Miniaturized multi channel infrared optical gas sensor system
NASA Astrophysics Data System (ADS)
Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin
2011-06-01
Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.
Continuous light absorption photometer for long-term studies
NASA Astrophysics Data System (ADS)
Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.
2017-12-01
A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.
NASA Astrophysics Data System (ADS)
Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.
2015-05-01
Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrating solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in raytracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested and more than 19 months of measurements were collected at the Plataforma Solar de Almería and compared. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for Concentrating Solar Power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the actual, time-dependent by the collector reflected solar spectrum. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the Absorption and Broadband Correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from one year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.6%. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8%. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.81%. Therefore, applying this new correction method, both instruments can now be utilized to determine the solar broadband extinction in tower plants sufficiently accurate.
NASA Astrophysics Data System (ADS)
Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.
2015-08-01
Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrated solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in ray-tracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested, and more than 19 months of measurements were collected and compared at the Plataforma Solar de Almería. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for concentrated solar power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the time-dependent solar spectrum which is reflected by the collector. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the absorption and broadband correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from 1-year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.57 %. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8 %. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.8 %. Additionally, a simulation approach which just uses sun photometer and common meteorological data to determine the on-site atmospheric extinction at surface is presented and corrected FS11 and LPV4 measurements are validated with the simulation results. For T1 km equal to 0.9 and a 10 min time resolution, an uncertainty analysis showed that an absolute uncertainty of about 0.038 is expected for the FS11 and about 0.057 for the LPV4. Combining both uncertainties results in an overall absolute uncertainty of 0.068 which justifies quite well the mean RMSE between both corrected data sets. For yearly averages several error influences average out and absolute uncertainties of 0.020 and 0.054 can be expected for the FS11 and the LPV4, respectively. Therefore, applying this new correction method, both instruments can now be utilized to sufficiently accurately determine the solar broadband extinction in tower plants.
Miniaturised wireless smart tag for optical chemical analysis applications.
Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana
2014-01-01
A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Kvittingen, Eivind V.; Kvittingen, Lise; Melø, Thor Bernt; Sjursnes, Birte Johanne; Verley, Richard
2017-01-01
This article describes a combined UV-photometer and fluorimeter constructed from 3 LEDs and a few wires, all held in place with Lego bricks. The instrument has a flexible design. In its simplest version, two UV-LEDs (355 nm) are used as light source and to detect absorption, and a third LED, in the visible spectrum (e.g., 525 nm), is used to…
NASA Astrophysics Data System (ADS)
Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Giannakaki, Eleni; Pikridas, Michael; Sciare, Jean; Liakakou, Eleni; Gerasopoulos, Evangelos; Duesing, Sebastian; Corbin, Joel C.; Gysel, Martin; Bukowiecki, Nicolas; Baars, Holger; Engelmann, Ronny; Wehner, Birgit; Kottas, Michael; Mamali, Dimitra; Kokkalis, Panagiotis; Raptis, Panagiotis I.; Stavroulas, Iasonas; Keleshis, Christos; Müller, Detlef; Solomos, Stavros; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Stachlewska, Iwona S.; Igloffstein, Julia; Wandinger, Ulla; Ansmann, Albert; Dubovik, Oleg; Goloub, Philippe
2018-04-01
Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.
Folded tubular photometer for atmospheric measurements of NO2 and NO
NASA Astrophysics Data System (ADS)
Birks, John W.; Andersen, Peter C.; Williford, Craig J.; Turnipseed, Andrew A.; Strunk, Stanley E.; Ennis, Christine A.; Mattson, Erick
2018-05-01
We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm-1, corresponding to ˜ 0.1 µg m-3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer-Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can be measured; (4) a more economical instrument than other currently available direct measurement techniques for NO2; and (5) the potential for simultaneous detection of additional species such as SO2, O3, and black carbon in the same instrument. In contrast to other commercially available direct NO2 measurements, such as cavity-attenuated phase-shift spectroscopy (CAPS), the folded tubular photometer also measures NO simultaneously in the same apparatus by quantitatively converting NO to NO2 with ozone, which is then detected by direct absorbance.
Results from the Balloon Ozone Intercomparison Campaign (BOIC)
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Hagemeyer, R.; Mentall, J.; Torres, A.; Attmannspacher, W.; Bass, A.; Evans, W.; Barnes, R. A.; Komhyr, W.; Robbins, D.
1986-01-01
Data from the BOIC which consisted of three balloon missions conducted in Palestine, Texas from June 1983 to March 1984 are presented. The BOIC was to assess the ability to perform ozone measurements from balloon platforms. The accuracy and precision of the various ozone measurement systems, which were composed of a photometer, a mass spectrometer, and solar UV absorption sensors, are evaluated. The ozone observations obtained with the instruments on the three flight missions are analyzed and intercompared. The flight in situ data are also compared to the National Bureau of Standards reference photometer, satellite measurements, and under simulated stratospheric pressure and ozone concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; ...
2016-12-02
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).
Black Carbon Emissions from Associated Natural Gas Flaring.
Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C
2016-02-16
Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.
Development of KRISS standard reference photometer (SRP) for ambient ozone measurement
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, J.
2014-12-01
Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.
A Device to Demonstrate the Principles of Photometry and Three Experiments for Its Use.
ERIC Educational Resources Information Center
Delumyea, R. Del
1987-01-01
Describes how to construct a simple photometer. Outlines experiments in which this device can be used to demonstrate basic electronic principles, the use of Beer's Law to determine the concentration of an analyte in solution, and the effect of molar absorptivity on the sensitivity of photometric procedures. (TW)
Crifo, J F; Fahr, H J; Seidi, P; Wulf-Mathies, C
1979-09-01
A rocket payload able to perform a thorough and independent analysis of the He I 58.43340-nm geocoronal and interplanetary emissions is presented. It includes a sun-pointed resonant absorption spectrometer and a sky-scanning resonant absorption photometer. Both incorporate a similar helium resonance cell of original design featuring a most flexible pressure scanning capability and an accurate pressure measuring device, so that scanning by wavelength bandpasses from 20 down to 1 pm can be achieved. A description of the design and calibration of the instrument is given, followed by an indication of its successful operation in flight.
The Mpi-M Aerosol Climatology (MAC)
NASA Astrophysics Data System (ADS)
Kinne, S.
2014-12-01
Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2003-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.
1994-01-01
An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.
Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Ogren
2010-04-05
The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.
NASA Technical Reports Server (NTRS)
Webster, Christopher R.; May, Randy D.
1987-01-01
Simultaneous in situ measurements of temperature, pressure, and the NO, NO2, O3, jNO2, CH4, H2O, and CO2 concentrations were conducted in the 40- to 26-km region of the stratosphere using the JPL Balloon-borne Laser In Situ Sensor, a tunable diode laser absorption spectrometer. The NO, NO2, CH4, H2O, and CO2 concentration measurements generally show good agreement with previous observations, with a tendency for somewhat lower NO2 amounts. Measured O3 concentrations at 38 km agree well with comparable measurements from in situ UV photometers, but at 28 km they are lower by about 10 percent and agree more closely with the solar backscattered UV data. A decline was found in NO2 during the night over a 5-km altitude range, which implies either lower NO2 postsunset profiles, or an NO2 decay rate that is significantly higher than current model predictions that use N2O5 chemistry.
Radiance Research Particle Soot/Absorption Photometer Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, S. R.
2016-03-01
Radiance Research PSAPs as described in this Handbook are deployed in the second ARM Mobile Facility (AMF2) Aerosol Observing System (AOS), the third ARM Mobile Facility (AMF3) AOS, ENA AOS and Mobile Aerosol Observing System (MAOS)-A. An earlier version of the PSAP is currently operated in the ARM Aerial Facility and at SGP. The older SGP instrument is covered in a separate Handbook.
AERONET derived (BC) aerosol absorption
NASA Astrophysics Data System (ADS)
Kinne, S.
2015-12-01
AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
NASA Astrophysics Data System (ADS)
Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus
2017-12-01
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Δt) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations ( > 2.1-6.7 Mm-1 as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
NASA Astrophysics Data System (ADS)
Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.
2014-12-01
Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot Photometer) mixing state and coating thickness analyses will be explored to explain in-situ/AERONET discrepancies, and ground-based absorption coefficient and BC-mass observations will be utilized whenever possible to fully obtain the true absorption vertical profile.
NASA Astrophysics Data System (ADS)
Liu, Yuhan; Lu, Keding
2015-04-01
In the last four decades, various techniques including spectroscopic method, wet chemical method and mass spectrometric method, etc, had been developed and applied for the detection of ambient nitrous acid (HONO) concentrations. Followed the instrumental framework prosposed by Heland et al., (2001), we developed a new version of LOng Path Absorpotion Photometer (LOPAP) system which consists of three independent modules: the sampling module, the fluid propulsion module and the detection module. The major modification of our setup compared to previous LOPAPs is the replacement of the peristaltic pumps to be the solenoid pumps. With solenoid pumps the pulsed flow could be computer controlled both in terms of pump stroke volume and pulse frequency, which enable the attainment of a very stable flow rate. The other significant modification of our setup is the exploit of the customized Liquid Waveguide Capillary Cell (LWCC) manufactured by World Precision Instrument Inc, who offers a versatile path length between 50 and 500 cm. The customized LWCC pre-setup the optical fiber in-coupling with the liquid wave guide, providing us an option of fast startup and easy maintenance of the absorption photometry. With our new LOPAP system, we already performed amibient HONO measurements in three Chinese megacity regions - North China Plain, Yangtze River Delta and Pearl River Delta. In all those locations, we found strong diurnal variations of HONO. The typical daytime HONO concentrations were about several hundred ppts while the nighttime concentrations were about several ppbs.
NASA Technical Reports Server (NTRS)
Maddrea, G. L., Jr.; Bendura, R. J.
1981-01-01
A field experiment designed to further understand the formation and transport of visibility reducing aerosols and to characterize regional scale air masses and urban plumes is described. Measurements were made primarily in the Ohio River Valley region. The NASA participation included obtaining measurements for the determination of mixing layer height and ozone profiles by using airborne remote sensor systems such as the ultraviolet differential absorption lidar, the high spectral resolution lidar, and the laser absorption spectrometer. Other NASA systems included the microwave atmospheric remote sensor, tethered balloons, an in situ measurements aircraft, and several photometer/transmissiometer systems.
NASA Technical Reports Server (NTRS)
Nelson, M. J.; Bless, R. C.; Percival, J. W.; White, R. L.
1992-01-01
A brief description of the High Speed Photometer (HSP) of the Hubble Space Telescope is given, in particular the HSP light path, detectors, entrance apertures, and filters. The status of HSP testing to date is reported, and problems encountered with the bright earth and the telescope pointing system are described. The calibration effort for the HSP is well under way. Results of internal (instrument coordinate) aperture locations good to 0.05 arcsec and external (telescope coordinate) locations good to 0.02 arcsec are shown. The effects of spacecraft pointing and jitter on HSP photometry are detailed, and a preliminary measurement of spacecraft jitter with HSP is shown. The aperture calibration effort is verified by accurate pointing of a star to different HSP 1.0 arcsec entrance apertures, and photometric performance of the instrument is shown to be accurate to the 2 percent photon noise of the observations. Future science verification and guaranteed observing time programs are listed. Suggestions are made for future space-based photometers.
NASA Astrophysics Data System (ADS)
Wagner, Thomas
2017-04-01
Measurements of the oxygen dimer O4 are often used in remote sensing applications to infer information on the atmospheric light path distribution. Such information is interesting in itself, but can also be used to retrieve properties of clouds and aerosols, e.g. from ground based Multi-AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. In recent years, a scaling factor (between about 0.7 and 1) was applied by several groups to the retrieved O4 slant column densities in order to obtain meaningful aerosol profiles from MAX-DOAS observations. However, other groups did not report the need for such a scaling factor. Up to now, this discrepancy is neither understood nor resolved. Here we compare measured and modelled O4 slant column densities for two days during the MADCAT campaign (http://joseba.mpch-mainz.mpg.de/mad_cat.htm). Clouds were mostly absent during both days, and the aerosol profiles are constrained by simultaneous sun photometer and ceilometer measurements. One important difference between both days is the amount of aerosol in the lowest atmospheric layer. Our comparison study addresses several important steps of the O4 data analysis, such as the spectral retrieval and the radiative transfer simulations. We also investigate the effects of temperature and pressure variations on the calculation of the O4 vertical column density. Preliminary results are are not conclusive but indicate that a scaling factor is needed to bring measurements and simulations into agreement at least for one of the two selected days.
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.
2004-01-01
Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was characterized by fresh automobile and diesel exhaust. Measurements from Cadenza and from an aethalometer are presented. The aethalometer is a filter-based photometer and the infrared channel is calibrated to produce a measure of BC mass loading.
Aging of Diesel and Wood Burning Emissions in Smogchamber Experiments
NASA Astrophysics Data System (ADS)
Prevot, Andre S. H.
2010-05-01
Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will focus on the formation secondary organic aerosol and include the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results is found for different after treatment systems of diesel cars and for different burning conditions of the log-wood burner which will be discussed in detail.
A compact, fast UV photometer for measurement of ozone from research aircraft
NASA Astrophysics Data System (ADS)
Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.
2012-09-01
In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200-500 hPa, and 0.5 Hz at ≥ 500 hPa), high accuracy (3% excluding operation in the 300-450 hPa range, where the accuracy may be degraded to about 5%), and excellent precision (1.1 × 1010 O3 molecules cm-3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 hPa) that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.
Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...
2016-04-05
Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less
Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A
2012-12-01
A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.
Comparison of model estimated and measured direct-normal solar irradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halthore, R.N.; Schwartz, S.E.; Michalsky, J.J.
1997-12-01
Direct-normal solar irradiance (DNSI), the energy in the solar spectrum incident in unit time at the Earth{close_quote}s surface on a unit area perpendicular to the direction to the Sun, depends only on atmospheric extinction of solar energy without regard to the details of the extinction, whether absorption or scattering. Here we report a set of closure experiments performed in north central Oklahoma in April 1996 under cloud-free conditions, wherein measured atmospheric composition and aerosol optical thickness are input to a radiative transfer model, MODTRAN 3, to estimate DNSI, which is then compared with measured values obtained with normal incidence pyrheliometersmore » and absolute cavity radiometers. Uncertainty in aerosol optical thickness (AOT) dominates the uncertainty in DNSI calculation. AOT measured by an independently calibrated Sun photometer and a rotating shadow-band radiometer agree to within the uncertainties of each measurement. For 36 independent comparisons the agreement between measured and model-estimated values of DNSI falls within the combined uncertainties in the measurement (0.3{endash}0.7{percent}) and model calculation (1.8{percent}), albeit with a slight average model underestimate ({minus}0.18{plus_minus}0.94){percent}; for a DNSI of 839Wm{sup {minus}2} this corresponds to {minus}1.5{plus_minus}7.9Wm{sup {minus}2}. The agreement is nearly independent of air mass and water-vapor path abundance. These results thus establish the accuracy of the current knowledge of the solar spectrum, its integrated power, and the atmospheric extinction as a function of wavelength as represented in MODTRAN 3. An important consequence is that atmospheric absorption of short-wave energy is accurately parametrized in the model to within the above uncertainties. {copyright} 1997 American Geophysical Union« less
Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.
Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W
2009-06-01
Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.
NASA Astrophysics Data System (ADS)
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.
Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum
NASA Technical Reports Server (NTRS)
Redemann, J.; Russell, P. B.; Hamill, P.
2000-01-01
Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This assumption then enters the estimate of the single scattering albedo at ambient relative humidity. To investigate the validity of this assumption we have carried out modeling studies of the absorption humidification factor, assuming that the aerosols contain an insoluble soot core and a coating which determines its hygroscopic growth behavior. The aerosol optical properties are then computed on the basis of the shell/core particle morphology using a Mie-code for concentric shells. From basic physical principles, it is conceivable that aerosol absorption increases when an atmospheric aerosol particle collects a non-absorbing shell, since the soot core is then exposed to an increased (focused) electric field strength. Indeed, our preliminary modeling studies show that the absorption of an atmospheric aerosol particle composed of a soot core and an aqueous sulfuric acid shell may increase by a factor of 50% due to a change in ambient relative humidity from 30 to 95%. We will show how this increased absorption is a function of the initial particle size and soot mass fraction.
21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colorimeter, photometer, or spectrophotometer for... Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical use. (a) Identification. A colorimeter, a photometer, or a spectrophotometer for clinical use is an...
21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Colorimeter, photometer, or spectrophotometer for... Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical use. (a) Identification. A colorimeter, a photometer, or a spectrophotometer for clinical use is an...
NASA Astrophysics Data System (ADS)
Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.
2017-09-01
Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.
NASA Astrophysics Data System (ADS)
Yun, H.; Wang, T.; Wang, W.; Yu, C.; Xia, M.; Xue, L.; Wang, Z.; Zhang, N.; Poon, S.; Zhou, Y.; Yue, D.; Zhai, Y.
2017-12-01
Nitrous acid (HONO) is an important source of hydroxyl radical (OH) in the boundary layer, and has considerable impact on atmospheric oxidation capacity and ozone formation. However, the abundance of HONO and subsequent effects under severe pollution conditions, especially in winter, has not been thoroughly investigated. We conducted an intensive observation at a semi-rural site (Heshan) in the center of the Pearl River Delta (PRD) in January 2017. Extremely high HONO concentrations (up to 9.0 ppbv) were observed with a LOng-Path Absorption Photometer (LOPAP) in a severe pollution episode with especially high PM2.5 ( 400 μg m-3) and O3 ( 160 ppbv). HONO sustained at a relatively high level in the morning and had peaks even in the afternoon. An observation-based box model (OBM) built on Master Chemical Mechanism (MCM v3.3.1) was used to simulate the formation of HONO and its contribution to the radical concentrations. The results showed that HONO was the dominant source of primary radicals (= OH+HO2+RO2) and governed the in-situ production of ozone. Currently-identified HONO sources were added into the model to reveal the formation process of HONO during both the nighttime and daytime, and the relative importance of these sources will be discussed.
Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revised
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; Mueller, James L.
2000-01-01
The document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. This document supersedes the earlier version (Mueller and Austin 1995) published as Volume 25 in the SeaWiFS Technical Report Series. This document marks a significant departure from, and improvement on, theformat and content of Mueller and Austin (1995). The authorship of the protocols has been greatly broadened to include experts specializing in some key areas. New chapters have been added to provide detailed and comprehensive protocols for stability monitoring of radiometers using portable sources, abovewater measurements of remote-sensing reflectance, spectral absorption measurements for discrete water samples, HPLC pigment analysis and fluorometric pigment analysis. Protocols were included in Mueller and Austin (1995) for each of these areas, but the new treatment makes significant advances in each topic area. There are also new chapters prescribing protocols for calibration of sun photometers and sky radiance sensors, sun photometer and sky radiance measurements and analysis, and data archival. These topic areas were barely mentioned in Mueller and Austin (1995).
1963-05-01
extracted is essentially qual- itative in nature. Ideally one should supplement all-sky camera data with those obtained by means of photometers which...oscillating charges do not collide with each other and with neutral molecules, the energy extracted from the wave by ions and electrons is reradiated...collision frequency Sen & Wyller showed that the couplex index of refraction in the generalized theory is given by 2 20± VB2 sn02cS20 n - i c k A+B
Observation of a Dust Storm during 2015 Spring over Beijing, China
NASA Astrophysics Data System (ADS)
Lv, Y.; Li, D.; Li, Z.; Chen, X.; Xu, H.; Liu, Z.; Qie, L.; Zhang, Y.; Li, K.; Ma, Y.
2015-12-01
Dust events bring significant impacts on the regional environment, human health and even climate. There are four major dust explosion areas in the world, such as North America, Australia, Central Asia and Middle East. Located in the Central Asia, North China has a severe desertification because of deforestation and excessive population growth. Beijing is at the fork of three dust transmission paths in Chin, which makes it a dust-prone region for a long history especially in spring. Thanks to the improvement of the ecological environment in Mongolia, the number of dust weather in recent years reduced significantly than before. However, as the spring coming earlier for the relatively high temperature, a severe dust weather process happened suddenly on March 28, 2015 following with the long-term hazy weather, which up to the highest intensity in the nearly two years. A set of ground-based observations for this serious dust event were adopted in this paper. The ground-based remote sensing station is equipped with an automatic CIMEL lidar and an AERONET sun-photometer. Aerosol optical depth (AOD) and aerosol size distribution were measured by sun-photometer. AOD of dust reached 2.0 at 532nm, which was much larger than clear days. And there was an obvious trend that coarse mode increases more significantly and quickly than fine mode when a dust storm occurs. At the same time, data provided by the air quality monitoring and analysis platform of China shown that the PM10 concentration was larger than 1000μg/m3 and PM10 made important contribution to the high AQI. Lidar observation clearly shown the dust spread very tall (higher than 1km) when the dust storm occurrence. After the dust dissipating, the planetary boundary layer roughly from 0 to 3km, aerosol has a very widely vertical distribution. The AOD based on sun-photometer were taken as a constraint, 65 sr were retrieved and analyzed. And the extinction coefficients indicated that the dust had been dissipation near the ground, while some dissolved into the upper air (2-3km) after the dust passed over. Backward trajectory analysis showed those dust was originating from Mongolia (northwest of Beijing). According to the air quality index data, the dust transmission path could be Beijing-Tianjin-Hebei-Shandong-Jiangsu. And then it deposited at Taizhou in Jiangsu province.
A Tracking Sun Photometer Without Moving Parts
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.
2012-01-01
This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by gases and aerosol particles in the atmosphere. A Sun photometer is commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes. The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be selfcalibrating throughout the year. Data products would be down-welling flux, the direct-diffuse flux ratio, column abundance of gas phase constituents, aerosol optical depth at multiple-wavelengths, phase functions, cloud statistics, and an estimate of the representative size of atmospheric particles. These measurements can be used to obtain an estimate of aerosol size distribution, refractive index, and particle shape. Incident light is received at a light-reflecting (inner) surface, which is a truncated paraboloid. Light arriving from a hemispheric field of view (solid angle 2 steradians) enters the reflecting optic at an entrance aperture at, or adjacent to, the focus of the paraboloid, and is captured by the optic. Most of this light is reflected from an inner surface. The light proceeds substantially parallel to the paraboloid axis, and is detected by an array detector located near an exit aperture. Each of the entrance and exit apertures is formed by the intersection of the paraboloid with a plane substantially perpendicular to the paraboloid axis. Incident (non-reflected) light from a source of limited extent (the Sun) illuminates a limited area on the detector array. Both direct and diffuse illumination may be reflected, or not reflected, before being received on the detector array. As the Sun traverses a path in the sky over some time interval, the track of the Sun can be traced on the detector array. A suitably modified Sun photometer might be used to study the dynamics of an environment on another planet or satellite with an atmosphere.
NASA Technical Reports Server (NTRS)
Matsumoto, Tak; Mina, Cesar; Russell, Philip; Van Ark, William
1988-01-01
Airborne Sun-tracking photometer enables observations of Sun during much greater portion of flights than previously possible, without special maneuvers of airplane. Instrument occupies dome atop airplane. Fiberglass dome protects photometer and rotates to aim photometer in azimuth and elevation to track Sun. Provides controlled environment for instrument, including mechanical and electronic parts. Instrument calibrated without removing it from airplane.
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen
2017-06-01
An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.
NASA Astrophysics Data System (ADS)
Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.
2017-08-01
Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Redemann, J.; Quinn, P. K.; Carrico, C. M.; Rood, M. J.
2000-01-01
Bergstrom and Russell estimated direct solar radiative flux changes caused by atmospheric aerosols over the mid-latitude North Atlantic Ocean under cloud-free and cloudy conditions. They excluded African dust aerosols, primarily by restricting calculations to latitudes 25-60 N. As inputs they used midvisible aerosol optical depth (AOD) maps derived from AVHRR satellite measurements and aerosol intensive properties determined primarily in the 1996 IGAC Troposheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Those aerosol intensive properties, which included optical depth wavelength dependence and spectra of single scattering albedo (SSA) and scattering asymmetry parameter, were also checked against initial properties from the 1997 North Atlantic Aerosol Characterization Experiment (ACE 2). Bergstrom and Russell investigated the sensitivity of their derived flux changes to assumed input parameters, including midvisible AOD, SSA, and scattering asymmetry parameter. Although the sensitivity of net flux change at the tropopause to SSA was moderate over the ocean (e.g., a SSA uncertainty of 0.07 produced a flux-change uncertainty of 21%), the sensitivity over common land surfaces can be much larger. Also, flux changes within and below the aerosol layer, which affect atmospheric stability, heating rates, and cloud formation and persistence, are quite sensitive to aerosol SSA. Therefore, this paper focuses on the question: "What have we learned from TARFOX and ACE 2 regarding aerosol single scattering albedo?" Three techniques were used in TARFOX to determine midvisible SSA. One of these derived SSA as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from aerosol properties. Another technique combined airborne measurements of aerosol scattering and absorption by nephelometer and absorption photometer. A third technique obtained SSA from best-fit complex refractive indices derived by comparing vertical profiles of lidar backscatter, sunphotometer extinction, and relative size distribution. In ACE 2 midvisible SSA was determined both as a best-fit parameter in comparing measured and calculated flux changes at the surface and by combining nephelometer and absorption photometer measurements. The nephelometer/absorption-photometer results were obtained on the ACE 2 ship (10 m asl), at the Sagres, Portugal site at 50 m asl, and also on the Pelican aircraft. This paper presents and compares the TARFOX and ACE 2 SSA results from the above techniques for different situations (e.g., marine vs continental flows, "clean" vs polluted conditions). It also discusses the strengths and limitations of the techniques, including whether they describe the aerosol in its ambient state or as perturbed by sampling processes; whether they describe the aerosol at the surface, as a function of altitude, or integrated over a column; the ease of acquiring representative data sets; results obtained in tests of consistency with radiative flux changes, and the likelihood of various artifacts and errors.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-09-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-05-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
A Photometer for Measuring Population Growth in Yeast.
ERIC Educational Resources Information Center
Tatina, Robert; Hartley, Tamela; Thomas, Danita
1999-01-01
Describes the construction and use of an inexpensive, portable photometer designed specifically for estimating population sizes in yeast cultures. Suggests activities for use with the photometer. (WRM)
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
Operational atmospheric correction of AVHRR visible and infrared data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermote, E.; El Saleous, N.; Roger, J.C.
1995-12-31
The satellite level radiance is affected by the presence of the atmosphere between the sensor and the target. The ozone and water vapor absorption bands affect the signal recorded by the AVHRR visible and near infrared channels respectively. The Rayleigh scattering mainly affects the visible channel and is more pronounced when dealing with small sun elevations and large view angles. The aerosol scattering affects both channels and is certainly the most challenging term for atmospheric correction because of the spatial and temporal variability of both the type and amount of particles in the atmosphere. This paper presents the equation ofmore » the satellite signal, the scheme to retrieve atmospheric properties and corrections applied to AVHRR observations. The operational process uses TOMS data and a digital elevation model to correct for ozone absorption and rayleigh scattering. The water vapor content is evaluated using the split-window technique that is validated over ocean using 1988 SSM/I data. The aerosol amount retrieval over Ocean is achieved in channels 1 and 2 and compared to sun photometer observations to check consistency of the radiative transfer model and the sensor calibration. Over land, the method developed uses reflectance at 3.75 microns to deduce target reflectance in channel 1 and retrieve aerosol optical thickness that can be extrapolated in channel 2. The method to invert the reflectance at 3.75 microns is based on MODTRAN simulations and is validated by comparison to measurements performed during FIFE 87. Finally, aerosol optical thickness retrieved over Brazil and Eastern US is compared to sun photometer measurements.« less
Black Carbon Emissions from In-use Ships: Results from CalNex 2010
NASA Astrophysics Data System (ADS)
Buffaloe, Gina Marise
Black carbon (BC) mass emission factors (EFBC; g-BC (kg-fuel)--1) from a variety of ocean going vessels have been determined from measurements of BC and CO2 concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EFBC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC, determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel)--1. The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from these two categories are compared to previous observations from the Texas Air Quality Study (TexAQS) in 2006, in which the ships encountered were predominately operating high sulphur fuels. There is some indication that the EFBC values for SSD vessels during CalNex were lower than during TexAQS, although ship-to-ship variability in these data sets makes it difficult to draw firm conclusions about the influence of fuel quality on EFBC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, Timothy B; Sedlacek, Arthur J
The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate mattermore » (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?« less
Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Pusede, S.
2016-12-01
Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.
NASA Technical Reports Server (NTRS)
1971-01-01
Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.
Dynamic multistation photometer
Bauer, Martin L.; Johnson, Wayne F.; Lakomy, Dale G.
1977-01-01
A portable fast analyzer is provided that uses a magnetic clutch/brake to rapidly accelerate the analyzer rotor, and employs a microprocessor for automatic analyzer operation. The rotor is held stationary while the drive motor is run up to speed. When it is desired to mix the sample(s) and reagent(s), the brake is deenergized and the clutch is energized wherein the rotor is very rapidly accelerated to the running speed. The parallel path rotor that is used allows the samples and reagents to be mixed the moment they are spun out into the rotor cuvetes and data acquisition begins immediately. The analyzer will thus have special utility for fast reactions.
NASA Astrophysics Data System (ADS)
Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.
2008-12-01
Uncertainties in radiative forcing of climate are still dominated by uncertainties in forcing by aerosols. Aerosols impact the radiation balance in three primary ways: the direct effect through scattering and absorption of radiation, the indirect effect by acting as cloud condensation nuclei affecting cloud optical depth and longevity, and the semi-direct effect affecting cloud formation and longevity through heating and thermodynamics. An active collaboration between the Pacific Northwest National Laboratory (PNNL), National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and NASA Goddard Space Flight Center (GSFC) is advancing new instrument concepts with application to reducing these aerosol uncertainties. The concept of 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) and Aeronet-like sky scanning capability with state-of-the-art monolithic spectrometry. The overall science goal for the new instruments is to improve knowledge of atmospheric constituents and their links to climate. The high-resolution spectral capability will improve retrievals of gas constituents (e.g., H2O, O3, and NO2) and thereby improve determination of aerosol properties as residual components of the total optical depth. The sky scanning capability will enable retrievals of aerosol type (via complex refractive index and shape) and aerosol size distribution extending to larger sizes than attainable by direct-beam sun photometry alone. Additional technical goals are to reduce instrument size, weight, and power requirements while increasing autonomy and component modularity to permit operation on a wide range of aircraft including unmanned aerial vehicles (UAVs). To investigate techniques to accomplish these goals, we developed a ground-based prototype, 4STAR-Ground. The 4STAR-Ground operating performance has been characterized in many tests including field of view (FOV) scans, repeatability testing of the fiber optic coupler, calibration of diffuse sky radiance with integrating sphere, and calibration of solar irradiance via Langley retrievals. Recent results from an intercomparison on Mauna Loa Observatory involving 4STAR, AATS-14, AERONET Cimel sun-sky photometers, and a Prede sun-sky photometer will be presented.
NASA Technical Reports Server (NTRS)
1976-01-01
The analysis and preliminary design of a high speed point/area photometer for the space telescope are summarized. The scientific objectives, photometer requirements, and design concepts are presented.
BOREAS RSS-3 Atmospheric Measurements from a Helicopter-Mounted Sunphotometer
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara; Halthore, Rangasayi
2000-01-01
The BOREAS RSS-3 team collected and processed helicopter-based measurements of atmospheric conditions to estimates of aerosol optical thickness and atmospheric water vapor. The automatic sun-tracking photometer for helicopters was deployed during all three 1994 IFCs at numerous tower and auxiliary sites in both the NSA and the SSA. Six spectral channels (440, 540, 613, 670, 870, and 1030 nm) were chosen to span the visible and NIR wavelengths and to avoid gaseous absorption. One additional channel, 940 nm, was selected to measure the water column abundance above the helicopter platform. The data are stored in tabular ASCII files.
A compact, fast ozone UV photometer and sampling inlet for research aircraft
NASA Astrophysics Data System (ADS)
Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.
2012-05-01
In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, polarized, UV photometer instrument for in situ O3 measurements is described. The instrument has a fast sampling rate (2 Hz), high accuracy (3%), and precision (1.1 × 1010 O3 molecules cm-3). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UAS and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 mb) that optimize the sample flow rate to increase time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.
NASA Astrophysics Data System (ADS)
Mims, Forrest M.
2002-07-01
A Sun photometer that uses near-infrared light-emitting diodes (LEDs) as spectrally-selective photodetectors has measured total column water vapor in South Texas since February 1990. The 12 years of solar noon observations to date are correlated with upper air soundings at Del Rio, Texas (r2 = 0.75), and highly correlated with measurements by a Microtops II filter Sun photometer (r2 = 0.94). LEDs are inexpensive and have far better long term stability than the interference filters in conventional Sun photometers. The LED Sun photometer therefore provides an inexpensive, stable and portable means for measuring column water vapor.
Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (
Perera, Inoka Eranda; Litton, Charles D.
2016-01-01
A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood—using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects. PMID:27546898
Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (
Perera, Inoka Eranda; Litton, Charles D
2015-03-01
A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines-Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood-using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects.
A novel method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies
NASA Astrophysics Data System (ADS)
Wu, Dianming; Kampf, Christopher; Pöschl, Ulrich; Oswald, Robert; Cui, Junfang; Ermel, Michael; Hu, Chunsheng; Trebs, Ivonne; Sörgel, Matthias
2014-05-01
We developed a new method (gas-phase stripping-derivatization coupled to LC-MS) to measure the 15N atom percent excess (APE) of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye by the well-known Griess reaction in the Long Path Absorption Photometer (LOPAP). The reaction solutions containing the dye are collected at the outflow of the LOPAP, purified by solid-phase extraction and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The unlabeled azo dye (C18H19O2N5S) with a monoisotopic molecular mass of 369.41 g mol-1 can be detected as its protonated molecular ion ([M+H+], M) by HPLC-MS at a retention time of 2.8 min. Due to the natural isotope distribution M + 0, M + 1, M + 2, and M + 3 ions were considered for the calculation of the 15N APE. The optimal working range was found to be between 20 and 50% for the 15N/14N ratio. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method has been applied for the measurement of HO15NO emissions from soil in a dynamic chamber with and without spiking 15N labeled urea. Our results confirm biogenic HONO emissions from soil as HO15NO was measured after addition of 15N urea.
Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band
NASA Technical Reports Server (NTRS)
Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.
2005-01-01
High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.
The Hubble Space Telescope high speed photometer
NASA Technical Reports Server (NTRS)
Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.
1988-01-01
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.
NASA Astrophysics Data System (ADS)
Lyuty, V. M.; Abdullayev, B. I.; Alekberov, I. A.; Gulmaliyev, N. I.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Short description of optical and electric scheme of CCD photometer with camera U-47 installed on the Cassegrain focus of ZEISS-600 telescope of the ShAO NAS Azerbaijan is provided. The reducer of focus with factor of reduction 1.7 is applied. It is calculated equivalent focal distances of a telescope with a focus reducer. General calculations of optimum distance from focal plane and t sizes of optical filters of photometer are presented.
Performance of a newly designed continuous soot monitoring system (COSMOS).
Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru
2008-10-01
We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.
NASA Astrophysics Data System (ADS)
Engström, J. E.; Leck, C.
2011-08-01
The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the radiative forcing based on their effects can be assessed.
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia
2003-01-01
Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.
NASA Technical Reports Server (NTRS)
Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia
2004-01-01
Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.
Airborne tracking sunphotometer apparatus and system
NASA Technical Reports Server (NTRS)
Matsumoto, Yutaka (Inventor); Mina, Cesar (Inventor); Russell, Philip B. (Inventor); Vanark, William B. (Inventor)
1987-01-01
An airborne tracking Sun photometer apparatus has a rotatable dome. An azimuth drive motor is connected to rotate the dome. The dome has an equatorial slot. A cylindrical housing is pivotally mounted inside the dome at the equatorial slot. A photometer is mounted in the housing to move in the equatorial slot as the housing pivots. The photometer has an end facing from the slot with an optical flat transparent window. An elevation drive motor is connected to pivot the cylindrical housing. The rotatable dome is mounted in the bulkhead of an aircraft to extend from the interior of the aircraft. A Sun sensor causes the photometer to track the Sun automatically. Alternatively, the photometer may be oriented manually or by computer.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers but also the potential of hyperspectral optical depth and diffuse-to-global products. As compared to traditional sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross-calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat
2008-09-01
The measurement accuracy in the photometric quantities measured through photometer head is determined by the value of the spectral mismatch correction factor ( c( St, Ss)), which is defined as a function of spectral power distribution of light sources, besides illuminance responsivity of the photometer head used. This factor is more important when photometric quantities of the light-emitting diode (LED) style optical sources, which radiate within relatively narrow spectral bands as compared with that of other optical sources, are being measured. Variations of the illuminance responsivities of various V( λ)-adopted photometer heads are discussed. High-power-colored LEDs, manufactured by Lumileds Lighting Co., were used as light sources and their relative spectral power distributions (RSPDs) were measured using a spectrometer-based optical setup. Dependences of the c( St, Ss) factors of three types of photometer heads ( f1'=1.4%, f1'=0.8% and f1'=0.5%) with wavelength and influences of the factors on the illuminance responsivities of photometer heads are presented.
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.
NASA Astrophysics Data System (ADS)
Gogoi, Mukunda M.; Babu, S. Suresh
2016-05-01
In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.
Method for Balancing Detector Output to a Desired Level of Balance at a Frequency
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor)
2003-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)
1999-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
Optical signature of an ionospheric hole
NASA Technical Reports Server (NTRS)
Mendillo, M.; Baumgardner, J.
1982-01-01
Simultaneous radio and optical diagnostics of a large, artificially-induced ionospheric modification were conducted during the June 1981 launch of a weather satellite. Intensified imaging and photometer observations at 6300 A, along the same ray path as VHF polarimeter measurements of the ionosphere's total electron content (TEC), were made while the rocket plume caused disturbances. A rapid TEC chemical depletion, on the order of -16.8 x 10 to the 12th el/sq cm, caused a burst of 6300 A radiation which expanded over 60 deg of the sky, with a peak intensity of almost 9 k R. Atmospheric diffusion and O(1D) quenching rate theoretical estimates were then tested, using the event as an active space plasma experiment.
NASA Technical Reports Server (NTRS)
Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.
2003-01-01
The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).
Open-path atmospheric transmission for a diode-pumped cesium laser.
Rice, Christopher A; Lott, Gordon E; Perram, Glen P
2012-12-01
A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.
A Simple Photometer to Study Skylight
ERIC Educational Resources Information Center
McIntosh Gordon
2006-01-01
A simple photometer constructed from an LED and an op amp can be used to measure light in a number of physical situations. A variety of LEDs exist to investigate different wavelength ranges. Combined with an inexpensive transit, the LED photometer can be used to carry out skylight studies and atmospheric optical depth measurements. The activities…
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Polarized and non-polarized leaf reflectances of Coleus blumei
NASA Technical Reports Server (NTRS)
Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.
1987-01-01
A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.
NASA Technical Reports Server (NTRS)
Portscht, R.
1977-01-01
Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.
Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.
2017-01-01
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading. PMID:28690360
Presser, Cary; Nazarian, Ashot; Conny, Joseph M; Chand, Duli; Sedlacek, Arthur; Hubbe, John M
2017-01-01
Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
NASA Technical Reports Server (NTRS)
Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.
2000-01-01
A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.
Temporal Relationships Between African Dust and Chlorophyll-a in the Eastern Caribbean Basin
NASA Astrophysics Data System (ADS)
Gomez-Andujar, N. X.; Mayol-Bracero, O. L.; Torres-Delgado, E.
2017-12-01
Seasonal African Dust (AD) transports soluble iron to oligotrophic Caribbean waters, and when bioavailable, it could increase marine primary productivity (PP). Recently, the region has experienced the proliferation of unusually high quantities of Sargassum, an iron-absorbing macroalgae inhabiting the air-sea interface, which possess ecological and economic challenges and whose driving factors are still uncertain. AD events reach Puerto Rico (PR) mostly during boreal summer months. This is also the season when chlorophyll-α (CHL) concentrations are highest, when the algae starts to bloom, and when sediment plumes from the Orinoco River (ORP) also reach nutrient discharge maxima.This study seeks to better understand the temporal relationships between increases in chlorophyll-α and the presence of african dust events in the region. Aerosol data collected at the Cabezas de San Juan Atmospheric Observatory was used to identify AD events between January 2005 and December 2015. Light scattering coefficients were measured with an integrating Nephelometer, while light absorption coefficients were obtained from either the Particle Soot/Absorption Photometer (PSAP) or the Continuous Light Absorption Photometer (CLAP). Spectral properties suggesting AD events were cross-referenced with surface dust concentration image models and source-attributed air masses corresponding to dusty periods using Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT). For all years with spectral data, modeled monthly wet dust deposition was correlated (r=0.64) with mean CHL concentrations from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). Daily dust mass column densities from NASA's MERRA-2 model were also correlated (r2= 0.53) to sea surface iron concentrations from NASA's Ocean Biogeochemical Model. We present the 2010 case study, which coincides with the start of the Sargassum bloom and shows CHL peaks occurring a month before ORPs but during the AD season, suggesting the AD role in enhancing PP. Other possible influencing climatic and oceanographic variables could be associated to these observations. Further efforts include spatially linking the Floating Algae Index in satellite imagery to AD concentrations, to better predict harmful algal blooms and inform management.
Simple photometer circuits using modular electronic components
NASA Technical Reports Server (NTRS)
Wampler, J. E.
1975-01-01
Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.
Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.
2003-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
NASA Technical Reports Server (NTRS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2004-01-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
NASA Astrophysics Data System (ADS)
Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.
2003-12-01
Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Mm-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.
1 Mixing state and absorbing properties of black carbon during Arctic haze
NASA Astrophysics Data System (ADS)
Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi
2016-04-01
The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass concentration from SP2, a mass absorption cross section of 6.0 m2 g-1 was found at a wavelength of 880 nm. Concerning mixing, rBC cores with a dimeter between 170 nm and 280 nm were found to be covered by a layer of non-absorbing material having a median thickness of 50 nm. From Mie calculation, such mixing would lead to an enhancement of absorption of 46% compared to a bare BC core. The aforementioned absorption enhancement would lead to a net decrease of single scattering albedo of the total aerosol of less than 1%. The reliability of Mie approach was confirmed by agreement with observations, while MAC values commonly used in radiative forcing models might lead to discrepancies up to 80%. Our work provides all the major optical properties of total aerosol and BC to minimize the uncertainty of radiative estimations based on a priori assumptions.
Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.
2010-01-01
A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071
Error analysis of integrated water vapor measured by CIMEL photometer
NASA Astrophysics Data System (ADS)
Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.
2017-01-01
Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
The NIST Detector-Based Luminous Intensity Scale
Cromer, C. L.; Eppeldauer, G.; Hardis, J. E.; Larason, T. C.; Ohno, Y.; Parr, A. C.
1996-01-01
The Système International des Unités (SI) base unit for photometry, the candela, has been realized by using absolute detectors rather than absolute sources. This change in method permits luminous intensity calibrations of standard lamps to be carried out with a relative expanded uncertainty (coverage factor k = 2, and thus a 2 standard deviation estimate) of 0.46 %, almost a factor-of-two improvement. A group of eight reference photometers has been constructed with silicon photodiodes, matched with filters to mimic the spectral luminous efficiency function for photopic vision. The wide dynamic range of the photometers aid in their calibration. The components of the photometers were carefully measured and selected to reduce the sources of error and to provide baseline data for aging studies. Periodic remeasurement of the photometers indicate that a yearly recalibration is required. The design, characterization, calibration, evaluation, and application of the photometers are discussed. PMID:27805119
Rotating wedge filter photometer for high altitude sounding rocket application.
Holm, C; Maehlum, B N; Narheim, B T
1972-02-01
A scanning photometer is described, utilizing a rotating wedge interference filter as the wavelength scanning element around 6300 A. A detailed description of the filter production is given, emphasizing the procedure for in situ wavelength control during fabrication. Subsequently, the complete photometer is briefly described, and some results from its applications on an auroral sounding rocket flight are presented.
The Pierce-Blitzstein Photometer - The PBPHOT
NASA Astrophysics Data System (ADS)
Ambruster, Carol; Hull, A. B.; Koch, R. H.; Mitchell, R. J.; Smith, R. E.
2009-01-01
This report describes the inception, development and extensive use (over 50 years) of the simultaneous 2-source, pulse-counting photometer named after the two astronomers in this paper's title. These men are not, however, the only personalities associated with the lifetime of the photometer from 1952 to 2007 and the contributions of other people are explicitly recognized. The embellishments and upgrades over time of the original conceptions are detailed for both the optical/mechanical/electrical hardware and the software. The opportunities and limitations of the three observing stations where this photometer and its prototypes were tested and functioned and the telescopes upon which they were mounted are also discussed and compared.
HAI: A new TDLAS hygrometer for the HALO research aircraft
NASA Astrophysics Data System (ADS)
Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker
2010-05-01
Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.
Two-way multi-band optical/IR transmission measurements in the Persian Gulf coastal region
NASA Astrophysics Data System (ADS)
de Jong, Arie N.; Fritz, Peter J.
2005-10-01
The atmospheric conditions in the Persian Gulf region are significantly different from other places in the world. The particle size distribution may vary daily and during the day. The aerosols can contribute to the amount of rainfall over land, important for the nations around the Gulf. In 2004 NASNGSFC and NRL (Naval Research Laboratory) introduced a proposal to improve the modelling of aerosol transport for the Persian Gulf area. The proposal included a measurement campaign in the UAE (United Arabian Emirates), held in the summer/fall of 2004, sponsored by the DWRS (Department of Water Resources Studies) in Abu Dhabi: UAEz (Unified Aerosol Experiment in the UAE). In this campaign NASA installed a number of multi-spectral sun-photometers at various locations in the UAE (http://aeronet.gsfc.nasa.gov). NRL installed ground based and airborne particle samplers. In addition, TNO (the Netherlands) installed its multi-band opticaUIR transmissometer, in order to collect horizontal, path-integrated transmission data. This device provides additional information on the scattering behaviour of the aerosols compared to the other instruments, which either integrate scattering over the full vertical path (the NASA sun-photometers, providing the Aerosol Optical Depth (AOD)) or sample the particles in-situ (the NRL particle samplers, providing size distribution and composition). This paper deals with our transmission measurement set-up, which was located in a coastal area near Abu Dhabi. This location allowed the investigation of the local variability of the atmospheric conditions: from desert dust to pollution, such as fossil fuel and biomass burning, depending on the wind direction. For logistic reasons a set-up was chosen with a retro-reflector. This choice implies consequences for the calibration procedure and measurement accuracy, which are discussed in detail. Also the effects of path-inhomogeneity and scintillation for such a two-way set-up are considered. Results are presented for the measurement period of two weeks in September, showing interesting transmission effects due to temporal changes in aerosol particle composition. These phenomena cannot be explained by scattering theory for spherical particles. More knowledge is required on the shape and composition of the particles. Comparison of the transmission data with the data from other instruments will be done in a next phase.
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.
2004-01-01
The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Fluxes of Nitrous Acid (HONO) above an Agricultural Field Side near Paris
NASA Astrophysics Data System (ADS)
Laufs, S.; Cazaunau, M.; Stella, P.; Loubet, B.; Kurtenbach, R.; Cellier, P.; Mellouki, W.; Kleffmann, J.
2012-04-01
HONO is an important precursor of the OH radical, the detergent of the atmosphere. Field measurements show high diurnal HONO mixing ratios that cannot be explained by chemical models with known gas phase chemistry. Therefore, daytime sources of HONO are still under discussion. During the last decade many experimental investigation were performed to study heterogeneous production of HONO like the photo enhanced reduction of NO2 on humic acids or photolysis of HNO3 on surfaces. Recently, nitrite produced by bacteria, present in soil, was discussed as a source of HONO as well. In addition gas phase sources like the photolysis of nitrophenols, or the reaction of excited NO2 are discussed. Gradient measurements show high mixing ratios of HONO even above the boundary layer. However, beside intensive investigations on the sources of HONO, it is still an open question whether heterogeneous or gas phase sources are more important in the atmosphere. Flux measurements could represent a method to find the origin of missing sources of HONO. Until now instruments are not sensitive and fast enough to do Eddy correlation measurements for HONO. Alternatively, HONO fluxes are estimated by the Aerodynamic Gradient (AGM), or Relaxed Eddy Accumulation (REA) methods. Here we present HONO fluxes estimated by AGM and the LOPAP technique (Long Path Absorption Photometer) above an agricultural field in Grignon, Paris (48°51'N, 1°58'E). Fluxes during different seasons and different types of vegetations including bare soil will be presented and compared with chemical corrected fluxes of NO, NO2 and O3, or other parameters.
Developing a Stand Alone Sun Photometer for Ships and Buoys
NASA Technical Reports Server (NTRS)
Porter, John N.
1997-01-01
During November and December 1995 the first Aerosol Characterization Experiment (ACE 1) was carried to characterize the aerosol physical and optical properties in the clean marine atmosphere near Tasmania in the South Pacific. As part of this effort, and with funding from this proposal, we installed a sun photometer on the R/V Discoverer and a spectro-photometer on the NOAA C-130 aircraft.
ERIC Educational Resources Information Center
Chen, Huai-Yi; Nieh, Hwa-Ming; Yang, Ming-Feng; Chou, Yu-Kung; Chung, Jui-Hsu; Liou, Je-Wen
2016-01-01
This study proposes a home-assembled, low-cost blue light-emitting diode (LED) photometer that uses simple and low-cost hardware and software, costing about US $150. This 425-nm wavelength photometer is controlled by an 89C51 microcontroller chip. Glucose concentration detection experiments involving enzyme coupling reactions were carried out to…
Hyperspectral Sun Photometer for Atmospheric Characterization and Vicarious Calibrations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert; Holekamp, Kara
2008-01-01
A hyperspectral sun photometer and associated methods have been developed and demonstrated. Accurate sun photometer calibration is critical to properly measure the solar irradiance and characterize the atmosphere. Traditional sun photometer calibration requires solar observations over several hours. In contrast, the procedures for operating this photometer entail less data acquisition time and embody a more direct approach to calibration. The scientific value of the measurement data produced by this instrument is not adversely affected by atmospheric instability. In addition, this instrument yields hyperspectral data covering a large spectral range (350-2,500 nm) not available from most traditional sun photometers. The hyperspectral sun photometer components include (1) a commercially available spectroradiometer that has been laboratory-calibrated and (2) a commercially available reflectance standard panel that exhibits nearly Lambertian 99% reflectance. The spectroradiometer is positioned above, and aimed downward at, the panel. The procedure for operating this instrument calls for a series of measurements: one in which the panel is fully illuminated by the sun, one in which a shade is positioned between the panel and the sun, and two in which the shade is positioned to cast a shadow to either side of the panel. The total sequence of measurements can be performed in less than a minute. From these measurements, the total radiance, the diffuse radiance, and the direct solar radiance are calculated. The direct solar irradiance is calculated from the direct solar radiance and the known reflectance factor of the panel as a function of the solar zenith angle. Atmospheric characteristics are estimated from the optical depth at various wavelengths calculated from (1) the direct solar irradiance obtained as described above, (2) the air mass along a column from the measurement position to the Sun, and (3) the top-of-atmosphere solar irradiance. The instrumentation used to implement the sun photometer is the same as that used to characterize targets used in radiometric vicarious calibrations. Utilizing this type of sun photometer thus reduces the amount of instrumentation and labor required to perform these studies.
Absolute calibration of ultraviolet filter photometry
NASA Technical Reports Server (NTRS)
Bless, R. C.; Fairchild, T.; Code, A. D.
1972-01-01
The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.
APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS
Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...
Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong
2012-08-01
A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.
NASA Technical Reports Server (NTRS)
Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens
2003-01-01
Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.
NASA Astrophysics Data System (ADS)
Turnipseed, Andrew A.; Andersen, Peter C.; Williford, Craig J.; Ennis, Christine A.; Birks, John W.
2017-06-01
A new solid-phase scrubber for use in conventional ozone (O3) photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100-130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs) compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM) ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm), the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH), volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S.) Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.
How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?
NASA Technical Reports Server (NTRS)
Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.
2005-01-01
The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in the UV and near-infrared.
Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study
NASA Astrophysics Data System (ADS)
Hoffmann, Anne; Osterloh, Lukas; Stone, Robert; Lampert, Astrid; Ritter, Christoph; Stock, Maria; Tunved, Peter; Hennig, Tabea; Böckmann, Christine; Li, Shao-Meng; Eleftheriadis, Kostas; Maturilli, Marion; Orgis, Thomas; Herber, Andreas; Neuber, Roland; Dethloff, Klaus
2012-06-01
In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Ålesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 × 20 km around Ny-Ålesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474 m altitude peak at about 0.18 μm diameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the Zeppelin Mountain as well as on board the Polar 5 aircraft.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
NASA Technical Reports Server (NTRS)
Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro
1992-01-01
The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong
2015-01-01
The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.
Study on system for extracted type infrared gas analysis
NASA Astrophysics Data System (ADS)
Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang
2015-12-01
Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.
A multichannel fiber optic photometer present performance and future developments
NASA Technical Reports Server (NTRS)
Barwig, H.; Schoembs, R.; Huber, G.
1988-01-01
A three channel photometer for simultaneous multicolor observations was designed with the aim of making possible highly efficient photometry of fast variable objects like cataclysmic variables. Experiences with this instrument over a period of three years are presented. Aspects of the special techniques applied are discussed with respect to high precision photometry. In particular, the use of fiber optics is critically analyzed. Finally, the development of a new photometer concept is discussed.
NASA Technical Reports Server (NTRS)
Webb, D. F.; Jackson, B. V.
1992-01-01
The zodiacal light photometers on the two Helios spacecraft have been used to detect and study mass ejections and other phenomena emanating from the sun and traversing the heliosphere within 1 AU. We have recently compiled a complete list of all of the significant white light transient events detected from the 90-deg photometers on both Helios spacecraft. This is a preliminary report on the long-term frequency of occurrence of these events; it emphasizes newly processed data from Helios-l from 1975 through 1982 and viewed south of the ecliptic. With the large Helios photometer data base, we will be able to identify the fraction of the 90 deg events which are heliospheric CMEs and determine their characteristics.
A white super-stable source for the metrology of astronomical photometers
NASA Astrophysics Data System (ADS)
Wildi, F. P.; Deline, A.; Chazelas, B.
2015-09-01
The testing of photometers and in particular the testing of high precision photometers for the detection of planetary transits requires a light source which photometric stability is to par or better than the goal stability of the photometer to be tested. In the frame of the CHEOPS mission, a comprehensive calibration bench has been developed. Aside from measuring the sensibility of the CHEOPS payload to the different environmental conditions, this bench will also be used to test the relative accuracy of the payload. A key element of this bench is an extremely stable light source that is used to create an artificial star which is then projected into the payload's telescope. We present here the development of this payload and the performance achieved.
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.
2012-01-01
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".
Tunable infrared laser detection of pyrolysis products of explosives in soils
NASA Astrophysics Data System (ADS)
Wormhoudt, J.; Shorter, J. H.; McManus, J. B.; Kebabian, P. L.; Zahniser, M. S.; Kolb, Charles E.; Davis, W. M.; Cespedes, E. R.
1996-07-01
A research program involving two applications of tunable infrared laser differential absorption spectroscopy (TILDAS) with multipass, long-path absorption cells to the detection of explosives contamination in soils is reported. In the first application, sensitive, specific real-time species concentration measurements by TILDAS have led to new understanding of the processes involved in explosives detection by the heating of contaminated soils and the quantification of the resulting pyrolysis gases. In the second, we present results of our calculations of the properties of astigmatic off-axis resonator absorption cells, which show that useful TILDAS path lengths can be achieved inside a cone penetrometer probe.
Differential optical absorption spectrometer for measurement of tropospheric pollutants
NASA Astrophysics Data System (ADS)
Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.
1995-05-01
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.
Nitrogen dioxide sensing using a novel gas correlation detector
NASA Astrophysics Data System (ADS)
Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew
2000-05-01
A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.
NASA Astrophysics Data System (ADS)
Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.
2010-12-01
Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and aerodynamic size distributions obtained from an optical particle counter (OPC) and aerodynamic particle sizer (APS), respectively, as well as by filter-based analyses of chemical composition. BC and dust concentrations, size distribution, and optical properties are reported for clear-sky conditions and in the regions surrounding tropical storms to better understand the radial and vertical distribution of light-absorbing aerosol associated with hurricanes. Observations during GRIP are compared to an extensive characterization of the Saharan Air Layer (SAL) made during the 2006 NAMMA (NASA African Monsoon Multidisciplinary Analyses) mission to assess changes in concentration and aerosol size distribution during transport and cloud interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruuge, A; Erdi, Y; Mahmood, U
Purpose: The conformance of Primary Diagnostic Monitors (PDMs) to the DICOM GSDF is increasingly required by several state and city regulators. Our purpose was to quantitatively characterize the luminance performance of the internal, built in photometer of BARCO monitors against an externally calibrated luminance meter. Methods: Thirty one PDMs (BARCO) were included in our analysis. An externally calibrated photometer (RaySafe Solo Light) was used to measure the luminance and illuminance values. Measured monitors were located at various hospital sites, radiology physicians’ offices and radiology reading rooms. All measured PDMs were equipped with the manufacturer’s built-in photometers and connected to Barcomore » MediCal QA web service for manual and automatic quality control measurements. PDM combinations included 1, 2 and 4 monitors depending on the location. TG-18 and SMPTE test patterns were used to evaluate monitor performance. Results: All the PDMs exceeded the luminance ratio of 250:1, as required by NYC PDM guidelines. One PDM failed the NYC requirement for the minimal luminance level of 350 cd/m2. As compared to the external photometer, the difference in measurement of the maximum luminance with the built-in photometer was found to exceed 5% on 6 of the PDM measured, with a maximum deviation of 10%. The age of the monitors that failed was on average 5 years. All monitors passed the luminance uniformity test, which was 30% from the center of the monitor to the 4 corner locations. Four PDMs failed the Gray Scale Display Function (GSDF) calibration. Conclusion: For the consistent display of medical images and continued conformance with the DICOM GSDF standard, it is essential to compare the performance of the built-in photometer with an externally calibrated photometer for monitors that are older than 5 years.« less
Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley
NASA Astrophysics Data System (ADS)
Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.
2014-12-01
Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of this OOA fraction was about 0.6 and 1.3, respectively. Organic functional group analysis showed that OOA observed after fog dissipation was characterized by organic-sulfur and organic-nitrogen species.
Near-infrared extension of a visible spectrum airborne Sun photometer
NASA Astrophysics Data System (ADS)
Starace, Marco; von Bismarck, Jonas; Hollstein, André; Ruhtz, Thomas; Preusker, René; Fischer, Jürgen
2013-05-01
The continuously-measuring, multispectral airborne Sun and aureole photometers FUBISS-ASA and FUBISSASA2 were developed at the Institute for Space Sciences of the Freie Universität Berlin in 2002 and 2006 respectively, for the retrieval of aerosol optical and microphysical parameters at wavelengths ranging from 400 to 900 nm. A multispectral near-infrared direct sun radiometer measuring in a spectral range of 1000 to 1700 nm has now been added to FUBISS-ASA2. The main objective of this NIR extension is to enhance the characterization of larger aerosol particles, as Mie scattering theory offers a more accurate approximation for their interaction with electromagnetic radiation, if both the VIS and NIR parts of the spectrum are considered, than it does for the VIS part only. The spectral transmissivity of atmospheric models was computed using the HITRAN2008 database in order to determine local absorption minima suitable for aerosol retrieval. Measurements were first carried out aboard the research vessel FS Polarstern on its transatlantic voyage ANT-XXVI/1. Additional measurements were performed from the Sphinx High Altitude Research Station on the Jungfraujoch and in the nearby Kleine Scheidegg locality during the CLACE2010 measurement campaign. Aerosol optical parameters derived from VIS aureole and direct sun measurements were compared to those of simulated aerosol mixtures in order to estimate the composition of the measured aerosol.
Hiscock, R; Kumar, D; Simmons, S W
2015-05-01
We assessed agreement in haemoglobin measurement between Masimo pulse co-oximeters (Rad-7™ and Pronto-7™) and HemoCue® photometers (201+ or B-Hemoglobin) with laboratory-based determination and identified 39 relevant studies (2915 patients in Masimo group and 3084 patients in HemoCue group). In the Masimo group, the overall mean difference was -0.03 g/dl (95% prediction interval -0.30 to 0.23) and 95% limits of agreement -3.0 to 2.9 g/dl compared to 0.08 g/dl (95% prediction interval -0.04 to 0.20) and 95% limits of agreement -1.3 to 1.4 g/dl in the HemoCue group. Only B-Hemoglobin exhibited bias (0.53, 95% prediction interval 0.27 to 0.78). The overall standard deviation of difference was larger (1.42 g/dl versus 0.64 g/dl) for Masimo pulse co-oximeters compared to HemoCue photometers. Masimo devices and HemoCue 201+ both provide an unbiased, pooled estimate of laboratory haemoglobin. However, Masimo devices have lower precision and wider 95% limits of agreement than HemoCue devices. Clinicians should carefully consider these limits of agreement before basing transfusion or other clinical decisions on these point-of-care measurements alone.
Infrared studies of the circumsolar and night sky, April 1968 - 30 November 1971
NASA Technical Reports Server (NTRS)
Peterson, A. W.
1972-01-01
A program is summarized of infrared studies of the circumsolar and night sky conducted between April, 1968, and November 30, 1971, at the University of New Mexico. In addition to observations performed at Capillo Peak Observatory in New Mexico, airborne observations from the Ames Research Center's CV990 were performed in 1968, and eclipses in Siberia (1968) and southern Mexico (1970) were observed. Two dual-channel filter photometers covering wavelengths in the 0.8 to 4.8 micron range were constructed for the aircraft and eclipse observations. A single channel differential photometer was constructed for daytime circumsolar observations. Two large-aperture (12 inch and 24 inch) photometers have been constructed for twilight and night sky photometry. Finally, a small spectrograph for eclipse work has been constructed. It has been used for airglow observations also. Other specialized instrumentation include a four-axis mounting for radial scanning with the eclipse photometers and a 14-inch diameter collimator for use with a black body in calibration of the photometers. The observations performed are included.
Photometer Performance Assessment in Kepler Science Data Processing
NASA Technical Reports Server (NTRS)
Li, Jie; Allen, Christopher; Bryson, Stephen T.; Caldwell, Douglas A.; Chandrasekaran, Hema; Clarke, Bruce D.; Gunter, Jay P.; Jenkins, Jon M.; Klaus, Todd C.; Quintana, Elisa V.;
2010-01-01
This paper describes the algorithms of the Photometer Performance Assessment (PPA) software component in the science data processing pipeline of the Kepler mission. The PPA performs two tasks: One is to analyze the health and performance of the Kepler photometer based on the long cadence science data down-linked via Ka band approximately every 30 days. The second is to determine the attitude of the Kepler spacecraft with high precision at each long cadence. The PPA component is demonstrated to work effectively with the Kepler flight data.
Ultraviolet absorption hygrometer
Gersh, M.E.; Bien, F.; Bernstein, L.S.
1986-12-09
An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.
Neutrino Opacity in High Density Nuclear Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Sergio M. dos; Razeira, Moises; Vasconcellos, Cesar A.Z.
2004-12-02
We estimate the contribution of the nucleon weak magnetism on the neutrino absorption mean free path inside high density nuclear matter. In the mean field approach, three different ingredients are taken into account: (a) a relativistic generalization of the approach developed by Sanjay et al.; (b) the inclusion of the nucleon weak-magnetism (c) and the pseudo-scalar interaction involving the nucleons. Our main result shows that the neutrino absorption mean free path is three times the corresponding result obtained by those authors.
The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds
NASA Technical Reports Server (NTRS)
Cooke, Brian; Thompson, Richard; Standley, Shaun
2012-01-01
The Kepler mission is described in overview and the Kepler technique for discovering exoplanets is discussed. The design and implementation of the Kepler spacecraft, tracing the data path from photons entering the telescope aperture through raw observation data transmitted to the ground operations team is described. The technical challenges of operating a large aperture photometer with an unprecedented 95 million pixel detector are addressed as well as the onboard technique for processing and reducing the large volume of data produced by the Kepler photometer. The technique and challenge of day-to-day mission operations that result in a very high percentage of time on target is discussed. This includes the day to day process for monitoring and managing the health of the spacecraft, the annual process for maintaining sun on the solar arrays while still keeping the telescope pointed at the fixed science target, the process for safely but rapidly returning to science operations after a spacecraft initiated safing event and the long term anomaly resolution process.The ground data processing pipeline, from the point that science data is received on the ground to the presentation of preliminary planetary candidates and supporting data to the science team for further evaluation is discussed. Ground management, control, exchange and storage of Kepler's large and growing data set is discussed as well as the process and techniques for removing noise sources and applying calibrations to intermediate data products.
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann
2009-02-01
Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.
Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story
NASA Technical Reports Server (NTRS)
2001-01-01
World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.
NASA Astrophysics Data System (ADS)
Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna
2008-04-01
SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
NASA Technical Reports Server (NTRS)
Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.
2013-01-01
Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to approximately 0.94-0.95 +/- 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA approximately 0.89-0.90 +/- 0.04). The aerosol Absorption Angstrom Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East-West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. Acomparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA approximately 0.90 at 470-500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East-West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
NASA Astrophysics Data System (ADS)
Liakakou, Eleni; Stravroulas, Jason; Roukounakis, Nikolaos; Paraskevopoulou, Despina; Fourtziou, Luciana; Psiloglou, Vassilis; Gerasopoulos, Evangelos; Sciare, Jean; Mihalopoulos, Nikolaos
2014-05-01
Black carbon (BC) is a particulate pollutant species emitted from the combustion of fuels, biomass burning for agricultural purposes and forest fires, with the first two anthropogenic sources being the major contributors to the atmospheric burden of BC. The presence of BC is important due to its direct and indirect physicochemical effects and its use as a tracer of burning and subsequent transport processes. Black carbon measurements took place during winter 2013 -2014 in the frame of a pollution monitoring experiment conducted at the urban site of Thissio, Athens (city center) at the premises of the National Observatory of Athens. The economic crisis in Greece and the resulting turn of Athens inhabitants to wood burning for domestic heating, has led to increased daily concentrations of BC in the range of 2-6 μg m-3, peaking at night time (15-20 μg m-3). Three different optical methods were used for the determination of BC. A Particle Soot Absorption Photometer (PSAP; Radiance Research) commercial instrument was used to monitor the light absorption coefficient (σap) at 565 nm of ambient aerosols, with 1 minute resolution. During parts of the campaign, a portable Aethalometer (AE-42; Magee Scientific) was also used to provide measurement of the aerosol BC content at 7 wavelengths over 5 minutes intervals. Exploiting the measurements at different wavelengths is was feasible to separate wood burning BC from BC related to fossil fuel. Two Multi Angle Absorption Photometers (MAAP; Thermo) were also operated as reference. Finally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, and the filters were analyzed for elemental carbon (EC) by a thermal - optical transmission technique. The main objective of the study is the intercomparison of the different BC monitoring techniques under a large range of ambient concentrations achieved due to the special circumstance occurring in Athens with the rapid increase of BC emission due to wood burning. In parallel, the BC measurements are used for the estimation of the contribution of wood burning in fireplaces and wood-stoves in ambient PM levels, compared to other known sources of local pollution (e.g. traffic, central heating).
The Whipple Mission: Design and development of the focal plane
NASA Astrophysics Data System (ADS)
Kenter, A.; Kraft, R.; Murray, S. S.; Gauron, T.; Alcock, C.; Vrtilek, J.
2014-12-01
Whipple is a proposed space borne mission intended to detect and characterize thesize and spatial distribution of Trans Neptunian Objects (TNOs) using the ``blind'' occultation technique. This technique measures the size of, and distance to, a TNO by discerning features of the Fresnel diffraction pattern that is produced when a TNO intercepts the light path between a distant star and the observatory. As the observatory transects the diffraction pattern, it resolves that pattern as a light curve using a differential photometer. The light curve decrement is relatively large (few percent) and the temporal duration is short. For a TNO in the Kuiper Belt the duration is a fraction of a second. For objects in the Oort cloud the duration is ~ a few seconds. Since a blind occultation event is rare, tens of thousands of stars need to be observed simultaneously over several years to accumulate sufficient statistics. Stars need to be observed at cadences up to 40 Hz with a read noise <20e rms (post CDS)Though this is beyond the capability of CCDs, such a high speed, low noise, multi-object differential photometer instrument can be implemented with CMOS imaging technology. The proposed focal plane for the Whipple photometer consists of nine Teledyne HyVISI Silicon hybrid CMOS detectors behind a 77cm F1.34 optic. The detectors consist of 1k by 1k 36 micron pitch pixels and each detector is connected to its own SIDECAR ASIC. Due to the high cadence required, the detectors are operatedin window readout mode. Approximately 700 stars per detector, each in a 2x2 pixel window, will be read out at 40Hz. Progressively more stars can be observed as the cadence decreases, until the limit of the SIDECAR memory is reached at about 4,000 windows The lack of atmospheric turbulence combined with the large field of view and high, speed low noise performance of the focal plane will provide the Whipple mission with unprecedented capability in exploring our Solar System.
Intercomparison of Open-Path Trace Gas Measurements with Two Dual Frequency Comb Spectrometers
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; Giorgetta, Fabrizio R.; Swann, William C.; Coburn, Sean; Wright, Robert J.; Rieker, Gregory B.; Coddington, Ian; Newbury, Nathan R.
2017-01-01
We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm−1 (1565 to 1661 nm), corresponding to a 367 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5×10−4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14% (0.57 ppm) for CO2, 0.35% (7 ppb) for CH4, and 0.40% (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4. PMID:29276547
The High Speed Photometer for the Space Telescope
NASA Technical Reports Server (NTRS)
Bless, R. C.
1982-01-01
An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.
An International Haze-Monitoring Network for Students.
NASA Astrophysics Data System (ADS)
Mims, Forrest M., III
1999-07-01
The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international network of schools in 71 countries that monitors up to 20 environmental parameters. Recently GLOBE added a haze-monitoring program to its measurement protocols. This network has the potential of providing important data about changes in the aerosol optical depth of the atmosphere caused by weather fronts, industrial and automobile pollution, and smoke from forest and brush fires and volcanic eruptions. Initially, monitoring will be conducted with an inexpensive, single-channel (520 nm) sun photometer. Unlike conventional sun photometers that use interference filters that are subject to unpredictable and rapid degradation, the GLOBE instrument uses a common light-emitting diode (LED) as a spectrally selective detector. Annual calibrations of two LED sun photometers at Mauna Loa Observatory since 1992 show that these instruments have insignificant degradation when compared to filter sun photometers. Some 175 prototype versions of a kit LED sun photometer have been assembled and tested by students from 16 countries at the University of the Nations and by more than 130 high school teachers in various pilot studies. These studies have demonstrated that even inexperienced students and teachers can quickly assemble a sun photometer from a kit of parts and perform a reliable angley calibration. The pilot studies have also demonstrated that sun photometery provides a convenient means for allowing students to perform hands-on science while they learn about various topics in history, electronics, algebra, statistics, graphing, and meteorology.
Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.
2017-12-01
The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.
Remote air pollution measurement
NASA Technical Reports Server (NTRS)
Byer, R. L.
1975-01-01
This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.
Nitrous acid (HONO) measurements during winter haze events in Beijing
NASA Astrophysics Data System (ADS)
Bloss, W.; Kramer, L. J.; Crilley, L.; Lee, J. D.; Squires, F. A.; Tong, S.
2017-12-01
Daytime HONO levels can reach several parts per billion in megacities during winter haze events and hence act as the dominant (primary) precursor to OH radicals in the urban boundary layer, and affect NOx abundance. Understanding the sources of HONO is therefore important to quantify atmospheric oxidative capacity and secondary pollutant formation during such haze events. Despite decades of research, there are still large uncertainties in HONO formation mechanisms, and as a result models often substantially underestimate peak HONO levels. In this study, measurements of HONO were performed at the Institute of Atmospheric Physics (IAP) site located in central Beijing during Nov/Dec 2016, across both haze and non-haze events. Using a commercial long-path absorption photometer (LOPAP), vertical profiles of HONO concentrations up to a height of 260 m on the IAP Meteorological Tower were performed, as well as continuous near-surface measurements. Preliminary results showed that HONO levels near the ground were very high during the winter haze events with concentrations over 10 ppbV observed. Typically, during the vertical profiles a negative gradient was observed, indicating a large HONO source close to the surface. However, during some of the profiles elevated HONO concentrations were also observed at higher altitudes pointing to a strong source within the boundary layer. Co-located NOx and SO2 measurements are used to elucidate potential HONO sources from direct emissions, homogeneous gas phase reactions and heterogeneous conversion of NO2 on surfaces. Results from ground level HONO/NOx ratios show a midday peak during clean periods indicating a photo-enhanced process, which was not apparent during hazy days. The potential impact of these findings on the OH radical budget in wintertime Beijing will be discussed.
GOES Satellite Data Validation Via Hand-held 4 LED Sun Photometer at Norfolk State University
NASA Technical Reports Server (NTRS)
Reynolds, Arthur, Jr.; Jackson, Tyrone; Reynolds, Kevin; Davidson, Cassy; Coope-Pabis, Barbara
2005-01-01
Sun photometry is a passive means of measuring a quantity of light radiation. The GIFTS- IOMI/GLOBE Water Vapor/Haze Sun photometer contains four light emitting diodes (LEDs), which are used to convert photocurrent to voltage. The intensity of the incoming and outgoing radiation as detected on the Earth s surface can be affected by aerosols and gases in the atmosphere. The focus of this research is primarily on aerosol and water vapor particles that absorb and reemit energy. Two LEDs in the photometer correspond to light scattered at 530 nm (green spectrum) and 620 nm (red spectrum). They collect data pertaining to aerosols that scatter light. The other two LEDs detect the light scattered by water vapor at wavelengths of 820 nm and 920 nm. The water vapor measurements will be compared to data collected by the Geostationary Observation Environmental Satellite (GOES). Before a comparison can be made, the extraterrestrial constant (ET), which is intrinsic to each sun photometer, must be measured. This paper will present determination of the ET constant, from which the aerosol optical thickness (AOT) can be computed for comparison to the GOES satellite to ascertain the reliability of the sun photometer.
Terahertz atmospheric attenuation and continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.
2013-05-01
Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.
1994-01-01
Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.
NASA Astrophysics Data System (ADS)
Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.
2018-05-01
Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.
MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.
1986-01-01
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
NASA Astrophysics Data System (ADS)
Goelzer, J.; Varner, R. K.; Levergood, R.; Sullivan, F.; Palace, M. W.; Haney, J. F.; Rock, B. N.; Smith, C. W.
2017-12-01
The month long residential Marine and Environmental Science research program for high school students at the University of New Hampshire connects students with university researchers. This educational program provides upper level high school students who are considering majors in the earth and environmental sciences with the opportunity to perform field work and conduct authentic research. This year's program introduced students to four modules exploring topics ranging from forest ecology to island ecosystems. The unifying theme between modules was the use of spectroscopy and remote sensing as a method of assessing the characteristics of ecosystems. Students constructed their own photometers utilizing eight specific Light Emitting Diodes (LEDs) spanning a wavelength range from 400 to 1200 nm. An Ultra Violet (UV) LED, four visible LEDs, and three different infrared LEDs were selected to detect light reflected by plant pigments and tissues. Students collected data using their photometers and compared results to an actual Analytical Spectral Device (ASD) reflectance data, mounted eight photometers on an unmanned aerial system (UAS) to collect forest canopy data and collected data from island rock pools. The students compared their photometer readings to data collected using a fluorometer to identify the presence of phycocyanin produced by cyanobacteria and chlorophyll produced by algae in the rock pools. Students found that the photometer data were comparable to the ASD data for several wavelengths, but recommended several changes. It was determined that to be useful for forest health assessment, two of the three infrared LEDs had the incorrect gain settings, and that for rock pool studies, the infrared LEDs were not necessary. Based on the student findings, we will refine the photometers for next year's program. The photometers constructed this summer will be utilized in high schools classes during the 2017-2018 school year. This low cost project will bring what is normally a university level STEM experience into the high school classroom with university faculty, students and staff collaborating with high school teachers and students.
Du, Juan; Zhu, Yadan; Li, Shiguang; Zhang, Junxuan; Sun, Yanguang; Zang, Huaguo; Liu, Dan; Ma, Xiuhua; Bi, Decang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao
2017-09-01
A ground-based double-pulse integrated path differential absorption (IPDA) instrument for carbon dioxide (CO 2 ) concentration measurements at 1572 nm has been developed. A ground experiment was implemented under different conditions with a known wall located about 1.17 km away acting as the scattering hard target. Off-/offline testing of a laser transmitter was conducted to estimate the instrument systematic and random errors. Results showed a differential absorption optical depth (DAOD) offset of 0.0046 existing in the instrument. On-/offline testing was done to achieve the actual DAOD resulting from the CO 2 absorption. With 18 s pulses average, it demonstrated that a CO 2 concentration measurement of 432.71±2.42 ppm with 0.56% uncertainty was achieved. The IPDA ranging led to a measurement uncertainty of 1.5 m.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
Optical Path Switching Based Differential Absorption Radiometry for Substance Detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2000-01-01
A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
Precision limits of the twin-beam multiband URSULA
NASA Technical Reports Server (NTRS)
Debiase, G. A.; Paterno, L.; Fedel, B.; Santagati, G.; Ventura, R.
1988-01-01
URSULA is a multiband astronomical photoelectric photometer which minimizes errors introduced by the presence of the atmosphere. It operates with two identical channels, one for the star to be measured and the other for a reference star. After a technical description of the present version of the apparatus, some measurements of stellar sources of different brightness, and in different atmospheric conditions are presented. These measurements, based on observations made with the 91 cm Cassegrain telescope of the Catania Astrophysical Observatory, are used to check the photometer accuracy and compare its performance with that of standard photometers.
NASA Astrophysics Data System (ADS)
Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua
2015-10-01
Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.
NASA Technical Reports Server (NTRS)
Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.;
2006-01-01
The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state-of-the-art instrumentation is 15-20% at visible wavelengths and potentially larger in the UV and near-infrared.
Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju
2016-10-01
A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.
Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; ...
2017-09-11
We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at ∼ 30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less
Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing
We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at ∼ 30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less
A pulse-mode two channel rocket photometer
NASA Astrophysics Data System (ADS)
Petkov, N. P.
Benefits of vertical profile measurements of nighttime emission in the upper atmosphere are discussed. The block diagram of a two-channel rocket photometer with a common pulse operating mode for both channels is described. The requirements and features of the basic units are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, M.; Bostater, C.
1997-06-01
A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less
Cavity ring-down spectroscopy in the liquid phase
NASA Astrophysics Data System (ADS)
Xu, Shucheng; Sha, Guohe; Xie, Jinchun
2002-02-01
A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.
Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring
This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...
Are non-linearity effects of absorption important for MAX-DOAS observations?
NASA Astrophysics Data System (ADS)
Pukite, Janis; Wang, Yang; Wagner, Thomas
2017-04-01
For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).
NASA Technical Reports Server (NTRS)
Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.
2013-01-01
We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.
NASA Astrophysics Data System (ADS)
Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas
2006-08-01
A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO2, HCHO, SO2, H2O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.
O'Shaughnessy, P T; Hemenway, D R
2000-10-01
Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.
Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.
Hernandez, Wilmar
2008-01-09
In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.
Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station
NASA Astrophysics Data System (ADS)
Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas
2015-04-01
In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar-Radiometer Inversion Code algorithm) [Chaikovsky et al., 2008]. The retrieved volume concentration profiles were compared with data from ATR flights above the station at 14:30 UTC on 16 June and 07:30 UTC on 17 June, obtaining in general good agreement in the location of the aerosol layers and discrepancies in the volume concentration values ranging between 15 and 40 µm3/cm3 for the coarse mode. References: Chaikovsky, A., O. Dubovik, et a., (2008), Software package for the retrieval of aerosol microphysical properties in the vertical column using combined lidar/photometer data, Tech. Rep., Institute of Physics, National Academy of Sciences of Belarus. Acknowledgments: EARLINET lidar measurements are supported by the 7th Framework Programme project Aerosols, Clouds, and Trace Gases Research Infrastructure Network (ACTRIS) (grant agreement no. 262254). The field campaign was performed in the framework of work package 4 on aerosol-radiation-climate interactions of the coordinated programme ChArMEx.
NASA Astrophysics Data System (ADS)
Mamun, M.; Mondol, P.
2012-12-01
Aerosols influence our weather and climate because they affect the amount of sunlight reaching Earth's surface. An important way of probing the atmosphere from the ground is to measure the effects of the atmosphere on sunlight transmitted through the atmosphere to Earth's surface. These indirect techniques provide information about the entire atmosphere above the observer, not just the atmosphere that can be sampled directly. In response to global issues of air quality and climate change, and to the need to improve the quality of science education, inexpensive atmosphere monitoring instruments have been developed. This paper describes a new kind of inexpensive two channels LED Sun Photometer for monitoring aerosols that provide much better long-term stability than instruments that use expensive interference filters. Here HAZE-SPAN TERC VHS-1 model has been used for constructing sun photometer with light emitting diode as detector. Monitoring Earth's atmosphere is a challenging task. As there is no facility in our country (Bangladesh) for ground based measurement for monitoring aerosol so, this type of study is very essential. This study compares the aerosol optical depth (AOD) retrieved from the Terra and Aqua MODerate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a handheld sun photometer over the region of Rajshahi, Bangladesh for The 15 days duration of June 2012. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the handheld sun photometer. The correlation coefficients r = 0.88 for Terra and r = 0.55 for Aqua where as r = 0.65 for Terra and Aqua themselves. AOD for another wavelength at 625 nm is documented in this study for finding out the relation of AOD at different wavelengths. In this paper it has been described and summarized briefly investigations for four important topics: LEDs used as light detectors, construction of sun photometer and its use, the measurements and monitoring of Aerosol Optical Depth (AOD) by using handheld sun photometer, and the comparison between satellite based and ground based measurements.
Aerosol Optical Depth Determinations for BOREAS
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)
1994-01-01
Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10:30 local time and cleared fully by 11:30. Heavy smoke characterized the rest of the IFC in both study areas.
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
Photometer for detection of sodium day airglow.
NASA Technical Reports Server (NTRS)
Mcmahon, D. J.; Manring, E. R.; Patty, R. R.
1973-01-01
Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.
Ten-color Gegenschein-zodiacal light photometer. [onboard Skylab
NASA Technical Reports Server (NTRS)
Sparrow, J. G.; Weinberg, J. L.; Hahn, R. C.
1977-01-01
A ten-color Fabry photometer was used during Skylab missions SL-2 and SL-3 to measure sky brightness and polarization associated with zodiacal light, background starlight, F region airglow, and spacecraft corona. A brief description is given of the design, calibration, and performance of the instrument.
Sensitive Small Area Photometer
ERIC Educational Resources Information Center
Levenson, M. D.
1970-01-01
Describes a simple photometer capable of measuring small light intensities over small areas. The inexpensive, easy-to- construct instrument is intended for use in a student laboratory to measure the light intensities in a diffraction experiment from single or multiple slits. Typical experimental results are presented along with the theoretical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.L.
1976-01-06
The shutter and beam expander for diverting the output of a high power laser into an absorption body comprises a onepiece metallic structure having a convex spherically shaped portion adapted to be moved into the beam path for simultaneously reflecting and expanding the beam into energy absorption material.
Spectroscopic method for determination of the absorption coefficient in brain tissue
NASA Astrophysics Data System (ADS)
Johansson, Johannes D.
2010-09-01
I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.
Functionalizing a Tapered Microcavity as a Gas Cell for On-Chip Mid-Infrared Absorption Spectroscopy
Mandon, Julien; Harren, Frans J. M.; Wolffenbuttel, Reinoud F.
2017-01-01
Increasing demand for field instruments designed to measure gas composition has strongly promoted the development of robust, miniaturized and low-cost handheld absorption spectrometers in the mid-infrared. Efforts thus far have focused on miniaturizing individual components. However, the optical absorption path that the light beam travels through the sample defines the length of the gas cell and has so far limited miniaturization. Here, we present a functionally integrated linear variable optical filter and gas cell, where the sample to be measured is fed through the resonator cavity of the filter. By using multiple reflections from the mirrors on each side of the cavity, the optical absorption path is elongated from the physical μm-level to the effective mm-level. The device is batch-fabricated at the wafer level in a CMOS-compatible approach. The optical performance is analyzed using the Fizeau interferometer model and demonstrated with actual gas measurements. PMID:28878167
A Performance Comparison for Two Versions of the Vulcan Photometer
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Caldwell, D. A.; Koch, D. G.; Jenkins, J. M.; Showen, R. L.
2001-01-01
Analysis of the images produced by the first version (V1) of the Vulcan photometer indicated that two major sources of noise were sky brightness and image motion. To reduce the effect of the sky brightness, a second version (V2) with a longer focal length and a larger format detector was developed and tested. The first version consisted of 15-centimeter (cm) focal length, F/1.5 Aerojet Delft reconnaissance lens, and a 2048 x 2048 format front-illuminated charged coupled device (CCD) with 9 microns micropixels (Mpixels). The second version used a 30-cm focal length, F/2.5 Kodak AeroEktar lens, and a 4096 x 4096 format CCD with 9 micro pixels. Both have a 49-square-degree field of view (FOV) but the area of the sky subtended by each pixel in the V2 version is one-fourth that of the V1 version. This modification substantially reduces the shot noise due to the sky background and allows fainter stars to be monitored for planetary transits. To remove the data gap and consequent signal-level change caused by flipping the photometer around the declination axis and to reduce image movement on the detector, several other modifications were incorporated. These include modifying the mount and stiffening the photometer and autoguider structures to reduce flexure. This paper compares the performance characteristics of each photometer and discusses tests to identify sources of systematic noise.
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking
NASA Astrophysics Data System (ADS)
Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.
2016-12-01
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a wide dynamic range camera that provides a high precision solar position tracking signal as well as an image of the sky in the 45° field of view around the solar axis, which can be of great assistance in flagging data for cloud effects or other factors that might impact data quality.
Long term aerosol and trace gas measurements in Central Amazonia
NASA Astrophysics Data System (ADS)
Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.
2016-04-01
The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported biomass burning alters atmospheric composition very significantly. AOT can reach values as high as 2-3 at 550 nm, and concentrations of aerosol species and trace gases are strongly enriched.
OPEN PATH AMBIENT MEASUREMENTS OF POLLUTANTS WITH A DOAS SYSTEM
A differential optical absorption spectrometer (DOAS) has been in operation since August 1991 at the U.S. EPA in RTP, NC. he analyzer unit is located in an environmentally-controlled shelter in the EPA parking lot. our separate open optical paths have been established, ranging fr...
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Filter type rotor for multistation photometer
Shumate, II, Starling E.
1977-07-12
A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.
21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Colorimeter, photometer, or spectrophotometer for clinical use. 862.2300 Section 862.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES...
21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Colorimeter, photometer, or spectrophotometer for clinical use. 862.2300 Section 862.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES...
21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Colorimeter, photometer, or spectrophotometer for clinical use. 862.2300 Section 862.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES...
NASA Astrophysics Data System (ADS)
Costa, A.; Mogo, S.; Cachorro, V.; de Frutos, A.; Medeiros, M.; Martins, R.; López, J. F.; Marcos, A.; Marcos, N.; Bizarro, S.; Mano, F.
2015-12-01
During the day November 26, 2014, a scheduled cleanup of the woods took place around the GOA-UVa aerosol measurement station located at the campus of the University of Beira Interior (40° 16’30”N, 7°30’35”W, 704m a.s.l.), Covilhã, Portugal. This cleanup included excessive vegetation removal during the morning, using fossil fuel-burning machinery, and burning of the vegetation during the afternoon. In situ measurements of aerosol optical properties were made and this study aims the characterization of the evolution of aerosol properties during the day. The optical parameters were monitored using a 3-wavelength nephelometer and a 3-wavelength particle soot absorption photometer. Selective sampling/exclusion of the coarse particles was done each 5 minutes. The scattering and absorption Ångström exponents as well as the single scattering albedo were derived and fully analyzed. The scattering and absorption coefficients increased dramatically during the event, reaching values as high as 720.3 Mm-1 and 181.9 Mm-1, respectively, for the green wavelength and PM10 size fraction. The spectral behavior of these parameters also changed wildly along the day and an inversion of the slope from positive to negative in the case of the single scattering albedo was observed.
NASA Astrophysics Data System (ADS)
Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.
2017-12-01
A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer) to obtain organic aerosol concentrations. Results from the KORUS-OC data set will be discussed. In particular, the relationships between the optical information and chemical information will be examined.
Light Absorption of Biogenic Aerosol Particles in Amazonia
NASA Astrophysics Data System (ADS)
Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.
2014-12-01
Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm. Single scattering albedo values will be calculated.
Cremers, D.A.; Keller, R.A.
1984-05-08
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.
Advanced industrial fluorescence metrology used for qualification of high quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker
2003-11-01
Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.
2017-05-01
The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.
Build Your Own Photometer: A Guided-Inquiry Experiment to Introduce Analytical Instrumentation
ERIC Educational Resources Information Center
Wang, Jessie J.; Nun´ez, Jose´ R. Rodríguez; Maxwell, E. Jane; Algar, W. Russ
2016-01-01
A guided-inquiry project designed to teach students the basics of spectrophotometric instrumentation at the second year level is presented. Students design, build, program, and test their own single-wavelength, submersible photometer using low-cost light-emitting diodes (LEDs) and inexpensive household items. A series of structured prelaboratory…
Narrowband NanoSat Scale Photometry for VUV Planetary and Heliophysics missions
NASA Astrophysics Data System (ADS)
Noto, J.; Doe, R. A.; Frey, H. U.
2015-12-01
Remote vacuum ultraviolet (VUV) soundings to support Explorer-class atmospheric research are typically enabled by large aperture, wideband spectrographs carefully pointed to measure a planet's disk and limb regions (i.e. TIMED/GUVI and MAVEN/UVS). An alternate measurement paradigm is to identify key aeronomical emission targets (i.e HI 121.6-nm, OI 135.6-nm, N2 Lyman-Birge-Hopfield band 135 - 155 nm) and create a series of narrowband photometers each with greater in-band sensitivity (relative to a spectrograph) due to enhanced out-of-band rejection and absence of a dispersive element. Recent advances in narrowband VUV coating and PMT miniaturization have enabled design of a dual-channel nanosatellite-scale VUV photometer with flight heritage significantly leveraged from the NASA POLAR UVI imager the Air Force CubeSat Tiny Ionospheric Photometer (CTIP). Herein we present further modeled sensitivity studies and current build status of the dual-channel thermosphere/ionosphere photometer (DTIP) and address notional missions including dayside O/N2 composition, auroral energetics, nightside plasma structuring and peak layer characterization, and hydrogen geocoronal tomographic imaging.
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.; Schwenn, R.
1992-01-01
We display the electron Thomson scattering intensity of the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps. The technique extrapolates the brightness information from each photometer sector near the Sun and constructs a latitude/longitude map at a given solar height. These data are unique in that they give a determination of heliospheric structures out of the ecliptic above the primary region of solar wind acceleration. The spatial extent of bright, co-rotating heliospheric structures is readily observed in the data north and south of the ecliptic plane where the Helios photometer coverage is most complete. Because the technique has been used on the complete Helios data set from 1974 to 1985, we observe the change in our synoptic maps with solar cycle. Bright structures are concentrated near the heliospheric equator at solar minimum, while at solar maximum bright structures are found at far higher heliographic latitudes. A comparison of these maps with other forms of synoptic data are shown for two available intervals.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2013-11-10
Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated the accuracies of two relatively new micrometeorological methods using open-path tunable diode laser absorption spectrometers: vertical radial plume mapping method (US EPA OTM-10) and the backward Lagragian stochastic method (Wintrax®). We have evaluated the accuracy of t...
NASA Technical Reports Server (NTRS)
Schmid, Beat; Spyak, Paul R.; Biggar, Stuart F.; Joerg, Sekler; Ingold, Thomas; Maetzler, Christian; Kaempfer, Niklaus
2000-01-01
Over a period of 3 year a precision Sun photometer (SPM) operating between 300 and 1025 nm was calibrated four times at three different high-mountain sites in Switzerland, Germany, and the United States by means of the Langley-plot technique. We found that for atmospheric window wavelengths the total error (2 sigma-statistical plus systematic errors) of the calibration constants V(sub 0)(lambda), the SPM voltage in the absence of any attenuating atmosphere, can be kept below 1.60% in the UV-A and blue, 0.9% in the mid-visible, and 0.6% in the near-infra red spectral region. For SPM channels within strong water-vapor or ozone absorption bands a modified Langley-plot technique was used to determine V(sub 0)(lambda) with a lower accuracy. Within the same period of time, we calibrated the SPM five times using irradiance standard lamps in the optical labs of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Switzerland, and of the Remote Sensing Group of the Optical Sciences Center, University of Arizona, Tucson, Arizona. The lab calibration method requires knowledge of the extraterrestrial spectral irradiance. When we refer the standard lamp results to the World Radiation Center extraterrestrial solar irradiance spectrum, they agree with the Langley results within 2% at 6 or 13 SPM wavelengths. The largest disagreement (4.4%) is found for the channel centered at 610 nm. The results of these intercomparisons change significantly when the lamp results are referred to two different extraterrestrial solar irradiance spectra that have become recently available.
NASA Technical Reports Server (NTRS)
Kavaya, M. J. (Inventor)
1981-01-01
A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.
NASA Astrophysics Data System (ADS)
Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka
2016-03-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.
NASA Astrophysics Data System (ADS)
Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.
2015-09-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.
Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code
NASA Astrophysics Data System (ADS)
Phillips, William; Russwurm, George M.
1999-02-01
This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.
Aerosol Absorption and Radiative Forcing
NASA Technical Reports Server (NTRS)
Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier
2007-01-01
We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0.02W m(sup -2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.
Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H
1995-03-01
A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.
A Two Micron Coherent Differential Absorption Lidar Development
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.;
2010-01-01
A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,
The Effect of Absorptive Capacity Perceptions on the Context Aware Ubiquitous Learning Acceptance
ERIC Educational Resources Information Center
Lin, Hsiu-Fen
2013-01-01
Purpose: The purpose of this study is to examine the impact of absorptive capacity (understanding, assimilating and applying u-learning) perceptions on behavioral intention to use u-learning through path analysis and applies the technology acceptance model (TAM) as a theoretical foundation, simultaneously improving the model by adopting prior…
The infrared spectral analysis of CF/sub 2Cl/sub 2
NASA Technical Reports Server (NTRS)
1984-01-01
The CF2Cl2 absorption bands at 1/923 cm and 1/1161 cm are examined as to their detectability in long-path solar spectroscopy. Measurements are reported for a long-path White Cell. A cryo-condensation unit was also constructed to test its ability to improve detection of trace gases in the ambient atmosphere.
Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng
2016-03-01
Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.
AOT Retrieval Procedure for Distributed Measurements With Low-Cost Sun Photometers
NASA Astrophysics Data System (ADS)
Toledo, F.; Garrido, C.; Díaz, M.; Rondanelli, R.; Jorquera, S.; Valdivieso, P.
2018-01-01
We propose a new application of inexpensive light-emitting diode (LED)-based Sun photometers, consisting of measuring the aerosol optical thickness (AOT) with high resolution within metropolitan scales. Previously, these instruments have been used at continental scales by the GLOBE program, but this extension is already covered by more expensive and higher-precision instruments of the AERONET global network. For this we built an open source two-channeled LED-based Sun photometer based on previous developments, with improvements in the hardware, software, and modifications on the calibration procedure. Among these we highlight the use of MODTRAN to characterize the effect introduced by using LED sensors in the AOT retrieval, an open design available for the scientific community and a calibration procedure that takes advantage of a CIMEL Sun photometer located within the city, enables the intercomparison of several LED Sun photometers with a common reference. We estimated the root-mean-square error in the AOT retrieved by the prototypes as 0.006 at the 564 nm and 0.009 at the 408 nm. This error is way under the magnitude of the AOT daily cycle variability measured by us in our campaigns, even for distances closer than 15 km. In addition to inner city campaigns, we also show aerosol-tracing applications by measuring AOT variations from the city of Santiago to the Andes glaciers. Measuring AOT at high spatial resolution in urban areas can improve our understanding of urban scale aerosol circulation, providing information for solar energy planning, health policies, and climatological studies, among others.
Rapid and precise determination of ATP using a modified photometer
Shultz, David J.; Stephens, Doyle W.
1980-01-01
An inexpensive delay timer was designed to modify a commercially available ATP photometer which allows a disposable tip pipette to be used for injecting either enzyme or sample into the reaction cuvette. The disposable tip pipette is as precise and accurate as a fixed-needle syringe but eliminates the problem of sample contamination and decreases analytical time. (USGS)
Evaluation of an aerosol photometer for monitoring welding fume levels in a shipyard.
Glinsmann, P W; Rosenthal, F S
1985-07-01
A direct reading aerosol photometer (Sibata P-5 Digital Dust Indicator) was used to assess fume levels from welding and burning operations in a shipyard. The photometer was calibrated with gravimetric analysis of filter samples collected simultaneously with instrument readings. A six-fold difference between calibration factors for personal and area samples was found. This difference can be explained by expected changes in particle size distributions in welding fume. Monitoring of various work situations was performed in order to assess the value of the photometer for the measurement of fume. Measurements categorized by enclosure of space and quality of ventilation indicated the presence of high fume levels in semi-enclosed and enclosed spaces. The build up of welding fume in an enclosed space occurred over several minutes after the arc was struck. Decay likewise required several minutes. During welding, wide fluctuations of fume concentrations were found. Thus a single reading was not adequate to characterize average fume levels. Although this type of instrument is useful for locating areas with high fume levels and monitoring the effectiveness of ventilation, the uncertainty in calibration factors makes accurate determinations of fume levels difficult.
DOAS (differential optical absorption spectroscopy) urban pollution measurements
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Vossler, T. L.
1991-05-01
During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.
High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.
Bartlome, R; Baer, M; Sigrist, M W
2007-01-01
In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.
NASA Technical Reports Server (NTRS)
1988-01-01
The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.
2007-08-01
solely to the absorption by the calibration gas. By equating the path-integrated extinction to the total absorption, we have ε(1/m) = α(1/m), where 6 α...using a high-resolution (0.02 wave-number) Bomem MR Series FTIR spectrometer. A radiometrically stabilized IR Nernst glow-bar is used as the broadband
Chantler, C T; Bourke, J D
2014-04-09
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.
Distribution of photon absorption rates across the rat retina.
Williams, T P; Webbers, J P; Giordano, L; Henderson, R P
1998-04-15
1. An investigation into the distribution of light intensity across the rat retina was carried out on excised, intact rat eyes exposed to Ganzfeld illumination from a helium-neon laser (543 nm). 2. Some of the light entering the eyes exits through the sclera where its intensity can be monitored with an optical 'pick-up' that samples the intensity coming from a small region of external sclera and underlying retina. The spatial resolution of the pick-up is such that it samples light that has passed through ca 2 % of the rods in the rat eye. 3. Some of the laser light is absorbed by the rod pigment, rhodopsin, which gradually bleaches. Bleaching in the retina, in turn, causes an exponential increase in intensity emanating from the sclera. By monitoring this intensity increase, we are able to measure two important parameters in a single bleaching run: the local rhodopsin concentration and the local intensity falling on the rods. 4. With an ocular transmission photometer, we have measured both the local intensity and the local rhodopsin concentration across wide regions of rat retina. Both pigmented and albino rats were studied. 5. The distributions of rhodopsin and intensity were both nearly uniform; consequently, the product, (rhodopsin concentration) x (intensity), was similarly nearly equal across the retina. This means that the initial rate of photon absorption is about the same at all retinal locations. 6. Interpreted in terms of photostasis (the regulation of daily photon catch), this means that the rate of photon absorption is about the same in each rod, viz. 14 400 photons absorbed per rod per second. Since this rate of absorption is sufficient to saturate the rod, one possible purpose of photostasis is to maintain the rod system in a saturated state during daylight hours.
1997 Report to the Congress on Ballistic Missile Defense.
1997-10-01
Infrared Arrays • Quantum Well Infrared Photodector (QWIP) Focal Plane Array (FPA) • Staring Si Impurity Band Conduction Extremely Sensitive Focal...to be flown on STRV lc/d include a Quantum Well Infrared Photometer (QWIP) sensor and a multifunctional compos- ite structure. The Space Technology...Peoples Republic of China Platinum Silicide Quick Reaction Program Quick Response Program Quantum Well Infrared Photometer Research and
2007-04-14
Lunar CRater Observation and Sensing Satellite (LCROSS) and P.I. at NASA Ames Research Center - close up of Total Luminance Photometer: Metal shake table close up. Shows two units bolted on. The left one is the lens, sensor electronics and photometer sensor. The right is the digital electronics unit for the instrument. The two units, along with their cabling is one of the LCROSS science insruments.
2007-04-14
Lunar CRater Observation and Sensing Satellite (LCROSS) and P.I. at NASA Ames Research Center - Total Luminance Photometer shake test in N-244 (EEL) : Metal shake table close up. Shows two units bolted on. The left one is the lens, sensor electronics and photometer sensor. The right is the digital electronics unit for the instrument. The two units, along with their cabling is one of the LCROSS science insruments.
Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink
ERIC Educational Resources Information Center
LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina
2013-01-01
The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…
ERIC Educational Resources Information Center
Diawati, Chansyanah; Liliasari; Setiabudi, Agus; Buchari
2018-01-01
Students learned the principles and practice of photometry through project-based learning. They addressed the challenge of measuring the unknown concentration of a colored substance using a photometer they were required to design, build, and test. Then, they used that instrument to carry out the experiment and fulfill the challenge. A photometer…
Measurements of CO2, CH4, H2O, and HDO over a 2-km Outdoor Path with Dual-Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Sinclair, L. C.; Cromer, C.; Baumann, E.; Newbury, N. R.; Kofler, J.; Petron, G.; Sweeney, C.; Tans, P. P.
2013-12-01
We demonstrate simultaneous sensing of CO2, CH4, H2O, and HDO over a 2-km outdoor open air path using dual-frequency-comb absorption spectroscopy (DCS). Our implementation of the DCS technique simultaneously offers broad spectral coverage (>8 THz, 267 cm-1) and fine spectral point spacing (100 MHz, 0.0033 cm-1) with a coherent eye-safe beam. The spectrometer, which is adapted from [Zolot et al., 2012], consists of two mutually coherent Erbium-doped fiber frequency-comb lasers which create a broad spectrum of perfectly spaced narrow linewidth frequency elements (';comb teeth') near 1.6 μm. The comb light is transmitted by a telescope and active steering mirrors from the roof of the NIST Boulder laboratory to a 50-cm flat mirror located 1 km away. The return light is received by a second telescope and carried via multimode fiber to a detector. The greenhouse gas absorption attenuates the teeth from the two combs that are coincident with the relevant molecular resonant frequencies. We purposefully offset the frequencies between the two frequency combs in a Vernier-like fashion so that each pair of comb teeth from the two combs results in a unique rf heterodyne beat frequency on the photodiode. The spectral spacing between subsequent comb teeth pairs is 100 MHz, far lower than the ~4 GHz linewidths of small molecule absorption features in the atmosphere. Because of the narrow comb linewidth, there is an essentially negligible instrument lineshape. The measured absorption spectrum can thus resolve neighboring absorption features of different species, and can be compared directly with HITRAN and recent greenhouse gas absorption models developed for satellite- and ground-based carbon observatories to determine the path-integrated concentrations of the absorbing species. Measurements covering the complete 30013←00001 absorption band of CO2 and absorption features of CH4, H2O and HDO between 1.6-1.67 μm were performed under a variety of atmospheric conditions. During windy conditions when the atmosphere is well-mixed and species concentrations are stable, long-time-average data (240 min) are used to achieve high signal-to-noise ratio for careful comparisons of different spectral absorption models to the measured spectrum. Shorter five minute time resolution spectra are used to track fluctuations in atmospheric greenhouse gas concentrations over diurnal cycles and different weather conditions, and compared with simultaneous point-sampled measurements using a commercial cavity ringdown-based gas sensor. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury (2012), Direct-Comb Molecular Spectroscopy with Accurate, Resolved Comb Teeth over 43 THz, Opt. Lett., 37(4), 638-640. a) Transmitted intensity spectrum over the 2-km outdoor path showing the spectral intensity variations of the combs and fine structure from gas absorption. b) Background-corrected absorbance of CO2 (blue) fitted with a Hitran model (red). The CO2 concentration measured from the fit is 408 ppm.
NASA Technical Reports Server (NTRS)
Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.
2000-01-01
We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.P.
Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less
Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.
Hogg, D C; Guiraud, F O
1979-05-31
MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.
Moix, Jeremy M; Ma, Jian; Cao, Jianshu
2015-03-07
A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.
Tsuchiya, Y
2001-08-01
A concise theoretical treatment has been developed to describe the optical responses of a highly scattering inhomogeneous medium using functions of the photon path distribution (PPD). The treatment is based on the microscopic Beer-Lambert law and has been found to yield a complete set of optical responses by time- and frequency-domain measurements. The PPD is defined for possible photons having a total zigzag pathlength of l between the points of light input and detection. Such a distribution is independent of the absorption properties of the medium and can be uniquely determined for the medium under quantification. Therefore, the PPD can be calculated with an imaginary reference medium having the same optical properties as the medium under quantification except for the absence of absorption. One of the advantages of this method is that the optical responses, the total attenuation, the mean pathlength, etc are expressed by functions of the PPD and the absorption distribution.
An investigation of a mathematical model for atmospheric absorption spectra
NASA Technical Reports Server (NTRS)
Niple, E. R.
1979-01-01
A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.
NASA Technical Reports Server (NTRS)
Meyers, J. E.
1973-01-01
A series of analyses for Experiment T027/S073, contamination measurement, photometer and gegenschein/zodiacal light (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditons is presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
Measurements of the skylight scattering function.
Volz, F E
1987-10-01
A small, handheld skylight photometer, incorporated into a sun photometer and capable of measuring sky radiation to within 2 degrees of the sun at lambda 0.50 and 0.93 microm is described. Calibration procedures are discussed; solar measurements in the wideband 0.93-microm channel show the expected influence of water vapor. Formulas to obtain the aerosol scattering function are presented. Samples of measured and theoretical aerosol scattering functions are discussed.
Development of Hazards Classification Data on Propellants and Explosives
1978-11-01
scattering photometer. A near forward, dark field instrument called a Sinclair-Phoenix photometer is common- ly used for measuring a wide range of...hazardä classification pro- cedure for in-process materials, and 5) Experimental evaluation of selected small-scale tests for application in the hazards...responsible for the experimental por- tion of this work. In addition to the authors, other IITRI personnel who contributed to this program were R
Hand-Held Photometer for Instant On-Spot Quantification of Nucleic Acids, Proteins, and Cells.
Li, Shi-Hao; Jain, Abhinav; Tscharntke, Timo; Arnold, Tobias; Trau, Dieter W
2018-02-20
This paper presents a novel hand-held photometer, termed "Photopette", for on-spot absorbance measurements of biochemical analytes. The Photopette is a multicomponent, highly portable device with an overall weight of 160 g, which fits within 202 mm × 47 mm × 42 mm. Designed in the form factor of a micropipette, Photopette integrates a photodiode detector with light emitting diodes (LEDs) to form a highly customizable photometer which supports a wide variety of applications within the wavelengths between 260 and 1050 nm. A dual-purpose disposable reflective tip was designed to act as a sample holder and a light-reflecting system, which is in stark contrast to the operation of mainstream spectrophotometers and photometers. Small volume analytes may be measured with low sample loss using this proprietary CuveTip. A user-friendly software application running on smart devices was developed to control and read the values from Photopette via a low-energy Bluetooth link. This one-step strategy allows measurements on-spot without sample transfer, minimizing cross-contamination and human error. The results reported in this paper demonstrate Photopette's great potential to quantify DNA, direct protein, and cell density directly within the laminar flow hood. Results are compared with a Nanodrop 2000c spectrophotometer, a mainstream spectrophotometer for small-volume measurements.
Depolarization on Earth-space paths
NASA Technical Reports Server (NTRS)
1981-01-01
Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.
Coupling between absorption and scattering in disordered colloids
NASA Astrophysics Data System (ADS)
Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.
We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.
2015-12-01
Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)
NASA Astrophysics Data System (ADS)
Steill, J. D.; Compton, R. N.; Hager, J. S.
2006-12-01
Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.
Richter, P R; Schuster, M; Meyer, I; Lebert, M; Häder, D-P
2006-12-01
The effects of the calcium sequester EGTA on gravitactic orientation and membrane potential changes in the unicellular flagellate Euglena gracilis were investigated during a recent parabolic-flight experiment aboard of an Airbus A300. In the course of a flight parabola, an acceleration profile is achieved which yields subsequently about 20 s of hypergravity (1.8 g(n)), about 20 s of microgravity, and another 20 s of hypergravity phases. The movement behavior of the cells was investigated with real-time, computer-based image analysis. Membrane potential changes were detected with a newly developed photometer which measures absorption changes of the membrane potential-sensitive probe oxonol VI. To test whether the data obtained by the oxonol device were reliable, the signal of non-oxonol-labelled cells was recorded. In these samples, no absorption shift was detected. Changes of the oxonol VI signals indicate that the cells depolarize during acceleration (very obvious in the step from microgravity to hypergravity) and slightly hyperpolarize in microgravity, which can possibly be explained with the action of Ca-ATPases. These signals (mainly the depolarization) were significantly suppressed in the presence of EGTA (5 mM). Gravitaxis in parallel was also inhibited after addition of EGTA. Initially, negative gravitaxis was inverted into a positive one. Later, gravitaxis was almost undetectable.
NASA Astrophysics Data System (ADS)
Hegglin, M.; Fischer, H.; Hoor, P.; Beuermann, J.; Brunner, D.; Peter, T.
In the framework of SPURT we perform airborne in situ measurements of a variety of long-lived trace gases in order to investigate the role of dynamical and chemi- cal processes shaping the structure of the tropopause region. NOy is measured by chemiluminescence reaction of NO and O3, after reducing NOy species to NO by an externally mounted catalytic converter. N2O is measured by a Tunable Diode Laser Absorption Spectroscopy (TDLAS), O3 with help of an UV absorption photometer. Two short measurement campaigns were carried out with a Learjet in autumn 2001 and winter 2002. Individual flights were conducted in wide North-South cuts between 78 deg N (Spitzbergen) and 28 deg S (Tenerife). In this contribution, first results will be presented including observations obtained from a flight through a spectacularly deep stratospheric intrusion with potentially significant troposphere/stratosphere ex- change. The effect of the STE on tracer-tracer correlations such as NOy-O3, O3-N2O, and NOy-N2O will be evaluated. The results will be compared with known correla- tions and also with analyses of backward-trajectories, showing the strong influence of air mass origin on the correlations obtained.
Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.
Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D
2014-02-24
Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.
Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber
NASA Technical Reports Server (NTRS)
Brobst, William D.; Allen, John E., Jr.
1987-01-01
An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra
2018-04-17
There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.
Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile
2016-01-25
The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.
Absolute determination of local tropospheric OH concentrations
NASA Technical Reports Server (NTRS)
Armerding, Wolfgang; Comes, Franz-Josef
1994-01-01
Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2005-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2003-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe
2010-01-01
We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...
A fibre optic, four channel comparative photometer
NASA Technical Reports Server (NTRS)
Walker, E. N.
1988-01-01
Development of a four channel comparative photometer is described. Tests have shown that it is stable from night to night and is capable of working in very poor sky conditions. Even when the sky conditions are so poor that stars are barely visible, light curves can still be obtained with an r.m.s. value of 0.0016 mag., provided that integration times that are long compared with the transparancy changes are possible.
A solar infrared photometer for space flight application
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor; Deming, Drake
1991-01-01
A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.
Astigmatic Herriott cell for optical refrigeration
NASA Astrophysics Data System (ADS)
Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Sheik-Bahae, Mansoor
2017-01-01
Cooling rare-earth-doped crystals to the lowest temperature possible requires enhanced resonant absorption and high-purity crystals. Since resonant absorption decreases as the crystal is cooled, the only path forward is to increase the number of roundtrips that the laser makes inside the crystal. To achieve even lower temperatures than previously reported, we have employed an astigmatic Herriott cell to improve laser absorption at low temperatures. Preliminary results indicate improvement over previous designs. This cavity potentially enables us to use unpolarized high-power fiber lasers, and to achieve much higher cooling power for practical applications.
Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.
2011-01-01
We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.
Water quality monitor for recovered spacecraft water
NASA Technical Reports Server (NTRS)
Ejzak, E. M.; Price, D. F.
1985-01-01
A total organic carbon (TOC) analysis system based on ultraviolet absorption is described. The equation for measuring the intensity of the absorbed radiation of the organic substances, which is based on the Lambert-Beer law, is given; the intensity of the absorption is proportional to the concentration of the solution. The operation of the UV-Absorption analyzer, which utilizes a split beam, two wvaelength method, is studied. The influences of the cell path length and specific compounds in the solution flowing through the cell on absorbances is discussed. The performance and response of the analyzer is evaluated; good correlation is observed between the absorption value and TOC. The advantage of the UV-Absorption as compared with the UV-Oxidation are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus
2005-05-15
A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for goodmore » mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.« less
Quantum cascade laser based sensor for open path measurement of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Deng, Hao; Sun, Juan; Liu, Ningwu; Ding, Junya; Chao, Zhou; Zhang, Lei; Li, Jingsong
2017-02-01
A sensitive open-path gas sensor employing a continuous-wave (CW) distributed feedback (DFB) quantum cascade laser (QCL) and direct absorption spectroscopy (DAS) was demonstrated for simultaneously measurements of atmospheric CO and N2O. Two interference free absorption lines located at 2190.0175 cm-1 and 2190.3498 cm-1 were selected for CO and N2O concentration measurements, respectively. The Allan variance analysis technique was performed to investigate the long-term performance of the QCL sensor system. The results indicate that a detection limit of 9.92 ppb for CO and 7.7 ppb for N2O with 1-s integration time were achieved, which can be further improved to 1.5 ppb and 1.1 ppb by increasing the average time up to 80 s.
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Slater, P. N.; Pinter, P. J. (Principal Investigator)
1982-01-01
A radiative transfer model was used to convert ground measured reflectances into the radiance at the top of the atmosphere, for several levels of atmospheric path radiance. The radiance in MSS7 (0.8 to 1.1 m) was multiplied by the transmission fraction for atmospheres having different levels of precipitable water. The radiance values were converted to simulated LANDSAT digital counts for four path radiance levels and four levels of precipitable water. These values were used to calculate the Kauth-Thomas brightness, greenness, yellowness, and nonsuch factors. Brightness was affected by surface conditions and path radiance. Greenness was affected by surface conditions, path radiance, and precipitable water. Yellowness was affected by path radiance and nonsuch by precipitable water, and both factors changed only slightly with surface conditions. Yellowness and nonsuch were used to adjust brightness and greenness to produce factors that were affected only by surface conditions such as soils and vegetation, and not by path radiance and precipitable water.
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Daumont, L.; Thomas, X.; Régalia, L.; Rey, M.; Tyuterev, Vl. G.; Brown, L. R.
2011-07-01
New measurements and assignments for the rovibrational transitions of the hot band 2 v3- v4 of 12CH 4 are reported from 4600 to 4880 cm -1 and refer to lower part of the 2 μm methane transparency window. Three long-path spectra were recorded with a Fourier transform spectrometer (FTS) in Reims using an L = 1603 m absorption path length at 1, 7, 34 h Pa for the natural samples of CH 4; a spectrum of enriched 13CH 4 was also used. Assignments were made for 196 lines of 2 v3(F 2,E)- v4. These transitions had an integrated intensity of 5 × 10 -24 cm/molecule at 296 K and improved the overall description of absorption in the 2.1 μm region. The empirical upper state levels of these assignments belong to Tetradecad (4800-6200 cm -1). The new analysis provided much better accuracies of badly blended positions of 2 v3(F 2)-ground state manifolds at 1.66 μm.
NASA Technical Reports Server (NTRS)
1980-01-01
A list of ISIS 2 experiments and a description of the satellite are presented. Instrumentation of the satellite included an auroral scanning photometer, a red line photometer, a swept frequency sounder, an ion mass spectrometer, and triaxial fluxgate magnetometer. Data format descriptions are provided. Included with the geophysical data set is a list of all passes.
A contribution of black and brown carbon to the aerosol light absorption
NASA Astrophysics Data System (ADS)
Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin
2017-04-01
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Reufer, Mathias; Gaudino, Danila; Scheffold, Frank
2017-11-01
Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l * and the absorption length l a. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l * is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates ( CR t , CR b ) to ( l *, l a). Based on this approach we can determine l * and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.
NASA Astrophysics Data System (ADS)
Nakayama, Akira; Yamashita, Koichi
2001-01-01
Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].
Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL
NASA Astrophysics Data System (ADS)
Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.
2016-02-01
A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.
Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo
2012-01-15
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.
Airborne pipeline leak detection: UV or IR?
NASA Astrophysics Data System (ADS)
Babin, François; Gravel, Jean-François; Allard, Martin
2016-05-01
This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narasimha S.
2012-01-01
In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.
MicroCameras and Photometers (MCP) on board the TARANIS satellite
NASA Astrophysics Data System (ADS)
Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.
2017-12-01
TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the payload in September 2017.
Tunable electromagnetically induced absorption based on graphene
NASA Astrophysics Data System (ADS)
Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping
2018-04-01
In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.
The Ivory Coral Program on Ionospheric Modification
1974-09-01
k . and \\..1-- y - Transmitterlooosonde rl IDENVER I /240 km WESTCLIFFE Photometer 8727-65-396 FIGURE 5 LOCATION OF PHOTOMETERS TO MEASURE 6300-A...Nebraska 4ro ns Trc nsmitter 400J DEUVER Co Io ado Co’orodo Springs 38° Westcliffe 080 0I1020 8727-65-397 UGURE 6 TYPICAL AIRGLOW REGION AT ABOUT...FIGURE 7 AIRGLQW OF 18 SEPTEMBER 1972 AT 2130 MST 4-4- - ~ ml <~,ele ero sko Craig 400 Erie ~ ATrasmiter DENVERI Colorado Springs 380 Westcliffe 1080
Preliminary results of an intercomparison of total ozone spectrophotometers
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Gerlach, J. C.; Williams, M. E.; Kerr, J. B.
1981-01-01
Preliminary results from an intercomparison of five total ozone spectrophotometers are presented. These are the Dobson spectrophotometer, the USSR M-83 ozonometer, the Canterbury filter photometer, the SenTran Company filter photometer, and the Brewer grating spectrophotometer. The pertinent characteristics of each are described, and conclusions are drawn about the agreement of each instrument's measurements with the Dobson's values over a time period of nearly one year. A discussion of the importance of calibration and long-term stability and reliability is included.
Method of Reproduction of the Luminous Flux of the LED Light Sources by a Spherical Photometer
NASA Astrophysics Data System (ADS)
Huriev, M.; Neyezhmakov, P.
2018-02-01
In connection with transition to energy-efficient temporally stable light-emitting diodes (LEDs) lighting, a problem of ensuring the traceability of results of measurement of characteristics of light sources arises. The problem is related to existing measurement standards of luminous flux based on spherical photometers optimized for the reference incandescent lamps with a relative spectral characteristic different from the spectrum of the LEDs. We propose a method for reproduction of the luminous flux, which solves this problem.
Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge
2013-07-20
We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.
Light absorption cell combining variable path and length pump
Prather, William S.
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
The application of UV LEDs for differential optical absorption spectroscopy
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.
2018-04-01
Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong
2016-01-01
For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.
NASA Astrophysics Data System (ADS)
Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.
2017-09-01
The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.
4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres
NASA Astrophysics Data System (ADS)
Soltani, Mohamadreza; Keshavarzi, Rasul
2017-10-01
The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.
NASA Technical Reports Server (NTRS)
Crane, R. K.; Blood, D. W.
1979-01-01
A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions.
Hansen, Anthony D.
1990-01-01
An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.
NASA Astrophysics Data System (ADS)
Le Mer-Dachard, Fanny; Cansot, Elodie; Hébert, Philippe; Farges, Thomas; Ravel, Karen; Gaillac, Stéphanie
2015-10-01
The TARANIS mission aims at studying upper atmosphere coupling with a scientific nadir-pointing microsatellite - CNES Myriade family - at a low-altitude orbit (700 km). The main objectives are to measure the occurrence of Transient Luminous Event (TLE), impulsive energetic optical phenomena generated by storms according to recently discovered process, and Terrestrial Gamma-ray Flash (TGF), their emissions and trigger factors. TARANIS instruments are currently in manufacturing, assembly, integration and testing phase. The MicroCameras and Photometers instruments (MCP) are in charge of the remote sensing of the sprites and the lightning in optical wavelengths. MicroCameras instrument [MCP-MC] is an imager in the visible and Photometers instrument [MCP-PH] is a radiometer with four bands from UV to NIR, able to detect TLEs on-board and to trigger the whole payload. The satellite will provide a complete survey of the atmosphere in low resolution together with a high resolution data of sites of interest automatically detected on board. For MC and PH instruments, CEA defined scientific needs and is in charge of processing data and providing scientific results. CNES described the technical requirements of these two instruments and will run in-flight commissioning. Design, manufacturing and testing is under responsibility of Sodern for MicroCameras and Bertin Technologies for Photometers. This article shortly describes physical characteristics of TLEs and presents the final design of these instruments and first measured performances.
One-Meter Telescope in Kolonica Saddle - 4 Years of Operation
NASA Astrophysics Data System (ADS)
Kudzej, I.; Dubovsky, P. A.
2010-12-01
The actual technical status of 1 meter Vihorlat National Telescope (VNT) at Astronomical Observatory at Kolonica Saddle is presented. Cassegrain and Nasmyth focus, autoguiding system, computer controlled focusing and fine movements and other improvements achieved recently. For two channel photoelectric photometer the system of channels calibration based on artificial light source is described. For CCD camera FLI PL1001E actually installed in Cassegrain focus we presents transformation coefficients from our instrumental to international photometric BVRI system. The measurements were done during regular observations when good photometry of the constant field stars was available. Before FLI camera acquisition we used SBIG ST9 camera. Transformation coefficients for this instrument are presented as well. In the second part of the paper we presents results of variable stars observations with 1 meter telescope in recent four years. The first experimental electronic measurements were done in 2006. Both with CCD cameras and with two channel photoelectric photometer. Starting in 2007 the regular observing program is in operation. There are only few stars suitable for two channel photoelectric photometer observation. Generally the photometer is better when fast brightness changes (time scale of seconds) must be recorded. Thus the majority of observations is done with CCD detectors. We presents an brief overview of most important observing programs: long term monitoring of selected intermediate polars, eclipse observations of SW Sex stars. Occasional observing campaigns were performed on several interesting objects: OT J071126.0+440405, V603 Aql, V471 Tau eclipse timings, Z And in outburst.
Broadly available imaging devices enable high-quality low-cost photometry.
Christodouleas, Dionysios C; Nemiroski, Alex; Kumar, Ashok A; Whitesides, George M
2015-09-15
This paper demonstrates that, for applications in resource-limited environments, expensive microplate spectrophotometers that are used in many central laboratories for parallel measurement of absorbance of samples can be replaced by photometers based on inexpensive and ubiquitous, consumer electronic devices (e.g., scanners and cell-phone cameras). Two devices, (i) a flatbed scanner operating in transmittance mode and (ii) a camera-based photometer (constructed from a cell phone camera, a planar light source, and a cardboard box), demonstrate the concept. These devices illuminate samples in microtiter plates from one side and use the RGB-based imaging sensors of the scanner/camera to measure the light transmitted to the other side. The broadband absorbance of samples (RGB-resolved absorbance) can be calculated using the RGB color values of only three pixels per microwell. Rigorous theoretical analysis establishes a well-defined relationship between the absorbance spectrum of a sample and its corresponding RGB-resolved absorbance. The linearity and precision of measurements performed with these low-cost photometers on different dyes, which absorb across the range of the visible spectrum, and chromogenic products of assays (e.g., enzymatic, ELISA) demonstrate that these low-cost photometers can be used reliably in a broad range of chemical and biochemical analyses. The ability to perform accurate measurements of absorbance on liquid samples, in parallel and at low cost, would enable testing, typically reserved for well-equipped clinics and laboratories, to be performed in circumstances where resources and expertise are limited.
NASA Technical Reports Server (NTRS)
Zuev, V. E.; Kostin, B. S.; Naats, I. E.
1986-01-01
The methods of multifrequency laser sounding (MLS) are the most effective remote methods for investigating the atmospheric aerosols, since it is possible to obtain complete information on aerosol microstructure and the effective methods for estimating the aerosol optical constants can be developed. The MLS data interpretation consists in the solution of the set of equations containing those of laser sounding and equations for polydispersed optical characteristics. As a rule, the laser sounding equation is written in the approximation of single scattering and the equations for optical characteristics are written assuming that the atmospheric aerosol is formed by spherical and homogeneous particles. To remove the indeterminacy of equations, the method of optical sounding of atmospheric aerosol, consisting in a joint use of a mutifrequency lidar and a spectral photometer in common geometrical scheme of the optical experiment was suggested. The method is used for investigating aerosols in the cases when absorption by particles is small and indicates the minimum necessary for interpretation of a series of measurements.
NASA Astrophysics Data System (ADS)
Liu, Dantong; Taylor, Jonathan W.; Young, Dominque E.; Flynn, Michael J.; Coe, Hugh; Allan, James D.
2015-01-01
of the impacts of brown carbon (BrC) requires accurate determination of its physical properties, but a model must be invoked to derive these from instrument data. Ambient measurements were made in London at a site influenced by traffic and solid fuel (principally wood) burning, apportioned by single particle soot photometer data and optical properties measured using multiwavelength photoacoustic spectroscopy. Two models were applied: a commonly used Mie model treating the particles as single-coated spheres and a Rayleigh-Debye-Gans approximation treating them as aggregates of smaller-coated monomers. The derived solid fuel BrC parameters at 405 nm were found to be highly sensitive to the model treatment, with a mass absorption cross section ranging from 0.47 to 1.81 m2/g and imaginary refractive index from 0.013 to 0.062. This demonstrates that a detailed knowledge of particle morphology must be obtained and invoked to accurately parameterize BrC properties based on aerosol phase measurements.
SP2 Deployment at Boston College—Aerodyne-Led Coated Black Carbon Study (BC4) Final Campaign Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, T. B.; Sedlacek, A. J.
The main objective of the Boston College-Aerodyne led laboratory study (BC4) was to measure the optical properties of black carbon (BC) particles from a diffusion flame directly and after being coated with secondary organic and inorganic material and to achieve optical closure with model predictions. The measurements of single particle BC mass and population mixing states provided by a single particle soot photometer (SP2) was central to achieving the laboratory-based study’s objective. Specifically, the DOE ARM SP2 instrument participated in the BC4 project to address the following scientific questions: 1. What is the mass-specific absorption coefficient as a function ofmore » secondary organic and inorganic material coatings? 2. What is the spread in the population mixing states within our carefully generated laboratory particles? 3. How does the SP2 instrument respond to well-characterized, internally mixed BC-containing particles?« less
Observing Comet Halley with Space Telescope
NASA Technical Reports Server (NTRS)
Caldwell, J.
1983-01-01
The NASA Space Telescope (ST) to be launched into LEO by STS in late 1985 is characterized, and its potential use for observations of Comet Halley shortly after the perihelion passage in February, 1986, is discussed. The ST comprises a 2.4-m MgF2-coated primary reflector (with maximum field of view 2.7 x 2.7 arcmin, wavelength coverage 120-1100 nm, and maximum tracking rate 0.21 arcsec/sec) and five first-generation scientific instruments (wide-field planetary camera, faint-object camera, high-resolution and faint-object spectrographs, and high-speed photometer). Planned ST observations of Halley include periods of continuous observation much longer than can be obtained from the ground, provision of supplementary data and navigation information to Giotto and other deep-space missions, emission spectroscopy, UV polarimetry, and possible detection of 124-nm H2O absorption. Before March 11, 1986, earth occultation or similar procedures will be required to observe Halley because it will be within the ST 50-deg solar-elongation-distance limit.
Ultraviolet Views of Enceladus, Tethys, and Dione
NASA Technical Reports Server (NTRS)
Hansen, C. J.; Hendrix, A. R.
2005-01-01
The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.
A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere
NASA Technical Reports Server (NTRS)
Arntzen, Michael; Rizzi, Stephen A.; Visser, Hendrikus G.; Simons, Dick G.
2012-01-01
This paper describes a new framework for the simulation of aircraft flyover noise through a non-standard atmosphere. Central to the framework is a ray-tracing algorithm which defines multiple curved propagation paths, if the atmosphere allows, between the moving source and listener. Because each path has a different emission angle, synthesis of the sound at the source must be performed independently for each path. The time delay, spreading loss and absorption (ground and atmosphere) are integrated along each path, and applied to each synthesized aircraft noise source to simulate a flyover. A final step assigns each resulting signal to its corresponding receiver angle for the simulation of a flyover in a virtual reality environment. Spectrograms of the results from a straight path and a curved path modeling assumption are shown. When the aircraft is at close range, the straight path results are valid. Differences appear especially when the source is relatively far away at shallow elevation angles. These differences, however, are not significant in common sound metrics. While the framework used in this work performs off-line processing, it is conducive to real-time implementation.
Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao
2018-01-01
To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.
Wang, Junfeng; Zhang, Qi; Chen, Mindong; Collier, Sonya; Zhou, Shan; Ge, Xinlei; Xu, Jianzhong; Shi, Jinsen; Xie, Conghui; Hu, Jianlin; Ge, Shun; Sun, Yele; Coe, Hugh
2017-12-19
Refractory black carbon (rBC) aerosol is an important climate forcer, and its impacts are greatly influenced by the species associated with rBC cores. However, relevant knowledge is particularly lacking at the Tibetan Plateau (TP). Here we report, for the first time, highly time-resolved measurement results of rBC and its coating species in central TP (4730 m a.s.l), using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which selectively measured rBC-containing particles. We found that the rBC was overall thickly coated with an average mass ratio of coating to rBC (R BC ) of ∼7.7, and the coating species were predominantly secondarily formed by photochemical reactions. Interestingly, the thickly coated rBC was less oxygenated than the thinly coated rBC, mainly due to influence of the transported biomass burning organic aerosol (BBOA). This BBOA was relatively fresh but formed very thick coating on rBC. We further estimated the "lensing effect" of coating semiquantitatively by comparing the measurement data from a multiangle absorption photometer and SP-AMS, and found it could lead to up to 40% light absorption enhancement at R BC > 10. Our findings highlight that BBOA can significantly affect the "lensing effect", in addition to its relatively well-known role as light-absorbing "brown carbon."
PM2.5 and Black carbon enhancement at Socheongcho Ocean Research Station in the Yellow Sea
NASA Astrophysics Data System (ADS)
Jeon, H.; Rhee, H.; Lee, M.; JinYong, J.; Min, I.; Shim, J.
2017-12-01
Socheongcho Ocean Research Station (SORS) has been established in northern Yellow Sea by the Korea Institute of Ocean Science and Technology (KIOST). At SORS, PM2.5 and Black carbon (BC) were measured every 10 minutes during October 2014 June 2017 using beta-ray absorption method (FH62C14, Thermo. Inc, USA) and Multi Angle Absorption Photometer (MAAP; Model 5012, Thermo. Inc, USA), respectively. In addition, CO, CO2 and CH4 were determined by Cavity Ring Down Spectroscopy (CRDS; Model G2401, Picarro. Inc, USA). Measurements were intermittently interrupted for SORS maintenance reasons. For BC and PM2.5, the mean, 90th %tile and maximum concentrations were 1.16, 2.29, and 20.07 ug/m3 and 25, 48, and 177 ug/m3, respectively. There was no clear diurnal variation observed for both species. PM2.5 and BC concentrations were higher in cold seasons than in warm seasons. The highest PM2.5 and BC concentrations (>99th %tile) were more frequently observed in winter. Particularly, the extremely high BC were sporadically observed and lasted for no longer than 1 hour. The possible sources of PM2.5 and BC were examined using Conditional Probability Function (CPF), Potential Source Contribution (PSCF), and Concentration Weighted Trajectory (CWT) analysis. The results suggest the dominant influence from China, particularly for high concentrations.
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.
2017-09-01
This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.
Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses.
Stango, Antonietta; Yazdandoost, Kamya Yekeh; Negro, Francesco; Farina, Dario
2016-01-01
Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed.
Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses
Stango, Antonietta; Yazdandoost, Kamya Yekeh; Negro, Francesco; Farina, Dario
2016-01-01
Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed. PMID:27764182
ERIC Educational Resources Information Center
Patel, C. K. N.
1978-01-01
Discusses the use of laser spectroscopy in determining the presence of specific gaseous constituents. Three of currently used modes for laser detection of pollution are reviewed; (1) long-path measurements; (2) laser raman (differential absorption) measurements; and (3) optoacoustic detection. (HM)
Characteristic analysis of surface waves in a sensitive plasma absorption probe
NASA Astrophysics Data System (ADS)
You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong
2018-01-01
With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.
NASA Astrophysics Data System (ADS)
Parracino, Stefano; Santoro, Simone; Maio, Giovanni; Nuvoli, Marcello; Aiuppa, Alessandro; Fiorani, Luca
2017-04-01
Carbon dioxide (CO2) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO2 concentrations and wind speeds, using the same sample of LiDAR returns. A correlation method was used for the wind speed retrieval in which the transport of the spatial inhomogeneities of the aerosol backscattering coefficient, along the optical path of the system, was analyzed.
NASA Astrophysics Data System (ADS)
Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi
A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.
Light absorption cell combining variable path and length pump
Prather, W.S.
1993-12-07
A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.
Meteorological effects on laser propagation for power transmission
NASA Technical Reports Server (NTRS)
Beverly, R. E., III
1982-01-01
An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben
2016-01-01
This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.
New measurements of the 6190-A band of methane
NASA Technical Reports Server (NTRS)
Mickelson, M. E.; Larson, L. E.; Schubert, A.
1991-01-01
The present paper reports new laboratory measurements that were made of the absorption coefficient of the visible methane band at 6190 A. Data were obtained using a tunable dye laser system operating with a line width of 0.067/cm. Spectra were recorded at approximately 1-A intervals with the beam coupled to a 22-m base length White-type absorption cell adjusted for an optical path of 1584 km and filled to a density of 0.884 amagats. Errors in pressure, temperature, and path length amounted to an uncertainty in the abundance of no more than 0.4 percent. Fourteen data sets were recorded and coadded. The final signal-averaged methane data were divided by a similar set of signal-averaged empty cell scans to remove the transmittance of the White cell and system optics. The results are compared with previous low-resolution measurements in the spectral region from 6000 to 6400 A.
Sky type discrimination using a ground-based sun photometer
DeFelice, Thomas P.; Wylie, Bruce K.
2001-01-01
A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.
MIPS - The Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.
1986-01-01
The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
Hubble Space Telescope high speed photometer orbital verification
NASA Technical Reports Server (NTRS)
Richards, Evan E.
1991-01-01
The purpose of this report is to provide a summary of the results of the HSP (High Speed Photometer) Orbital Verification (OV) tests and to report conclusions and lessons learned from the initial operations of the HSP. The HSP OV plan covered the activities through fine (phase 3) alignment. This report covers all activities (OV, SV, and SAO) from launch to the completion of phase 3 alignment. Those activities in this period that are not OV tests are described to the extent that they relate to OV activities.
Analysis of the atmospheric upward radiation in low latitude area
NASA Astrophysics Data System (ADS)
Li, Haiying; Wu, Zhensen; Lin, Leke; Lu, Changsheng
2016-10-01
Remote sensing using THz wave has irreplaceable advantage comparing to the microwave and the infrared waves, and study on the THz remote sensing become more and more popular in recent years. The major applications of the remote sensing in THz wavelengths are the retrieval of the atmospheric parameters and the microphysical information of the ice cloud. The remote sensing of the atmosphere is based on the radiation of THz wave along the earth-space path of which the most significant part is the upward radiation of the atmosphere. The upward radiation of the atmosphere in sunny day in the low latitude area is computed and analyzed in this paper. The absorption of THz wave by the atmosphere is calculated using the formulations illustrated in the Recommendation ITU-R P.676 to save machine hour, the frequency range is then restricted below 1THz. The frequencies used for the retrieval of atmospheric parameters such as temperature and water content are usually a few hundred GHz, at the lower end of THz wavelengths, so this frequency range is sufficient. The radiation contribution of every atmospheric layer for typical frequencies such as absorption window frequencies and peak frequencies are analyzed. Results show that at frequencies which absorption is severe, information about lower atmosphere cannot reach the receiver onboard a satellite or other high platforms due to the strong absorption along the path.
Post sunset behavior of the 6300 A atomic oxygen airglow emission
NASA Technical Reports Server (NTRS)
Smith, R. E.
1976-01-01
A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more closely agree with the observed intensities than all the other combinations.
Black carbon's contribution to aerosol absorption optical depth over S. Korea
NASA Astrophysics Data System (ADS)
Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.
2017-12-01
Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.
NASA Astrophysics Data System (ADS)
So, Stephen; Wysocki, Gerard
2010-02-01
Faraday Rotation Spectroscopy (FRS) is a polarization based spectroscopic technique which can provide higher sensitivity concentration measurements of paramagnetic gases and free radicals than direct absorption spectroscopic techniques. We have developed sensor systems which require only 0.2W to perform TDLAS (tunable diode laser absorption spectroscopy), and can additionally be quickly duty cycled, enabling operation in wireless sensor networks of laser-based trace gas sensors We adapted our integrated TDLAS electronics to perform FRS in a compact and more sensitive system for quantification of molecular oxygen (O2) using a 762.3nm VCSEL in the A band. Using an AC magnetic field, we demonstrate detector noise dominated performance, achieving 2.1×10-6/Hz1/2 equivalent detectable fractional absorption and a minimum detection limit of 462 ppmv O2 in 1 second in a 15cm path. At longer paths and integration times, such a sensor will enable oxygen measurements at biotic respiration levels (<1ppmv) to measure CO2 - O2 exchange for mapping natural exchange of greenhouse gases. Potential improvement of detection limits by increasing various system performance parameters is described.
Uncertainty budgets for liquid waveguide CDOM absorption measurements.
Lefering, Ina; Röttgers, Rüdiger; Utschig, Christian; McKee, David
2017-08-01
Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet. Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower. This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.Multiple scattering in planetary regoliths using first-order incoherent interactions
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti
2017-10-01
We consider scattering of light by a planetary regolith modeled using discrete random media of spherical particles. The size of the random medium can range from microscopic sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the mean free path length of incoherent extinction. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path, and utilize the reciprocity of electromagnetic waves to verify the computation. We illustrate the incoherent volume-element scattering characteristics and compare the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM results for the current cases of sparse and dense discrete random media studied. The novel method can be applied in modeling light scattering by the surfaces of asteroids and other airless solar system objects, including UV-Vis-NIR spectroscopy, photometry, polarimetry, and radar scattering problems.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra
2015-01-01
We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.
Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar
2017-07-01
The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3 μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.
2017-12-01
We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.
NASA Astrophysics Data System (ADS)
Franklin, Jonathan E.; Griffin, Debora; Pierce, Jeffrey R.; Drummond, James R.; Waugh, David; Palmer, Paul; Chisholm, Lucy; Duck, Thomas J.; Lesins, Glen; Walker, Kaley A.; Hopper, Jason T.; Curry, Kevin R.; Sakamoto, Kimiko M.; Dan, Lin; Kliever, Jenny; O'Neill, Norm
2013-04-01
Wild fires started by lightning are a significant source of carbonaceous aerosols and trace gases to the atmosphere. Careful observations of biomass burning plumes are required to quantify the long range transport and chemical evolution of the outflow from these fires. During the summer of 2011 an international effort - the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) project - led by the University of Edinburgh, evaluated the chemistry and dynamics of Boreal biomass burning plumes through aircraft, satellite, and ground-based measurements. The Dalhousie Ground Station (DGS), located in Halifax, Nova Scotia, provided ground support to the BORTAS campaign. Two Fourier Transform Spectrometers (FTSs) provided solar absorption measurements of trace gases while two photometers provided aerosol optical depths. On 20 July 2011 a plume of elevated carbon monoxide and other trace gases was detected by the FTS instruments at the DGS; however, particulate data gathered from the co-located sun photometer and the Dalhousie Raman Lidar system showed no enhancement of fine-mode aerosol for the initial 7 hours of the event. After that time, particulates increased in abundance and a peak aerosol optical depth of 2.3 was measured on 21 July. FLEXPART trajectory analyses suggest that this plume originated in fires that were burning in Northwestern Ontario and Eastern Manitoba from 17 to 19 July. Despite the sparse observing network in the region, there is ample evidence of a significant lofting event via the same meso-scale convective system that tempered the burning on the 19th. We will provide an overview of this event and present evidence that precipitation scavenging was the most likely mechanism for the observed aerosol/trace gas anomaly. Support for this this research was provided by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada.
Aerosol optical properties in the Marine Environment during the TCAP-I campaign
NASA Astrophysics Data System (ADS)
Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.
2013-12-01
The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (γ) will be presented and discussed.
NASA Astrophysics Data System (ADS)
Meygret, Aimé; Santer, Richard P.; Berthelot, Béatrice
2011-10-01
La Crau test site is used by CNES since 1987 for vicarious calibration of SPOT cameras. The former calibration activities were conducted during field campaigns devoted to the characterization of the atmosphere and the site reflectances. Since 1997, au automatic photometric station (ROSAS) was set up on the site on a 10m height pole. This station measures at different wavelengths, the solar extinction and the sky radiances to fully characterize the optical properties of the atmosphere. It also measures the upwelling radiance over the ground to fully characterize the surface reflectance properties. The photometer samples the spectrum from 380nm to 1600nm with 9 narrow bands. Every non cloudy days the photometer automatically and sequentially performs its measurements. Data are transmitted by GSM (Global System for Mobile communications) to CNES and processed. The photometer is calibrated in situ over the sun for irradiance and cross-band calibration, and over the Rayleigh scattering for the short wavelengths radiance calibration. The data are processed by an operational software which calibrates the photometer, estimates the atmosphere properties, computes the bidirectional reflectance distribution function of the site, then simulates the top of atmosphere radiance seen by any sensor over-passing the site and calibrates it. This paper describes the instrument, its measurement protocol and its calibration principle. Calibration results are discussed and compared to laboratory calibration. It details the surface reflectance characterization and presents SPOT4 calibration results deduced from the estimated TOA radiance. The results are compared to the official calibration.
Aerosol Absorption Measurements in MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.
2007-12-01
During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-04
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm 2 V -1 s -1 . This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J
2017-02-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing; ...
2017-06-06
In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing
In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less
Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review
NASA Technical Reports Server (NTRS)
Grant, William B.
1990-01-01
Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.
The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Orphal, J.; Fellows, C. E.; Flaud, P.-M.
2003-02-01
The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.
JPL Fourier transform ultraviolet spectrometer
NASA Technical Reports Server (NTRS)
Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.
1994-01-01
The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.
Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer
NASA Technical Reports Server (NTRS)
Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent;
2015-01-01
In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.
Test of the MarsSedEx Settling Tube Photometer during the 2nd Swiss Parabolic Flight Campaign
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas
2017-04-01
Gravity affects flow hydraulics and thus limits the application of simple models for sediment transport developed for Earth on Mars. The significance of the differences in sediment settling has been demonstrated for sand-sized particles by measuring settling velocities using video-imaging during parabolic flights. This approach does not work for finer particles because they cannot be distinguished individually on a video. Tracking of fine sediment clouds is also difficult using videos because changes in density are not captured. Photometers, on the other hand, are able to capture differences in turbidity and offer the potential to measure the settling behaviour of clouds of fine and differently-sized sediment particles. In this study, the feasibility of using a settling-tube photometer used for the rapid assessment of settling velocities developed by the University of Basel during a parabolic flight with reduced gravity is presented. In addition, the potential of the results generated in this Martian-analogue environment to support the identification sediments containing traces of life on Mars is discussed.
High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer
NASA Astrophysics Data System (ADS)
Ansmann, Albert; Engelmann, Ronny; Althausen, Dietrich; Wandinger, Ulla; Hu, Min; Zhang, Yuanghang; He, Qianshan
2005-07-01
Height-resolved data of the particle optical properties, the vertical extend of the haze layer, aerosol stratification, and the diurnal cycle of vertical mixing over the Pearl River Delta in southern China are presented. The observations were performed with Raman lidar and Sun photometer at Xinken (22.6°N, 113.6°E) near the south coast of China throughout October 2004. The lidar run almost full time on 21 days. Sun photometer data were taken on 23 days, from about 0800 to 1700 local time. The particle optical depth (at about 533-nm wavelength) ranged from 0.3-1.7 and was, on average, 0.92. Ångström exponents varied from 0.65-1.35 (for wavelengths 380 to 502 nm) and from 0.75-1.6 (for 502 to 1044 nm), mean values were 0.97 and 1.22. The haze-layer mean extinction-to-backscatter ratio ranged from 35-59 sr, and was, on average, 46.7 sr. The top of the haze layer reached to heights of 1.5-3 km in most cases.
Psychophysical contrast calibration
To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli
2013-01-01
Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843
Network based sky Brightness Monitor
NASA Astrophysics Data System (ADS)
McKenna, Dan; Pulvermacher, R.; Davis, D. R.
2009-01-01
We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.
First photometric properties of Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chadid, M.; Vernin, J.; Jeanneaux, F.; Mekarnia, D.; Trinquet, H.
2008-07-01
Here we present the first photometric extinction measurements in the visible range performed at Dome C in Antarctica, using PAIX photometer (Photometer AntarctIca eXtinction). It is made with "off the shelf" components, Audine camera at the focus of Blazhko telescope, a Meade M16 diaphragmed down to 15 cm. For an exposure time of 60 s without filter, a 10th V-magnitude star is measured with a precision of 1/100 mag. A first statistics over 16 nights in August 2007 leads to a 0.5 magnitude per air mass extinction, may be due to high altitude cirrus. This rather simple experiment shows that continuous observations can be performed at Dome C, allowing high frequency resolution on pulsation and asteroseismology studies. Light curves of one of RR Lyrae stars: SAra were established. They show the typical trend of a RRLyrae star. A recent sophisticated photometer, PAIX II, has been installed recently at Dome C during polar summer 2008, with a ST10 XME camera, automatic guiding, auto focusing and Johnson/Bessel UBVRI filter wheels.
Absorption of Solar Radiation by Clouds: An Overview
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)
2000-01-01
This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.
Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T
2014-11-17
The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
High-Sensitivity Spectrophotometry.
ERIC Educational Resources Information Center
Harris, T. D.
1982-01-01
Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…
Atmospheric absorption of terahertz radiation and water vapor continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.
2013-09-01
The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
SiFAP: a Simple Sub-Millisecond Astronomical Photometer
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Meddi, F.; Nesci, R.; Rossi, C.; Sclavi, S.; Bruni, I.
2013-09-01
A new fast photometer based on SiPM technology was developed at the University of Rome "La Sapienza" starting from 2009. A first prototype was successfully tested observing the Crab pulsar at the Loiano telescope of the Bologna Observatory. In this paper we illustrate the improvements we applied to our instrument, concerning new cooled commercial sensors, a new version of our custom dedicated electronics and an upgraded control timing software. Finally we report the results obtained with this instrument on December 2012 on the Crab pulsar at the Loiano telescope to show its goodness and capabilities.
Aerosol remote sensing in polar regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo
Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less
Aerosol Remote Sensing in Polar Regions
NASA Technical Reports Server (NTRS)
Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph
2014-01-01
Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface-atmosphere system over polar regions.
Aerosol remote sensing in polar regions
Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; ...
2015-01-01
Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less
NASA Astrophysics Data System (ADS)
Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.
2014-12-01
We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.
VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids
NASA Astrophysics Data System (ADS)
Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.
2008-02-01
We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.
[Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].
He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing
2009-01-01
With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.
The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design
NASA Technical Reports Server (NTRS)
Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton
2005-01-01
The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.
NASA Technical Reports Server (NTRS)
Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.
1976-01-01
The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.
Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing
NASA Astrophysics Data System (ADS)
Bode, M.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.
2017-11-01
The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.
Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing
NASA Astrophysics Data System (ADS)
Bode, M.; Wührer, C.; Alpers, M.; Millet, B.; Ehret, G.; Bousquet, P.
2017-09-01
The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.
Hybrid modelling of a high-power X-ray attenuator plasma.
Martín Ortega, Álvaro; Lacoste, Ana; Minea, Tiberiu
2018-05-01
X-ray gas attenuators act as stress-free high-pass filters for synchrotron and free-electron laser beamlines to reduce the heat load in downstream optical elements without affecting other properties of the X-ray beam. The absorption of the X-ray beam triggers a cascade of processes that ionize and heat up the gas locally, changing its density and therefore the X-ray absorption. Aiming to understand and predict the behaviour of the gas attenuator in terms of efficiency versus gas pressure, a hybrid model has been developed, combining three approaches: an analytical description of the X-ray absorption; Monte Carlo for the electron thermalization; and a fluid treatment for the electron diffusion, recombination and excited-states relaxation. The model was applied to an argon-filled attenuator prototype built and tested at the European Synchrotron Radiation Facility, at a pressure of 200 mbar and assuming stationary conditions. The results of the model showed that the electron population thermalizes within a few nanoseconds after the X-ray pulse arrival and it occurs just around the X-ray beam path, recombining in the bulk of the gas rather than diffusing to the attenuator walls. The gas temperature along the beam path reached 850 K for 770 W of incident power and 182 W m -1 of absorbed power. Around 70% of the absorbed power is released as visible and UV radiation rather than as heat to the gas. Comparison of the power absorption with the experiment showed an overall agreement both with the plasma radial profile and power absorption trend, the latter within an error smaller than 20%. This model can be used for the design and operation of synchrotron gas attenuators and as a base for a time-dependent model for free-electron laser attenuators.
Calibrating Laser Gas Measurements by Use of Natural CO2
NASA Technical Reports Server (NTRS)
Webster, Chris
2003-01-01
An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves continuously as a calibration standard for every measurement point. Figure 1 depicts simulated spectral transmission measurements in a wavenumber range that contains two absorption lines of N2O and one of CO2. The simulations were performed for two different upper-atmospheric pressures for an airborne instrument that has a path length of 80 m. The relative abundance of CO2 in air was assumed to be 360 parts per million by volume (approximately its natural level in terrestrial air). In applying the present method to measurements like these, one could average the signals from the two N2O absorption lines and normalize their magnitudes to that of the CO2 absorption line. Other gases with which this calibration method can be used include H2O, CH4, CO, NO, NO2, HOCl, C2H2, NH3, O3, and HCN. One can also take advantage of this method to eliminate an atmospheric-pressure gauge and thereby reduce the mass of the instrument: The atmospheric pressure can be calculated from the temperature, the known relative abundance of CO2, and the concentration of CO2 as measured by spectral absorption. Natural CO2 levels on Mars provide an ideal calibration standard. Figure 2 shows a second example of the application of this method to Mars atmospheric gas measurements. For sticky gases like H2O, the method is particularly powerful, since water is notoriously difficult to handle at low concentrations in pre-flight calibration procedures.
New assignments in the 2 μm transparency window of the 12CH4 Octad band system
NASA Astrophysics Data System (ADS)
Daumont, L.; Nikitin, A. V.; Thomas, X.; Régalia, L.; Von der Heyden, P.; Tyuterev, Vl. G.; Rey, M.; Boudon, V.; Wenger, Ch.; Loëte, M.; Brown, L. R.
2013-02-01
This paper reports new assignments of rovibrational transitions of 12CH4 bands in the range 4600-4887 cm-1 which is usually referred to as a part of the 2 μm methane transparency window. Several experimental data sources for methane line positions and intensities were combined for this analysis. Three long path Fourier transform spectra newly recorded in Reims with 1603 m absorption path length and pressures of 1, 7 and 34 hPa for samples of natural abundance CH4 provided new measurements of 12CH4 lines. Older spectra for 13CH4 (90% purity) from JPL with 73 m absorption path length were used to identify the corresponding lines. Most of the lines in this region belong to the Octad system of 12CH4. The new spectra allowed us to assign 1014 new line positions and to measure 1095 line intensities in the cold bands of the Octad. These new line positions and intensities were added to the global fit of Hamiltonian and dipole moment parameters of the Ground State, Dyad, Pentad and Octad systems. This leads to a noticeable improvement of the theoretical description in this methane transparency window and a better global prediction of the methane spectrum.
Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop
2016-03-20
This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.
The Kepler Project: Mission Update
NASA Technical Reports Server (NTRS)
Borucki, William J.; Koch, David G.
2009-01-01
Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.
Kepler Mission: Current Status
NASA Astrophysics Data System (ADS)
Borucki, William J.; Koch, D. G.; Lissauer, J. J.; Bryson, S.; Natalie, B.; Caldwell, D. A.; DeVore, E.; Jenkins, J. M.; Christensen-Dalsgaard, J.; Cochran, W. D.; Dunham, E. W.; Gautier, T. N.; Geary, J. C.; Latham, D. W.; Sasselov, D.; Gilliland, R. L.; Gould, A.; Howell, S. B.; Monet, D. G.
2007-12-01
Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a high precision photometer with Schmidt-type optics and a focal plane containing 95 million pixels to monitor over 100,000 stars to search for patterns of transits generated by planets as small as Mars. The recent reduction in the mission duration is discussed with regard to the impact on the expected science product and null statistics. Both terrestrial and giant planets discoveries will be followed up with ground-based Doppler-velocity observations to determine mass and density. The first meeting of Kepler Asteroseismic Science Consortium was held in Paris to organize an international team to analyze the Kepler data to determine the characteristics of the brighter target stars including their size and age. Stellar size determinations accurate to a few percent are expected. These will allow very accurate planet sizes to be determined from the depth of the transit signals. NASA HQ received thirty six proposals for the Participating Scientist Program and chose several new members to join the Science Team. Both the 0.95 m Schmidt corrector and 1.4 m aperture primary mirror have been completed and delivered for integration into the photometer. The focal plane with forty-two science CCD detectors and their processing electronics has been assembled and tested. The spacecraft assembly has begun with the mounting of the reaction control system, reaction wheels, attitude determination & control system, and power systems. Both the photometer and spacecraft are nearing final assembly with all subsystems having passed their environmental and performance testing. The photometer to spacecraft integration will begin this spring. The Mission is on schedule for a launch in February 2009. The Kepler Mission is funded by the NASA Astrophysics Division, Science Mission Directorate.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Dubovik, O.; Ramirez, S. A.; Wang, J.; Redemann, J.; Schmid, B.; Box, M.; Holben, B. N.
2003-01-01
Desert dust and marine aerosols are receiving increased scientific attention because of their prevalence on intercontinental scales and their potentially large effects on Earth radiation and climate, as well as on other aerosols, clouds, and precipitation. The relatively large size of desert dust and marine aerosols produces scattering phase functions that are strongly forward- peaked. Hence, Sun photometry and pyrheliometry of these aerosols are more subject to diffuse-light errors than is the case for smaller aerosols. Here we quantify these diffuse-light effects for common Sun photometer and pyrheliometer fields of view (FOV), using a data base on dust and marine aerosols derived from (1) AERONET measurements of sky radiance and solar beam transmission and (2) in situ measurements of aerosol layer size distribution and chemical composition. Accounting for particle non-sphericity is important when deriving dust size distribution from both AERONET and in situ aerodynamic measurements. We express our results in terms of correction factors that can be applied to Sun photometer and pyrheliometer measurements of aerosol optical depth (AOD). We find that the corrections are negligible (less than approximately 1% of AOD) for Sun photometers with narrow FOV (half-angle eta less than degree), but that they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with eta = 1.85 degrees. For pyrheliometers (which can have eta up to approximately 2.8 degrees), corrections can be as large as 16% at 354 nm. We find that AOD correction factors are well correlated with AOD wavelength dependence (hence Angstrom exponent). We provide best-fit equations for determining correction factors from Angstrom exponents of uncorrected AOD spectra, and we demonstrate their application to vertical profiles of multiwavelength AOD.
NASA Astrophysics Data System (ADS)
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.
2014-12-01
This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.
Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-03-01
The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.
NASA Astrophysics Data System (ADS)
Fjodorow, Peter; Hellmig, Ortwin; Baev, Valery M.
2018-04-01
A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780-5560 cm-1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm-1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of L eff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.
NASA Technical Reports Server (NTRS)
Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.
1999-01-01
A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.
Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines
NASA Astrophysics Data System (ADS)
Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.
2005-12-01
The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.
Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao
2018-01-01
Objective To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Methods Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. Results The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. Conclusion The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo. PMID:29652919
Laser speckle imaging in the spatial frequency domain
Mazhar, Amaan; Cuccia, David J.; Rice, Tyler B.; Carp, Stefan A.; Durkin, Anthony J.; Boas, David A.; Choi, Bernard; Tromberg, Bruce J.
2011-01-01
Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism. PMID:21698018
NASA Astrophysics Data System (ADS)
Scally, Lawrence J.
This program was implemented by Lawrence J. Scally for a Ph.D. under the EECE department at the University of Colorado at Boulder with most funding provided by the U.S. Army. Professor Gasiewski is the advisor and guider for the entire program; he has a strong history decades ago in this type of program. This program is developing a more advanced than previous years transmissometer, called Terahertz Atmospheric and Ionospheric Propagation, Absorption and Scattering System (TAIPAS), on an open path between the University of Colorado EE building roof and the mesa on owned by National Institute of Standards and Technology (NIST); NIST has invested money, location and support for the program. Besides designing and building the transmissometer, that has never be accomplished at this level, the system also analyzes the atmospheric propagation of frequencies by scanning between 320 GHz and 340 GHz, which includes the peak absorption frequency at 325.1529 GHz due to water absorption. The processing and characterization of the deterministic and random propagation characteristics of the atmosphere in the real world was significantly started; this will be executed with varies aerosols for decades on the permanently mounted system that is accessible 24/7 via a network over the CU Virtual Private Network (VPN).
A method of reducing background fluctuation in tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang
2018-03-01
Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.
Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...
Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer
2013-01-01
Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center
NASA Technical Reports Server (NTRS)
Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan;
2015-01-01
This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edner, H.; Ragnarson, P.; Svanberg, S.
The authors present measurements of the total flux of sulfur dioxide from three Italian volcanoes Etna, Stromboli, and Vulcano, measured in a three day period in Sept, 1992. The fluxes were measured from shipboard by means of an active differential absorption lidar technique, and a passive differential optical absorption spectroscopy technique. Corrections had to be applied to the passive optical technique because the light source paths were not well defined. The total fluxes were found to be roughly 25, 180, and 1300 tons/day for Vulcano, Stromboli, and Etna, respectively. 43 refs., 10 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2006-05-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.
Hubble Space Telescope: High speed photometer instrument handbook. Version 2.0
NASA Technical Reports Server (NTRS)
White, Richard L. (Editor)
1990-01-01
This manual is a guide for astronomers who intend to use the High Speed Photometer (HSP), one of the scientific instruments onboard the Hubble Space Telescope (HST). All the information needed for ordinary uses of the HSP is presented, including: (1) an overview of the instrument; (2) a detailed description of some details of the HSP-ST system that may be important for some observations; (3) tables and figures describing the sensitivity and limitations of the HSP; (4) how to go about planning an observation with the HSP; and (5) a description of the standard calibration to be applied to HSP data and the resulting data products.
AMPS definition study on Optical Band Imager and Photometer System (OBIPS)
NASA Technical Reports Server (NTRS)
Davis, T. N.; Deehr, C. S.; Hallinan, T. J.; Wescott, E. M.
1975-01-01
A study was conducted to define the characteristics of a modular optical diagnostic system (OBIPS) for AMPS, to provide input to Phase B studies, and to give information useful for experiment planning and design of other instrumentation. The system described consists of visual and UV-band imagers and visual and UV-band photometers; of these the imagers are most important because of their ability to measure intensity as a function of two spatial dimensions and time with high resolution. The various subsystems of OBIPS are in themselves modular with modules having a high degree of interchangeability for versatility, economy, and redundancy.
DOE R&D Accomplishments Database
Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hanany, S.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant,C. D.; Wu, J. H. P.
2005-06-04
We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 deg{sup 2} region of the sky with 10' resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions.
Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.
2011-01-01
A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
2018-05-01
We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10-20 %.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Levy, Robert; Kaufman, Yoram; Remer, Lorraine A.; Li, Rong-Rong; Martins, Vanderlei J.; Holben, Brent N.; Abuhassan, Nader; Slutsker, Ilya; Eck, Thomas F.;
2001-01-01
Five Microtops II sun photometers were studied in detail at the NASA Goddard Space Flight Center (GSFC) to determine their performance in measuring aerosol optical thickness (AOT or Tau(sub alphalambda) and precipitable column water vapor (W). Each derives Tau(sub alphalambda) from measured signals at four wavelengths lambda (340, 440, 675, and 870 nm), and W from the 936 nm signal measurements. Accuracy of Tau(sub alphalambda) and W determination depends on the reliability of the relevant channel calibration coefficient (V(sub 0)). Relative calibration by transfer of parameters from a more accurate sun photometer (such as the Mauna-Loa-calibrated AERONET master sun photometer at GSFC) is more reliable than Langley calibration performed at GSFC. It was found that the factory-determined value of the instrument constant for the 936 nm filter (k= 0.7847) used in the Microtops' internal algorithm is unrealistic, causing large errors in V(sub 0(936)), Tau(sub alpha936), and W. Thus, when applied for transfer calibration at GSFC, whereas the random variation of V(aub 0) at 340 to 870 nm is quite small, with coefficients of variation (CV) in the range of 0 to 2.4%, at 936 nm the CV goes up to 19%. Also, the systematic temporal variation of V(sub 0) at 340 to 870 nm is very slow, while at 936 nm it is large and exhibits a very high dependence on W. The algorithm also computes Tau(sub alpha936) as 0.91Tau(sub alpha870), which is highly simplistic. Therefore, it is recommended to determine Tau(sub alpha936) by logarithmic extrapolation from Tau(sub alpha675) and Tau(sub alpha 870. From the operational standpoint of the Microtops, apart from errors that may result from unperceived cloud contamination, the main sources of error include inaccurate pointing to the Sun, neglecting to clean the front quartz window, and neglecting to calibrate correctly. If these three issues are adequately taken care of, the Microtops can be quite accurate and stable, with root mean square (rms) differences between corresponding retrievals from clean calibrated Microtops and the AERONET sun photometer being about +/-0.02 at 340 nm, decreasing down to about +/-0.01 at 870 nm.
Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.
2005-04-01
The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.
Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
Thorpe, Andrew; Walsh, Peter T
2013-08-01
Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.
Aerosol and gamma background measurements at Basic Environmental Observatory Moussala
NASA Astrophysics Data System (ADS)
Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan
2016-03-01
Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.
HD-SP2 Measurements of Black Carbon Containing Aerosols in South Korea during KORUS-AQ
NASA Astrophysics Data System (ADS)
Lamb, K. D.; Perring, A. E.; Ahn, J.; Schwarz, J. P.
2016-12-01
Black carbon (BC) is a light-absorbing aerosol with strong anthropogenic sources that has important climatic and health impacts, both regionally and globally. Materials internally mixed with BC, including water, affect its optical properties and lifetime in the atmosphere, and thus are critical to determining BC's ultimate impacts. The NASA KORUS-AQ campaign during the spring/summer of 2016 was a multi-platform research campaign focused on air quality over South Korea, in a region with particularly high BC emissions and loadings. The NOAA Humidified-Dual Single Particle Soot Photometer (HD-SP2) was deployed on the NASA DC-8 aircraft to measure the optical size and refractory BC content of individual particles under dry and humidified conditions as well as the BC mass mixing ratio. We focus on evaluating BC MMR in the free troposphere up to 400 hPa in the context of previous measurements; assessing the optical impacts of observed internal mixtures with BC at different times of day; and evaluating the contribution of water uptake on BC absorption and atmospheric lifetime over Korea in ambient conditions.
A synthetic study and characterization of the Pt(II) complexes with bipyridines back-born system.
Jo, Woongkyu; Son, Seokhwan; Jo, Hyeongjun; Kim, Byeongcheol; Kwak, Cheehun; Jung, Sangchul; Lee, Jihoon; Ahn, Hogeun; Chung, Minchul
2014-08-01
The reaction of platinum [Pt(5,5-dmbpy)]Cl2 (5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) with 4,4'-dimethyl-2,2'-bipyridine (4,4-dmbpy), [Pt(dbbpy)]Cl2 (dbbpy = 4,4'-dibutyl-2,2'-bipyridine), [Pt(dpbpy)]Cl2 (dpbpy = 4,4'-dipentyl-2,2'-bipyridine) with 5,5'-dimethyl-2,2'-bipyridine (5,5-dmbpy) affords the following complexes: [(4,4-dmbpy)Pt(5,5-dmbpy)][PF6]2 (1) and [(dbbpy)Pt(5,5-dmbpy)][PF6]2 (2), [(dpbpy)Pt(5,5-dmbpy)][PF6]2 (3), [(5,5-dmbpy)Pt(5,5-dmbpy)][PF6]2 (4). This study was synthesized new platinum complex compounds utilizing ligand of 5,5'-Dimethyl-2,2'-dipyridyl System. To study the chemical composition was used 1H(13C)-NMR, UV-vis, Spectro photometer and Measurements about optical physics and chemical properties were measured to use spectrofluorometer. UV-vis absorption area was measured 310 nm to 383 nm and luminous wavelength was measured 390 nm to 419 nm.
In-situ measurement of Cl2 and O3 in a stratospheric solid rocket motor exhaust plume
NASA Astrophysics Data System (ADS)
Ross, M. N.; Ballenthin, J. O.; Gosselin, R. B.; Meads, R. F.; Zittel, P. F.; Benbrook, J. R.; Sheldon, W. R.
The concentration of Cl2 in the stratospheric exhaust plume of a Titan IV launch vehicle was measured with a neutral mass spectrometer carried on a WB-57F aircraft at 18.9 km altitude. Twenty nine minutes after a twilight Titan IV launch, the mean Cl2 concentration across an 8 km wide plume was 126 ± 44 ppbv, consistent with model predictions that a large fraction of the HCl in solid rocket motor exhaust is converted into Cl2 by afterburning reactions in the hot plume. Co-incident measurements with ultraviolet absorption photometers also carried on the aircraft show that ozone concentration in the plume was not different from ambient levels. This is consistent with model predictions that nighttime SRM launches will not cause transient ozone loss in the lower stratosphere. The measured Cl2 concentration equals 15% of the ambient ozone concentration suggesting that transient ozone reduction in SRM plume wakes can be expected after daytime launches when solar ultraviolet radiation will photolyze the exhaust plume Cl2.
Measurements of Light Absorbing Particles on Tropical South American Glaciers
NASA Astrophysics Data System (ADS)
Schmitt, C. G.; All, J.; Schwarz, J. P.; Arnott, W. P.; Warthon, J.; Andrade, M.; Celestian, A. J.; Hoffmann, D.; Cole, R. J.; Lapham, E.; Horodyskyj, U. N.; Froyd, K. D.; Liao, J.
2014-12-01
Glaciers in the tropical Andes have been losing mass rapidly in recent decades. In addition to the documented increase in temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we present results of measurements of light absorbing particles from glaciers in Peru and Bolivia. Samples have been collected by American Climber Science Program volunteers and scientists at altitudes up to 6770 meters. Collected snow samples were melted and filtered in the field. A new inexpensive technique, the Light Absorption Heating Method (LAHM) has been developed for analysis of light absorbing particles collected on filters. Results from LAHM analysis are calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). For snow samples collected at the same field location LAHM analysis and measurements from the Single Particle Soot Photometer (SP2) instrument are well correlated (r2 = 0.92). Co-located SP2 and LAHM filter analysis suggest that BC could be the dominant absorbing component of the light absorbing particles in some areas.
NASA Technical Reports Server (NTRS)
Melroy, H. R.; Wilson, E. L.; Clarke, G. B.; Ott, L. E.; Mao, J.; Ramanathan, A. K.; McLinden, M. L.
2015-01-01
We present column CO2 measurements taken by the passive Miniaturized Laser Heterodyne Radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory (MLO) in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15 minute intervals during daylight hours. Laser Heterodyne Radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here is a preliminary retrieval analysis and the performance analysis that demonstrates that the Mini-LHR responds extremely well to changes in the atmospheric absorption.
Isothermal absorption of soluble gases by atmospheric nanoaerosols
NASA Astrophysics Data System (ADS)
Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A.
2013-01-01
We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J.
2017-01-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer–Lambert Law. Thus, iNIRS is a promising approach for quantitative and non-invasive monitoring of perfusion and optical properties in vivo. PMID:28146535
Isothermal absorption of soluble gases by atmospheric nanoaerosols.
Elperin, T; Fominykh, A; Krasovitov, B; Lushnikov, A
2013-01-01
We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO(2)), dinitrogen trioxide (N(2)O(3)), and chlorine (Cl(2)) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols
NASA Astrophysics Data System (ADS)
Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available ancillary aerosol observations, including sun photometer, nephelometer and LIDAR. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...
Clark, R.N.; Lucey, P.G.
1984-01-01
The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors
NASA Astrophysics Data System (ADS)
Raut, S. D.; Awasarmol, V. V.; Shaikh, S. F.; Ghule, B. G.; Ekar, S. U.; Mane, R. S.; Pawar, P. P.
2018-04-01
The gamma ray energy absorption and exposure buildup factors (EABF and EBF) were calculated for ferrites such as cobalt ferrite (CoFe2O4), zinc ferrite (ZnFe2O4), nickel ferrite (NiFe2O4) and magnesium ferrite (MgFe2O4) using five parametric geometric progression (G-P fitting) formula in the energy range 0.015-15.00 MeV up to the penetration depth 40 mean free path (mfp). The obtained data of absorption and exposure buildup factors have been studied as a function of incident photon energy and penetration depth. The obtained EABF and EBF data are useful for radiation dosimetry and radiation therapy.
Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.
Yang, Lin; Somesfalean, Gabriel; He, Sailing
2014-02-10
An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.
NASA Technical Reports Server (NTRS)
Moore, J. F.
1971-01-01
Several new infrared absorptions were found in carbon dioxide. All are normally forbidden, and were collision-induced in an absorbing cell whose combination of pressure and path length has a unique sensitivity for induced absorptions. The new absorptions in the 2.3 micron region are attributed to transitions from ground to the 3(1)1 Fermi pair at 4248 and 4391/cm. Other absorptions are attributed to simultaneous CO2-N2 transitions and to the 00(0)0-00(0)2 transition in CO2 polarizability derivatives and regular progressions in strength versus increasing quantum number. The spectra were used to predict the radiative transfer in a dry CO2 model of the lower Venus atmosphere. The results indicate that the radiation balance in the lower atmosphere is adequately explained by a dry massive atmosphere of CO2 with a layer of infrared-opaque clouds. The absorptions in the 2.3 micron region are significant in accounting for the opacity to sustain Venus' 768 K surface temperature.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
Sonnenfroh, D M; Allen, M G
1997-10-20
We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.
NASA Astrophysics Data System (ADS)
Sonnenfroh, David M.; Allen, Mark G.
1997-10-01
We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.
Tissue phantom-based breast cancer detection using continuous near-infrared sensor
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang
2016-01-01
ABSTRACT Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection. PMID:27459672
Tissue phantom-based breast cancer detection using continuous near-infrared sensor.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang
2016-09-02
Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection.
Dynamically tunable extraordinary light absorption in monolayer graphene
NASA Astrophysics Data System (ADS)
Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis
2017-10-01
The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.
Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign
NASA Astrophysics Data System (ADS)
Pinto, J. P.; Dibb, J.; Lee, B. H.; Rappenglück, B.; Wood, E. C.; Levy, M.; Zhang, R.-Y.; Lefer, B.; Ren, X.-R.; Stutz, J.; Tsai, C.; Ackermann, L.; Golovko, J.; Herndon, S. C.; Oakes, M.; Meng, Q.-Y.; Munger, J. W.; Zahniser, M.; Zheng, J.
2014-05-01
Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP®), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations < 100 parts per trillion (ppt). Above 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations.
Microwave Atmospheric-Pressure Sensor
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1986-01-01
Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.
Comparison of micrometeorological techniques in measuring gas emissions from waste lagoons
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated and compared the accuracies of two micrometeorological methods using open-path tunable diode laser absorption spectrometers; vertical radial plume mapping method and the inverse dispersion model method. The accuracy of these two methods was evaluated using a 45m x 45m p...
Comparison of micrometeorological techniques in measuring gas emissions from waste lagoons
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated and compared the accuracies of two micrometeorological methods using open-path tunable diode laser absorption spectrometers; vertical radial plume mapping method (US EPA OTM-10) and the inverse dispersion model method. The accuracy of these two methods was evaluated usin...
USDA-ARS?s Scientific Manuscript database
Modern molecular biological techniques allow for the design of molecules of ribonucleic acid capable of disrupting key biological processes of pests and diseases. A major requirement for the practical application of ribonucleic acid interference (RNAi) against insect pests is an efficient entry path...
NASA Astrophysics Data System (ADS)
Fang, W.; Andersson, A.; Zheng, M.; Lee, M.; Kim, S. W.; Du, K.; Gustafsson, O.
2016-12-01
Improved understanding of anthropogenic aerosol effects on atmospheric chemistry and climate as well as efficient mitigation actions are hampered by the limited comprehension of the relative contributions of different sources of carbonaceous aerosols and of their subsequent atmospheric processing. Here, we present dual carbon isotope constrained source apportionment and optical properties of carbonaceous aerosols simultaneously both at urban and rural receptor sites, includes North China Plain (NCP, Beijing and Tianjin), Yangtze River Delta (YRD, Shanghai, Zhejiang), and Jeju Island (Korea Climate Observatory at Gosan) during January 2014 field campaigns. The radiocarbon (Δ14C) data show that fossil combustions contribute equally ˜80 ± 5% to elemental carbon (EC) aerosol in Beijing, Tianjin, and Shanghai, and 66 ± 9% to Gosan-EC aerosol, while the specific sources of the dominant fossil fuel component were dramatically different among these sites. The mean fraction coal combustion of Beijing-EC, Tianjin-EC, and Gosan-EC is double that of Shanghai-EC. The other large fraction (72―92%) of carbonaceous aerosol is organic carbon (OC) aerosol which contains water soluble and water insoluble organic carbon (WSOC and WISOC). OC, WISOC, and WSOC in Beijing and Gosan sites were still observed largely from fossil sources (53―75%). The more 13C-enriched signature of Gosan-WSOC (-22.8 ± 0.2‰) compared to Gosan-EC (-23.9 ± 0.4‰) and Beijing-WSOC (-23.5 ± 0.7‰) reflects that WSOC is likely more affected by atmospheric aging during long-rang transport than is EC. The high light absorption coefficients of PM2.5, PM1, and TSP were observed at Gosan during this study and was frequently reaching 20―60 Mm-1 by aethalometer and continuous light absorption photometer. The mass absorption cross section of WSOC (MAC365) for above sites is high (1.5 ± 0.8 m2/g), accounted for ˜14 ± 5% of the total direct absorbance relative to EC, which is significantly higher than the previous findings in S. Asia, N. America, and Europe.
Fluorescence metrology used for analytics of high-quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Haspel, Rainer; Rupertus, Volker
2004-09-01
Optical, glass ceramics and crystals are used for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. In order to qualify and control the material quality during the research and production processes several specialized ultra trace analytisis methods have to be appliedcs Schott Glas is applied. One focus of our the activities is the determination of impurities ranging in the sub ppb-regime, because such kind of impurity level is required e.g. for pure materials used for microlithography for example. Common analytical techniques for these impurity levels areSuch impurities are determined using analytical methods like LA ICP-MS and or Neutron Activation Analysis for example. On the other hand direct and non-destructive optical analysistic becomes is attractive because it visualizes the requirement of the optical applications additionally. Typical eExamples are absorption and laser resistivity measurements of optical material with optical methods like precision spectral photometers and or in-situ transmission measurements by means ofusing lamps and or UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). For a non-destructive qualification for the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometery is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity than state of the art UV absorption spectroscopy), fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analystics). An overview is given for spectral characteristics using specified standards, which are necessary to establish the analytical system. The elementary fluorescence and absorption of rare earth element impurities as well as crystal defects induced luminescence originated by impurities was investigated. Quantitative numbers are given for the relative quantum yield as well as for the excitation cross section for doped glass and calcium fluoride.
NASA Technical Reports Server (NTRS)
Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi
2006-01-01
Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude.
NASA Technical Reports Server (NTRS)
Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.;
2000-01-01
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling community. The fact that the nephelometers and the absorption photometer sampled the aerosol through a cyclone make those measurements less useful for thee closure study carried out here. Large corrections (especially in the dust) had to be applied. Therefore, it is not surprising that closure with the sunphotometer was not always achieved. Agreement within 0.02 in AOD was achieved in the dust layer when the airorne sunphotometer extinction or AOD was compared to ground-based lidar measurements. We found that the presence of the elevated dust layers removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. We still compare the scattering phase functions used in the satellite retrieval with those obtained from the aerosol or the sunphotometer measurements.
da Silva Magalhães, Ticiane; Reis, Boaventura F
2017-09-01
In this work, a multicommuted flow analysis procedure is proposed for the spectrophotometric determination of cobalt in fresh water, employing an instrument setup of downsized dimension and improved cost-effectiveness. The method is based on the catalytic effect of Co(II) on the Tiron oxidation by hydrogen peroxide in alkaline medium, forming a complex that absorbs radiation at 425 nm. The photometric detection was accomplished using a homemade light-emitting-diode (LED)-based photometer designed to use a flow cell with an optical path-length of 100 mm to improve sensitivity. After selecting adequate values for the flow system variables, adherence to the Beer-Lambert-Bouguer law was observed for standard solution concentrations in the range of 0.13-1.5 µg L -1 Co(II). Other useful features including a relative standard deviation of 2.0% (n = 11) for a sample with 0.49 µg L -1 Co(II), a detection limit of 0.06 µg L -1 Co(II) (n = 20), an analytical frequency of 42 sample determinations per hour, and waste generation of 1.5 mL per determination were achieved.
NASA Astrophysics Data System (ADS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Mao, J.; Hasselbrack, W.
2009-04-01
Accurate measurements of tropospheric CO2 abundances with global-coverage are needed to quantify processes that regulate CO2 exchange with the land and oceans. The 2007 Decadal Survey for Earth Science by the US National Research Council recommended a space-based CO2 measuring mission called ASCENDS. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and as a candidate for the ASCENDS mission. It uses the 1570-nm CO2 band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. During the measurement, the lasers are stepped in wavelength across the CO2 line and an O2 line (near 765 nm) at a ~ 1 kHz rate. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the surface, and to reject photons scattered from thin clouds and aerosols in the path. Previously we had constructed breadboard versions of our CO2 and O2 sensors, using tunable diode lasers, fiber laser amplifiers and 20 cm diameter telescopes. We have used them to make measurements of gas absorptions over 0.2, 0.4 and 1.3 km long outdoor paths. We also have also calculated several characteristics of the technique for space and have performed an initial space mission accommodation study. During 2008 we reconfigured our lidar for airborne use and made measurements of atmospheric CO2 absorption in the nadir column from the aircraft to the surface during 5 flights. The airborne lidar sweeps the laser wavelength across the CO2 line in either 10 or 20 steps per measurement. The line scan rate is ~ 1 KHz and the laser pulse widths are 1 usec. The time resolved laser backscatter is collected by the telescope and detected by a photomultiplier and recorded by a photon counting timing system. We installed our lidar on the NASA Glenn Lear-25 aircraft in October and first made measurements using the 1571.4 nm CO2 absorption line while flying in northern Ohio. We made laser backscatter and absorption measurements over a variety of land surface types, water surfaces and through thin clouds, broken clouds and to cloud tops. Strong laser signals were observed at altitudes from 2.5 to 11 km on two flights. We completed three additional flights during December 2008 and gathered over 6 hours of atmospheric CO2 column measurements using the 1572.02 and 1572.33 nm CO2 lines. Airborne CO2 line shape and absorption measurements were made while flying at 3-11 km altitudes over southwestern Ohio. Subsequently two flights were made from Ponca City OK, just east of the US Department of Energy's (DOE) ARM site. We made 4 hours of airborne measurements in square patterns around the ARM site at altitudes from 3-8 km. The increased CO2 line absorptions at higher altitudes were evident in all flights. The December flights were also coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft inside the CO2 sounder's flight pattern. These yielded two height resolved profiles of CO2 concentrations from 5 km to the surface, which are being analyzed with radiosonde measurements for comparisons. More details of the flights, measurements and their analysis will be described in the presentation.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-06-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2013-04-01
Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.
Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.
2017-12-01
Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.
NASA Technical Reports Server (NTRS)
Gatewood, George
1989-01-01
The Multichannel Astrometic Photometer and new optical system of the Allegheny Observatory have been used to obtain parallaxes of stars in the regions of HD 2665, BD +68.946 deg, and Lambda Ophiuchi. HD 2665 is found to have an absolute visual magnitude of 1.6 + or - 0.4 and a distance of 149 + or - 28 pc. It is shown that the Lambda Ophiuchi system has a parallax of 23.5 + or - 2.1 mas and that its A0 V and A4 V components have masses of 2.7 + or - 0.7 and 1.5 + or - 0.4 solar masses, respectively.
NASA Technical Reports Server (NTRS)
1975-01-01
A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.
NASA Astrophysics Data System (ADS)
Kazadzis, Stelios; Kouremeti, Natalia; Nyeki, Stephan; Gröbner, Julian; Wehrli, Christoph
2018-02-01
The World Optical Depth Research Calibration Center (WORCC) is a section within the World Radiation Center at Physikalisches-Meteorologisches Observatorium (PMOD/WRC), Davos, Switzerland, established after the recommendations of the World Meteorological Organization for calibration of aerosol optical depth (AOD)-related Sun photometers. WORCC is mandated to develop new methods for instrument calibration, to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of Sun photometers. In this work we describe the calibration hierarchy and methods used under WORCC and the basic procedures, tests and processing techniques in order to ensure the quality assurance and quality control of the AOD-retrieved data.
Larson, Nels R. [Pacific Northwest Laboratory (PNNL), Richland, WA (USA); Michalsky, Joseph J. [Atmospheric Sciences Research Center, Albany, NY (USA); LeBaron, Brock A. [Utah Bureau of Air Quality, Salt Lake City, Utah (USA)
2012-01-01
Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory in eastern Washington. The observatory is located at 46.4° N, 119.6° W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (i.e., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere.
NASA Technical Reports Server (NTRS)
Prospero, J. M.; Savoie, D.; Snowdon, T.; Ewbank, P.
1983-01-01
A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water.
Spectral atmospheric observations at Nantucket Island, May 7-14, 1981
NASA Technical Reports Server (NTRS)
Talay, T. A.; Poole, L. R.
1981-01-01
An experiment was conducted by the National Langley Research Center to measure atmospheric optical conditions using a 10-channel solar spectral photometer system. This experiment was part of a larger series of multidisciplinary experiments performed in the area of Nantucket Shoals aimed at studying the dynamics of phytoplankton production processes. Analysis of the collected atmospheric data yield total and aerosol optical depths, transmittances, normalized sky radiance distributions, and total and sky irradiances. Results of this analysis may aid in atmospheric corrections of remote sensor data obtained by several sensors overflying the Nantucket Shoals area. Recommendations are presented concerning future experiments using the described solar photometer system and calibration and operational deficiencies uncovered during the experiment.
Measurements of the Michigan Airglow Observatory from 1971 to 1973 at Ester Dome Alaska
NASA Technical Reports Server (NTRS)
Mcwatters, K. D.; Meriwether, J. W.; Hays, P. B.; Nagy, A. F.
1973-01-01
The Michigan Airglow Observatory (MAO) was located at Ester Dome Observatory, College, Alaska (latitude: 64 deg 53'N, longitude: 148 deg 03'W) since October, 1971. The MAO houses a 6-inch Fabry-Perot interferometer, a 2-channel monitoring photometer and a 4-channel tilting filter photometer. The Fabry-Perot interferometer was used extensively during the winter observing seasons of 1971-72 and 1972-73 to measure temperature and mass motions of the neutral atmosphere above approximately 90 kilometers altitude. Neutral wind data from the 1971-72 observing season as measured by observing the Doppler shift of the gamma 6300 A atomic oxygen emission line are presented.
Aethalometer multiple scattering correction Cref for mineral dust aerosols
NASA Astrophysics Data System (ADS)
Di Biagio, Claudia; Formenti, Paola; Cazaunau, Mathieu; Pangui, Edouard; Marchand, Nicolas; Doussin, Jean-François
2017-08-01
In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31) with (i) the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex) and a nephelometer respectively at 450 nm and (ii) the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer) at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA) at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85-0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98-0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22) at 450 nm and 1.92 (±0.17) at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm) and 11 % (660 nm) higher than that obtained by using Cref = 2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02) and 2.32 (±0.01) at 450 and 660 nm (SSA = 0.96-0.97) for kaolinite, and Cref of 2.32 (±0.36) at 450 nm and 2.32 (±0.35) at 660 nm for pollution aerosols (SSA = 0.62-0.87 at 450 nm and 0.42-0.76 at 660 nm).
Bayly, John G.; Booth, Ronald J.
1977-01-01
An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.
Development of a Pulsed 2-micron Laser Transmitter for CO2 Sensing from Space
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Bai, Yingxin; Petros, Mulugeta; Menzies, Robert T.
2011-01-01
NASA Langley Research Center (LaRC), in collaboration with NASA Jet Propulsion Laboratory (JPL), is engaged in the development and demonstration of a highly efficient, versatile, 2-micron pulsed laser that can be used in a pulsed Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution CO2 measurements to investigate sources, sinks, and fluxes of CO2. This laser transmitter will feature performance characteristics needed for an ASCENDS system that will be capable of delivering the CO2 measurement precision required by the Earth Science Decadal Survey (DS).
Microprocessor-controlled laser tracker for atmospheric sensing
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Webster, C. R.; Menzies, R. T.
1985-01-01
An optical tracking system comprising a visible HeNe laser, an imaging detector, and a microprocessor-controlled mirror, has been designed to track a moving retroreflector located up to 500 m away from an atmospheric instrument and simultaneously direct spectrally tunable infrared laser radiation to the retroreflector for double-ended, long-path absorption measurements of atmospheric species. The tracker has been tested during the recent flight of a balloon-borne tunable diode laser absorption spectrometer which monitors the concentrations of stratospheric species within a volume defined by a 0.14-m-diameter retroreflector lowered 500 m below the instrument gondola.
Sodium leak detection system for liquid metal cooled nuclear reactors
Modarres, Dariush
1991-01-01
A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.
A novel screen design for anti-ambient light front projection display with angle-selective absorber
NASA Astrophysics Data System (ADS)
Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu
2016-03-01
Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, F.G.A.; Camacho, F.G.; Perez, J.A.S.
1997-09-05
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer`s law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differentialmore » wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation.« less
NASA Astrophysics Data System (ADS)
Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.
2012-03-01
Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.
On the possibility of measuring atmospheric OH using intracavity laser spectroscopy
NASA Technical Reports Server (NTRS)
Mcmanus, J. Barry; Kolb, C. E.
1994-01-01
Intracavity laser spectroscopy (ILS) has been demonstrated to be useful for measuring extremely weak absorption produced by gases in air. ILS is based on the observation that when there are spectrally narrow losses within the cavity of a broadband laser, the laser output has corresponding spectral holes where the laser oscillation is partially quenched. The depth of the laser output dips can be enhanced by a factor of 10(exp 5) over the depth of the initial cavity loss, and absorptivities of 10(exp -8) cm(exp -1) have been measured in lasers only one meter long. With ILS, one can achieve in a compact space a spectral contrast that would otherwise require kilometers of pathlength. ILS systems typically use quasi-continuous wave dye lasers operating close to threshold. The pump laser is modulated from just below to just above the threshold level for the dye laser, and the dye laser output is spectroscopically observed during a well defined time interval after the onset of lasing (the generation time). The spectral contrast of an intracavity absorber is equivalent to that produced by absorption through a path length equal to the generation time multiplied by the speed of light (assuming the cavity is completely filed with the absorber) up to some limiting time. Thus, if one measures the spectrum after 33 microseconds, the effective path length is 10,000 meters.
Advancing colloidal quantum dot photovoltaic technology
NASA Astrophysics Data System (ADS)
Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.
2016-06-01
Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.
Salinas, Santo V; Chew, Boon N; Liew, Soo C
2009-03-10
The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.
NASA Astrophysics Data System (ADS)
Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca
2014-07-01
The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.
2012-01-01
This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.
NASA Astrophysics Data System (ADS)
Clifton, K. S.; Owens, J. K.
1983-04-01
Efforts continue regarding the analysis of particulate contamination recorded by the Camera/Photometers on STS-2. These systems were constructed by Epsilon Laboratories, Inc. and consisted of two 16-mm photographic cameras, using Kodak Double X film, Type 7222, to make stereoscopic observations of contaminant particles and background. Each was housed within a pressurized canister and operated automatically throughout the mission, making simultaneous exposures on a continuous basis every 150 sec. The cameras were equipped with 18-mm f/0.9 lenses and subtended overlapping 20° fields-of-view. An integrating photometer was used to inhibit the exposure sequences during periods of excessive illumination and to terminate the exposures at preset light levels. During the exposures, a camera shutter operated in a chopping mode in order to isolate the movement of particles for velocity determinations. Calculations based on the preflight film calibration indicate that particles as small as 25 μm can be detected from ideal observing conditions. Current emphasis is placed on the digitization of the photographic data frames and the determination of particle distances, sizes, and velocities. It has been concluded that background bright-ness measurements cannot be established with any reliability on the STS-2 mission, due to the preponderance of Earth-directed attitudes and the incidence of light reflected from nearby surfaces.
Atmospheric absorption of high frequency noise and application to fractional-octave bands
NASA Technical Reports Server (NTRS)
Shields, F. D.; Bass, H. E.
1977-01-01
Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.
Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver
NASA Technical Reports Server (NTRS)
Menzies, R. T. (Inventor)
1973-01-01
The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.
Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy
NASA Technical Reports Server (NTRS)
Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish
2016-01-01
This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick L.; Browell, Edward V.
1997-01-01
The linestrengths for 40 absorption lines of H2 16-O water vapor that were located between 813 and 820 nm were measured; most of these lines were selected for their potential usefulness in laser remote measurements of atmospheric humidity using the differential absorption lidar technique. The air-induced pressure-broadening coefficients were also measured for 32 of these lines and the air-induced pressure shift coefficients were measured for 29 lines. These spectroscopic parameters were derived from spectra obtained with an AlGaAs diode laser and two long-path absorption cells. Collisional narrowing effects were observed and were accurately described by a Galatry profile. Comparisons were made with previous experimental work or theoretical calculations as available.
LED-Absorption-QEPAS Sensor for Biogas Plants
Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang
2015-01-01
A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.
2013-01-01
The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
Tissue characterization with ballistic photons: counting scattering and/or absorption centres
NASA Astrophysics Data System (ADS)
Corral, F.; Strojnik, M.; Paez, G.
2015-03-01
We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.
NASA Technical Reports Server (NTRS)
Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.
2003-01-01
In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles of radiative fluxes, which we will compare to modeled fluxes using the aforementioned data as input.
NASA Astrophysics Data System (ADS)
Kangas, Miikka Matias
The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.
NASA Technical Reports Server (NTRS)
Mcdade, Ian C.
1991-01-01
Techniques were developed for recovering two-dimensional distributions of auroral volume emission rates from rocket photometer measurements made in a tomographic spin scan mode. These tomographic inversion procedures are based upon an algebraic reconstruction technique (ART) and utilize two different iterative relaxation techniques for solving the problems associated with noise in the observational data. One of the inversion algorithms is based upon a least squares method and the other on a maximum probability approach. The performance of the inversion algorithms, and the limitations of the rocket tomography technique, were critically assessed using various factors such as (1) statistical and non-statistical noise in the observational data, (2) rocket penetration of the auroral form, (3) background sources of emission, (4) smearing due to the photometer field of view, and (5) temporal variations in the auroral form. These tests show that the inversion procedures may be successfully applied to rocket observations made in medium intensity aurora with standard rocket photometer instruments. The inversion procedures have been used to recover two-dimensional distributions of auroral emission rates and ionization rates from an existing set of N2+3914A rocket photometer measurements which were made in a tomographic spin scan mode during the ARIES auroral campaign. The two-dimensional distributions of the 3914A volume emission rates recoverd from the inversion of the rocket data compare very well with the distributions that were inferred from ground-based measurements using triangulation-tomography techniques and the N2 ionization rates derived from the rocket tomography results are in very good agreement with the in situ particle measurements that were made during the flight. Three pre-prints describing the tomographic inversion techniques and the tomographic analysis of the ARIES rocket data are included as appendices.
Portable open-path chemical sensor using a quantum cascade laser
NASA Astrophysics Data System (ADS)
Corrigan, Paul; Lwin, Maung; Huntley, Reuven; Chhabra, Amandeep; Moshary, Fred; Gross, Barry; Ahmed, Samir
2009-05-01
Remote sensing of enemy installations or their movements by trace gas detection is a critical but challenging military objective. Open path measurements over ranges of a few meters to many kilometers with sensitivity in the parts per million or billion regime are crucial in anticipating the presence of a threat. Previous approaches to detect ground level chemical plumes, explosive constituents, or combustion have relied on low-resolution, short range Fourier transform infrared spectrometer (FTIR), or low-sensitivity near-infrared differential optical absorption spectroscopy (DOAS). As mid-infrared quantum cascade laser (QCL) sources have improved in cost and performance, systems based on QCL's that can be tailored to monitor multiple chemical species in real time are becoming a viable alternative. We present the design of a portable, high-resolution, multi-kilometer open path trace gas sensor based on QCL technology. Using a tunable (1045-1047cm-1) QCL, a modeled atmosphere and link-budget analysis with commercial component specifications, we show that with this approach, accuracy in parts per billion ozone or ammonia can be obtained in seconds at path lengths up to 10 km. We have assembled an open-path QCL sensor based on this theoretical approach at City College of New York, and we present preliminary results demonstrating the potential of QCLs in open-path sensing applications.
Karl Friedrich Zollner and the historical dimension of astronomical photometry
NASA Astrophysics Data System (ADS)
Sterken, C.; Staubermann, K. B.
This book results from presentations and discussions of a group of astronomers and historians during a one-day workshop held at Archenhold Observatory, Berlin-Treptow, on April 4, 1997. This meeting was the first forum in a series dedicated to historical aspects of observational astrophysics in the nineteenth and early twentieth century. The basic principle of these meetings is to reflect during one or more days on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. By focusing on key people who epitomize a way of thinking and working that has formed many of the ideas by which we do astrophysical research today, we also attempt to evoke the scientific spirit of the era under consideration. In 1858, the German physicist Karl Friedrich Zoellner introduced a new type of astronomical photometer which became a bestseller in the second half of the nineteenth century and which led him to the first German professorship in astrophysics. His type of photometer allowed most accurate photometric measurements and was used at several observatories for almost half a century. This book outlines four major themes. The first part describes the observing instruments that were used by Zoellner and his contemporaries: photometers and spectrographs that complemented his original design, but also competed with his most versatile prototype photometer. The description also includes an account of technical aspects associated with the replication of such a photometer today. The second part analyses the astrophysical data that were obtained with Zoellner's tools, and extracts information hidden in the published data --- scientific information as well as diverse aspects related to the observer himself. These nineteenth-century data are now published for the first time on a modern magnitude scale and are directly accessible in tabular form, and are thus fully applicable to archeophotometric studies. The third part of the book illustrates some aspects of Zoellner's personal life, his correspondence, and the relationship to his direct colleagues. It follows Zoellner during the last years of his life when he experienced severely strained relationships with the scientific establishment of his time. The last part reviews a number of scientific studies made on the most enigmatic personality that Zoellner certainly was, and also gives a bibliography of all works by Karl Friedrich Zoellner which were published during his lifetime or which appeared posthumously.
Tandem junction amorphous semiconductor photovoltaic cell
Dalal, V.L.
1983-06-07
A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.
Viewer Makes Radioactivity "Visible"
NASA Technical Reports Server (NTRS)
Yin, L. I.
1983-01-01
Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.
Tandem junction amorphous semiconductor photovoltaic cell
Dalal, Vikram L.
1983-01-01
A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.
Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.
Merten, André; Tschritter, Jens; Platt, Ulrich
2011-02-10
We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.
Particle Morphology From Wood-Burning Cook Stoves Emissions
NASA Astrophysics Data System (ADS)
Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.
2013-12-01
Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.
DACCIWA Cloud-Aerosol Observations in West Africa Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J Christine; Blanchard, Yann; Hill, Peter
Interactions between aerosols and clouds, and their effects on radiation, precipitation, and regional circulations, are one of the largest uncertainties in understanding climate. With reducing uncertainties in predictions of weather, climate, and climate impacts in mind, the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, funded by the European Commission, set out to improve our understanding of cloud-aerosol interactions in southern West Africa. This region is ideal for studying cloud-aerosol interactions because of its rich mix of natural and anthropogenic aerosols and diverse clouds, and because of the strong dependence on the regional and global climate of the sensitive West Africanmore » monsoon. The overview of DACCIWA is described in Knippertz et al. 2015. The interdisciplinary DACCIWA team includes not only several European and African universities, but also Met Centres in the UK, France, Germany, Switzerland, Benin, Ghana, and Nigeria. One of the crucial research activities in DACCIWA is the major field campaign in southern West Africa from June to July 2016, comprising a benchmark data set for assessing detailed processes on natural and anthropogenic emissions; atmospheric composition; air pollution and its impacts on human and ecosystem health; boundary layer processes; couplings between aerosols, clouds, and rainfall; weather systems; radiation; and the monsoon circulation. Details and highlights of the campaign can be found in Flamant et al. 2017. To provide aerosol/cloud microphysical and optical properties that are essential for model evaluations and for the linkage between ground-based, airborne, and spaceborne observations, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility loaned two sun photometers to the DACCWIA team for the campaign from June 8 to July 29, 2016. The first sun photometer was deployed at Kumasi, Ghana (6.67962°N, 1.56019°W) by the University of Leeds (UK). The instrument was supposed to operate in normal aerosol mode in clear-sky conditions for aerosol monitoring, and operate in cloud mode for measuring cloud properties when clouds block the sun. Unfortunately, the robot of the sun photometer did not work properly from the beginning of the deployment, and remained problematic throughout the campaign. No useful data was recovered. The second sun photometer was deployed at Savé, Benin (8.000842°N, 2.413115°E), set up and maintained by the Karlsruher Institut fuer Technologie, Germany. Unlike most sun photometers that are designed to monitor aerosol properties and thus operated in normal aerosol mode, this sun photometer at Savé was operated in a special cloud mode, pointing vertically and measuring zenith radiance continuously at wavelengths of 440, 500, 675, 870, 1020, and 1640 nm with 10-sec temporal resolution. Zenith radiances at 440, 870, and 1640 nm alone can be used to retrieve cloud optical depth and column-mean effective radius (Chiu et al. 2010, 2012). The following section takes 6 and 7 July as an example to highlight a typical diurnal cycle of clouds observed during the campaign. Cloud properties retrieved from zenith radiance are compared against those retrieved from microwave radiometer (MWR) measurements, and against in situ measurements collected from the Twin Otter aircraft.« less
NASA Astrophysics Data System (ADS)
Burgos, M. A.; Mateos, D.; Cachorro, V. E.; Toledano, C.; de Frutos, A. M.; Calle, A.; Herguedas, A.; Marcos, J. L.
2018-07-01
This work presents an evaluation of a surprising and unusual high turbidity summer period in 2013 recorded in the north-central Iberian Peninsula (IP). The study is made up of three main pollution episodes characterized by very high aerosol optical depth (AOD) values with the presence of fine aerosol particles: the strongest long-range transport Canadian Biomass Burning (BB) event recorded, one of the longest-lasting European Anthropogenic (A) episodes and an extremely strong regional BB. The Canadian BB episode was unusually strong with maximum values of AOD(440 nm) ∼ 0.8, giving rise to the highest value recorded by photometer data in the IP with a clearly established Canadian origin. The anthropogenic pollution episode originated in Europe is mainly a consequence of the strong impact of Canadian BB events over north-central Europe. As regards the local episode, a forest fire in the nature reserve near the Duero River (north-central IP) impacted on the population over 200 km away from its source. These three episodes exhibited fingerprints in different aerosol columnar properties retrieved by sun-photometers of the AErosol RObotic NETwork (AERONET) as well as in particle mass surface concentrations, PMx, measured by the European Monitoring and Evaluation Programme (EMEP). Main statistics, time series and scatterplots relate aerosol loads (aerosol optical depth, AOD and particulate matter, PM) with aerosol size quantities (Ångström Exponent and PM ratio). More detailed microphysical/optical properties retrieved by AERONET inversion products are analysed in depth to describe these events: contribution of fine and coarse particles to AOD and its ratio (the fine mode fraction), volume particle size distribution, fine volume fraction, effective radius, sphericity fraction, single scattering albedo and absorption optical depth. Due to its relevance in climate studies, the aerosol radiative effect has been quantified for the top and bottom of the atmosphere, obtaining mean daily values for this extraordinary summer period of -14.5 and -47.5 Wm-2, respectively.
NASA Astrophysics Data System (ADS)
Allan, J. D.; Alfarra, M. R. R.; Whitehead, J.; McFiggans, G.; Kong, S.; Harrison, R. M.; Alam, M. S.; Hamilton, J. F.; Pereira, K. L.; Holmes, R. E.
2014-12-01
Around 1 in 3 light duty vehicles in the UK use diesel engines, meaning that on-road emissions of particulates, NOx and VOCs and subsequent chemical processes are substantially different to countries where gasoline engines dominate. As part of the Natural Environment Research Council (NERC) Com-Part project, emissions from a diesel engine dynamometer rig representative of the EURO 4 standard were studied. The exhaust was passed to the Manchester aerosol chamber, which consists of an 18 m3 teflon bag and by injecting a sample of exhaust fumes into filtered and chemically scrubbed air, a controllable dilution can be performed and the sample held in situ for analysis by a suite of instruments. The system also allows the injection of other chemicals (e.g. ozone, additional VOCs) and the initiation of photochemistry using a bank of halogen bulbs and a filtered Xe arc lamp to simulate solar light. Because a large volume of dilute emissions can be held for a period of hours, this permits a wide range of instrumentation to be used and relatively slow processes studied. Furthermore, because the bag is collapsible, the entire particulate contents can be collected on a filter for offline analysis. Aerosol microphysical properties are studied using a Scanning Mobility Particle Sizer (SMPS) and Centrifugal Particle Mass Analyser (CPMA); aerosol composition using a Soot Particle Aerosol Mass Spectrometer (SP-AMS), Single Particle Soot Photometer (SP2), Sunset Laboratories OC EC analyser and offline gas- and high performance liquid chromatography (employing advanced mass spectrometry such as ion trap and fourier transform ion cyclotron resonance); VOCs using comprehensive 2D gas chromatography; aerosol optical properties using a Cavity Attenuated Phase Shift Single Scattering Albedo monitor (CAPS-PMSSA), 3 wavelength Photoacoustic Soot Spectrometer (PASS-3) and Multi Angle Absorption Photometer (MAAP); particle hygroscopcity using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and monodisperse Cloud Condensation Nuclei counter (CCN); and measurements of ozone, NOx and CO2. Here we present the first results, where we explored the trends as a function of engine speed, load, exhaust treatment (an oxidizing catalytic converter), dilution factor and exposure to light.
Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Barnacka, Anna
2014-08-01
It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.
Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.
2001-01-01
We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.
Multiple Scattering in Planetary Regoliths Using Incoherent Interactions
NASA Astrophysics Data System (ADS)
Muinonen, K.; Markkanen, J.; Vaisanen, T.; Penttilä, A.
2017-12-01
We consider scattering of light by a planetary regolith using novel numerical methods for discrete random media of particles. Understanding the scattering process is of key importance for spectroscopic, photometric, and polarimetric modeling of airless planetary objects, including radar studies. In our modeling, the size of the spherical random medium can range from microscopic to macroscopic sizes, whereas the particles are assumed to be of the order of the wavelength in size. We extend the radiative transfer and coherent backscattering method (RT-CB) to the case of dense packing of particles by adopting the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path. Furthermore, we replace the far-field interactions of the RT-CB method with rigorous interactions facilitated by the Superposition T-matrix method (STMM). This gives rise to a new RT-RT method, radiative transfer with reciprocal interactions. For microscopic random media, we then compare the new results to asymptotically exact results computed using the STMM, succeeding in the numerical validation of the new methods.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Laser Amplifier Development for the Remote Sensing of CO2 from Space
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander
2015-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the approximately x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a approximately 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
NASA Technical Reports Server (NTRS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
Cremers, David A.; Keller, Richard A.
1984-01-01
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.
Cremers, D.A.; Keller, R.A.
1982-06-08
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.
A consideration of the use of optical fibers to remotely couple photometers to telescopes
NASA Technical Reports Server (NTRS)
Heacox, William D.
1988-01-01
The possible use of optical fibers to remotely couple photometers to telescopes is considered. Such an application offers the apparent prospect of enhancing photometric stability as a consequence of the benefits of remote operation and decreased sensitivity to image details. A properly designed fiber optic coupler will probably show no significant changes in optical transmisssion due to normal variations in the fiber configuration. It may be more difficult to eliminate configuration-dependent effects on the pupil of the transmitted beam, and thus achieve photometric stability to guiding and seeing errors. In addition, there is some evidence for significant changes in the optical throughputs of fibers over the temperature range normally encountered in astronomical observatories.
NASA Technical Reports Server (NTRS)
1981-01-01
Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.
Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaepfer, D.; Itten, K.I.; Borel, C.C.
1998-09-01
Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.
1990-01-01
Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
Measurement of transient gas flow parameters by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, M A; Kuritsyn, Yu A; Liger, V V
2015-04-30
An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less
NASA Astrophysics Data System (ADS)
Ahn, Yong Nam; Mohan, Gunjan; Kopelevich, Dmitry I.
2012-10-01
Dynamics of absorption and desorption of a surfactant monomer into and out of a spherical non-ionic micelle is investigated by coarse-grained molecular dynamics (MD) simulations. It is shown that these processes involve a complex interplay between the micellar structure and the monomer configuration. A quantitative model for collective dynamics of these degrees of freedom is developed. This is accomplished by reconstructing a multi-dimensional free energy landscape of the surfactant-micelle system using constrained MD simulations in which the distance between the micellar and monomer centers of mass is held constant. Results of this analysis are verified by direct (unconstrained) MD simulations of surfactant absorption in the micelle. It is demonstrated that the system dynamics is likely to deviate from the minimum energy path on the energy landscape. These deviations create an energy barrier for the monomer absorption and increase an existing barrier for the monomer desorption. A reduced Fokker-Planck equation is proposed to model these effects.
NASA Technical Reports Server (NTRS)
Spiers, Gary D.; Menzies, Robert T.
2008-01-01
The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.
Diode laser sensor to monitor HCL in a plasma etch reactor
NASA Astrophysics Data System (ADS)
Kim, Suhong; Klimecky, Pete; Chou, Shang-I.; Jeffries, Jay B.; Terry, Fred L., Jr.; Hanson, Ronald K.
2002-09-01
Absorption measurements of HCl during plasma etching of poly-silicon are made using the P(4) transition in the first vibrational overtone band near 1.79 μm. Single path absorption provides a real-time HCl monitor during etching of six-inch wafers in a commercial Lam Research 9400SE reactor at the University of Michigan. Wavelength modulation at 10.7 MHz is used to distinguish the absorption signal from the strong plasma emission. The laser center frequency is ramp-tuned at 500 Hz providing an HCl measurement every 2ms. Direct absorption measurements without the plasma are used to calibrate the wavelength modulation signal. The minimum detectable absorbance was 5x(10)-6 with 50 ms averaging, leading to an HCl detection limit of ~(10)12cm-3. For a given ratio of the feedstock HBr/Cl2, the measured HCl concentration tracks the average etch rate. These measurements demonstrate the feasibility of a real-time diode laser-based etch rate sensor.
Space weather effects on airline communications in the high latitude regions
NASA Astrophysics Data System (ADS)
Stocker, Alan; Siddle, Dave; Warrington, Mike; Honary, Farideh; Zaalov, Nikolay; Homam, Mariyam; Boteler, David; Danskin, Donald; de Franceschi, Georgiana; Ascaneus, Svend
2013-04-01
In the polar regions, ground-based VHF facilities for air-traffic control are lacking (and non-existent on the Russian side of the pole) and satellite communication systems either not available or expensive to retrofit to current aircraft and hence there remains a need for HF communication systems. Unfortunately, at these latitudes space weather can significantly affect the propagation of HF radio signals and the forecasting techniques currently employed by the airline industry are somewhat crude. In this paper, a new project that aims to provide forecasting of HF propagation characteristics for use by civilian airlines operating over polar routes will be described and preliminary results presented. Previous work in this area [e.g. Stocker et al., 2007] has focussed on taking HF signal measurements (e.g. SNR, delay and Doppler spread, and direction of arrival) on a limited number of propagation paths and developing an ionospheric model that incorporates high latitude features (e.g. polar patches and arcs) which, when combined with raytracing, allows the broad characteristics of the observations to be reproduced [Warrington et al., 2012]. The new project will greatly extend this work and consists of a number of stages. Firstly, HF measurements from an extensive network of purpose built transmitters and receivers spanning the Arctic regions will be collected and analysed. In order to test a wide variety of scenarios, the propagation paths will have different characteristics, e.g. different lengths and covering different parts of the northern ionosphere (i.e. polar cap paths where both terminals are in the polar cap, trans-auroral paths, and sub-auroral paths) and observations will be taken at a range of HF frequencies for a period covering the current (so far weak) solar maximum and part of the declining phase. Simultaneously, high latitude absorption measurements utilising the Global Riometer Array (GLORIA) will be collected and analysed. Next, the observations of the signal characteristics (i.e. both reflection and absorption properties) will be related to prevailing space weather parameters. Following on from this, an auroral absorption prediction model based on solar wind and interplanetary data will be developed together with the further refinement of the existing ionospheric model taking into account the new observations and adding auroral and polar cap absorption models. Algorithms for nowcasting and forecasting of radio propagation conditions for trans-polar aircraft will then be developed from the ionospheric model. In addition to the approach described above, the benefits of ground station diversity using both the experimental data and the models developed during the project will also be investigated. Stocker A.J., E.M. Warrington, and D.R. Siddle, Comparison between the measured and predicted parameters of HF radio signals propagating along the mid-latitude trough and within the polar cap, Radio Science, 42, RS3019, doi:10.1029/2006RS003557, 2007. Warrington EM, Zaalov NY, Stocker AJ, Naylor JS, HF propagation modelling within the polar ionosphere, Radio Science, 47, Article number RS0L13, doi:10.1029/2011RS004909, 2012.
NASA Astrophysics Data System (ADS)
George, Midhun; Suhail, Suhail; Chandran, Satheesh; Chen, Jun; Lu, Keding; Ruth, Albert; Venables, Dean; Varma, Ravi
2016-04-01
We describe the application of an incoherent broadband cavity-enhanced absorption spectrometer in an open path configuration (OP-IBBCEAS) for in situ detection of nitrate radical (NO3) and aerosol extinction. The optical cavity was 3.35 m long with separate transmitter and receiver units, and the instrument was installed on top of a residential complex (elevation of 17 m) near the CAREBEIJING-NCP 2014 supersite in Wangdu, 200 km southwest of Beijing. Despite high aerosol loading, NO3 was detected on all nights when the instrument was operational (28-30 June, 2014). The maximum concentration measured was 170 pptv with a detection limit of 40 pptv for measurements. Preliminary quantification of the aerosol extinction is also described. The results presented here demonstrate the sensitivity and specificity that can be achieved from open path measurements and its application to polluted environments.
Broadband Phase Spectroscopy over Turbulent Air Paths
NASA Astrophysics Data System (ADS)
Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.
Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide
NASA Astrophysics Data System (ADS)
Baranov, Yu. I.
2018-03-01
The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.