingly dominated riparian floodplains relative to native forests in the southwestern U.S., but little is known about its impacts on avian productivity or population status. We monitored 86 Arizona Bell's Vireo (Vireo bellii arizonae), 147 Abert's Towhee (Melozone aberti), and 154 Yellow-breasted Chat (Icteria virens) nests to assess reproductive parameters in cottonwood-willow (Populus-Salix), saltcedar, and mesquite (Prosopis spp.) stands along the San Pedro River, Arizona during 1999-2001. We also assessed source-sink status for each species in each vegetation type using field data combined with data from the literature. There were no significant differences in reproductive parameters between vegetation types for Abert's Towhee or Yellow-breasted Chat, although seasonal fecundity was quite low across vegetation types for the latter (0.75 ?? 0.14; mean ?? SE). Bell's Vireo had extremely low seasonal fecundity in saltcedar (0.10 ?? 0.09) and significantly fewer fledglings per nest in saltcedar (0.09 ?? 0.09) compared with cottonwood (1.07 ?? 0.32). Point estimates of ?? were substantially <1 for all three focal species in all habitats indicating the entire study area may be performing as a sink; 90% CI of included 1 only for Abert's Towhee across vegetation types and Bell's Vireo in cottonwood vegetation. These results are surprising given the San Pedro is considered to be one of the best remaining occurrences of lowland native riparian vegetation in the southwestern United States. ?? 2011 by the Wilson Ornithological Society.

  6. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  7. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    NASA Astrophysics Data System (ADS)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  8. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study

    PubMed Central

    Bennie, Jon; Mantovani, Waldir; Gaston, Kevin J.

    2017-01-01

    Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern. PMID:28178352

  9. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.

    PubMed

    Godoi, Mauricio N; Souza, Edivaldo O DE

    2016-01-01

    Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.

  10. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    PubMed

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  11. Global-scale patterns of forest fragmentation

    USGS Publications Warehouse

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  12. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    USGS Publications Warehouse

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.

  13. Demographic analysis of tree colonization in a 20-year-old right-of-way.

    PubMed

    Mercier, C; Brison, J; Bouchard, A

    2001-12-01

    Past tree colonization dynamics of a powerline-right-of-way (ROW) corridor in the Haut-Saint-Laurent region of Quebec was studied based on the present age distribution of its tree populations. This colonization study spans 20 years, from 1977 (ROW clearance) to 1996. The sampled quadrats were classified into six vegetation types. Tree colonization dynamics were interpreted in each type, and three distinct patterns were identified. (1) Communities adapted to acidic conditions were heavily colonized by Acer rubrum, at least for the last 12 years. (2) Communities adapted to mesic or to hydric conditions were more intensely colonized in the period 1985-1987 than in the following 9 years; this past success in tree colonization may have been caused by herbicide treatments, which could have facilitated tree establishment by damaging the herbaceous and shrub vegetation. (3) Cattail, vine-raspberry, and reed-dominated communities contained few tree individuals, with almost all trees establishing between 1979 and 1990; those three vegetation types appear as the most resistant to tree invasion in the ROW studied. This study supports the need for an integrated approach in ROW vegetation management, in which the selection of vegetation treatment methods would depend on the tree colonization dynamics in each vegetation type. Minimizing disturbances inflicted on ROW herbaceous and shrub covers should be the central strategy because disturbances jeopardize natural resistance to future tree invasion, except in communities adapted to acidic conditions where the existing vegetation does not prevent invasion by A. rubrum. Many trees are surviving the successive cutting operations by producing new sprouts each time, particularly in communities adapted to mesic and hydric conditions. In these cases, mechanical cutting should be replaced by a one-time stump-killing operation, to avoid repeated and unsuccessful treatments of the same individuals over time.

  14. Dietary intake habits and the prevalence of nocturia in Japanese patients with type 2 diabetes mellitus.

    PubMed

    Furukawa, Shinya; Sakai, Takenori; Niiya, Tetsuji; Miyaoka, Hiroaki; Miyake, Teruki; Yamamoto, Shin; Maruyama, Koutatsu; Tanaka, Keiko; Ueda, Teruhisa; Senba, Hidenori; Torisu, Masamoto; Minami, Hisaka; Tanigawa, Takeshi; Matsuura, Bunzo; Hiasa, Yoichi; Miyake, Yoshihiro

    2018-03-01

    No reports have been published on the association between dietary intake habits and nocturia in the diabetes population. We therefore evaluated this issue among Japanese patients with diabetes mellitus. Study participants in the present study were 785 Japanese patients with type 2 diabetes mellitus. Self-administered questionnaires were used to assess each type of dietary intake habit. Vegetable intake habit was assessed by the following question: "Do you have vegetables or seaweed every day?" We used the following two outcomes: (i) nocturia: ≥2 voids per night; and (ii) severe nocturia: ≥3 voids per night. Adjustment was made for age, sex, body mass index, glycated hemoglobin, hypertension, dyslipidemia, smoking, drinking, exercise habit, stroke, ischemic artery disease, diabetic nephropathy, diabetic neuropathy and diabetic retinopathy. The prevalence of nocturia, severe nocturia, and vegetable intake habit was 39.9%, 14.4% and 67.3%, respectively. After adjusting for confounding factors, vegetable intake habit was independently inversely associated with nocturia and severe nocturia: the adjusted odds ratios were 0.67 (95% confidence interval [CI] 0.48-0.94) and 0.46 (95% CI 0.30-0.71), respectively. Among male patients, vegetable intake habit was independently inversely associated with severe nocturia, but not nocturia: the adjusted OR was 0.51 (95% CI 0.29-0.88). Among female patients, vegetable intake habit was independently inversely associated with nocturia and severe nocturia: the adjusted ORs were 0.44 (95% CI 0.24-0.79) and 0.34 (95% CI 0.15-0.78), respectively. We found an inverse association between vegetable intake habit and nocturia in Japanese patients with type 2 diabetes mellitus. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  15. Characterization of Vegetation Change in a Sub-Arctic Mire using Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    DelGreco, J. L.; McArthur, K. J.; Palace, M. W.; Herrick, C.; Garnello, A.; Finnell, D.; McCalley, C. K.; Anderson, S. M.; Varner, R. K.

    2015-12-01

    Climate change is impacting northern ecosystems through the thawing of the permafrost, which has resulted in changes to plant communities and greenhouse gas emissions, such as carbon dioxide (CO2) and methane (CH4). These greenhouse gases are of concern due to their potential feedbacks which create a warmer climate, thus increasing permafrost thawing. Our study focuses on how vegetation type differs in areas that have been impacted by thawing permafrost at Stordalen Mire located in Abisko, Sweden. To estimate change in vegetation communities, field-based measurements combined with remotely sensed image data was used. 75 randomized square-meter plots were measured for vegetation composition and classified into one of five site-types, each representing a different stage of permafrost degradation. New high-resolution imagery (1 cm) was collected using Unmanned Aerial Vehicles (UAV) providing insight into the spatial patterning, characterizations, and changes of these communities. The UAV imagery was georectified using high precision GPS points collected across the mire. The imagery was then examined using a neural network analysis to estimate cover type across the mire. This 2015 cover type classification was then compared to previous UAV imagery taken on July 2014 to analyze changes in vegetation distribution as an indication of permafrost thaw. Hummock sites represent intact permafrost and have lost 21.5% coverage since 2014, while tall gramminoid sites, which indicate fully thawed sites, have increased coverage by 12.1%. A discriminate function analysis showed that site types can be differentiated based on species composition, thus showing that vegetation differs significantly across the thaw gradient. Using average flux rates of CH4 from each cover type reported previously, the percent of CH4 emitted over the mire was estimated for 2014 and 2015. Comparing both estimates, CH4 emissions increased with a flux change of 5604.5 g CH4/day. Our estimates of vegetation change may be used to parameterize simulation models and create future scenarios of how the vegetation cover will change in response to climate change. Data from this study will also help to explain how the ecology of the subarctic peatlands, now a carbon sink, may be on its way to changing into a source of carbon.

  16. Maternal encouragement and discouragement: Differences by food type and child weight status

    PubMed Central

    Pesch, Megan H.; Appugliese, Danielle P.; Kaciroti, Niko; Rosenblum, Katherine L.; Miller, Alison; Lumeng, Julie C.

    2016-01-01

    Childhood obesity prevention practice guidelines recommend that parents encourage the intake of certain types of foods and discourage the intake of others. It is unknown if parents of children of different weight statuses encourage or discourage their child's intake differently based on food type. The objective of this study was to determine the association of child weight status with maternal for four different types of food. A total of 222 mother-child dyads were video-taped during the standardized, sequential presentation of four foods to both participants: cupcakes (familiar dessert), green beans (familiar vegetable), halva (unfamiliar dessert) and artichoke (unfamiliar vegetable). Mother's encouragements and discouragements of child intake were reliably coded for each food type. Poisson regression models were used to test the independent association of child weight status (normal weight, overweight and obese) with encouragement and discouragement for each food type. Mothers of an obese, vs. normal or overweight child, had lower rates of encouragement for a familiar dessert (p = 0.02), and a higher rates of discouragements for a familiar dessert (p=0.001), a familiar vegetable (p=0.01), and an unfamiliar vegetable (p = 0.001). There were no differences in encouragements or discouragements between mothers of an overweight, vs. obese child, for any of the 4 food types. Mothers of obese children may alter their feeding behavior differentially based on food type. Future work should examine how interventions promoting maternal encouragement or discouragement of different food types impact child weight status. PMID:26924561

  17. Fruit and vegetable intake, as reflected by serum carotenoid concentrations, predicts reduced probability of PCB-associated risk for type 2 diabetes: NHANES 2003–2004

    PubMed Central

    Hofe, Carolyn R.; Feng, Limin; Zephyr, Dominique; Stromberg, Arnold J.; Hennig, Bernhard; Gaetke, Lisa M.

    2014-01-01

    Type 2 diabetes has been shown to occur in response to environmental and genetic influences, among them nutrition, food intake patterns, sedentary lifestyle, body mass index (BMI), and exposure to persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs). Nutrition is essential in the prevention and management of type 2 diabetes and has been shown to modulate the toxicity of PCBs. Serum carotenoid concentrations, considered a reliable biomarker of fruit and vegetable intake, are associated with the reduced probability of chronic diseases, such as type 2 diabetes and cardiovascular disease. Our hypothesis is that fruit and vegetable intake, reflected by serum carotenoid concentrations, is associated with the reduced probability of developing type 2 diabetes in US adults with elevated serum concentrations of PCBs 118, 126, and 153. This cross-sectional study utilized the CDC database, National Health and Nutrition Examination Survey (NHANES) 2003–2004 in logistic regression analyses. Overall prevalence of type 2 diabetes was approximately 11.6% depending on the specific PCB. All three PCBs were positively associated with the probability of type 2 diabetes. For participants at higher PCB percentiles (e.g., 75th and 90th) for PCB 118 and 126, increasing serum carotenoid concentrations were associated with a smaller probability of type 2 diabetes. Fruit and vegetable intake, as reflected by serum carotenoid concentrations, predicted notably reduced probability of dioxin-like PCB-associated risk for type 2 diabetes. PMID:24774064

  18. FLUVIAL DISTURBANCE AND WETLAND VEGETATION DEVELOPMENT, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    Hydrogeomorphic processes drive vegetation establishment, and promote development of diverse wetland and riparian types associated with lotic ecosystems. The main objective of this study was to estimate the rate and pattern of vegetation development on bars tracked since 1936, a...

  19. This is like that, only bigger and messier

    USDA-ARS?s Scientific Manuscript database

    Cluster analysis is a core tool of vegetation science; we have always wanted to divide a complex world into manageable chunks. In vegetation science, we classify both vegetation and sites. Both have clear management applications. Various types of spatial classifications are used to delineate agroec...

  20. Ecoregions as a level of ecological analysis

    USGS Publications Warehouse

    Wright, R.G.; Murray, M.P.; Merrill, T.

    1998-01-01

    There have been many attempts to classify geographic areas into zones of similar characteristics. Recent focus has been on ecoregions. We examined how well the boundaries of the most commonly used ecoregion classifications for the US matched the boundaries of existing vegetation cover mapped at three levels of classification, fine, mid- and coarse scale. We analyzed ecoregions in Idaho, Oregon and Washington. The results were similar among the two ecoregion classifications. For both ecoregion delineations and all three vegetation classifications, the patterns of existing vegetation did not correspond well with the patterns of ecoregions. Most vegetation types had a small proportion of their total area in a given ecoregion. There was also no dominance by one or more vegetation types in any ecoregion and contrary to our hypothesis, the level of congruence of vegetation patterns with ecoregion boundaries decreased as the level of classification became more general. The implications of these findings on the use of ecoregions as a planning tool and in the development of land conservation efforts are discussed.

  1. Transition from Connected to Fragmented Vegetation across an Environmental Gradient: Scaling Laws in Ecotone Geometry.

    PubMed

    Gastner, Michael T; Oborny, Beata; Zimmermann, D K; Pruessner, Gunnar

    2009-07-01

    A change in the environmental conditions across space-for example, altitude or latitude-can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, "step length" across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the " hull edge." We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon-juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change.

  2. Calculation of upper confidence bounds on proportion of area containing not-sampled vegetation types: An application to map unit definition for existing vegetation maps

    Treesearch

    Paul L. Patterson; Mark Finco

    2011-01-01

    This paper explores the information forest inventory data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977)....

  3. Approaches to vegetation mapping and ecophysiological hypothesis testing using combined information from TIMS, AVIRIS, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Oren, R.; Vane, G.; Zimmermann, R.; Carrere, V.; Realmuto, V.; Zebker, Howard A.; Schoeneberger, P.; Schoeneberger, M.

    1991-01-01

    The Tropical Rainforest Ecology Experiment (TREE) had two primary objectives: (1) to design a method for mapping vegetation in tropical regions using remote sensing and determine whether the result improves on available vegetation maps; and (2) to test a specific hypothesis on plant/water relations. Both objectives were thought achievable with the combined information from the Thermal Infrared Multispectral Scanner (TIMS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Airborne Synthetic Aperture Radar (AIRSAR). Implicitly, two additional objectives were: (1) to ascertain that the range within each variable potentially measurable with the three instruments is large enough in the site, relative to the sensitivity of the instruments, so that differences between ecological groups may be detectable; and (2) to determine the ability of the three systems to quantify different variables and sensitivities. We found that the ranges in values of foliar nitrogen concentration, water availability, stand structure and species composition, and plant/water relations were large, even within the upland broadleaf vegetation type. The range was larger when other vegetation types were considered. Unfortunately, cloud cover and navigation errors compromised the utility of the TIMS and AVIRIS data. Nevertheless, the AIRSAR data alone appear to have improved on the available vegetation map for the study area. An example from an area converted to a farm is given to demonstrate how the combined information from AIRSAR, TIMS, and AVIRIS can uniquely identify distinct classes of land use. The example alludes to the potential utility of the three instruments for identifying vegetation at an ecological scale finer than vegetation types.

  4. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  5. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong

    2015-12-01

    Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.

  6. Basal cell carcinoma: CD56 and cytokeratin 5/6 staining patterns in the differential diagnosis with Merkel cell carcinoma.

    PubMed

    Panse, Gauri; McNiff, Jennifer M; Ko, Christine J

    2017-06-01

    Basal cell carcinoma (BCC) can resemble Merkel cell carcinoma (MCC) on histopathological examination and while CK20 is a useful marker in this differential, it is occasionally negative in MCC. CD56, a sensitive marker of neuroendocrine differentiation, is sometimes used to identify MCC, but has been reportedly variably positive in BCC as well. In contrast, CK5/6 consistently labels BCC but is not expressed in neuroendocrine tumors. We evaluated 20 cases of BCC for the pattern of CD56 and cytokeratin 5/6 (CK5/6) staining, hypothesizing that these 2 stains could differentiate BCC from MCC in difficult cases. Seventeen cases of MCC previously stained with CD56 were also examined. All BCCs showed patchy expression of CD56 except for 2 cases, which showed staining of greater than 70% of tumor. CK5/6 was diffusely positive in all cases of BCC. Fifteen of 17 MCCs were diffusely positive for CD56. The difference in the pattern of CD56 expression between MCC and BCC (diffuse vs patchy, respectively) was statistically significant (P < .05). BCC typically shows patchy CD56 expression and diffuse CK5/6 positivity. These 2 markers can be used to distinguish between BCC and MCC in challenging cases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    PubMed

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  8. Legionnaire's pneumonia: is there really an interstitial disease?

    PubMed

    Godet, C; Frat, J P; Le Moal, G; Roblot, F; Michalakis, G; Cabon, E; Tasu, J P

    2007-01-01

    Legionella pneumonia is usually classified as "atypical pneumonia", which suggests a predominance of interstitial patterns in chest X-rays. Based on a selection of recent clinical cases and a brief review of the literature, the aim of the study is to clarify, how far the actual radiological findings would be consistent with these expectations. A retrospective analysis of 18 epidemic personal cases and a review of the literature data were performed to describe the chest X-ray findings of Legionella pneumophila (LP) community acquired pneumonia. X-ray review was performed simultaneously and in consensus by two radiologists (J.P.T., E.C.) and a physician (C.G.). From our series, 17 patients had an abnormal chest X-ray on admission. Among these pathological X-ray cases, infiltrates were more often confluent (n=16), or patchy (n=7), rather than interstitial (n=1). Fifteen patients had infiltrates involving the lower lung fields. Bilateral distribution of abnormalities and pleural effusion were each observed in three cases. Radiological findings deteriorated between the second and seventh days following admission, particularly in the form of patchy infiltrates with pleural effusion. The review of the literature is consistent with these findings, by reporting prevalent confluent or patchy infiltrates. These findings are consistent with the physiopathological particularity of this affection and incite us to avoid the classification "atypical pneumonia" in radiologic terminology. This term is more appropriate for clinical and microbiological use.

  9. Water temperature differences by plant community and location in re-established wetlands in the Sacramento-San Joaquin Delta, California, July 2005 to February 2008

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Miller, Robin L.

    2014-01-01

    Rates of carbon storage in wetlands are determined by the balance of its inputs and losses, both of which are affected by environmental factors such as water temperature and depth. In the autumn of 1997, the U.S. Geological Survey re-established two wetlands with different shallow water depths—about 25 and 55 centimeters deep—to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates derived from plant biomass inputs over time. Because cooler water temperatures can slow decomposition rates and increase accretion of plant biomass, water temperature was recorded from July 2005 to February 2008 in the deeper of the two wetlands, where areas of emergent and submerged vegetation persisted throughout the study, to assess differences in water temperature between the two vegetation types. Water temperature was compared at three depths in the water column between areas of emergent and submerged vegetation and between areas near the water inflow and in the wetland interior in both vegetation types. The latter comparison was a way of evaluating the effect of the length of time water had resided in the wetland on water temperatures. There were statistically significant differences in water temperature at all depths between the two vegetation types. Overall, in areas of emergent marsh vegetation, the mean water temperature at the surface was 1.4 degrees Celsius (°C) less than it was in areas of submerged vegetation; however, when analyses accounted for the changes in temperature due to seasonal and diurnal cycles, differences in the mean water temperature between the vegetation types were even greater than this. For example, in the spring, the mean temperatures in areas of emergent marsh vegetation at the surface, mid-point, and near the sediment in the water column were 2.0, 2.3, and 2.1 °C less, respectively, than water temperatures in areas of submerged vegetation. When diurnal changes in temperature were accounted for by comparing temperatures in mid-afternoon (at 3 p.m.), water-temperature differences were even greater than the seasonal means indicated. In areas of emergent vegetation, the mean temperatures were cooler than temperatures in areas of submerged vegetation at the surface, the mid-point, and near the sediment in the water column by 3.9, 3.6, and 2.3 °C, respectively. Furthermore, from July 2005 through December 2006, water temperatures at the surface in the interior of the wetland were significantly cooler than in areas near the inflow supplying water from the San Joaquin River by 1.0 °C in areas of submerged vegetation and by 1.1 °C in areas of emergent vegetation.

  10. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils

    USGS Publications Warehouse

    Neff, J.C.; Hooper, D.U.

    2002-01-01

    Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.

  11. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling

    PubMed Central

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species’ habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial allocation of management resources in geographic regions where shrub encroachment represents a major biodiversity conservation issue. PMID:27727325

  12. Are vegetated areas of mangroves attractive to juvenile and small fish? The case of Dongzhaigang Bay, Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mao; Huang, Zhenyuan; Shi, Fushan; Wang, Wenqing

    2009-11-01

    Well-developed aerial roots of mangroves make it difficult to study how fish utilize the mangrove forest as a habitat. In the present study, we compared the differences in fish assemblages in three major types of habitats of mangrove estuary (vegetated area, treeless mudflat, and creek) of a mangrove bay in Hainan Island, China, at different seasons during two consecutive years. Three types of gears, centipede net, gill net and cast net, were used in the different habitats of mangrove estuary and sampling efficiencies among gears were evaluated. Centipede nets were used in all the three types of habitats and cast nets and gill nets in treeless mudflats and creeks. Fish assemblages were dependent on gears used. Centipede net could efficiently catch fish occurring both inside and outside of vegetated areas efficiently. A total of 115 fish species in 51 families were collected. In terms of numbers of species per family, Gobiidae was the most diverse (17 species), followed by Mugilidae (5 species). Almost all of the fish were juvenile or small fish and few predators were recorded, implying low predation pressure in the bay. ANOVA analysis showed that significant seasonal and spatial variation existed in species richness, abundance, and biomass, which were less in the vegetated areas than those of treeless mudflats and creeks. The attraction of vegetated areas to fish was less than that of creeks and mudflats. Many species were specific to a particular habitat type, 4 species occurring exclusively in the creeks, 45 species occurring exclusively in the treeless mudflats, and 5 species occurring exclusively in the vegetated areas. The results indicated that mangrove estuaries were potentially attractive habitats for juvenile and small fish, but this attraction was accomplished by a connection of vegetated areas, treeless mudflats and creeks, not only by vegetated areas.

  13. Vegetative characteristics of five forest types across a Lake States sulfate disposition gradient.

    Treesearch

    Lewis F. Ohmann; David F. Grigal; Stephen R. Shifley; William E. Berguson

    1994-01-01

    Presents the vegetative characteristics of the five forest types that comprised the study plots established to test the hypothesis that the wet sulfate deposition gradient across the Lake States is reflected in the amount of accumulated sulfur in soil and tree tissue, which in turn is reflected in tree growth.

  14. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Treesearch

    Seyedehsan Hosseini; Shawn Urbanski; P. Dixit; Qi Li; Ian Burling; Robert Yokelson; Timothy E. Johnson; Manish Sharivastava; Heejung Jung; David R. Weise; Wayne Miller; David Cocker

    2013-01-01

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as well as SE vegetation...

  15. Habitat fragmentation in the temperate zone: a perspective for managers

    Treesearch

    John Faaborg; Margaret Brittingham; Therese Donovan; John Blake

    1993-01-01

    Habitat fragmentation occurs when a large, fairly continuous tract of vegetation is converted to other vegetation types such that only scattered fragments of the original type remain. Problems associated with habitat fragmentation include overall habitat loss, increase in edge habitat and edge effects (particularly higher parasitism and nest predation rates), and...

  16. Depressional wetland vegetation types: a question of plant commmunity development

    Treesearch

    Katherine L. Kirkman; Charles P. Goebel; Larry West; Mark B. Drew; Brian Palik

    2000-01-01

    When wetland restoration includes re-establishing native plant taxa as an objective, an understanding of the variables driving the development of plant communities is necessary. With this in mind, we examined soil and physiographic characteristics of depressional wetlands of three vegetation types (cypressgum swamps, cypress savannas, and grass-sedge marshes) located...

  17. Grassland and shrubland habitat types of western Montana

    Treesearch

    W. F. Mueggler; W. L. Stewart

    1978-01-01

    A classification system based upon potential natural vegetation is presented for the grasslands and shrublands of the mountainous western third of Montana. The classification was developed by analyzing data from 580 stands. Twenty-nine habitat types in 13 climax series are defined and a diagnostic key provided for field identification. Environment, vegetative...

  18. Large-scale habitat associations of four desert anurans in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dayton, Gage H.; Jung, R.E.; Droege, S.

    2004-01-01

    We used night driving to examine large scale habitat associations of four common desert anurans in Big Bend National Park, Texas. We examined association of soil types and vegetation communities with abundance of Couch's Spadefoots (Scaphiopus couchii), Red-spotted Toads (Bufo punctatus), Texas Toads (Bufo speciosus), and Western Green Toads (Bufo debilis). All four species were disproportionately associated with frequently inundated soils that are relatively high in clay content. Bufo punctatus was associated with rocky soil types more frequently than the other three species. Association between all four species and vegetation types was disproportionate in relation to availability. Bufo debilis and Bufo punctatus were associated with creosote and mixed scrub vegetation. Bufo speciosus and Scaphiopus couchii were associated with mesquite scrub vegetation. Bufo debilis, Scaphiopus couchii, and B. speciosus were more tightly associated with specific habitat types, whereas B. punctatus exhibited a broader distribution across the habitat categories. Examining associations between large-scale habitat categories and species abundance is an important first step in understanding factors that influence species distributions and presence-absence across the landscape.

  19. Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces

    USGS Publications Warehouse

    Russell, W.H.; McBride, J.R.

    2003-01-01

    Successional pressures resulting from fire suppression and reduced grazing have resulted in vegetation-type conversion in the open spaces surrounding the urbanized areas of the San Francisco bay area. Coverage of various vegetation types were sampled on seven sites using a chronosequence of remote images in order to measure change over time. Results suggest a significant conversion of grassland to shrubland dominated by Baccharis pilularison five of the seven sites sampled. An increase in Pseudotsuga menziesii coverage was also measured on the sites where it was present. Increases fuel and fire hazard were determined through field sampling and use of the FARSITE fire area simulator. A significant increase in biomass resulting from succession of grass-dominated to shrub-dominated communities was evident. In addition, results from the FARSITE simulations indicated significantly higher fire-line intensity, and flame length associated with shrublands over all other vegetation types sampled. These results indicate that the replacement of grass dominated with shrub-dominated landscapes has increased the probability of high intensity fires. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. Discrimination of Coastal Vegetation and Biomass Using AIS Data

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.

    1985-01-01

    The Airborne Imaging Spectrometer (AIS) was flown over a coastal wetlands region near Lewes, Delaware, adjacent to the Delaware Bay on 16 August 1984. Using the AIS data, it was possible to discriminate between four different types of wetland vegetation canopies: (1) trees; (2) broadleaf herbaceous plants (e.g., Acnida cannabina, Hisbiscus moscheutos); (3) the low marsh grass Spartina alterniflora; and (4) the high marsh grasses Distichlis spicata and Spartina patens. The single most useful region of the spectrum was that between 1.40 and 1.90 microns, where slopes of portions of the radiance curve and ratios of radiance at particular wavelengths were significantly different for the four canopy types. The ratio between the highest digital number in the 1.40 to 1.90 microns and .84 to .94 microns regions and a similar ratio between the peaks in radiance in the 1.12 to 1.40 microns and .84 to .94 microns spectral regions were also very effective at discriminating between vegetation types. Differences in radiance values at various wavelengths between samples of the same vegetation type could potentially be used to estimate biomass.

  1. [Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China.

    PubMed

    Wu, Rong Jun; Xing, Xiao Yong

    2016-06-01

    The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.

  2. Multistage, multiseasonal and multiband imagery to identify and qualify non-forest vegetation resources

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Francis, R. E.

    1970-01-01

    A description of space and supporting aircraft photography for the interpretation and analyses of non-forest (shrubby and herbaceous) native vegetation is presented. The research includes the development of a multiple sampling technique to assign quantitative area values of specific plant community types included within an assigned space photograph map unit. Also, investigations of aerial film type, scale, and season of photography for identification and quantity measures of shrubby and herbaceous vegetation were conducted. Some work was done to develop automated interpretation techniques with film image density measurement devices.

  3. Vegetation inventory, mapping, and classification report, Fort Bowie National Historic Site

    USGS Publications Warehouse

    Studd, Sarah; Fallon, Elizabeth; Crumbacher, Laura; Drake, Sam; Villarreal, Miguel

    2013-01-01

    A vegetation mapping and characterization effort was conducted at Fort Bowie National Historic Site in 2008-10 by the Sonoran Desert Network office in collaboration with researchers from the Office of Arid lands studies, Remote Sensing Center at the University of Arizona. This vegetation mapping effort was completed under the National Park Service Vegetation Inventory program which aims to complete baseline mapping inventories at over 270 national park units. The vegetation map data was collected to provide park managers with a digital map product that met national standards of spatial and thematic accuracy, while also placing the vegetation into a regional and even national context. Work comprised of three major field phases 1) concurrent field-based classification data collection and mapping (map unit delineation), 2) development of vegetation community types at the National Vegetation Classification alliance or association level and 3) map accuracy assessment. Phase 1 was completed in late 2008 and early 2009. Community type descriptions were drafted to meet the then-current hierarchy (version 1) of the National Vegetation Classification System (NVCS) and these were applied to each of the mapped areas. This classification was developed from both plot level data and censused polygon data (map units) as this project was conducted as a concurrent mapping and classification effort. The third stage of accuracy assessment completed in the fall of 2010 consisted of a complete census of each map unit and was conducted almost entirely by park staff. Following accuracy assessment the map was amended where needed and final products were developed including this report, a digital map and full vegetation descriptions. Fort Bowie National Historic Site covers only 1000 acres yet has a relatively complex landscape, topography and geology. A total of 16 distinct communities were described and mapped at Fort Bowie NHS. These ranged from lush riparian woodlands lining the ephemeral washes dominated by Ash (Fraxinus), Walnut (Juglans) and Hackberry (Celtis) to drier upland sites typical of desert scrub and semi-desert grassland communities. These shrublands boast a diverse mixture of shrubs, succulents and perennial grasses. In many places the vegetation could be seen to echo the history of the fort site, with management of shrub encroachment apparent in the grasslands and the paucity of trees evidence of historic cutting for timber and fire wood. Seven of the 16 vegetation types were ‘accepted’ types within the NVC while the others have been described here as specific to FOBO and have proposed status within the NVC. The map was designed to facilitate ecologically-based natural resources management and research. The map is in digital format within a geodatabase structure that allows for complex relationships to be established between spatial and tabular data, and makes accessing the product easy and seamless. The GIS format allows user flexibility and will also enable updates to be made as new information becomes available (such as revised NVC codes or vegetation type names) or in the event of major disturbance events that could impact the vegetation.

  4. Vegetables. Learning Activity Pack and Instructor's Guide 5.14. Commercial Foods and Culinary Arts Competency-Based Series. Section 5: Basic Food Preparation.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Studies in Vocational Education.

    This document consists of a learning activity packet (LAP) for the student and an instructor's guide for the teacher. The LAP is intended to acquaint occupational home economics students with the major types of vegetables, with the procedures for storing vegetables, and with the general rules and methods of vegetable cookery. Illustrated…

  5. Initial Development of Riparian and Marsh Vegetation on Dredged-material Islands in the Sacramento-San Joaquin River Delta, California

    Treesearch

    A. Sidney England; Mark K. Sogge; Roy A. Woodward

    1989-01-01

    Natural vegetation establishment and development were monitored for 3 1/2 years on a new, dredged-material island located within the breached levees at Donlon Island in the Sacramento-San Joaquin River Delta. Vegetation measurements and maps prepared annually indicate that marsh and riparian vegetation types have developed rapidly. Topographic data for the island has...

  6. Microhabitat influence on larval fish assemblages within vegetated beds: Implications for restoration

    EPA Science Inventory

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densit...

  7. Estimating Urban Gross Primary Productivity at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Miller, David Lauchlin

    Gross primary productivity (GPP) is an important metric of ecosystem function and is the primary way carbon is transferred from the atmosphere to the land surface. Remote sensing techniques are commonly used to estimate regional and global GPP for carbon budgets. However, urban areas are typically excluded from such estimates due to a lack of parameters specific to urban vegetation and the modeling challenges that arise in mapping GPP across heterogeneous urban land cover. In this study, we estimated typical midsummer GPP within and among vegetation and land use types in the Minneapolis-Saint Paul, Minnesota metropolitan region by deriving light use efficiency parameters specific to urban vegetation types using in situ flux observations and WorldView-2 high spatial resolution satellite imagery. We produced a land cover classification using the satellite imagery, canopy height data from airborne lidar, and leaf-off color-infrared aerial orthophotos, and used regional GIS layers to mask certain land cover/land use types. The classification for built-up and vegetated urban land cover classes distinguished deciduous trees, evergreen trees, turf grass, and golf grass from impervious and soil surfaces, with an overall classification accuracy of 80% (kappa = 0.73). The full study area had 52.1% vegetation cover. The light use efficiency for each vegetation class, with the exception of golf grass, tended to be low compared to natural vegetation light use efficiencies in the literature. The mapped GPP estimates were within 11% of estimates from independent tall tower eddy covariance measurements. The order of the mapped vegetation classes for the full study area in terms of mean GPP from lowest to highest was: deciduous trees (2.52 gC m -2 d-1), evergreen trees (5.81 gC m-2 d-1), turf grass (6.05 gC m-2 d-1), and golf grass (11.77 gC m-2 d-1). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes (˜0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, tended to be low relative to natural forests and grasslands. Our results demonstrate that, at the scale of neighborhoods and city blocks within heterogeneous urban landscapes, high spatial resolution GPP estimates are valuable to develop comparisons such as within and among vegetation cover classes and land use types.

  8. Use of cccupancy models to evaluate expert knowledge-based species-habitat relationships

    USGS Publications Warehouse

    Iglecia, Monica N.; Collazo, Jaime A.; McKerrow, Alexa

    2012-01-01

    Expert knowledge-based species-habitat relationships are used extensively to guide conservation planning, particularly when data are scarce. Purported relationships describe the initial state of knowledge, but are rarely tested. We assessed support in the data for suitability rankings of vegetation types based on expert knowledge for three terrestrial avian species in the South Atlantic Coastal Plain of the United States. Experts used published studies, natural history, survey data, and field experience to rank vegetation types as optimal, suitable, and marginal. We used single-season occupancy models, coupled with land cover and Breeding Bird Survey data, to examine the hypothesis that patterns of occupancy conformed to species-habitat suitability rankings purported by experts. Purported habitat suitability was validated for two of three species. As predicted for the Eastern Wood-Pewee (Contopus virens) and Brown-headed Nuthatch (Sitta pusilla), occupancy was strongly influenced by vegetation types classified as “optimal habitat” by the species suitability rankings for nuthatches and wood-pewees. Contrary to predictions, Red-headed Woodpecker (Melanerpes erythrocephalus) models that included vegetation types as covariates received similar support by the data as models without vegetation types. For all three species, occupancy was also related to sampling latitude. Our results suggest that covariates representing other habitat requirements might be necessary to model occurrence of generalist species like the woodpecker. The modeling approach described herein provides a means to test expert knowledge-based species-habitat relationships, and hence, help guide conservation planning.

  9. Evaluation of a native vegetation masking technique

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.

    1984-01-01

    A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.

  10. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10more » C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.« less

  11. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    PubMed Central

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  12. Analyses of plant biomarkers in modern ecosystems to improve vegetation reconstructions at hominid sites

    NASA Astrophysics Data System (ADS)

    Uno, K. T.; Boisserie, J. R.; Cerling, T. E.; Polissar, P. J.

    2017-12-01

    Reconstructing vegetation at hominid localities in eastern Africa remains a significant challenge for examining the role of climate and environment in human evolution. Plant wax biomarker approaches, particularly carbon isotopes of n-alkyl lipids, have been increasingly used to estimate the proportion of C3 and C4­ vegetation in past environments. Identifying new biomarkers indicative of vegetation type, specifically those that can be used to identify (C3) grasses prior to the late Miocene C4 expansion, will enable vegetation reconstructions during the first half of the Neogene, where much remains to be learned about hominid environments. Here, we begin to look beyond carbon isotopes from n-alkyl lipids by analyzing molecular distributions and screening for new plant biomarkers that can be used to identify plant functional types or possibly, more specific taxonomic information. We evaluate molecular distributions, carbon isotope ratios, and pentacyclic triterpenoid methyl esters (PTMEs) in modern soils from a wide range of ecosystems in Ethiopia and Kenya where vegetation types, fraction woody cover, and climatic conditions are known. Preliminary data suggest PTMEs are associated with grassy ecosystems but absent from forested ones. We also find that woody cover can be estimated using n-alkane molecular distributions. This non-isotopic approach to reconstructing woody cover opens the door to reconstructing Neogene vegetation provided the molecular distributions of C3 grasses in the past are similar to those of modern C4 grasses.

  13. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  14. Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study

    NASA Astrophysics Data System (ADS)

    Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur

    2018-04-01

    This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself

  15. Acute fibrinous and organising pneumonia.

    PubMed

    Guimarães, Catarina; Sanches, Inês; Ferreira, Catarina

    2012-03-20

    Acute fibrinous and organising pneumonia (AFOP) was recently described as an unusual pattern of diffuse lung disease. Particular characteristics make the differential diagnosis with the well recognised clinical patterns of diffuse alveolar damage, cryptogenic organising pneumonia or eosinophilic pneumonia. The lack of hyaline membranes, the presence of intra-alveolar fibrin, absence of noticeable eosinophils and patchy distribution suggests that AFOP define a distinct histological pattern. The authors describe the case of a woman diagnosed with AFOP after surgical lung biopsy, in association with primary biliary cirrhosis. The patient presented dyspnoea, fatigue, dry cough and thoracic pain. The CT scan showed bilateral patchy infiltrates predominantly in the lower lobes. Flexible bronchoscopy and subsidiary techniques were inconclusive and biopsy through video-assisted thoracoscopic surgery led to anatomopathological diagnosis of AFOP. The patient is having a good clinical response to prednisone.

  16. National Park Service vegetation inventory program: Mississippi National River and Recreation Area, Minnesota

    USGS Publications Warehouse

    Hop, Kevin D.; Drake, Jim; Strassman, Andrew C.; Hoy, Erin E.; Jakusz, Joseph; Menard, Shannon; Dieck, Jennifer

    2015-01-01

    The Mississippi National River and Recreation Area (MISS) vegetation mapping project is an initiative of the National Park Service (NPS) Vegetation Inventory Program (VIP) to classify and map vegetation types of MISS. (Note: “MISS” is also referred to as “park” throughout this report.) The goals of the project are to adequately describe and map vegetation types of the park and to provide the NPS Natural Resource Inventory and Monitoring (I&M) Program, resource managers, and biological researchers with useful baseline vegetation information.The MISS vegetation mapping project was officially started in spring 2012, with a scoping meeting wherein partners discussed project objectives, goals, and methods. Major collaborators at this meeting included staff from the NPS MISS, the NPS Great Lakes Network (GLKN), NatureServe, and the USGS Upper Midwest Environmental Sciences Center. The Minnesota Department of Natural Resources (DNR) was also in attendance. Common to all NPS VIP projects, the three main components of the MISS vegetation mapping project are as follows: (1) vegetation classification, (2) vegetation mapping, and (3) map accuracy assessment (AA). In this report, each of these fundamental components is discussed in detail.With the completion of the MISS vegetation mapping project, all nine park units within the NPS GLKN have received vegetation classification and mapping products from the NPS and USGS vegetation programs. Voyageurs National Park and Isle Royale National Park were completed during 1996–2001 (as program pilot projects) and another six park units were completed during 2004–11, including the Apostle Islands National Lakeshore, Grand Portage National Monument, Indiana Dunes National Lakeshore, Pictured Rocks National Lakeshore, Saint Croix National Scenic Riverway, and Sleeping Bear Dunes National Lakeshore.

  17. Calculation of upper confidence bounds on not-sampled vegetation types using a systematic grid sample: An application to map unit definition for existing vegetation maps

    Treesearch

    Paul L. Patterson; Mark Finco

    2009-01-01

    This paper explores the information FIA data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977). Examples are...

  18. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk.

    PubMed

    Jia, Jinpu; Bi, Chunjuan; Zhang, Junfeng; Jin, Xiaopei; Chen, Zhenlou

    2018-06-13

    Dietary consumption of contaminated vegetables may contribute to polycyclic aromatic hydrocarbon (PAH) exposure in humans; however, this exposure pathway has not been examined thoroughly. This study aims to characterize the concentrations of PAHs in six types of vegetables grown near industrial facilities in Shanghai, China. We analyzed 16 individual PAHs on the US EPA priority list, and the total concentration in vegetables ranged from 65.7 to 458.0 ng g -1 in the following order: leafy vegetables (romaine lettuce, Chinese cabbage and Shanghai green cabbage) > stem vegetables (lettuce) > seed and pod vegetables (broad bean) > rhizome vegetables (daikon). Vegetable species, wind direction, and local anthropogenic emissions were determinants of PAH concentrations in the edible part of the vegetable. Using isomer ratios and principal component analysis, PAHs in the vegetables were determined to be mainly from coal and wood combustion. The sources of PAHs in the six types of vegetables varied. Daily ingestion of PAHs due to dietary consumption of these vegetables ranged from 0.71 to 14.06 ng d -1 kg -1 , with contributions from Chinese cabbage > broad bean > romaine > Shanghai green cabbage > lettuce > daikon. The daily intake doses adjusted by body weight in children were higher than those in teenagers and adults. Moreover, in adults, higher concentrations of PAHs were found in females than in males. For individuals of different age and gender, the incremental lifetime cancer risks (ILCRs) from consuming these six vegetables ranged from 4.47 × 10 -7 to 6.39 × 10 -5 . Most were higher than the acceptable risk level of 1 × 10 -6 . Our findings demonstrate that planting vegetables near industrial facilities may pose potential cancer risks to those who consume the vegetables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Winter habitat of Kirtland's warbler: an endangered nearctic/neotropical migrant

    USGS Publications Warehouse

    Sykes, P.W.; Clench, M.H.

    1998-01-01

    Habitats of Kirtland?s Warbler (Dendroica kirtlandii) on the wintering grounds in the Bahama Archipelago are presented based upon data from 29 specimens, two bandings, and 67 sightings of at least 61 individuals on 13 islands scattered through the region. Major emphasis is placed on a study site in central Eleuthera, with additional information on sites on Grand Turk, North Caicos, and Crooked Island. The warblers used upland habitats that have a low shrub/scrub component with a patchiness of small openings and openings within the vegetation at the ground level. Six broad habitats were identified as being used: Natural Shrub/Scrub, Secondary Shrub/Scrub, Low Coppice, Pineland Understory, Saline/Upland Ecotone, and Suburban; High Coppice is not used. The structure and floristic composition of the habitats are described. Observations (N=451) of a Kirtland?s Warbler male (uniquely color banded) and female over three months indicated the birds generally stayed on or near the ground, generally < 3 m (98% of observations), and used a territory of 8.3 ha. A crude estimate of potential winter habitat suggests that there is more than an adequate amount in the Bahama Archipelago for the currently small warbler population (733 singing males in 1997) and allows for a considerable population increase. No serious future threat to the amount of that habitat is foreseen.

  20. Flow of water and sediments through Southwestern riparian systems

    Treesearch

    Leonard F. DeBano; Peter F. Ffolliott; Kenneth N. Brooks

    1996-01-01

    The paper describes streamflow, sediment movement and vegetation interactions within riparian systems of the southwestern United States. Riparian systems are found in a wide range of vegetation types, ranging from lower elevation desert environments to high elevation conifer forests. The climatic, vegetative and hydrologic processes operating in the southwestern...

Top