Sample records for path column generation

  1. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  2. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  3. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  4. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles

    2017-06-01

    By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.

  5. Congestion patterns of electric vehicles with limited battery capacity.

    PubMed

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  6. Congestion patterns of electric vehicles with limited battery capacity

    PubMed Central

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  7. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  8. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  9. How the Learning Path and the Very Structure of a Multifloored Environment Influence Human Spatial Memory

    PubMed Central

    Dollé, Laurent; Droulez, Jacques; Bennequin, Daniel; Berthoz, Alain; Thibault, Guillaume

    2015-01-01

    Few studies have explored how humans memorize landmarks in complex multifloored buildings. They have observed that participants memorize an environment either by floors or by vertical columns, influenced by the learning path. However, the influence of the building’s actual structure is not yet known. In order to investigate this influence, we conducted an experiment using an object-in-place protocol in a cylindrical building to contrast with previous experiments which used rectilinear environments. Two groups of 15 participants were taken on a tour with a first person perspective through a virtual cylindrical three-floored building. They followed either a route discovering floors one at a time, or a route discovering columns (by simulated lifts across floors). They then underwent a series of trials, in which they viewed a camera movement reproducing either a segment of the learning path (familiar trials), or performing a shortcut relative to the learning trajectory (novel trials). We observed that regardless of the learning path, participants better memorized the building by floors, and only participants who had discovered the building by columns also memorized it by columns. This expands on previous results obtained in a rectilinear building, where the learning path favoured the memory of its horizontal and vertical layout. Taken together, these results suggest that both learning mode and an environment’s structure influence the spatial memory of complex multifloored buildings. PMID:26770288

  10. Mobilization of colloidal particles by low-frequency dynamic stress stimulation.

    PubMed

    Beckham, Richard E; Abdel-Fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sowmitri

    2010-01-05

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern, especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. Although the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and the mobilization of in situ colloidal particles. This article explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1 mm borosilicate beads and loaded with polystyrene microparticles demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microparticles. Increasing the amplitude of the oscillations increases the number of microparticles released and can also result in cyclical spikes in effluent microparticle concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data and continued at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes in the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low-frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed microparticles. These results support the theory that mechanical interactions between porous matrix grains are important mechanisms in flow path alteration and the mobilization of naturally occurring colloidal particles during elastic wave stimulation. These results also point to both continuous and discrete en masse releases of colloidal particles, perhaps because of circulation cells within the packing material.

  11. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  12. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites.

    PubMed

    Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry

    2013-02-20

    This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).

  13. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2017-01-01

    Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.

  14. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    PubMed Central

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  15. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher; Robinson, David B.

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  16. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE PAGES

    Salloum, Maher; Robinson, David B.

    2018-01-30

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  17. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  18. Symmetry limit theory for cantilever beam-columns subjected to cyclic reversed bending

    NASA Astrophysics Data System (ADS)

    Uetani, K.; Nakamura, Tsuneyoshi

    THE BEHAVIOR of a linear strain-hardening cantilever beam-column subjected to completely reversed plastic bending of a new idealized program under constant axial compression consists of three stages: a sequence of symmetric steady states, a subsequent sequence of asymmetric steady states and a divergent behavior involving unbounded growth of an anti-symmetric deflection mode. A new concept "symmetry limit" is introduced here as the smallest critical value of the tip-deflection amplitude at which transition from a symmetric steady state to an asymmetric steady state can occur in the response of a beam-column. A new theory is presented for predicting the symmetry limits. Although this transition phenomenon is phenomenologically and conceptually different from the branching phenomenon on an equilibrium path, it is shown that a symmetry limit may theoretically be regarded as a branching point on a "steady-state path" defined anew. The symmetry limit theory and the fundamental hypotheses are verified through numerical analysis of hysteretic responses of discretized beam-column models.

  19. Elevation effects in volcano applications of the COSPEC

    USGS Publications Warehouse

    Gerlach, T.M.

    2003-01-01

    Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.

  20. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  1. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vesselmore » connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.« less

  2. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  3. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  4. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    NASA Astrophysics Data System (ADS)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  5. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  6. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  7. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  8. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.

  9. Eleven years of tropospheric NO2 measured by GOME, SCIAMACHY and OMI

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.

    2006-12-01

    Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years

  10. Toward Quantitative Estimation of the Effect of Aerosol Particles in the Global Climate Model and Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.

    2005-05-01

    Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years

  11. Time optimized path-choice in the termite hunting ant Megaponera analis.

    PubMed

    Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard

    2018-05-10

    Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.

  12. Solving nonlinear equilibrium equations of deformable systems by method of embedded polygons

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2017-09-01

    Solving of nonlinear algebraic equations is an obligatory stage of studying the equilibrium paths of nonlinear deformable systems. The iterative method for solving a system of nonlinear algebraic equations stated in an explicit or implicit form is developed in the present work. The method consists of constructing a sequence of polygons in Euclidean space that converge into a single point that displays the solution of the system. Polygon vertices are determined on the assumption that individual equations of the system are independent from each other and each of them is a function of only one variable. Initial positions of vertices for each subsequent polygon are specified at the midpoints of certain straight segments determined at the previous iteration. The present algorithm is applied for analytical investigation of the behavior of biaxially compressed nonlinear-elastic beam-column with an open thin-walled cross-section. Numerical examples are made for the I-beam-column on the assumption that its material follows a bilinear stress-strain diagram. A computer program based on the shooting method is developed for solving the problem. The method is reduced to numerical integration of a system of differential equations and to the solution of a system of nonlinear algebraic equations between the boundary values of displacements at the ends of the beam-column. A stress distribution at the beam-column cross-sections is determined by subdividing the cross-section area into many small cells. The equilibrium path for the twisting angle and the lateral displacements tend to the stationary point when the load is increased. Configuration of the path curves reveals that the ultimate load is reached shortly once the maximal normal stresses at the beam-column fall outside the limit of the elastic region. The beam-column has a unique equilibrium state for each value of the load, that is, there are no equilibrium states once the maximum load is reached.

  13. A path analysis of gender differences in adolescent onset of alcohol, tobacco and other drug use (ATOD), reported ATOD use and adverse consequences of ATOD use.

    PubMed

    Thomas, B S

    1996-01-01

    Gender differences in the ways a risk factor approach explains onset of using alcohol, tobacco and other drugs (ATOD), reported use of ATOD and adverse consequences from ATOD use were investigated by means of separate path analyses for male and female adolescents. A fully recursive model was specified in which alienation, trait anger, interaction anxiety and cognitive motivation for ATOD use comprised the first column variables which were used to predict earliness of onset. For the second step, column one variables plus onset were used to predict ATOD use. In the final step, column one variables plus onset and ATOD use were used to predict adverse consequences of ATOD use. An ex post facto design was used in surveying 796 high school students in a single Midwestern community. The data from this sample supported the predictive validity of the theoretical model. In addition to the expected indirect or mediated effects of the risk factors via onset of ATOD use on ATOD use and via onset and ATOD use on adverse consequences of ATOD use, there were direct effects of column on risk factors on both ATOD use and on adverse consequences of ATOD use for both males and females, lending support to the concept of multiple pathway risk factors. The three gender differences that emerged in the separate path analyses were entirely consistent with the gendered deviance model.

  14. Results of Laser-Calibrated High-Resolution Transmission Measurements and Comparisons with Broadband Transmissometer Data: San Nicolas Island, California, May 1979.

    DTIC Science & Technology

    1982-09-30

    system . Atmospheric aerosol extinction coefficients at DF laser wavelengths obtained from the long - path transmission data show a wide range of variation...described in this report, it is recommended that addi- tional long - path field measurements of laser extinction and high-resolution transmission spectra be...independent long path laser extinction measurement . Column 7 of Table 3 lists the lime of the laser

  15. Gaussian model for emission rate measurement of heated plumes using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.

    2018-02-01

    This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.

  16. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  17. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  18. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo

    2014-01-01

    The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011

  19. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  20. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1993-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  1. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1993-02-16

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  2. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1994-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  3. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.

    PubMed

    Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T

    2015-11-17

    An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.

  4. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Mcgannon, W. J. (Inventor)

    1980-01-01

    A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.

  5. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  6. Granular Silo collapse: an experimental study

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  7. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-05-31

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  8. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-12-27

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  9. Integration of On-Column Chemical Reactions in Protein Characterization by Liquid Chromatography/Mass Spectrometry: Cross-Path Reactive Chromatography.

    PubMed

    Pawlowski, Jake W; Carrick, Ian; Kaltashov, Igor A

    2018-01-16

    Profiling of complex proteins by means of mass spectrometry (MS) frequently requires that certain chemical modifications of their covalent structure (e.g., reduction of disulfide bonds), be carried out prior to the MS or MS/MS analysis. Traditionally, these chemical reactions take place in the off-line mode to allow the excess reagents (the majority of which interfere with the MS measurements and degrade the analytical signal) to be removed from the protein solution prior to MS measurements. In addition to a significant increase in the analysis time, chemical reactions may result in a partial or full loss of the protein if the modifications adversely affect its stability, e.g,, making it prone to aggregation. In this work we present a new approach to solving this problem by carrying out the chemical reactions online using the reactive chromatography scheme on a size exclusion chromatography (SEC) platform with MS detection. This is achieved by using a cross-path reaction scheme, i.e., by delaying the protein injection onto the SEC column (with respect to the injection of the reagent plug containing a disulfide-reducing agent), which allows the chemical reactions to be carried out inside the column for a limited (and precisely controlled) period of time, while the two plugs overlap inside the column. The reduced protein elutes separately from the unconsumed reagents, allowing the signal suppression in ESI to be avoided and enabling sensitive MS detection. The new method is used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein level following online reduction of disulfide-linked tetrameric species to monomeric units. The feasibility of top-down fragmentation of disulfide-containing proteins is also demonstrated using β 2 -microglobulin and a monoclonal antibody (mAb). The new online technique is both robust and versatile, as the cross-path scheme can be readily expanded to include multiple reactions in a single experiment (as demonstrated in this work by oxidatively labeling mAb on the column, followed by reduction of its disulfide bonds and MS analysis of the extent of oxidation within each chain of the molecule).

  10. Fully automated multifunctional ultrahigh pressure liquid chromatography system for advanced proteome analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi

    2012-08-03

    A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less

  11. Sustainable materials used as stone column filler: A short review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    Stone columns (also known as granular piles) are one of the methods for soft soil stabilization and typically used to increase bearing capacity and stability of slope.; Apart from decreasing the compressibility of loose and fine graded soils, it also accelerates the consolidation effect by improving the drainage path for pore water pressure dissipation and reduces the liquefaction potential of soils during earthquake event. Stone columns are probably the most “natural” ground treatment method or foundation system in existence to date. The benefit of stone columns is owing to the partial replacement of compressible soil by more competent materials such as stone aggregate, sand and other granular materials. These substitutes also act as reinforcement material, hence increasing overall strength and stiffness of the soft soil. Nowadays, a number of research has been conducted on the behaviour and performance of stone columns with various materials utilized as column filler replacing the normal aggregate. This paper will review extensively on previously conducted research on some of the materials used as stone column backfill materials, its suitability and the effectiveness as a substitute for regular aggregates in soft soil improvement works.

  12. Nitrogen oxides in the arctic stratosphere: Implications for ozone abundances. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slusser, J.R.

    1994-01-01

    In the high latitude winter stratosphere, NO2 sequesters chlorine compounds which are extremely efficient at destroying ozone. During the nighttime, NO2 reacts with ozone to form N2O5 which acts as a reservoir of NO2. Under heavy aerosol loading, N2O5 may react with water on aerosol surfaces to form HNO3, a reservoir more resistant to photolysis. This heterogeneous reaction results in reduced NO2 concentration when the sun returns at the end of the winter. A spectrograph system has been developed to measure scattered zenith skylight and thereby determine stratospheric NO2 slant column abundance. Conversion of the measured slant column abundance tomore » vertical column abundance requires dividing by the air mass. The air mass is the enhancement in the optical path for the scattered twilight as compared to a vertical path. Air mass values determined using a multiple scattering radiative transfer code have been compared to those derived using a Monte Carlo code and were found to agree to within 6% at a 90 deg solar zenith angle for a stratospheric absorber. Six months of NO2 vertical column abundance measured over Fairbanks during the winter 1992-93 exhibited the daylight diminished and increased as the sunlight hours lengthened. The overall seasonal behavior was similar to high-latitude measurements made in the Southern Hemisphere. The ratios of morning to evening column abundance were consistent with predictions based on gas-phase chemistry. The possible heterogeneous reaction of N2O5 on sulfate aerosols was investigated using FTIR Spectrometer measurements of HNO3 column abundance and lidar determinations of the aerosol profile. Using an estimated N2O5 column abundance and aerosol profile as input to a simple model, significant HNO3 production was expected. No increase in HNO3 column abundance was measured. From this set of data, it was not possible to determine whether significant amounts of N2O5 were converted to HNO3 by this heterogeneous reaction.« less

  13. Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs

    NASA Astrophysics Data System (ADS)

    Chekuri, Chandra; Ene, Alina; Korula, Nitish

    We consider the unsplittable flow problem (UFP) and the closely related column-restricted packing integer programs (CPIPs). In UFP we are given an edge-capacitated graph G = (V,E) and k request pairs R 1, ..., R k , where each R i consists of a source-destination pair (s i ,t i ), a demand d i and a weight w i . The goal is to find a maximum weight subset of requests that can be routed unsplittably in G. Most previous work on UFP has focused on the no-bottleneck case in which the maximum demand of the requests is at most the smallest edge capacity. Inspired by the recent work of Bansal et al. [3] on UFP on a path without the above assumption, we consider UFP on paths as well as trees. We give a simple O(logn) approximation for UFP on trees when all weights are identical; this yields an O(log2 n) approximation for the weighted case. These are the first non-trivial approximations for UFP on trees. We develop an LP relaxation for UFP on paths that has an integrality gap of O(log2 n); previously there was no relaxation with o(n) gap. We also consider UFP in general graphs and CPIPs without the no-bottleneck assumption and obtain new and useful results.

  14. Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra

    2015-01-01

    We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.

  15. Path generation algorithm for UML graphic modeling of aerospace test software

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  16. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, F.F.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-03-17

    A method is described for preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: (a) providing a generator column loaded with a composition containing a parent radioisotope; (b) eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate; (c) eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; (d) eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and (e) eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution. 1 fig.

  17. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, Furn F.; Beets, Arnold L.; Mirzadeh, Saed; Guhlke, Stefan

    1998-01-01

    A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.

  18. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  19. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  20. Effect of the Glide Path Establishment on the Torque Generation to the Files during Instrumentation: An In Vitro Measurement.

    PubMed

    Kwak, Sang Won; Ha, Jung-Hong; Cheung, Gary Shun-Pan; Kim, Hyeon-Cheol; Kim, Sung Kyo

    2018-03-01

    The purpose of this study was to compare in vitro torque generation during instrumentation with or without glide path establishment. Endo-training resin blocks with J-shaped canals were randomly divided into 2 groups according to glide path establishment (with or without) and subdivided into 2 subgroups with shaping instruments (WaveOne [Dentsply Maillefer, Ballaigues, Switzerland] or WaveOne Gold [Dentsply Maillefer]) (n = 15). For the glide path-established group, the glide path was prepared using ProGlider (Dentsply Maillefer). During the instrumentation with WaveOne or WaveOne Gold, in vitro torque was measured. The acquired data were analyzed with software. The maximum torque and total torque (the sum of the generated torque) were calculated. The data were statistically evaluated using 2-way analysis of variance and the Duncan post hoc comparison to examine any correlation of torque generation with glide path establishment and nickel-titanium instruments. The significance level was set at 95%. The generated total torque by WaveOne Gold was significantly reduced by glide path establishment (P < .05), whereas glide path establishment did not induce significant changes in the maximum torque for both file systems. WaveOne Gold with a glide path showed the lowest total torque generation among all groups (P < .05). WaveOne generated a higher maximum torque than WaveOne Gold regardless of the establishment of a glide path (P < .05). Under the limitations of this study, glide path establishment and the mechanical property of instruments have a significant influence on torque generation. It is recommended to create the glide path and use a flexible file to reduce torque generation and, consequently, the risk of file fracture and root dentin damage. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö

    2016-04-01

    In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values with respect to the densities of every model block. This is the Jacobian of the problem and these values were proportional to the path length in the respective block. A regularized least squares solution returns the corrections of the densities of the blocks. If the corrected density of a block is significantly smaller than the typical rock density of the subsurface, the block is dedicated as a cave. According to our results a supposed cave exists some 7 meters above the tunnel. This work has been supported by the Lendület Program of the Hungarian Academy of Sciences (LP2013-60) and the OTKA NK-106119 grant. Gergely Gábor Barnaföld and Dezsö Varga thank for the support of the Bolyai Fellowship of the Hungarian Academy of Sciences.

  2. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    NASA Astrophysics Data System (ADS)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  3. Flow-switching device for comprehensive two-dimensional gas chromatography.

    PubMed

    Bueno, Pedro A; Seeley, John V

    2004-02-20

    A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.

  4. AAHE Bulletin, 1999-2000.

    ERIC Educational Resources Information Center

    Hendley, Vicky, Ed.

    2000-01-01

    The 10 issues of this organizational journal provide news columns, calls for proposals, conference information, and several major articles. Articles in this volume include: (1) "New Path, Same Goal: An Interview with Blenda Wilson" (Miller); (2) "Making a Difference: Service Learning as an Activism Catalyst and Community…

  5. Time-lapse 3D imaging of calcite precipitation in a microporous column

    NASA Astrophysics Data System (ADS)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  6. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  7. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP measured at the receiver was input to the model. When the SSP measured nearest the source (at the same instant in time) was input to the ray tracing model, the data-model comparison was poor. It was determined that the cumulative sound speed change in the SSP near the source was 1.041 m/s greater than that of the SSP at the receiver and resulted in the poor data-model comparison. In this study, the influences on broadband acoustic wave propagation in the frequency range of 7 to 28 kHz of spatial and temporal changes in the oceanography of shallow water regions are addressed. Acoustic waves can be used as remote sensing tools to measure oceanographic parameters in shallow water and data-model comparison results show a direct relationship between the oceanographic variations and acoustic wave propagations.

  8. Isotopic generator for bismuth-212 and lead-212 based on radium

    DOEpatents

    Hines, J.J.; Atcher, R.W.; Friedman, A.M.

    1985-01-30

    Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  9. Isotopic generator for bismuth-212 and lead-212 from radium

    DOEpatents

    Atcher, Robert W.; Friedman, Arnold M.; Hines, John

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  10. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    NASA Astrophysics Data System (ADS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative "dry" cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  11. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understandingmore » the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.« less

  12. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  13. The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design

    NASA Technical Reports Server (NTRS)

    Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton

    2005-01-01

    The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.

  14. Road less traveled vital to operational success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.

    2012-01-08

    PNNL's Monthly Economic Diversity column for the Tri-City Herald Business section. Excerpt follows: Things aren't always what they seem. Sometimes the path less traveled--although it can be exhausting if not scary to think about navigating its unknowns--really is the best way to go. And not just because Robert Frost said so. Patric Sazama, Regional Project Director for Impact Washington, would agree as well. He recently spoke to the Three Rivers Entrepreneur Network about achieving operational success by addressing the less tangible elements of an organization, the company's own less traveled path.

  15. Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation

    NASA Astrophysics Data System (ADS)

    Sleesongsom, S.; Bureerat, S.

    2018-03-01

    This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.

  16. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  17. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  18. Retrievals of atmospheric columnar carbon dioxide and methane from GOSAT observations with photon path-length probability density function (PPDF) method

    NASA Astrophysics Data System (ADS)

    Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.

    2014-12-01

    We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.

  19. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, Aed M.; Ward, Clyde R.; Jones, Joel D.; Mallet, William R.; Harpring, Larry J.; Collins, Montenius X.; Anderson, Erin K.

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  20. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  1. Space-based active optical remote sensing of carbon dioxide column using high-energy two-micron pulsed ipda lidar

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Refaat, Tamer F.; Ismail, Syed; Petros, Mulugeta; Davis, Kenneth J.; Kawa, Stephan R.; Menzies, Robert T.

    2018-04-01

    Modeling of a space-based high-energy 2-μm triple-pulse Integrated Path Differential Absorption (IPDA) lidar was conducted to demonstrate carbon dioxide (CO2) measurement capability and to evaluate random and systematic errors. A high pulse energy laser and an advanced MCT e-APD detector were incorporated in this model. Projected performance shows 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley (RRV) reference surface.

  2. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  3. Satellite Remote Sensing of the Liquid Water Sensitivity in Water Clouds

    NASA Technical Reports Server (NTRS)

    Han, Qing-Yuan; Rossow, William B.; Welch, Ronald; Zeng, Jane; Jansen, James E. (Technical Monitor)

    2001-01-01

    In estimation of the aerosol indirect effect, cloud liquid water path is considered either constant (Twomey effect) or increasing with enhanced droplet number concentrations (drizzle-suppression effect, or Albrecht effect) if cloud microphysics is the prevailing mechanism during the aerosol-cloud interactions. On the other hand, if cloud thermodynamics and dynamics are considered, the cloud liquid water path may be decreased with increasing droplet number concentration, which is predicted by model calculations and observed in ship-track and urban influence studies. This study is to examine the different responses of cloud liquid water path to changes of cloud droplet number concentration. Satellite data (January, April, July and October 1987) are used to retrieve the cloud liquid water sensitivity, defined as the changes of liquid water path versus changes of column droplet number concentrations. The results of a global survey reveal that 1) in at least one third of the cases the cloud liquid water sensitivity is negative, and the regional and seasonal variations of the negative liquid water sensitivity are consistent with other observations; 2) cloud droplet sizes are always inversely proportional to column droplet number concentrations. Our results suggest that an increase of cloud droplet number concentration leads to reduced cloud droplet size and enhanced evaporation, which weakens the coupling between water clouds and boundary layer in warm zones, decreases water supply from surface and desiccates cloud liquid water. Our results also suggest that the current evaluations of negative aerosol indirect forcing by global climate models (GCM), which are based on Twomey effect or Albrecht effect, may be overestimated.

  4. Impacts of two super typhoons on the Kuroshio and marginal seas on the Pacific coast of Japan

    NASA Astrophysics Data System (ADS)

    Tada, Hiroaki; Uchiyama, Yusuke; Masunaga, Eiji

    2018-02-01

    High-resolution downscaling ocean modeling was conducted to investigate the impacts of two super typhoons on the Kuroshio in the fall of 2014 off the Kyushu and Shikoku Islands, Japan. The model result was compared with field observations and satellite altimetry. The synoptic and mesoscale oceanic structures around the Kuroshio exhibit a good reproducibility. The typhoons generated near-inertial oscillations (NIOs) and near-inertial internal waves (NIIWs) around the Kuroshio path, particularly on the right side of the typhoon tracks. The NIOs developed in the mixed layer to alter the direction of the Kuroshio by 30°. The associated velocity off the Shikoku and Kyushu Islands was significantly decelerated by 0.2 ms-1. The velocity almost vanished off Kyushu Island and thus induced an unstable fluctuating path shortly after both typhoons passed over that region. The NIIWs were also excited at the thermocline, resulting in the oscillation of the Kuroshio path occurred in the entire water column. In contrast, off Shikoku Island, the typhoons shifted the Kuroshio path northward to enhance the interactions with the topographies. This shift caused considerable eddy shedding from the capes that resulted in mesoscale counterclockwise circulations as cyclonic quasi-standing eddies with a shedding period of 3 days in the north of the Kuroshio path. The magnitude, direction, and meridional location of the path of the Kuroshio prominently fluctuated with the propagation of these eddies, manifested off Shikoku Island. Furthermore, these eddies induced sporadic northward intrusions of the Kuroshio warm water through the Kii Channel into the Seto Inland Sea (SIS), where a weak but persisting southward outflow prevails under normal conditions. Therefore, the process could collectively be called the "typhoon-Kuroshio-eddy interaction", which conceptually differs from the "typhoon-eddy-Kuroshio interaction" in the previous studies, where the Kuroshio was modulated by eddy collision. The wind stress curl and intrusions associated with the typhoons jointly provoked the inversion of the counterclockwise SIS residual circulation. The resultant spatially averaged volume flux was 8 times as high as that under normal conditions.

  5. Mr. Professor Goes to Washington

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    For Daniel J. Kaniewski, the magic formula needed to redirect his career path from anonymous academic researcher to presidential policy adviser was only 719 words long. A single newspaper column that he wrote in April 2005 succinctly criticized the Department of Homeland Security's disaster-preparation plans. A few months later, a White House…

  6. Summer Skies

    ERIC Educational Resources Information Center

    Science Scope, 2004

    2004-01-01

    Throughout the school year, information and data will be provided through this column so that students can indirectly follow the Earth along the ecliptic, its orbital path around the Sun. From our perspective, it is the Sun that is "moving," so students will actually be graphing the Sun's apparent motion caused by the Earth's real orbital and…

  7. Leadership, Longevity, and Leaning In: An Interview With Mary Jo (Joey) Bulfin.

    PubMed

    Prestia, Angela S

    2018-06-01

    This column profiles Mary Jo Bulfin, MBA, RN, CENP, chief executive officer of St. Mary's Medical Center, West Palm Beach, Florida. Ms Bulfin began her career as a staff nurse in the organization where she is now the CEO and discusses her career path and lessons learned.

  8. 78 FR 63848 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Sidestick Controllers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ..., freedom of arm movement, controller displacement, handgrip size and accommodations for a range of pilot... column controls. Pitch and roll control force and displacement sensitivity must be compatible so that... precision path control/tasks and turbulence. In addition, pitch and roll control force and displacement...

  9. An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50 ° C: Implications for subsurface storage of CO2

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-05-01

    A novel high pressure column flow reactor (HPCFR) was used to investigate the evolution of fluid chemistry along a 2.3 meter flow path during 37-104 days of pure water- and CO2-charged water- (0.3 M CO2(aq)) basaltic glass interaction experiments at 22 and 50 ° C. The scale of the HPCFR, the ability to sample a reactive fluid at discrete spatial intervals under pressure and the possibility to measure the dissolved inorganic carbon and pH in situ all render the HPCFR unique in comparison with other reactors constructed for studies of CO2-charged water-rock interaction. During the pure water-basaltic glass interaction experiment, the pH of the injected water evolved rapidly from 6.7 to 9-9.5 and most of the dissolved iron was consumed by secondary mineral formation, similar to natural basaltic groundwater systems. In contrast to natural systems, however, the dissolved aluminium concentration remained relatively high along the entire flow path. The reactive fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility of metals increased significantly in the reactive fluid and the concentration of some metals, including Mn, Fe, Cr, Al, and As exceeded the WHO (World Health Organisation) allowable drinking water limits. Iron was mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Basaltic glass dissolution in the CO2-charged water did not overcome the pH buffer capacity of the fluid. The pH rose only from an initial pH of 3.4 to 4.5 along the first 18.5 cm of the column, then remained constant during the remaining 2.1 meters of the flow path. Increasing the temperature of the CO2-charged fluid from 22 to 50 ° C increased the relative amount of dissolved divalent iron along the flow path. After a significant initial increase along the first metre of the column, the dissolved aluminium concentration decreased consistent with its incorporation into secondary minerals. The dissolved chromium concentration evolution mimicked that of Al at 50 ° C, suggesting substitution of trivalent Cr for Al in secondary phases. According to PHREEQC calculations, the CO2-charged fluid was always undersaturated with respect to carbonate minerals within the column, but supersaturated with respect to clays and Fe hydroxides at 22 ° C and with respect to clays and Al hydroxides at 50 ° C. Substantial differences were found between modelled and measured dissolved element concentrations in the fluids during the experiments. These differences underscore the need to improve computational models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface.

  10. A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems.

    PubMed

    Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H Henry

    2016-11-01

    Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO 2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO 2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO 2 -NH 3 -MgCl 2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH 3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.

  11. Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil.

    PubMed

    Cao, Zhengwen; Engelhardt, Jan; Dierks, Michael; Clough, Matthew T; Wang, Guang-Hui; Heracleous, Eleni; Lappas, Angelos; Rinaldi, Roberto; Schüth, Ferdi

    2017-02-20

    A simple and efficient hydrodeoxygenation strategy is described to selectively generate and separate high-value alkylphenols from pyrolysis bio-oil, produced directly from lignocellulosic biomass. The overall process is efficient and only requires low pressures of hydrogen gas (5 bar). Initially, an investigation using model compounds indicates that MoC x /C is a promising catalyst for targeted hydrodeoxygenation, enabling selective retention of the desired Ar-OH substituents. By applying this procedure to pyrolysis bio-oil, the primary products (phenol/4-alkylphenols and hydrocarbons) are easily separable from each other by short-path column chromatography, serving as potential valuable feedstocks for industry. The strategy requires no prior fractionation of the lignocellulosic biomass, no further synthetic steps, and no input of additional (e.g., petrochemical) platform molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Broadband acoustic wave propagation across sloping topography covered by sea ice

    NASA Astrophysics Data System (ADS)

    Badiey, M.; Wan, L.; Eickmeier, J.; Muenchow, A.; Ryan, P. A.

    2017-12-01

    The Canada Basin Acoustic Propagation Experiment (CANAPE) quantifies how sound generated in the deep Basin is received on the continental shelf. The two regimes, deep basin and shallow shelves, are separated by a 30-km wide region where the bottom changes from 1000-m to 100-m. This narrow region focuses and traps kinetic energy that surface wind forcing inputs into the ocean over a wide region with periodicities of days to months. As a result, ocean temperature and speed of sound are more variable near sloping topography than they are over either deep basins or shallow shelves. In contrast to companion CANAPE presentations in this session, here we use sound speed as input to predict likely propagation paths and transmission losses across the continental slope with a two-dimensional parabolic model (2D PE). Intensity fluctuations due to the changing bathymetry, water column oceanography, and the scattering from ice cover for broadband signals are checked against measured broadband acoustic signals that were collected simultaneously with the oceanographic measurements for a long period. Differences between measured and calculated transmission loss can be the result of out of plane acoustic paths requiring 3D PE modeling for future studies. [Work supported by ONR code 322 OA].

  13. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles-a detailed investigation of the intra-particle diffusivity.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-08-15

    In a previous report, it was reported that columns packed with fully porous 1.9μm Titan-C18 particles provided a minimum reduced plate height as small as 1.7 for the most retained compound (n-octanophenone) under RPLC conditions. These particles are characterized by a relatively narrow size distribution with a relative standard deviation (RSD) of only 10%. A column packed with classical 5μm Symmetry-C18 particles, used as a reference RPLC column, generated a minimum reduced plate height of 2.1 for the same retained compound. This work demonstrates that this was due to an unusually low intra-particle diffusivity across these particles, which leads to a small longitudinal diffusion coefficient along the column. The demonstration is based on the combination of accurate measurements of the height equivalent to a theoretical plate (HETP), inverse size exclusion chromatography (ISEC), peak parking (PP), and minor disturbance method (MDM) experiments. The experimental results show that the reduced eddy dispersion HETP term (A=0.8 for a reduced velocity of 5), the internal particle porosity (ϵp=0.35), and the enrichment of acetonitrile in the pore volume (75% acetonitrile in the bulk, 85% inside the mesoporous volume) are identical on both the Titan-C18 and Symmetry-C18 columns. The difference between the internal structures of these two brands of RPLC-C18 fully porous particles lies in the values of the internal obstruction factor γp, which is 0.42 for the Symmetry-C18 but only 0.26 for the Titan-C18 particles. This is in part related to the diffusion hindrance due to the small average pore size of the Titan-C18 particles, around 59Å versus 77Å for Symmetry-C18 particles. A simple model of constriction along diffusion paths having the shape of a truncated cone suggests that the width of the pore size distribution (RSD of 30% and 20% for Titan-C18 and Symmetry-C18 particles) is mostly responsible for the difference in their obstruction factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  15. Tracking Planets around the Sun

    ERIC Educational Resources Information Center

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  16. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps.

    PubMed

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.

  17. A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps

    PubMed Central

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273

  18. Airborne Remote sensing of the OH tropospheric column with an Integrated Path Differential LIDAR.

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Liang, Q.; Nicely, J. M.; Brune, W. H.; Miller, D. O.; Thames, A. B.

    2017-12-01

    The Hydroxyl radical, OH, is central to the photochemistry that controls tropospheric oxidation including the removal of atmospheric methane. Measurements of this important species are thus critical to testing our understanding and for constraining model results. Until now, tropospheric measurements have been limited to airborne or ground-based in situ instruments best suited to test photochemical box models. However, because of the growing recognition of the importance of the global methane abundance, we have a growing need to better quantify OH at the regional to global scales that are best sampled with airborne or space-based remote sensing instruments. To address this need, we have developed an instrument concept and have begun work on a laser transmitter for an airborne integrated path differential absorption LIDAR for the detection of OH. We will describe the instrument and present the expected performance characteristics. As a demonstration, we will use measurements from the recent ATOM-1 NASA airborne campaign to show measured OH columns can be used to constrain regional and global models.

  19. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  20. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids.

    PubMed

    Cagliero, Cecilia; Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara

    2017-04-28

    In the fields of essential oils and fragrances, samples often consist of mixtures of compounds with similar structural and physical characteristics (e.g. mono- and sesquiterpenoids), whose correct identification closely depends on the synergic combination of chromatographic and mass spectral data. This sample complexity means that new GC stationary phases with different selectivities are continually being investigated. Ionic liquids (ILs) are of great interest as GC stationary phases in this field because of their selectivity (significantly different than that of currently phases) and their high temperature stability. A first generation of IL GC columns was found to be competitive when applied to these field, in terms of selectivity and efficiency, compared to conventional columns (polydimethylsiloxane, (e.g. OV-1), methyl-polysiloxane 5%-phenyl (e.g. SE-52), 7%-cyanopropyl, 7%-phenyl polysiloxane (e.g. OV-1701), and polyethylen glycol (e.g. PEG-20M). However, these columns showed significant activity towards polar or active analytes, which primarily affected their quantitative performance. A new generation of highly-inactive columns coated with three of the most widely-used ionic liquid GC stationary phases has recently been introduced; these phases are SLB-IL60i (1,12-di(tripropylphosphonium) dodecane bis(trifluoromethylsulfonyl) imide [NTf 2 ], SLB-IL76i (tri-(tripropylphosphonium-hexanamido)-triethylamine [NTf 2 ]), and SLB-IL111i (1,5-di (2,3-dimethyllimidazolium) pentane [NTf 2 ]). This study carefully tested the new inert IL columns, in view of their routine application in the fragrance and essential oil fields. They were found to have unusually high selectivity, comparable to that of first-generation IL columns, while their inertness and efficiency were competitive with those of currently-used conventional columns. The IL column performance of first and second generations was compared, through the quali-quantitative analysis of components in a group of different complexity samples; these included the Grob test, a standard mixture of "suspected" skin allergens, and the essential oils of chamomile and sandalwood. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  2. On the accuracy of various large axial displacement formulae for crooked columns

    NASA Astrophysics Data System (ADS)

    Mallis, J.; Kounadis, A. N.

    1988-11-01

    The axial displacements of an initially crooked, simply supported column, subjected to an axial compressive force at its end, are determined by using several variants of the axial strain-displacement relationship. Their accuracy and range of applicability are thoroughly discussed by comparing the corresponding results with those of the exact elastica analysis in which the compressibility effect of the bar axis is accounted for. Among other findings, the important conclusion is drawn that the simplified linear kinematic relation leads to a sufficiently accurate evaluation of the initial part of the postbuckling path which is of significant importance for structural design purposes.

  3. A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms

    PubMed Central

    Chandrasekaran, Srinivas Niranj; Das, Jhuma; Dokholyan, Nikolay V.; Carter, Charles W.

    2016-01-01

    PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. PMID:26958584

  4. Pheromone Static Routing Strategy for Complex Networks

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  5. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  6. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    DTIC Science & Technology

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  7. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  8. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  9. The terminal area automated path generation problem

    NASA Technical Reports Server (NTRS)

    Hsin, C.-C.

    1977-01-01

    The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.

  10. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Solubilities and Octanol-Water Partition Coefficients of Hydrophobic Substances,” Journal of Research of the...

  11. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Solubilities and Octanol-Water Partition Coefficients of Hydrophobic Substances,” Journal of Research of the...

  12. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  13. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  14. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  15. Column temperature programming in enantioseparation of dihydropyrimidinone compounds using derivatized cellulose and amylose chiral stationary phases.

    PubMed

    Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet

    2008-03-01

    We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.

  16. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  17. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  18. Table-driven software architecture for a stitching system

    NASA Technical Reports Server (NTRS)

    Thrash, Patrick J. (Inventor); Miller, Jeffrey L. (Inventor); Pallas, Ken (Inventor); Trank, Robert C. (Inventor); Fox, Rhoda (Inventor); Korte, Mike (Inventor); Codos, Richard (Inventor); Korolev, Alexandre (Inventor); Collan, William (Inventor)

    2001-01-01

    Native code for a CNC stitching machine is generated by generating a geometry model of a preform; generating tool paths from the geometry model, the tool paths including stitching instructions for making stitches; and generating additional instructions indicating thickness values. The thickness values are obtained from a lookup table. When the stitching machine runs the native code, it accesses a lookup table to determine a thread tension value corresponding to the thickness value. The stitching machine accesses another lookup table to determine a thread path geometry value corresponding to the thickness value.

  19. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  20. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less

  1. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOEpatents

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  2. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory database for local zenith angle calculations to initialize path trajectory calculations. In our newest version of the retrieval algorithm, the Python programming language module PySolar is used for the path geometry calculations. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data that has been compiled every 6 hours. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm as implemented in the SciPy Python module. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment targets.

  3. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1979-01-01

    A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-biassed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.

  4. Nonadiabatic quantum path analysis of high-order harmonic generation: Role of the carrier-envelope phase on short and long paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansone, G.; Stagira, S.; Nisoli, M.

    2004-07-01

    High-order harmonic generation process in the few- and multiple-optical-cycle regime is theoretically investigated, using the saddle-point method generalized to account for nonadiabatic effects. The influence of the carrier-envelope phase of the driving pulses on the various electron quantum paths is analyzed. We demonstrate that the short and long quantum paths are influenced in different ways by the carrier-envelope phase. In particular, we show that clear phase effects are visible on the long quantum paths even in the multiple-optical-cycle regime, while the short quantum paths are significantly influenced by the carrier-envelope phase only in the few-optical-cycle regime.

  5. Maximum height in a conifer is associated with conflicting requirements for xylem design

    Treesearch

    Jean-Chrisophe Domec; Barbara Lachenbruch; Frederick Meinzer; David R. Woodruff; Jeffrey M. Warren; Katherine A. McCulloh

    2008-01-01

    Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height owing to path-...

  6. The curriculum vitae: gateway to academia.

    PubMed

    Christenbery, Tom L

    2014-01-01

    A CV serves as formal documentation of the applicant’s career path and provides necessary demographic and historical information for career change or advancement. Therefore, each section of the CV should be a thorough accounting of the applicant’s academic, work, and professional responsibilities and attainments. The guidelines in this column also are relevant for nurse educators applying for positions in schools of nursing.

  7. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  8. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  9. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  10. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...

  11. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...

  12. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...

  13. Sensitivity Studies for Space-based Measurements of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  14. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  15. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics.

    PubMed

    Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  16. Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.

    2015-05-01

    Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.

  17. Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development.

    PubMed

    Abrahim, Ahmed; Al-Sayah, Mohammad; Skrdla, Peter; Bereznitski, Yuri; Chen, Yadan; Wu, Naijun

    2010-01-05

    Fused-core silica stationary phases represent a key technological advancement in the arena of fast HPLC separations. These phases are made by fusing a 0.5 microm porous silica layer onto 1.7 microm nonporous silica cores. The reduced intra-particle flow path of the fused particles provides superior mass transfer kinetics and better performance at high mobile phase velocities, while the fused-core particles provide lower pressure than sub-2 microm particles. In this work, chromatographic performance of the fused-core particles (Ascentis Express) was investigated and compared to that of sub-2 microm porous particles (1.8 microm Zorbax Eclipse Plus C18 and 1.7 microm Acquity BEH C18). Specifically, retention, selectivity, and loading capacity were systematically compared for these two types of columns. Other chromatographic parameters such as efficiency and pressure drop were also studied. Although the fused-core column was found to provide better analyte shape selectivity, both columns had similar hydrophobic, hydrogen bonding, total ion-exchange, and acidic ion-exchange selectivities. As expected, the retention factors and sample loading capacity on the fused-core particle column were slightly lower than those for the sub-2 microm particle column. However, the most dramatic observation was that similar efficiency separations to the sub-2 microm particles could be achieved using the fused-core particles, without the expense of high column back pressure. The low pressure of the fused-core column allows fast separations to be performed routinely on a conventional LC system without significant loss in efficiency or resolution. Applications to the HPLC impurity profiling of drug substance candidates were performed using both types of columns to validate this last point.

  18. Comparative study of new shell-type, sub-2 micron fully porous and monolith stationary phases, focusing on mass-transfer resistance.

    PubMed

    Oláh, Erzsébet; Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2010-06-04

    Today sub-2 microm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 microm shell particles (1.9 microm nonporous core surrounded by a 0.35 microm porous shell, Kinetex, Core-Shell), packed with other shell-type particles (Ascentis Express, Fused-Core), totally porous sub-2 microm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW=270-430) and a high molecular weight one (MW approximately 900) was conducted. This study proves that the Kinetex column packed with 2.6 microm shell particles is worthy of rivaling to sub-2 microm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency. Copyright 2010 Elsevier B.V. All rights reserved.

  19. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect.

    PubMed

    Degen, J; Uebele, A; Retze, A; Schmid-Staiger, U; Trösch, W

    2001-12-28

    A newly developed flat panel airlift photobioreactor with a defined circulation path was tested for microalgal culture. The bioreactor exposed the cells to intermittent light to improve the efficiency of light utilization through the flashing-light effect. During batch cultures in the new photobioreactor, the biomass productivity of Chlorella vulgaris was 1.7 times greater than in a randomly mixed bubble column of identical dimension. A reduction in light path from 30 to 15 mm increased the biomass productivity by 2.5-fold. A maximum dry biomass productivity of 0.11 g l(-1) h(-1) was obtained at an artificial illumination of 980 mu E m(-2) s(-1).

  20. Body monitoring and imaging apparatus and method

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.

  1. Body monitoring and imaging apparatus and method

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.

  2. Achieving quasi-adiabatic thermal environment to maximize resolution power in very high-pressure liquid chromatography: Theory, models, and experiments.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-04-29

    A cylindrical vacuum chamber (inner diameter 5 cm) housing a narrow-bore 2.1 mm×100 mm column packed with 1.8 μm HSS-T3 fully porous particles was built in order to isolate thermally the chromatographic column from the external air environment. Consistent with statistical physics and the mean free path of air molecules, the experimental results show that natural air convection and conduction are fully eliminated for housing air pressures smaller than 10(-4) Torr. Heat radiation is minimized by wrapping up the column with low-emissivity aluminum-tape (emissivity coefficient ϵ=0.03 vs. 0.28 for polished stainless steel 316). Overall, the heat flux at the column wall is reduced by 96% with respect to standard still-air ovens. From a practical viewpoint, the efficiency of the column run at a flow rate of 0.6 mL/min at a constant 13,000 psi pressure drop (the viscous heat power is around 9 W/m) is improved by up to 35% irrespective of the analyte retention. Models of heat and mass transfer reveal that (1) the amplitude of the radial temperature gradient is significantly reduced from 0.30 to 0.01 K and (2) the observed improvement in resolution power stems from a more uniform distribution of the flow velocity across the column diameter. The eddy dispersion term in the van Deemter equation is reduced by 0.8±0.1 reduced plate height unit, a significant gain in column performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.

    PubMed

    Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K

    2012-12-01

    New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Generation of Path-Encoded Greenberger-Horne-Zeilinger States

    NASA Astrophysics Data System (ADS)

    Bergamasco, N.; Menotti, M.; Sipe, J. E.; Liscidini, M.

    2017-11-01

    We study the generation of Greenberger-Horne-Zeilinger (GHZ) states of three path-encoded photons. Inspired by the seminal work of Bouwmeester et al. [Phys. Rev. Lett. 82, 1345 (1999), 10.1103/PhysRevLett.82.1345] on polarization-entangled GHZ states, we find a corresponding path representation for the photon states of an optical circuit, identify the elements required for the state generation, and propose a possible implementation of our strategy. Besides the practical advantage of employing an integrated system that can be fabricated with proven lithographic techniques, our example suggests that it is possible to enhance the generation efficiency by using microring resonators.

  5. High radioactive concentration of 99mTc from a zirconium [99Mo]molybdate gel generator using an acidic alumina column for purification and concentration.

    PubMed

    Sarkar, S K; Saraswathy, P; Arjun, G; Ramamoorthy, N

    2004-06-01

    Newer applications of radiopharmaceuticals in nuclear medicine require pertechnetate of moderate to high radioactive concentration. Hence there is a need to develop simple procedures for the concentration of pertechnetate, and such a procedure is given in this paper. Ten to 20 ml of sodium [Tc]pertechnetate eluted in de-ionized water from a zirconium [Mo]molybdate (ZrMo) gel column generator was passed through 2 g of an acidic alumina bed (35 x 8 mm) in order to remove the co-eluted traces of Mo and to retain the pertechnetate. The retained pertechnetate was then re-eluted, quantitatively, in 3 ml of normal saline, from the alumina column. About a 4-fold increase in radioactive concentration of Tc was obtained (cf. approximately 10-12 ml normal saline is required for the elution of Tc from the gel column). Generators containing up to 22.2 GBq (600 mCi) Mo in 6-7 g ZrMo gel column (35 x 13 mm) were prepared and a radioactive concentration of Tc up to 4 GBq x ml (110 mCi x ml) was obtained on the first day of use. The overall recovery of Tc was >90%, Mo breakthrough was 10 to 10% and the duration of concentration was 3-5 min. The chemical impurity in terms of Al, Mo and Zr was <10 ppm each. The same procedure for the concentration of pertechnetate was applied to generators with 12-15 g ZrMo gel beds to obtain a higher capacity Tc gel generator, with similar findings.

  6. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  7. Dependence of marine stratocumulus reflectivities on liquid water paths

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.; Snider, Jack B.

    1990-01-01

    Simple parameterizations that relate cloud liquid water content to cloud reflectivity are often used in general circulation climate models to calculate the effect of clouds in the earth's energy budget. Such parameterizations have been developed by Stephens (1978) and by Slingo and Schrecker (1982) and others. Here researchers seek to verify the parametric relationship through the use of simultaneous observations of cloud liquid water content and cloud reflectivity. The column amount of cloud liquid was measured using a microwave radiometer on San Nicolas Island following techniques described by Hogg et al., (1983). Cloud reflectivity was obtained through spatial coherence analysis of Advanced Very High Resolution Radiometer (AVHRR) imagery data (Coakley and Beckner, 1988). They present the dependence of the observed reflectivity on the observed liquid water path. They also compare this empirical relationship with that proposed by Stephens (1978). Researchers found that by taking clouds to be isotropic reflectors, the observed reflectivities and observed column amounts of cloud liquid water are related in a manner that is consistent with simple parameterizations often used in general circulation climate models to determine the effect of clouds on the earth's radiation budget. Attempts to use the results of radiative transfer calculations to correct for the anisotropy of the AVHRR derived reflectivities resulted in a greater scatter of the points about the relationship expected between liquid water path and reflectivity. The anisotropy of the observed reflectivities proved to be small, much smaller than indicated by theory. To critically assess parameterizations, more simultaneous observations of cloud liquid water and cloud reflectivities and better calibration of the AVHRR sensors are needed.

  8. Cellular Targets of Dietary Polyphenol Resveratrol

    DTIC Science & Technology

    2005-03-01

    attempts to generate affinity columns tagged with other polyphenols, e.g., epigallocatechin gallate ( EGCG ). Conceivably such columns, if generated, would...Similar affinity chromatography with the related polyphenol Epigallocatechin gallate does not produce similar results.” Answer: We did not make...addition, the PI does not provid expression. If there is “increased ex many bind the resveratrol affinity co related polyphenol Epigallocatechin Response

  9. Development of a high performance (188)W/(188)Re generator by using a synthetic alumina.

    PubMed

    Lee, Jun Sig; Lee, Jong-Soup; Park, Ul-Jae; Son, Kwang-Jae; Han, Hyon-Soo

    2009-01-01

    A synthetic alumina functionalized with a sulfate moiety has been developed as the column material of (99)Mo/(99m)Tc and (188)W/(188)Re generators. This material is synthesized by a sol-gel processing. In order to characterize the adsorbent for the (188)W/(188)Re separation, both batch and column contact experiments were conducted. As a result of the experiments, it is found that the maximum capacity of the adsorbent for tungsten is higher than 450mg/g. Hence it is possible to produce approximately 3Ci (188)W/(188)Re generator with only 1g of the adsorbent from (188)W solutions supplied from ORNL, USA or RIAR, Russia. A demonstration study was conducted to show the performance of an (188)W/(188)Re generator column. In this study, 1Ci of (188)W purchased from RIAR, Russia, is loaded on a 0.9cm ID column packed with 0.7g of the adsorbent. Elution of (188)Re is performed every 4-7 days by using the saline solution for more than three months. Nearly 100% of tungsten is loaded by passing 5ml of the (188)W solution (pH=8) through the dry packed column at a 1ml/min flow rate. Elution efficiency of (188)Re is 70-90% by using 5ml of the saline solution. The ratio of (188)W/(188)Re in the eluted solution is 0.002-0.003%. When a Sep-Pak containing 0.26g of acid alumina is installed as a tandem column, the ratio is decreased to less than 10(-3)%. Thin layer chromatography for the eluted (188)Re solution shows 100% radiochemical purity. Also, alumina content in the eluted solution shows less than 10ppm. Through this study, the performance of this adsorbent was successfully demonstrated. By using the developed adsorbent, minimization of the generator column and consequently the volume of eluant could be possible while maintaining the quality of (188)Re just as much as that available in the market.

  10. Comparison of Eight Years Total Column Ozone Retrievals form Brewer and Dobson Spectrophotometers in South Pole

    NASA Astrophysics Data System (ADS)

    Feng, K. H.; Moeini, O.; McElroy, C. T.; Evans, R. D.; Petropavlovskikh, I. V.

    2015-12-01

    Total column ozone measured by a Brewer Mark III spectrophotometer (#85) from 2008 to 2015 is compared to the data obtained from three different Dobson spectrophotometers (#80, #82 and #42) that have been operating in parallel with the Brewer at the Amundsen-Scott Station near the South Pole. Measurements are made using either direct sunlight or light from the moon (up to 2 weeks per month). The result of the comparison was used to assess the performance of the two instrument types and determine the stability of the measurement systems. Both instruments suffer from non-linearity due to the presence of instrumental stray light caused by the out-off-band radiations scattered from the optics within the instrument. Stray light results in an underestimated ozone column at large ozone path lengths. Since measurements made at the location of the station (Latitude 89.99o, Longitude -24.80o) have solar zenith angles of 66.5 degrees or greater, the issue of stray light is a particular concern.

  11. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.

  12. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements to cloud tops, knowledge of the laser spot position, and off-nadir pointing. These requirements are independent of the measurement approach, and are consistent with the initial mission simulation studies performed by the formulation team. This presentation will summarize the requirements along with examples that have guided their selection.

  13. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    NASA Astrophysics Data System (ADS)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  14. Fast orthogonal transforms and generation of Brownian paths

    PubMed Central

    Leobacher, Gunther

    2012-01-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545

  15. Modelling the role of electron attachment rates on column density ratios for C n H-/C n H (n=4,6,8) in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.; Grassi, T.; Wester, R.

    2016-10-01

    The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H- case, while the same rates for C6H- and C8H- only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H- case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H-, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the evolutionary modelling discussed in the present work.

  16. Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.

    PubMed

    Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi

    2018-05-01

    Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Vessel structural support system

    DOEpatents

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  18. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar.

    PubMed

    Berger, Terry A

    2016-12-02

    It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min -1 , producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔP ec ) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔP ec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO 2 , and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min -1 , mostly transitional up to 2.5mL-min -1 and virtually always turbulent at 3mL-min -1 and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔP ec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔP ec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When comparing kinetic performance of columns with different dimensions, the pressure drops in the tubing must be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of programming properties and the row-column generation method for 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper deals with fast methods for training a 1-norm support vector machine (SVM). First, we define a specific class of linear programming with many sparse constraints, i.e., row-column sparse constraint linear programming (RCSC-LP). In nature, the 1-norm SVM is a sort of RCSC-LP. In order to construct subproblems for RCSC-LP and solve them, a family of row-column generation (RCG) methods is introduced. RCG methods belong to a category of decomposition techniques, and perform row and column generations in a parallel fashion. Specially, for the 1-norm SVM, the maximum size of subproblems of RCG is identical with the number of Support Vectors (SVs). We also introduce a semi-deleting rule for RCG methods and prove the convergence of RCG methods when using the semi-deleting rule. Experimental results on toy data and real-world datasets illustrate that it is efficient to use RCG to train the 1-norm SVM, especially in the case of small SVs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of Anthropometric Analogous Headforms. Phase 1.

    DTIC Science & Technology

    1994-10-31

    shown in figure 5. This surface mesh can then be transformed into polygon faces that are able to be rendered by the AutoCAD rendering tools . Rendering of...computer-generated surfaces. The material removal techniques require the programming of the tool path of the cutter and in some cases requires specialized... tooling . Tool path programs are available to transfer the computer-generated surface into actual paths of the cutting tool . In cases where the

  1. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  2. Flow-Cell-Induced Dispersion in Flow-through Absorbance Detection Systems: True Column Effluent Peak Variance.

    PubMed

    Dasgupta, Purnendu K; Shelor, Charles Phillip; Kadjo, Akinde Florence; Kraiczek, Karsten G

    2018-02-06

    Following a brief overview of the emergence of absorbance detection in liquid chromatography, we focus on the dispersion caused by the absorbance measurement cell and its inlet. A simple experiment is proposed wherein chromatographic flow and conditions are held constant but a variable portion of the column effluent is directed into the detector. The temporal peak variance (σ t,obs 2 ), which increases as the flow rate (F) through the detector decreases, is found to be well-described as a quadratic function of 1 / F . This allows the extrapolation of the results to zero residence time in the detector and thence the determination of the true variance of the peak prior to the detector (this includes contribution of all preceding components). This general approach should be equally applicable to detection systems other than absorbance. We also experiment where the inlet/outlet system remains the same but the path length is varied. This allows one to assess the individual contributions of the cell itself and the inlet/outlet system.to the total observed peak. The dispersion in the cell itself has often been modeled as a flow-independent parameter, dependent only on the cell volume. Except for very long path/large volume cells, this paradigm is simply incorrect.

  3. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen

    2017-03-01

    This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.

  4. Column-Integrated CO2 Concentrations Measured by MFLL During ACT-America Flight Campaigns

    NASA Astrophysics Data System (ADS)

    Erxleben, W. H.; McGregor, D.; Kooi, S. A.; Campbell, J.; Dobler, J. T.; Pal, S.; Lin, B.; Browell, E. V.; O'Dell, C.; DiGangi, J. P.; Bell, E.

    2017-12-01

    The Multifunction Fiber Laser Lidar (MFLL), designed, built, and operated by Harris Space and Intelligence Systems, is a key instrument aboard the NASA Earth Venture Suborbital mission known as Atmospheric Carbon and Transport - America (ACT-America). The mission's goals include improving estimates of atmospheric transport and fluxes of CO2 and CH4, and evaluating sensitivity of the OCO-2 satellite to regional CO2 variability. ACT-America includes five flight campaigns on two NASA aircraft between 2016 and 2019. The MFLL instrument has been under evaluation in collaboration with NASA Langley Research Center since 2005 and installed on one of NASA's C-130s for ACT-America campaigns since 2016. MFLL measures the integrated path differential absorption in the atmospheric column between the airplane and the ground caused by atmospheric gases (primarily CO2 and H2O). From the differential absorption, the integrated differential optical depth is obtained. The waveforms used to encode and identify the individual wavelengths of light also enable the instrument to determine range to the surface. The measured range and optical depth, together with spectroscopic and meteorological information, enable the column-integrated concentration of CO2 to be retrieved. Through the first two flight campaigns, MFLL has performed 47 flight sorties totaling 170 hours with zero critical failures. Improvements were implemented after the first campaign to reduce harmonic crosstalk and to eliminate both a short-period etalon effect and a longer-period oscillation. MFLL will be flying on the third ACT-America campaign in Fall 2017. We will present a brief review of the measurement method, the instrument performance, and the improvements made over the course of ACT-America. We will also present the most recent results from the first two campaigns covering various altitudes and scenarios: frontal crossings, fair-weather patterns, and OCO-2 underflights. These results will be compared with model predictions generated from in situ instruments and meteorological data sources.

  5. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  6. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  7. Electron path control of high-order harmonic generation by a spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Mohebbi, Masoud; Nazarpoor Malaei, Sakineh

    2016-04-01

    We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.

  8. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  9. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2005-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  10. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2003-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  11. Multimillion to billion atom simulations of nanosystems under extreme conditions

    NASA Astrophysics Data System (ADS)

    Vashishta, P.

    2008-12-01

    Advanced materials and devices with nanometer grain/feature sizes are being developed to achieve higher strength and toughness in ceramic materials and greater speeds in electronic devices. Below 100 nm, however, continuum description of materials and devices must be supplemented by atomistic descriptions. Current state of the art atomistic simulations involve 10 million - 1 billion atoms. We investigate initiation, growth and healing of wing cracks in confined silica glass by multimillion atom molecular dynamics (MD) simulations. Under dynamic compression, frictional sliding of pre-crack surfaces nucleates nanovoids, which evolve into nanocrack columns at the pre-crack tip. Nanocrack columns merge to form a wing crack, which grows via coalescence with nanovoids in the direction of maximum compression. Lateral confinement arrests the growth and partially heals the wing crack. Growth and arrest of the wing crack occur repeatedly, as observed in dynamic compression experiments on brittle solids under lateral confinement. MD simulation of hypervelocity projectile impact in aluminum nitride and alumina has also been studied. The simulations reveal strong interplay between shock- induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics. Initiation of chemical reactions at shock fronts prior to detonation and dynamic transition in the shock structure of an energetic material (RDX) and reaction of aluminium nanoparticles in oxygen atmosphere followed by explosive burning is also discussed.

  12. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  13. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review

    NASA Astrophysics Data System (ADS)

    Morales, Verónica L.; Parlange, J.-Yves; Steenhuis, Tammo S.

    2010-10-01

    SummaryRecently, the interactions between soil structure and microbes have been associated with water transport, retention and preferential or column flow development. Of particular significance is the potential impact of microbial extracellular polymeric substances (EPS) on soil porosity (i.e., hydraulic conductivity reduction or bioclogging) and of exudates from biota, including bacteria, fungi, roots and earthworms on the degree of soil water repellency. These structural and surface property changes create points of wetting instability, which under certain infiltrating conditions can often result in the formation of persistent preferential flow paths. Moreover, distinct differences in physical and chemical properties between regions of water flow (preferential flow paths) and no-flow (soil matrix) provide a unique set of environmental living conditions for adaptable microorganisms to exist. In this review, special consideration is given to: (1) the functional significance of microbial activity in the host porous medium in terms of feedback mechanisms instigated by irregular water availability and (2) the related physical and chemical conditions that force the organization and formation of unique microbial habitats in unsaturated soils that prompt and potentially perpetuate the formation of preferential flow paths in the vadose zone.

  14. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  15. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  16. Smisc - A collection of miscellaneous functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less

  17. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-07-22

    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multi-Column Experimental Test Bed for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additionalmore » adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for both tests. The effluent from the AgZ-PAN column was monitored via GC-TCD during the tests with no xenon being observed exiting the column during either test. Samples from each column were taken via evacuated sample bombs and were analyzed by GC-MS analysis. The results demonstrated the ability to separate xenon from krypton from a mixed gas feed utilizing the new multi-column system.« less

  19. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  20. Implementation of an MgO-based metal removal step in the passive treatment system of Shilbottle, UK: column experiments.

    PubMed

    Caraballo, Manuel A; Rötting, Tobias S; Silva, Verónica

    2010-09-15

    Three laboratory column experiments were performed to test the suitability of two different MgO-rich reagents for removal of Mn and Al from the out-flowing waters of Shilbottle passive treatment system (Northumberland, UK). The input water was doped with 100 mg/L Zn in order to extrapolate results to waters in sulphide mining districts. One column was filled with a Dispersed Alkaline Substrate (DAS) containing 12.5% (v/v) caustic magnesia precipitator dust (CMPD) from Spain mixed with wood shavings, two columns were filled with DAS containing wood shavings and 12.5% or 25% (v/v), respectively, of dolomitic lime precipitator dust (DLPD) from Thrislington, UK. The two columns containing 12.5% of CMPD or DLPD completely removed the contaminants from the inflow water during the first 6 weeks of the experiment (mean removal of 88 mg/L Al, 96 mg/L Zn and 37 mg/L Mn), operating at an acidity load of 140 g acidity/m(2)day. At this moment, a substantial increase of the Al and Mn water concentration in the out-flowing waters of Shilbottle occurred (430 g acidity/m(2)day), leading to passivation of the reactive material and to the development of preferential flow paths within less than another 6 weeks, probably mainly due to Al precipitates. Al should be removed prior to MgO treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  2. Generating Performance Models for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav

    2017-05-30

    Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scalingmore » when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.« less

  3. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  4. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  5. Volatile Transport by Volcanic Plumes on Earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Baloga, Steve; Stofan, Ellen R.

    2012-01-01

    Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes.

  6. Transferring research data to producers

    USDA-ARS?s Scientific Manuscript database

    A column will be written for Cow Country News, a monthly newspaper published by the Kentucky Cattlemen Association. The column will present research findings and technologies generated by collaborative research between the USDA-ARS Forage-Animal Production Research Unit and the University of Kentuc...

  7. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1992-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  8. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1995-01-01

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  9. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1995-03-14

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  10. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1998-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  11. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.

    PubMed

    McGee, William M; McLuckey, Scott A

    2013-11-15

    The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N -hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H 2 O and NH 3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.

  12. Four-dimensional guidance algorithms for aircraft in an air traffic control environment

    NASA Technical Reports Server (NTRS)

    Pecsvaradi, T.

    1975-01-01

    Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.

  13. Robotics virtual rail system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  14. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  15. Method for the chemical separation of GE-68 from its daughter Ga-68

    DOEpatents

    Fitzsimmons, Jonathan M.; Atcher, Robert W.

    2010-06-01

    The present invention is directed to a generator apparatus for separating a daughter gallium-68 radioisotope substantially free of impurities from a parent gernanium-68 radioisotope, including a first resin-containing column containing parent gernanium-68 radioisotope and daughter gallium-68 radioisotope, a source of first eluent connected to said first resin-containing column for separating daughter gallium-68 radioisotope from the first resin-containing column, said first eluent including citrate whereby the separated gallium is in the form of gallium citrate, a mixing space connected to said first resin-containing column for admixing a source of hydrochloric acid with said separated gallium citrate whereby gallium citrate is converted to gallium tetrachloride, a second resin-containing column for retention of gallium-68 tetrachloride, and, a source of second eluent connected to said second resin-containing column for eluting the daughter gallium-68 radioisotope from said second resin-containing column.

  16. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  17. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    PubMed

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  18. High-efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable I. Experiments with 25 cm x 4.6 mm I.D., 5 microm ODS columns.

    PubMed

    Lestremau, François; Cooper, Andrew; Szucs, Roman; David, Frank; Sandra, Pat

    2006-03-24

    High plate numbers were obtained in conventional LC by coupling columns and by using temperature to reduce the viscosity of the mobile phase. At 80 degrees C up to eight columns of 25 cm x 4.6 mm I.D. packed with 5 microm ODS particles could be coupled generating 180,000 effective plates while the pressure drop was only 350bar. For routine work, a set of four columns is preferred. The analysis times on one column operated at 30 degrees C and 1 mL/min flow rate and on four columns at 80 degrees C and 2 mL/min flow rate are the same in isoeluotropic conditions while the resolution is doubled. Multicolumn systems were successfully applied in isocratic and gradient mode for the analysis of pharmaceutical and environmental samples.

  19. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  20. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.

    PubMed

    Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-06-01

    Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, P.B.

    1954-01-01

    A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less

  2. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  3. An experimental study of factors affecting the selective inhibition of sintering process

    NASA Astrophysics Data System (ADS)

    Asiabanpour, Bahram

    Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After developing a desirability function model, process operating conditions for maximum desirability were identified. Finally, the desirability model was validated.

  4. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  5. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  6. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  7. Site Location Details, Air Pollution Monitoring Equipment Used, Aircraft Flight Path Information, and Deployment Configuration for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) Field Campaign in Colorado: Summer 2014

    EPA Science Inventory

    For EPA, this Summer 2014, Denver CO, DISCOVER-AQ field research activity focused on assessing Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) for ozone (O3) and Nitrogen Dioxide (NO2), while comparing their operational performance to each other and to smal...

  8. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  9. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  10. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    PubMed

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  11. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage

    PubMed Central

    Li, Yuwei; Li, Ang; Junge, Jason

    2017-01-01

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649

  12. Removal of Cr(VI) from groundwater by Fe(0)

    NASA Astrophysics Data System (ADS)

    Gao, Yanjiao; Liu, Rui

    2017-11-01

    This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.

  13. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin.

    PubMed

    Ovchinnikov, Victor; Karplus, Martin

    2012-07-26

    The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.

  14. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates.

    PubMed

    Barbour, P S; Stone, M H; Fisher, J

    1999-01-01

    In some designs of hip joint simulator the cost of building a highly complex machine has been offset with the requirement for a large number of test stations. The application of the wear results generated by these machines depends on their ability to reproduce physiological wear rates and processes. In this study a hip joint simulator has been shown to reproduce physiological wear using only one load vector and two degrees of motion with simplified input cycles. The actual path of points on the femoral head relative to the acetabular cup were calculated and compared for physiological and simplified input cycles. The in vitro wear rates were found to be highly dependent on the shape of these paths and similarities could be drawn between the shape of the physiological paths and the simplified elliptical paths.

  15. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1992-12-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  16. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1998-09-29

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  17. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  18. Body monitoring and imaging apparatus and method

    DOEpatents

    McEwan, T.E.

    1996-11-12

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. 12 figs.

  19. Body monitoring and imaging apparatus and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.

  20. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    PubMed

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.

  1. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2005-12-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.

  2. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: implications for managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Alazard, M.; Boisson, A.; Maréchal, J.-C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S.

    2016-02-01

    The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.

  3. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns.

    PubMed

    Naccache, Samia N; Greninger, Alexander L; Lee, Deanna; Coffey, Lark L; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L; Chiu, Charles Y

    2013-11-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing.

  4. Denitrification in a low-temperature bioreactor system at two different hydraulic residence times: laboratory column studies.

    PubMed

    Nordström, Albin; Herbert, Roger B

    2017-06-01

    Nitrate removal rates in a mixture of pine woodchips and sewage sludge were determined in laboratory column studies at 5°C, 12°C, and 22°C, and at two different hydraulic residence times (HRTs; 58.2-64.0 hours and 18.7-20.6 hours). Baffles installed in the flow path were tested as a measure to reduce preferential flow behavior, and to increase the nitrate removal in the columns. The nitrate removal in the columns was simulated at 5°C and 12°C using a combined Arrhenius-Monod equation controlling the removal rate, and a first-order exchange model for incorporation of stagnant zones. Denitrification in the mixture of pine woodchips and sewage sludge reduced nitrate concentrations of 30 mg N L -1 at 5°C to below detection limits at a HRT of 58.2-64.0 hours. At a HRT of 18.7-20.6 hours, nitrate removal was incomplete. The Arrhenius frequency factor and activation energy retrieved from the low HRT data supported a biochemically controlled reaction rate; the same parameters, however, could not be used to simulate the nitrate removal at high HRT. The results show an inversely proportional relationship between the advection velocity and the nitrate removal rate, suggesting that bioreactor performance could be enhanced by promoting low advection velocities.

  5. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  6. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    PubMed

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  7. Increasingly minimal bias routing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataineh, Abdulla; Court, Thomas; Roweth, Duncan

    2017-02-21

    A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).

  8. Image-based path planning for automated virtual colonoscopy navigation

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  9. Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, J M; Knapp Jr, Russ F

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{sub {beta}max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (i.e., 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the {sup 188}Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of {sup 188}Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the {sup 188}Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of {sup 188}Re-HDD have been optimized and this agent can be obtained in high yield (80%).« less

  10. Use of the ORNL Tungsten-188/Rhenium-188 Generator for Preparation of the Rhenium-188 HDD/Lipiodol Complex for Transarterial Liver Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp Jr, Russ F; Jeong, J M

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{beta}{sub max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the {sup 188}Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of {sup 188}Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the {sup 188}Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of {sup 188}Re-HDD have been optimized and this agent can be obtained in high yield (80%).« less

  11. Driving Under the Influence (of Language).

    PubMed

    Barrett, Daniel Paul; Bronikowski, Scott Alan; Yu, Haonan; Siskind, Jeffrey Mark

    2017-06-09

    We present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports acquisition (learning grounded meanings of nouns and prepositions from human sentential annotation of robotic driving paths), generation (using such acquired meanings to generate sentential description of new robotic driving paths), and comprehension (using such acquired meanings to support automated driving to accomplish navigational goals specified in natural language). We evaluate the performance of these three tasks by having independent human judges rate the semantic fidelity of the sentences associated with paths. Overall, machine performance is 74.9%, while the performance of human annotators is 83.8%.

  12. Leaching of heavy metals from E-waste in simulated landfill columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yadong; Richardson, Jay B.; Mark Bricka, R.

    2009-07-15

    In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less

  13. D.C. - ARC plasma generator for nonequilibrium plasmachemical processes

    NASA Astrophysics Data System (ADS)

    Kvaltin, J.

    1990-06-01

    The analysis of conditions for generation of nonequilibrium plasma to plasmachemical processes is made and the design of d.c.-arc plasma generator on the base of integral criterion is suggested. The measurement of potentials on the plasma column of that generator is presented.

  14. The Development of Close Relationships in Japan and the United States: Paths of Symbiotic Harmony and Generative Tension.

    ERIC Educational Resources Information Center

    Rothbaum, Fred; Pott, Martha; Azuma, Hiroshi; Miyake, Kazuo; Weisz, John

    2000-01-01

    Compares paths of development in Japan (symbiotic harmony) and the United States (generative tension) of parent-child and adult mate relationships, challenging assumptions that certain processes are central in all relationships or that U.S. relationships are less valued or weaker than Japan's. Suggests need to investigate processes underlying, and…

  15. Adaptive scallop height tool path generation for robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.

  16. Interstellar scattering of the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Backer, D. C.

    1974-01-01

    The frequency dependence of the parameters of interstellar scattering between 837 and 8085 MHz for the Vela pulsar are consistent with thin-screen models of strong scattering. The magnitudes of the parameters indicate an anomalous turbulence along the path when they are compared with results for other pulsars with comparable column densities of free electrons in the line of sight. This anomaly is due presumably to the Gum Nebula. The decorrelation frequency, appropriately defined, is related to the pulse broadening time by 2 pi as predicted theoretically.

  17. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  18. The Laser Communications Relay and the Path to the Next Generation Near Earth Relay

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2015-01-01

    NASA Goddard Space Flight Center is currently developing the Laser Communications Relay Demonstration (LCRD) as a Path to the Next Generation Near Earth Space Communication Network. The current NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers. NASA is currently targeting a next generation of relay capability on orbit in the 2025 timeframe.

  19. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  20. The Effect of Column and Eluent Fluorination on the Retention and Separation of non-Fluorinated Amino Acids and Proteins by HPLC

    PubMed Central

    Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce

    2011-01-01

    The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121

  1. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-03-01

    Enhancements of SO2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO2 columns over China were analyzed for the time period 2005-2010. Beijing and Chongqing showed a high concentration in the SO2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO2 columns over China from GOME-2 (0.2-0.5 DU) were lower than those from OMI (0.6-1 DU), but both showed a decrease in SO2 columns over northern China since 2008 (except an increase in OMI SO2 in 2010).

  2. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  3. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less

  5. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  6. Progress on development of an airborne two-micron IPDA lidar for water vapor and carbon dioxide column measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed

    2017-09-01

    An airborne 2-μm triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  7. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  8. Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; hide

    2014-01-01

    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  9. Quadcopter Path Following Control Design Using Output Feedback with Command Generator Tracker LOS Based At Square Path

    NASA Astrophysics Data System (ADS)

    Nugraha, A. T.; Agustinah, T.

    2018-01-01

    Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.

  10. Autonomous Navigation by a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand

    2005-01-01

    ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

  11. Evidence and age estimation of mass wasting at the distal lobe of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Croguennec, Claire; Ruffine, Livio; Dennielou, Bernard; Baudin, François; Caprais, Jean-Claude; Guyader, Vivien; Bayon, Germain; Brandily, Christophe; Le Bruchec, Julie; Bollinger, Claire; Germain, Yoan; Droz, Laurence; Babonneau, Nathalie; Rabouille, Christophe

    2017-08-01

    On continental margins, sulfate reduction occurs within the sedimentary column. It is coupled with the degradation of organic matter and the anaerobic oxidation of methane. These processes may be significantly disturbed by sedimentary events, leading to transient state profiles for the involved chemical species. Yet, little is known about the impact of turbidity currents and mass wasting on the migration of chemical species and the redox reactions in which they are involved. Due to its connection to the River, the Congo deep-sea fan continuously receives huge amount of organic matter-rich sediments primarily transported by turbidity currents, which impact on the development of the associated ecosystems (Rabouille et al., 2017). Thus, it is well suited to better understand causal relationships between sedimentary events and fluid flow path, with consequences on the zonation of early diagenesis sequences. Here, we combined sedimentological observations with geochemical analyses of pore-water and sediment samples to explore how sedimentary instabilities affected the migration of methane and the distribution of organic matter within the sedimentary column. The results unveiled mass wasting processes affecting recent turbiditic and pelagic deposits, and are interpreted as being slides/ slumps and debrites. Two slides were responsible for the exhumation of an organic matter-rich sedimentary block of more than 5 m thick and the movement of a methane-rich sedimentary block, while turbidity currents enable the intercalation of sandy intervals within a pelagic clay layer. The youngest slide promoted the development of two Sulfate Methane Transition Zones (SMTZ), and may have possibly triggered a lateral migration of methane. Numerical simulation of the sulfate profile indicates that the youngest sedimentary event has occurred around a century ago. Our study emphasizes that turbidity currents and sedimentary instabilities can significantly affect the transport paths and the distribution of both methane and organic matter in the terminal lobe complex, with consequences on geochemical zonation of the sequential early diagenetic processes within the sedimentary column.

  12. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    NASA Astrophysics Data System (ADS)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  13. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  14. On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process

    NASA Astrophysics Data System (ADS)

    Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano

    2018-01-01

    The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.

  15. Generation de chemins de couverture pour des operations automatisees de controle non destructif appliquees dans l'industrie aerospatiale

    NASA Astrophysics Data System (ADS)

    Olivieri, Pierre

    Non destructive testing (NDT) plays an important role in the aerospace industry during the fabrication and maintenance of the structures built and is used, among other useful applications, to detect flaws such as cracks at an early stage. However, NDT techniques are still mainly done manually, especially on complex aeronautical structures, which then results in several drawbacks. In addition to be difficult and time-consuming, reliability and repeatability of inspection results are likely to be affected, since they rely on each operator's experience and dexterity. The present thesis is part of a larger project (MANU-418) of the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ). In this project, it has been proposed to develop a system using a 6-DOF manipulator arm to automate three particular NDT techniques often needed in the aerospace industry: eddy current testing (ECT), fluorescent penetrant inspection (FPI), and infrared thermography (IRT). The main objective of the MANU-418 project is to demonstrate the efficiency of the developed system and provide inspection results of surface and near surface flaws (cracks usually) at least as reliably and repeatably as inspection results from a human operator. One specific objective stemming from the main objective of the project is to develop a methodology and a software tool to generate covering paths adapted for the three aforementioned NDT techniques to inspect the complex surfaces of aerospace structures. The present thesis aims at reaching this specific objective. At first, geometrical and topological properties of the surfaces considered in this project are defined (flat surfaces, round and straight edges, cylindrical or near cylindrical surfaces, holes). It is also assumed that the 3D model of the surface to inspect is known in advance. Moreover, it has been decided within the framework of the MANU-418 project to give priority to the automation of ECT compared with the other techniques (FPI and IRT). As a result, the methodology developed to generate inspection paths is more closely focused on path constraints relative to the manual operations of ECT using a differential eddy current probe (named here EC probe), but it is developed to be flexible enough to be used with the other techniques as well. Common inspection paths for ECT are usually defined by a sweeping motion using a zigzag pattern with the EC probe in mild contact with the inspected surface. Moreover, the main axis of the probe must keep a normal orientation with the surface, and the alignment of its two coils must always be oriented along the direction of its motion. A first methodology is then proposed to generate covering paths on the whole surface of interest while meeting all EC probe motion constraints. First, the surface is meshed with triangular facets, and then it is subdivided into several patches such that their geometry and topology are simpler than the whole surface. Paths are then generated on each patch by intersecting their facets with offset section planes defined along a sweeping direction. Furthermore, another methodology is developed to generate paths around an indication (namely a small area where the presence of a flaw is suspected) whose position and orientation are assumed to be known a priori.. Then, a software tool with a graphical user interface has been developed in the MATLAB environment to generate inspection paths based on these methodologies. A set of path parameters can be changed by the user to get desired paths (distance between passes, sweep direction, etc.). Once paths are computed, an ordered list of coordinates (positions and orientations) of the tool is exported in an EXCEL spreadsheet so that it could be used with a real robot. In this research, these data are then used to perform simulations of trajectories (path described as a function of the time) with a MotoMan robot (model SV3XL) using the MotoSim software. After validation of these trajectories in this software (absence of collisions, positions are all reachable, etc.), they are finally converted into instructions for the real MotoMan robot to proceed with experimental tests. These first simulations and experimentations on a MotoMan robot of the generated paths have given results close to the expected inspection trajectories used manually in the NDT techniques considered, especially for the ECT technique. Nevertheless, it is strongly recommended to validate this path generation method with more experimental tests. For instance, a "test" tool could be manufactured to measure errors of position and orientation of this tool with respect to expected trajectories on a typical complex aeronautical structure. (Abstract shortened by UMI.).

  16. Model Predictive Control-based Power take-off Control of an Oscillating Water Column Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.

    2017-07-01

    Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.

  17. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    NASA Astrophysics Data System (ADS)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.

  18. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  19. Exploring the Effect of Mentoring in the Degree Attainment and Career Paths of First Generation Mexican American Women Employed in Senior Administrative Leadership Roles at Hispanic-Serving Institutions

    ERIC Educational Resources Information Center

    Medrano, Vivian A.

    2017-01-01

    Purpose: This qualitative, phenomenological study explored the effect of mentoring in the degree attainment and career paths of first generation Mexican American women who are employed in senior administrative leadership roles at Hispanic-serving institutions (HSIs). Methodology: This exploratory study employed a phenomenological research…

  20. Influences on the Motivation of Low-Income, First-Generation Students on the Path to College: A Cross-Case Analysis Using Self-Determination Theory

    ERIC Educational Resources Information Center

    Mitchall, Allison Michelle

    2015-01-01

    Low-income, first-generation students face numerous barriers on the path to college. However, millions of these students persevere and ultimately enroll. How do these students remain motivated on the road to higher education despite these challenges? This collective case study explored influences on the motivation of low-income, first generation…

  1. Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dong, Xiquan; Kennedy, Aaron; Xi, Baike; Li, Zhanqing

    2017-03-01

    The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) groundbased observations made during the period 2002-08. CMIP5 SCM simulations and GCM outputs over the ARM SGP region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase (10%-20%) but precipitation increased significantly (56%), which agreed better with observations despite the less accurate atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can potentially provide guidance for the further development of the GISS model.

  2. Effect of residual oil saturation on hydrodynamic properties of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei

    2014-07-01

    To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.

  3. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, D; Nguyen, D; Voronenko, Y

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less

  4. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  5. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  6. An improved empirical model for diversity gain on Earth-space propagation paths

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1981-01-01

    An empirical model was generated to estimate diversity gain on Earth-space propagation paths as a function of Earth terminal separation distance, link frequency, elevation angle, and angle between the baseline and the path azimuth. The resulting model reproduces the entire experimental data set with an RMS error of 0.73 dB.

  7. Solving the Curriculum Sequencing Problem with DNA Computing Approach

    ERIC Educational Resources Information Center

    Debbah, Amina; Ben Ali, Yamina Mohamed

    2014-01-01

    In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…

  8. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office, current efforts are focused on developing an aircraft-based 2-μm triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2-μm double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows <0.12% random error and <0.07% residual systematic error. These translate to near-optimum 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.

  9. Investigation of the phenomenon of electrostatic compromise of a plastic fiber heat exchanger.

    PubMed

    Elgas, R J

    1999-03-01

    The use of a new generation of blood oxygenator design using plastic fibers for the heat exchange material is growing. The benefits of a plastic heat exchange material are improved biocompatibility and performance over some of the traditional metals used. During the initial period of clinical use of one of these new oxygenators, there were reports of four blood-to-water leaks. No patient complications were associated with these leaks, but the product was withdrawn from the market. After a thorough evaluation, the cause of the leaks was found to be an electrostatic discharge that occurred within the heat exchanger during priming of the extracorporeal circuit. It was found that an electrostatic potential between the blood path and the water path of the heat exchanger is generated as the prime solution is recirculated by a roller pump with polyvinyl chloride (PVC) pumphead tubing. The magnitude of the potential generated was found to vary with the make and model of the roller pump. If this voltage exceeds the dielectric strength of the fiber, a discharge through the wall of a single heat exchange fiber will occur and produce a hole. Several solutions to this problem of roller pumps generating an electrostatic charge when used with PVC pumphead tubing were identified. Centrifugal blood pumps and roller pumps using silicone rubber pumphead tubing were found to generate no significant electrostatic potential between the blood path and the water path. Another solution, a charge equalization line (CEL), was designed to provide a conductive path for the charge to equilibrate across the fiber wall. The CEL can be either external or internal to the oxygenator. Each of these solutions was validated and the product has been reintroduced for clinical use.

  10. The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns

    PubMed Central

    Naccache, Samia N.; Greninger, Alexander L.; Lee, Deanna; Coffey, Lark L.; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L.

    2013-01-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing. PMID:24027301

  11. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  12. An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50 °C: Implications for subsurface storage of CO2

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-02-01

    A novel high pressure column flow reactor was used to investigate the evolution of solute chemistry along a 2.3 m flow path during pure water- and CO2-charged water-basaltic glass interaction experiments at 22 and 50 °C and 10-5.7 to 22 bars partial pressure of CO2. Experimental results and geochemical modelling showed the pH of injected pure water evolved rapidly from 6.7 to 9-9.5 and most of the iron released to the fluid phase was subsequently consumed by secondary minerals, similar to natural meteoric water-basalt systems. In contrast to natural systems, however, the aqueous aluminium concentration remained relatively high along the entire flow path. The aqueous fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. As CO2-charged water replaced the alkaline fluid within the column, the fluid briefly became supersaturated with respect to siderite. Basaltic glass dissolution in the column reactor, however, was insufficient to overcome the pH buffer capacity of CO2-charged water. The pH of this CO2-charged water rose from an initial 3.4 to only 4.5 in the column reactor. This acidic reactive fluid was undersaturated with respect to carbonate minerals but supersaturated with respect to clays and Fe hydroxides at 22 °C, and with respect to clays and Al hydroxides at 50 °C. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility and aqueous concentration of several metals increased significantly with the addition of CO2 to the inlet fluid, and some metals, including Mn, Cr, Al, and As exceeded the allowable drinking water limits. Iron became mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Although carbonate minerals did not precipitate in the column reactor in response to CO2-charged water-basaltic glass interaction, once this fluid exited the reactor, carbonates precipitated as the fluid degassed at the outlet. Substantial differences were found between the results of geochemical modelling calculations and the observed chemical evolution of the fluids during the experiments. These differences underscore the need to improve the models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface. The pH increase from 3.4 to 4.5 of the CO2-rich inlet fluid does not immobilize toxic elements at ambient temperature but immobilizes Al and Cr at 50 °C. This indicates that further neutralization of CO2-charged water is required for decreased toxic element mobility. The CO2-charged water injection enhances the mobility of redox sensitive Fe2+ significantly making it available for the storage of injected carbon as iron carbonate minerals. The precipitation of aluminosilicates likely occurred at a pH of 4.2-4.5 in CO2-charged waters. These secondary phases can (1) fill the available pore space and therefore clog the host rock in the vicinity of the injection well, and (2) incorporate some divalent cations limiting their availability for carbon storage. The inability of simple reactive transport models to describe accurately the fluid evolution in this well constrained one dimensional flow system suggests that significant improvements need to be made to such models before we can predict with confidence the fate and consequences of injecting carbon dioxide into the subsurface. Column reactors such as that used in this study could be used to facilitate ex situ carbon mineral storage. Carbonate precipitation at the outlet of the reactor suggests that the harvesting of divalent metals from rocks using CO2-charged waters could potentially be upscaled to an industrial carbonation process.

  13. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders.

    PubMed

    Folegot, Thomas; Martinelli, Giovanna; Guerrini, Piero; Stevenson, J Mark

    2008-11-01

    An algorithm allowing simultaneous detection and localization of multiple submerged targets crossing an acoustic tripwire based on forward scattering is described and then evaluated based upon data collected at sea. This paper quantifies the agreement between the theoretical performance and the results obtained from processing data gathered at sea for crossings at several depths and ranges. Targets crossing the acoustic field produce shadows on each side of the barrier, for specific sensors and for specific acoustic paths. In post-processing, a model is invoked to associate expected paths with the observed shadows. This process allows triangulation of the target's position inside the acoustic field. Precise localization is achieved by taking advantage of the multipath propagation structure of the received signal, together with the diversity of the source and receiver locations. Environmental robustness is demonstrated using simulations and can be explained by the use of an array of sources spatially distributed through the water column.

  14. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  15. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    DOEpatents

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  16. Movement of Toxoplasma gondii Oocysts in Unsaturated Natural Soils

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Korte, Caroline; L'Ollivier, Coralie; Dubey, Jitender; Dumetre, Aurélien; Darnault, Christophe

    2017-04-01

    Toxoplasma gondii has a complex lifecycle that involves a wide variety of intermediate hosts with felids as the definitive host. Because of its numerous hosts and the prevalence of cats, T.gondii has spread throughout nearly the entire globe. Oocysts have been found not only in the feces of cats, but also in soils, animal feeds and water. Exposure through consumption of infected meat or following contact with cat feces can cause damage to the eyes, brain and other organs of immunocompromised populations as well as fetuses if they are exposed in utero. The prevalence of T.gondii and potential health risks necessitate a better understanding of the transport of T.gondii through soils, which to this point has not been well studied. This work aims to characterize the transport and retention of T.gondii oocysts in a number of unsaturated natural soils where fast transport and preferential flow paths have been prevented. The soils used are classified as loamy sands and sandy loams. They were placed in soil columns at a known bulk density and were then subjected to an artificial rain of 1 mM KCl solution. Flow in the columns was vertical and gravity driven. After steady state was reached, a pulse containing 2.5 million T.gondii oocysts and KBr as a conservative tracer was applied to the top of the column, after which steady rainfall was resumed. Leachate samples were collected throughout the experiment. qPCR for T.gondii was performed and KBr ions were measured to create breakthrough curves for both. After the completion of the rainfall portion of the experiment, soil columns were cut into 1 to 2 cm sections and analyzed for T.gondii with qPCR to characterize retention within the column and for soil water content.

  17. Deflection of natural oil droplets through the water column in deep-water environments: The case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, Romain; Dhont, Damien; Loncke, Lies; de Madron, Xavier Durrieu; Dubucq, Dominique; Channelliere, Claire; Bourrin, François

    2018-06-01

    Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  18. Identification of nonvolatile coal derived products via chromatography coupled with on-line FTIR detection. Quarterly progress report, March 1-May 31, 1985. [C/sub 2/H/sub 2/ extracts of ground coal, coffee and paprika

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.T.

    Because it has been our goal to interface the supercritical fluid chromatograph with a Fourier transform infrared spectrometer we have initially chosen packed columns due to their increased sample capacities, and supercritical CO/sub 2/ because of its infrared transparency. This paper compares two sampling techniques that can be utilized in packed column supercritical fluid Chromatography (SFC). Traditional sample introduction is accomplished using an injector with a sample loop. The loop is filled with the appropriate amount of material, and subsequently inserted into the mobile phase path. In most cases the sample must be either dissolved or extracted into an appropriatemore » solvent for such sample introduction. Note that unlike HPLC, where the solvent can be the same as the mobile phase, traditional sampling with SFC must use a solvent that is very different from the mobile phase. As a result, solvent peaks are almost always present, especially with universal detectors like FTIR. An alternative method is described here whereby both extraction of the sample and introduction of the extract onto the column is accomplished on-line using only the supercritical fluid mobile phase. This sampling technique is made possible by a simple valving scheme which ties directly the extraction vessel, the injector, the packed column and the detector. This technique has several advantages over the traditional methods, not the least of which is the absence of a large amount of foreign solvent introduced on the column. 11 refs., 7 figs.« less

  19. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  20. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  1. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  2. Places to Go: Google's Search Results for "Net Generation"

    ERIC Educational Resources Information Center

    Downes, Stephen

    2007-01-01

    In his Places to Go column for a special issue on the Net Generation, Stephen Downes takes an unexpected trip--to Google. According to Downes, Google epitomizes the essence of the Net Generation. Infinitely searchable and adaptable, Google represents the spirit of a generation raised in the world of the Internet, a generation that adapts…

  3. Trip report. Eurochemic company assistance: Hanford Atomic Products Operation spent fuel processing technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shank, E.M.

    1959-06-23

    Information obtained from HAPO during visit by M.K. Twichell, UCNC, and E.M. Shank, ORNL, is given. Included are the tentative procedures for obtaining and transmitting information to the Eurochemic company. Discussions are given on pulsed columns, corrosion, puse generators, centrifuges, valves, in-line instrumentation, evaporators, resin column design, off-gas processing, solvent recovery, liquid-waste handling, process control, equipment decontamination, criticality, radiation protection, diluent, and solvent stability, backmixing in a pulsed column, and use of 40% TBP in the purex flowsheet.

  4. Simulation based optimization on automated fibre placement process

    NASA Astrophysics Data System (ADS)

    Lei, Shi

    2018-02-01

    In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.

  5. Feeding Currents generated by Cassiopea jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, M. G.; Santhanakrishnan, A.

    2016-02-01

    Feeding currents generated by organisms dwelling in the benthic boundary layer can enhance nutrient fluxes in coastal habitats with low-speed ambient flows. Patchy aggregations of Cassiopea medusae, commonly referred to as the "upside-down" jellyfish, are seen in sheltered marine environments such as mangrove forests and coral reefs in shallow regions saturated with sunlight. They exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms directed toward the free surface. Pulsations of their bells drive flow toward and away from the body, assisting in suspension feeding and for exchange of inorganic and organic matter across the water column. The feeding currents generated by aggregations of these medusae and subsequent effects on mixing in the water column have not been examined. We experimentally investigated currents generated by groups of Cassiopea medusae in a low-speed recirculating water tunnel. Multiple medusae grouping arrangements were tested in the tunnel based on time-lapse videos of the organisms obtained overnight in laboratory aquaria. Fluorescent dye introduced underneath the substrate was used to investigate release of porewater via bell motion. Quantitative flow visualization studies of Cassiopea currents were conducted using 2D high-speed particle image velocimetry. Vertical mixing of medusa-induced jets were observed in the presence of minimal background flow. The implications of feeding currents generated by groups of Cassiopea medusae on mixing in the water column will be presented.

  6. A New Resonance Tube

    ERIC Educational Resources Information Center

    Bates, Alan

    2017-01-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…

  7. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  8. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  9. Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Krozel, James A.

    1988-01-01

    An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.

  10. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment target

  11. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  12. An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1976-01-01

    Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.

  13. Generation of RGB-D data for SLAM using robotic framework V-REP

    NASA Astrophysics Data System (ADS)

    Gritsenko, Pavel S.; Gritsenko, Igor S.; Seidakhmet, Askar Zh.; Abduraimov, Azizbek E.

    2017-09-01

    In this article, we will present a methodology to debug RGB-D SLAM systems as well as to generate testing data. We have created a model of a laboratory with an area of 250 m2 (25 × 10) with set of objects of different type. V-REP Microsoft Kinect sensor simulation model was used as a basis for robot vision system. Motion path of the sensor model has multiple loops. We have written a program in V-Rep native language Lua to record data array from the Microsoft Kinect sensor model. The array includes both RGB and Depth streams with full resolution (640 × 480) for every 10 cm of the path. The simulated path has absolute accuracy, since it is a simulation, and is represented by an array of transformation matrices (4 × 4). The length of the data array is 1000 steps or 100 m. The path simulates frequently occurring cases in SLAM, including loops. It is worth noting that the path was modeled for a mobile robot and it is represented by a 2D path parallel to the floor at a height of 40 cm.

  14. Girsanov reweighting for path ensembles and Markov state models

    NASA Astrophysics Data System (ADS)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  15. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  16. TU-G-BRB-01: Continuous Path Optimization for Non-Coplanar Variant SAD IMRT Delivery Using C-Arm Machines.

    PubMed

    Ruan, D; Dong, P; Low, D; Sheng, K

    2012-06-01

    To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.

  17. Environmental impact of flood: the study of arsenic speciation in exchangeable fraction of flood deposits of Warta river (Poland) in determination of "finger prints" of the pollutants origin and the ways of the migration.

    PubMed

    Kozak, Lidia; Skolasińska, Katarzyna; Niedzielski, Przemysław

    2012-09-01

    The paper presents the application of the hyphenated technique - high-performance liquid chromatography with atomic absorption spectrometry detection with hydride generation (HPLC-HG-AAS) - in the determinations of inorganic forms of arsenic: As(III) and As(V) in the exchangeable fraction of flood deposits. The separation of analytical signals of the determined arsenic forms was obtained using an ion-exchange column in a chromatographic system with the atomic absorption spectrometer as a detector, at the determination limits of 5 ngg(-1) for As(III) and 10 ngg(-1) for As(V). Flood deposits were collected after big flood event in valley of the Warta river which took place in summer 2010. Samples of overbank deposits were taken in Poznań agglomeration and vicinity (NW Poland). The results of determinations of arsenic forms in the exchangeable fraction of flood deposits allowed indication of a hypothetical path of deposits migration transported by a river during flood and environmental threats posed by their deposition by flood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Spectral purity study for IPDA lidar measurement of CO2

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian

    2018-02-01

    A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.

  19. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  20. Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liljegren, J.C.

    1994-01-01

    The Atmospheric Radiation Measurement (ARM) Program is focused on improving the treatment of radiation transfer in models of the atmospheric general circulation, as well as on improving parameterizations of cloud properties and formation processes in these models (USDOE, 1990). To help achieve these objectives, ARM is deploying several two-channel, microwave radiometers at the Cloud and Radiation Testbed (CART) site in Oklahoma for the purpose of obtaining long time series observations of total precipitable water vapor (PWV) and cloud liquid water path (LWP). The performance of the WVR-1100 microwave radiometer deployed by ARM at the Oklahoma CART site central facility tomore » provide time series measurements precipitable water vapor (PWV) and liquid water path (LWP) has been presented. The instrument has proven to be durable and reliable in continuous field operation since June, 1992. The accuracy of the PWV has been demonstrated to achieve the limiting accuracy of the statistical retrieval under clear sky conditions, degrading with increasing LWP. Improvements are planned to address moisture accumulation on the Teflon window, as well as to identity the presence of clouds with LWP at or below the retrieval uncertainty.« less

  1. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quantitative) analysis of solvent extract in paragraph (c)(3)(iv) of this section. The design of the generator... partition coefficients of hydrophobic substances. Journal of Research, National Bureau of Standards, 86:361...

  2. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  3. Passive infrared bullet detection and tracking

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  4. Passive infrared bullet detection and tracking

    DOEpatents

    Karr, T.J.

    1997-01-21

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  5. A microfluidic chip with a staircase pH gradient generator, a packed column and a fraction collector for chromatofocusing of proteins.

    PubMed

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han J G E

    2018-04-01

    A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development. © 2018 The Authors Electrophoresis Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  7. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  8. The impact of column connection on band broadening in very high pressure liquid chromatography.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges

    2013-09-01

    A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  10. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  11. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  12. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  13. Parameter optimization on the convergence surface of path simulations

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Srinivas Niranj

    Computational treatments of protein conformational changes tend to focus on the trajectories themselves, despite the fact that it is the transition state structures that contain information about the barriers that impose multi-state behavior. PATH is an algorithm that computes a transition pathway between two protein crystal structures, along with the transition state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on several unknown input parameters whose range of different values can potentially generate different transition-state structures. Transition-state structures arising from different input parameters cannot be uniquely compared with those generated by other methods. I outline modifications that I have made to the PATH algorithm that estimates these input parameters in a manner that circumvents these difficulties, and describe two complementary tests that validate the transition-state structures found by the PATH algorithm. First, I show that although the PATH algorithm and two other approaches to computing transition pathways produce different low-energy structures connecting the initial and final ground-states with the transition state, all three methods agree closely on the configurations of their transition states. Second, I show that the PATH transition states are close to the saddle points of free-energy surfaces connecting initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. I show that aromatic side-chain rearrangements create similar potential energy barriers in the transition-state structures identified by PATH for a signaling protein, a contractile protein, and an enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-atom and Calpha-only simulations identify transition state structures in which the Calpha atoms are in essentially the same positions. The consistency between transition-state structures derived by different algorithms for unrelated protein systems argues that although functionally important protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. In the end, I outline the strategies that could enhance the efficiency and applicability of PATH.

  14. Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.

    PubMed

    Djordjevic, N M; Fitzpatrick, F; Houdiere, F

    2001-04-01

    The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.

  15. Next Generation Clustered Heat Maps | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Next-Generation (Clustered) Heat Maps are interactive heat maps that enable the user to zoom and pan across the heatmap, alter its color scheme, generate production quality PDFs, and link out from rows, columns, and individual heatmap entries to related statistics, databases and other information.

  16. Investigation of radioactivity concentration in spent technetium generators

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; Eisa, M. H.; Sam, A. K.

    2014-04-01

    This study was carried out to survey and measure radioactivity concentration and estimate radiation dose level at the surface of spent technetium generator columns for the safe final disposal of radioactive waste. High resolution γ-spectrometry with the aid of handheld radiation survey meters has been used. The radioactivity measurements has shown that 238U, 40K and 137Cs were only measurable in one sample whereas 125Sb was found in 14 samples out of total of 20 samples with an activity concentration which ranged from 21 to 7404 with an average value of 1095 Bq/kg. The activity concentration of 125Sb is highly variable indicating that the spent 99mTc generator columns are of different origin. This investigation highlighted the importance of radiation monitoring of spent technetium generators in the country in order to protect workers, and the public from the dangers posed by radioactive waste.

  17. Optimization of Feasibility Stage for Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; Coales, Stephen J.

    2018-03-01

    The practice of HDX-MS remains somewhat difficult, not only for newcomers but also for veterans, despite its increasing popularity. While a typical HDX-MS project starts with a feasibility stage where the experimental conditions are optimized and the peptide map is generated prior to the HDX study stage, the literature usually reports only the HDX study stage. In this protocol, we describe a few considerations for the initial feasibility stage, more specifically, how to optimize quench conditions, how to tackle the carryover issue, and how to apply the pepsin specificity rule. Two sets of quench conditions are described depending on the presence of disulfide bonds to facilitate the quench condition optimization process. Four protocols are outlined to minimize carryover during the feasibility stage: (1) addition of a detergent to the quench buffer, (2) injection of a detergent or chaotrope to the protease column after each sample injection, (3) back-flushing of the trap column and the analytical column with a new plumbing configuration, and (4) use of PEEK (or PEEK coated) frits instead of stainless steel frits for the columns. The application of the pepsin specificity rule after peptide map generation and not before peptide map generation is suggested. The rule can be used not only to remove falsely identified peptides, but also to check the sample purity. A well-optimized HDX-MS feasibility stage makes subsequent HDX study stage smoother and the resulting HDX data more reliable. [Figure not available: see fulltext.

  18. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2016-06-17

    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A 15.3 GHz satellite-to-ground diversity propagation experiment using a terminal separation of 4 kilometers

    NASA Technical Reports Server (NTRS)

    Grimm, K. R.; Hodge, D. B.

    1971-01-01

    The performance of a path diversity satellite-to-ground millimeter wave link with two ground terminals separated by 4 km is discussed. At this separation distance the duration of fades below 6 dB was decreased by at least a factor of 10 when using path diversity and the cumulative crosscorrelation between the attenuations observed at the two terminals during rain events was approximately 0.45. Narrow beam radiometers directed along the propagation paths were also utilized to relate the path radiometric temperature to the path attenuation. An analysis of downlink propagation data for generating diversity link performance statistics is included.

  20. Nuclear Magnetic Resonance Relaxation and Imaging Studies on Water Flow in Soil Cores

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Stapf, Siegfried

    2010-05-01

    Magnetic resonance imaging (MRI) is applied to the study of flow processes in a model and a natural soils core. Since flow velocities in soils are mostly too slow to be monitored directly by MRI flow velocity imaging, Gd-DTPA was used as contrast agent for the first time for flow processes in soils. Apart from its chemical stability the main advantage is the anionic net charge in neutral aqueous solution. Here we can show that this property hinders the adsorption at soil mineral surfaces and therefore retardation. Gd-DTPA turns out to be a very convenient conservative tracer for the investigation of flow processes in model and natural soil cores. With respect to the flow processes in the coaxial model soil column and the natural soil column we found total different flow patterns: In the first case tracer plume moves quite homogeneously only in the inner highly conductive core. No penetration into the outer fine material takes place. In contrast, the natural soil core shows a flow pattern which is characterized by preferential paths avoiding dense regions and preferring loose structures. In the case of the simpler model column also the local flow velocities are calculated by the application of a peak tracking algorithm.

  1. Minimizing Carry-Over in an Online Pepsin Digestion System used for the H/D Exchange Mass Spectrometric Analysis of an IgG1 Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Majumdar, Ranajoy; Manikwar, Prakash; Hickey, John M.; Arora, Jayant; Middaugh, C. Russell; Volkin, David B.; Weis, David D.

    2012-12-01

    Chromatographic carry-over can severely distort measurements of amide H/D exchange in proteins analyzed by LC/MS. In this work, we explored the origin of carry-over in the online digestion of an IgG1 monoclonal antibody using an immobilized pepsin column under quenched H/D exchange conditions (pH 2.5, 0 °C). From a consensus list of 169 different peptides consistently detected during digestion of this large, ~150 kDa protein, approximately 30 % of the peptic peptides exhibited carry-over. The majority of carry-over originates from the online digestion. Carry-over can be substantially decreased by washing the online digestion flow-path and pepsin column with two wash cocktails: [acetonitrile (5 %)/ isopropanol (5 %)/ acetic acid (20 %) in water] and [2 M guanidine hydrochloride in 100 mM phosphate buffer pH 2.5]. Extended use of this two-step washing procedure does not adversely affect the specificity or activity of the immobilized pepsin column. The results suggest that although the mechanism of carry-over appears to be chemical in nature, and not hydrodynamic, carry-over cannot be attributed to a single factor such as mass, abundance, pI, or hydrophobicity of the peptides.

  2. Cyclic degassing of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilanko, Tehnuka; Oppenheimer, Clive; Burgisser, Alain; Kyle, Philip

    2015-06-01

    Field observations have previously identified rapid cyclic changes in the behaviour of the lava lake of Erebus volcano. In order to understand more fully the nature and origins of these cycles, we present here a wavelet-based frequency analysis of time series measurements of gas emissions from the lava lake, obtained by open-path Fourier transform infrared spectroscopy. This reveals (i) a cyclic change in total gas column amount, a likely proxy for gas flux, with a period of about 10 min, and (ii) a similarly phased cyclic change in proportions of volcanic gases, which can be explained in terms of chemical equilibria and pressure-dependent solubilities. Notably, the wavelet analysis shows a persistent periodicity in the CO2/CO ratio and strong periodicity in H2O and SO2 degassing. The `peaks' of the cycles, defined by maxima in H2O and SO2 column amounts, coincide with high CO2/CO ratios and proportionally smaller increases in column amounts of CO2, CO, and OCS. We interpret the cycles to arise from recharge of the lake by intermittent pulses of magma from shallow depths, which degas H2O at low pressure, combined with a background gas flux that is decoupled from this very shallow magma degassing.

  3. MEPSA: minimum energy pathway analysis for energy landscapes.

    PubMed

    Marcos-Alcalde, Iñigo; Setoain, Javier; Mendieta-Moreno, Jesús I; Mendieta, Jesús; Gómez-Puertas, Paulino

    2015-12-01

    From conformational studies to atomistic descriptions of enzymatic reactions, potential and free energy landscapes can be used to describe biomolecular systems in detail. However, extracting the relevant data of complex 3D energy surfaces can sometimes be laborious. In this article, we present MEPSA (Minimum Energy Path Surface Analysis), a cross-platform user friendly tool for the analysis of energy landscapes from a transition state theory perspective. Some of its most relevant features are: identification of all the barriers and minima of the landscape at once, description of maxima edge profiles, detection of the lowest energy path connecting two minima and generation of transition state theory diagrams along these paths. In addition to a built-in plotting system, MEPSA can save most of the generated data into easily parseable text files, allowing more versatile uses of MEPSA's output such as the generation of molecular dynamics restraints from a calculated path. MEPSA is freely available (under GPLv3 license) at: http://bioweb.cbm.uam.es/software/MEPSA/ CONTACT: pagomez@cbm.csic.es. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  5. A novel representation for planning 3-D collision-free paths

    NASA Technical Reports Server (NTRS)

    Bonner, Susan; Kelley, Robert B.

    1990-01-01

    A new scheme for the representation of objects, the successive spherical approximation (SSA), facilitates the rapid planning of collision-free paths in a dynamic three-dimensional environment. The hierarchical nature of the SSA allows collisions to be determined efficiently while still providing an exact representation of objects. The rapidity with which collisions can be detected, less than 1 sec per environment object per path, makes it possible to use a generate-and-test path-planning strategy driven by human conceptual knowledge to determine collision-free paths in a matter of seconds on a Sun 3/180 computer. A hierarchy of rules, based on the concept of a free space cell, is used to find heuristically satisfying collision-free paths in a structured environment.

  6. Time signal distribution in communication networks based on synchronous digital hierarchy

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1993-01-01

    A new method that uses round-trip paths to accurately measure transmission delay for time synchronization is proposed. The performance of the method in Synchronous Digital Hierarchy networks is discussed. The feature of this method is that it separately measures the initial round trip path delay and the variations in round-trip path delay. The delay generated in SDH equipment is determined by measuring the initial round-trip path delay. In an experiment with actual SDH equipment, the error of initial delay measurement was suppressed to 30ns.

  7. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less

  8. Highly Reconfigurable Beamformer Stimulus Generator

    NASA Astrophysics Data System (ADS)

    Vaviļina, E.; Gaigals, G.

    2018-02-01

    The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  9. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.

  10. Iridium 191-m generator

    DOEpatents

    Treves, S.; Cheng, C.C.

    1988-03-08

    Potassium osmate, of the formula K[sub 2]OsO[sub 2](OH)[sub 4], is used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients. 2 figs.

  11. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  12. Capillary liquid chromatographic analysis of fat-soluble vitamins and beta-carotene in combination with in-tube solid-phase microextraction.

    PubMed

    Xu, Hui; Jia, Li

    2009-01-01

    A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.

  13. Diverse policy implications for future ozone and surface UV in a changing climate

    NASA Astrophysics Data System (ADS)

    Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.

    2016-06-01

    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.

  14. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  15. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  16. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  17. Spin Path Integrals and Generations

    NASA Astrophysics Data System (ADS)

    Brannen, Carl

    2010-11-01

    The spin of a free electron is stable but its position is not. Recent quantum information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown that the Feynman position path integral can be mathematically defined as a product of incompatible states; that is, as a product of mutually unbiased bases (MUBs). Since the more common use of MUBs is in finite dimensional Hilbert spaces, this raises the question “what happens when spin path integrals are computed over products of MUBs?” Such an assumption makes spin no longer stable. We show that the usual spin-1/2 is obtained in the long-time limit in three orthogonal solutions that we associate with the three elementary particle generations. We give applications to the masses of the elementary leptons.

  18. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  19. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent accumulation of electric charge on them, they are spray-coated with an anti-static material. During use, the base plate and the sides and top of the chamber are grounded as a further measure to minimize the buildup of electric charge.

  20. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    NASA Technical Reports Server (NTRS)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  1. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  2. Sensitivity Studies for Space-based Measurement of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 microns. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the radiance signal or sensitivity to CO2 change near the surface is not significantly diminished even in the presence of aerosols and/or thin cirrus clouds in the atmosphere; (c) the modification of sunlight path length by scattering of aerosols and cirrus clouds could lead to large systematic errors in the retrieval; therefore, ancillary aerosol/cirrus cloud data are important to reduce retrieval errors; (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature; (e) the atmospheric path length, over which the CO2 absorption occurs, must be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  3. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography.

    PubMed

    Bieri, Stefan; Marriott, Philip J

    2006-12-01

    A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index information in comprehensive 2D-GC.

  4. Enhancement of soft X-ray lasing action with thin blade radiators

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.

    1988-01-01

    An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.

  5. High-throughput NGL electron-beam direct-write lithography system

    NASA Astrophysics Data System (ADS)

    Parker, N. William; Brodie, Alan D.; McCoy, John H.

    2000-07-01

    Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs

  6. High throughput screening of active pharmaceutical ingredients by UPLC.

    PubMed

    Al-Sayah, Mohammad A; Rizos, Panagiota; Antonucci, Vincent; Wu, Naijun

    2008-07-01

    Ultra performance LC (UPLC) was evaluated as an efficient screening approach to facilitate method development for drug candidates. Three stationary phases were screened: C-18, phenyl, and Shield RP 18 with column dimensions of 150 mm x 2.1 mm, 1.7 microm, which should theoretically generate 35,000 plates or 175% of the typical column plate count of a conventional 250 mm x 4.6 mm, 5 microm particle column. Thirteen different active pharmaceutical ingredients (APIs) were screened using this column set with a standardized mobile-phase gradient. The UPLC method selectivity results were compared to those obtained for these compounds via methods developed through laborious trial and error screening experiments using numerous conventional HPLC mobile and stationary phases. Peak capacity was compared for columns packed with 5 microm particles and columns packed with 1.7 microm particles. The impurities screened by UPLC were confirmed by LC/MS. The results demonstrate that simple, high efficiency UPLC gradients are a feasible and productive alternative to more conventional multiparametric chromatographic screening approaches for many compounds in the early stages of drug development.

  7. A dynamic pressure calibration standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1985-01-01

    A dynamic pressure calibration standard has been developed for calibrating flush diaphragm mounted pressure transducers. Pressures up to 20 kPa (3 psi) have been accurately generated over a frequency range of 50 to 1800 hz. The uncertainty of the standard is +/-5 pct to 5kPa (.75 psi) and +/-10 pct from 5 kPa (.75 psi) to 20 kPa (3 psi). The system consists of two conically shaped, aluminum columns, one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with a viscous fluid. A column is mounted on the armature of a vibration exciter which imparts a sinusoidally varying acceleration to the fluid column. Two pressure transducers mounted at the base of the column sense the sinusoidally varying pressure. This pressure is determined from measurements of the density of the fluid, the height of the fluid, and the acceleration of the column. A section of the taller column is filled with steel balls to control the damping of the fluid to extend its useful frequency range.

  8. Automated generation of weld path trajectories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sizemore, John M.; Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy

    2003-06-01

    AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most shipmore » structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.« less

  9. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.

  10. Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.

    2018-06-01

    We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.

  11. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, J. M.; Schmid, Beat; Russell, P. B.

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests ofmore » AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.« less

  12. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. System and Method for Measuring the Transfer Function of a Guided Wave Device

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  14. The mean free path of hydrogen ionizing photons during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop

    2018-05-01

    We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.

  15. Theoretical study of the accuracy of the elution by characteristic points method for bi-langmuir isotherms.

    PubMed

    Ravald, L; Fornstedt, T

    2001-01-26

    The bi-Langmuir equation has recently been proven essential to describe chiral chromatographic surfaces and we therefore investigated the accuracy of the elution by characteristic points method (ECP) for estimation of bi-Langmuir isotherm parameters. The ECP calculations was done on elution profiles generated by the equilibrium-dispersive model of chromatography for five different sets of bi-Langmuir parameters. The ECP method generates two different errors; (i) the error of the ECP calculated isotherm and (ii) the model error of the fitting to the ECP isotherm. Both errors decreased with increasing column efficiency. Moreover, the model error was strongly affected by the weight of the bi-Langmuir function fitted. For some bi-Langmuir compositions the error of the ECP calculated isotherm is too large even at high column efficiencies. Guidelines will be given on surface types to be avoided and on column efficiencies and loading factors required for adequate parameter estimations with ECP.

  16. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.

    PubMed

    Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki

    2005-06-16

    It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

  17. Trajectory Generation and Path Planning for Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto

    2007-01-01

    This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.

  18. Visual environment recognition for robot path planning using template matched filters

    NASA Astrophysics Data System (ADS)

    Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto

    2017-08-01

    A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.

  19. Harmonic Fourier beads method for studying rare events on rugged energy surfaces.

    PubMed

    Khavrutskii, Ilja V; Arora, Karunesh; Brooks, Charles L

    2006-11-07

    We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.

  20. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.

    PubMed

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip.

  1. Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain

    PubMed Central

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582

  2. Feasible Path Generation Using Bezier Curves for Car-Like Vehicle

    NASA Astrophysics Data System (ADS)

    Latip, Nor Badariyah Abdul; Omar, Rosli

    2017-08-01

    When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.

  3. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  4. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental systematic errors correlates the additional bias to water vapor. IPDA ranging resulted in a measurement uncertainty of <3  m.

  5. The presence of sodium nitrate in generator eluate decreases the radiochemical purity of 99mTc-sestamibi.

    PubMed

    Métayé, Thierry; Rosenberg, Thierry; Guilhot, Joëlle; Bouin-Pineau, Marie-Hélène; Perdrisot, Rémy

    2012-09-01

    A high radiochemical purity (RCP) is recommended for radiopharmaceutical compounds used in the clinical practice of nuclear medicine. However, some preparations of (99m)Tc-sestamibi contain excess impurities (>6%). To understand the origin of these impurities, we investigated the effect of sodium nitrate on the RCP of sestamibi preparations by testing eluates from 3 commercially available (99m)Tc generators. The sestamibi kits (Stamicis) were reconstituted with (99m)Tc eluate from nitrate-containing wet-column (NCWC), nitrate-free wet-column (NFWC), and nitrate-free dry-column (NFDC) generators. Sodium nitrate was 0.05 mg/mL in eluates from the NCWC generators. The RCP was determined using aluminum oxide sheets as the stationary phase and absolute ethanol as the mobile phase. Succimer, tetrofosmin, oxidronate, exametazine, albumin nanocolloid, and soluble albumin were also tested for their RCP values with eluates from the 3 different (99m)Tc generators. The RCP assessment of (99m)Tc-sestamibi was performed on 127 Stamicis preparations. Significantly lower RCP values were found for Stamicis kits prepared with the NCWC generator than for Stamicis prepared with the NFWC (P < 0.0001) and NFDC (P < 0.0001) generators. The number of Stamicis preparations with an RCP under 94% was greater with the NCWC generator (32 of 53 kits) than with the NFDC (2 of 51 kits) or NFWC (0 of 23 kits) generator. Furthermore, the addition of a 0.05 mg/mL concentration of nitrate in NFWC generator eluates significantly decreased the RCP of the Stamicis preparation. In the absence of nitrate in (99m)Tc eluate, no difference was observed between the RCP values of Stamicis kits prepared with the NFWC and NFDC generators. The (99m)Tc impurities generated by nitrates did not modify the quality of myocardial imaging (normal heart-to-lung ratio, 2.2), probably because these impurities are not in the heart field of view. No other tested (99m)Tc-radiopharmaceutical interfered with nitrates. We recommend using nitrate-free generator eluates in (99m)Tc-sestamibi preparations to improve the product quality and prevent unnecessary exposure of the patient to radiation.

  6. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  7. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3-D model, the spectrum of displacement and unsynchronized cross-correlation between displacements measured from different locations can be calculated, and this can be compared to more detailed seismic measurements on well monitored volcanoes.

  8. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due to biomass and/or gas production can be significant.

  9. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in the derivation of air mass factors used to convert the measurements into vertical columns. Due to the high-resolution measurements, no data product of surface reflectance with sufficient spatial resolution is available. Thus the surface reflectance is estimated from AirMAP's own spectra. In this work the results of the research flights will be presented. The study focuses on the validation of AirMAP's measurements by comparison to other ground-based platforms like (mobile) MAX-DOAS measurements. Conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  10. Apodization of beams in an optical interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)

    2006-01-01

    An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.

  11. Cooperative path planning for multi-USV based on improved artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Qiwei

    2018-03-01

    Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.

  12. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  13. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  14. [Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].

    PubMed

    Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi

    2015-10-01

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

  15. Nitrogen dioxide sensing using a novel gas correlation detector

    NASA Astrophysics Data System (ADS)

    Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew

    2000-05-01

    A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.

  16. Being All that We Can Be

    ERIC Educational Resources Information Center

    Holmes, Harold R.

    2005-01-01

    The author's career path can best be described as "unconventional" or "non-traditional" for a senior student affairs administrator. Being a first-generation college graduate, the author's focus was on what he characterizes as a "clear cut career path" for a Myers Briggs Extraverted Sensing Thinking Judging (ESTJ):…

  17. Biological Systems and Career Analysis.

    ERIC Educational Resources Information Center

    Thiemann, Francis C.

    Neither a review of the literature nor three data displays (showing career paths, general influence patterns, and predecessor and successor influence patterns) yield a generative or explanatory theory by which to understand data collected on the professional career paths of Alberta (Canada) educational administrators. The data came from a survey…

  18. Effect of keyswitch design of desktop and notebook keyboards related to key stiffness and typing force.

    PubMed

    Bufton, Marcia J; Marklin, Richard W; Nagurka, Mark L; Simoneau, Guy G

    2006-08-15

    This study aimed to compare and analyse rubber-dome desktop, spring-column desktop and notebook keyboards in terms of key stiffness and fingertip typing force. The spring-column keyboard resulted in the highest mean peak contact force (0.86N), followed by the rubber dome desktop (0.68N) and the notebook (0.59N). All these differences were statistically significant. Likewise, the spring-column keyboard registered the highest fingertip typing force and the notebook keyboard the lowest. A comparison of forces showed the notebook (rubber dome) keyboard had the highest fingertip-to-peak contact force ratio (overstrike force), and the spring-column generated the least excess force (as a ratio of peak contact force). The results of this study could aid in optimizing computer key design that could possibly reduce subject discomfort and fatigue.

  19. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    NASA Astrophysics Data System (ADS)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  20. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.

    PubMed

    Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J

    2018-03-15

    Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.

  1. A new 68Ge/68Ga generator system using an organic polymer containing N-methylglucamine groups as adsorbent for 68Ge.

    PubMed

    Nakayama, M; Haratake, M; Ono, M; Koiso, T; Harada, K; Nakayama, H; Yahara, S; Ohmomo, Y; Arano, Y

    2003-01-01

    A macroporous styrene-divinylbenzene copolymer containing N-methylglucamine groups was selected for a new 68Ge/68Ga generator system. This resin packed into a column effectively adsorbed the parent nuclide 68Ge. The daughter 68Ga was eluted from the resin with a solution of a low-affinity gallium chelating ligand such as citric or phosphoric acid. The 68Ge leakage was less than 0.0004% of the 68Ge adsorbed on the resin. By simple mixing of transferrin and desferoxamine conjugated HSA and IgG with the eluate from the column, 68Ga-labeling was completed in high yield. Copyright 2002 Elsevier Science Ltd.

  2. A hybrid Dantzig-Wolfe, Benders decomposition and column generation procedure for multiple diet production planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Udomsungworagul, A.; Charnsethikul, P.

    2018-03-01

    This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.

  3. Molecular Analysis of Bacterial Community Dynamics During Bioaugmentation Studies in a Soil Column and at a Field Test Site

    DTIC Science & Technology

    2004-06-03

    82 4.14 A GelComparII-generated UPGMA clustering dendrogram and corresponding normalized restriction...A GelComparII-generated UPGMA clustering dendrogram and corresponding normalized restriction profiles from the community...A GelComparII-generated UPGMA clustering dendrogram and corresponding normalized restriction profiles from the community

  4. Generation of field-aligned current (FAC) and convection through the formation of pressure regimes: Correction for the concept of Dungey's convection

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, M.; Den, M.; Fujita, S.; Ebihara, Y.; Kikuchi, T.; Hashimoto, K. K.; Kataoka, R.

    2016-09-01

    In this paper, we try to elucidate the generation mechanism of the field-aligned current (FAC) and coexisting convection. From the comparison between the theoretical prediction and the state of numerical solution from the high-resolution global simulation, we obtain the following conclusions about the distribution of dynamo, the magnetic field structure along the flow path that diverges Poynting flux, and energy conversion promoting the generation of electromagnetic energy. The dynamo for the region 1 FAC, which is in the high-latitude-side cusp-mantle region, has a structure in which magnetic field is compressed along the convection path by the slow mode motion. The dynamo for the region 2 FAC is in the ring current region at the inner edge of the plasma sheet, and has a structure in which magnetic field is curved outward along the convection path. Under these structures, electromagnetic energy is generated from the work done by pressure gradient force, in both dynamos for the region 1 and region 2 FACs. In these generation processes of the FACs, the excitation of convection and the formation of pressure regimes occur as interdependent processes. This structure leads to a modification in the way of understanding the Dungey's convection. Generation of the FAC through the formation of pressure regimes is essential even for the case of substorm onset.

  5. Performance analysis of CCSDS path service

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1989-01-01

    A communications service, called Path Service, is currently being developed by the Consultative Committee for Space Data Systems (CCSDS) to provide a mechanism for the efficient transmission of telemetry data from space to ground for complex space missions of the future. This is an important service, due to the large volumes of telemetry data that will be generated during these missions. A preliminary analysis of performance of Path Service is presented with respect to protocol-processing requirements and channel utilization.

  6. Generational Change in Australian School Leadership: Collision Path or Smooth Baton Change?

    ERIC Educational Resources Information Center

    Lambert, Phil; Marks, Warren; Elliott, Virginia; Johnston-Anderson, Natalie

    2016-01-01

    Purpose: The purpose of this paper is to report on a study examining the existence and perceived influence of "generational collide" for teachers and leaders across three generations--Baby Boomers, Generation X (Gen X) and Generation Y (Gen Y). The study sought to further determine if a teacher's generation, gender, school level or…

  7. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  8. A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca

    2013-08-10

    We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less

  9. Search Path Mapping: A Versatile Approach for Visualizing Problem-Solving Behavior.

    ERIC Educational Resources Information Center

    Stevens, Ronald H.

    1991-01-01

    Computer-based problem-solving examinations in immunology generate graphic representations of students' search paths, allowing evaluation of how organized and focused their knowledge is, how well their organization relates to critical concepts in immunology, where major misconceptions exist, and whether proper knowledge links exist between content…

  10. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François

    2012-09-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic response at the free surface, depending on the energy dissipation rate. Free surface time histories, stress-strain hysteresis loops and in-depth profiles of octahedral stress and strain are estimated for each soil column. The combination of three separate 1D-1C non-linear analyses is compared to the proposed 1D-3C approach, evidencing the influence of the 3C-polarization and the 3-D loading path on strong seismic motions.

  11. Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.

    PubMed

    Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E

    2017-03-03

    We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.

  12. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-09-01

    Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle "Carbo-Iron Colloids" (CIC) with a mean size of 0.63 μm in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110 × 40 × 5 cm. Results show a breakthrough maximum of 82 % of the input concentration in the column experiment and 58 % in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.

  13. Pulled Motzkin paths

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  14. Nitrogen removal from landfill leachate using single or combined processes.

    PubMed

    He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J

    2005-04-01

    The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.

  15. 76 FR 2109 - Next Generation Risk Assessment Public Dialogue Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9246-7] Next Generation Risk Assessment Public Dialogue Conference Correction In notice document 2010-32977 appearing on page 82387 in the issue of Thursday, December 30, 2010, make the following correction: In the second column, below the signature date, the...

  16. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  17. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  18. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  19. What are the limits of energy focusing in sonoluminescence?

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Camara, C.; Kappus, B.; Su, C. K.; Kirilov, E.

    2003-04-01

    Sonoluminescence [SL] is amazing for the extraordinary degree by which ultrasonic energy can be focused by a cavitating bubble. Local energy dissipation exceeds Kirkhoff's law by 1E15 and the acoustic energy density concentrates by 12 orders of magnitude to create picosecond flashes of broadband ultraviolet light. At the minimum bubble radius, the acceleration exceeds 1E11 g and a megabar level shock wave is emitted into the surrounding fluid. For single bubbles driven at 30 KHz, SL is nature's smallest blackbody. This implies that the bubble's interior is such a dense plasma that the photon-matter mean free path is shorter than the wavelength of light, and suggests that SL originates in an unusual state of matter. Excitation of a vertical column of fluid [~10 Hz] so as to create a water hammer leads to the upscaling of SL and generation of flashes of light with 3E8 photons and peak powers approaching 1 W. At 1 MHz, the spectrum resembles bremsstrahlung from a transparent plasma with a temperature ~1 MK. At 10 MHz the collapsed size of the SL bubble approaches 10 nm, which raises the possibility that the SL parameter space may extend to the domain of quantum mechanics. [Research supported by DARPA and DOE.

  20. Waste Water for Power Generation via Energy Efficient Selective Silica Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Brady, Patrick Vane; Sasan, Koroush

    Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)•4H 2O)), is combined in series with high surface area active alumina (AA, (Al 2O 3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than usingmore » HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.« less

  1. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles.

    PubMed

    Gritti, Fabrice; Bell, David S; Guiochon, Georges

    2014-08-15

    The mass transfer mechanism in four prototype columns (2.1 and 3.0×50mm, 2.1 and 3.0×100mm) packed with 1.9μm fully porous Titan-C18 particles was investigated by using two previously reported home-made protocols. The first one was used to measure the eddy dispersion HETP of these new columns, the second one to estimate their intrinsic (corrected for HPLC system contribution) HETPs. Titan particles are fully porous particles with a narrow particle size distribution (RSD of 9.2%). The mean Sauter diameter (dSauter=2.04μm) was determined from Coulter counter measurements on the raw silica material (before C18 derivatization) and in the absence of a dispersant agent (Triton X-100) in a 2% NaCl electrolyte solution. The results show that these RPLC Titan columns have intrinsic minimum reduced HETPs ranging from 1.7 to 1.9 and generate up to 290,000 plates per meter. The 3.0mm i.d. columns are more efficient than the 2.1mm i.d. ones and short columns are preferred to minimize efficiency losses due to frictional heating at high speeds. This work also revealed that (1) the lowest h values of the Titan columns are observed at low reduced velocities (νopt=5); (2) this is due to the unusually small diffusivity of analytes across the porous Titan-C18 particles; and (3) the Titan columns are not packed more uniformly than conventional columns packed with fully porous particles. Earlier and recent findings showing that the PSD has no direct physical impact on eddy dispersion and column efficiency are confirmed by these results. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  3. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  4. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  5. Spine segmentation from C-arm CT data sets: application to region-of-interest volumes for spinal interventions

    NASA Astrophysics Data System (ADS)

    Buerger, C.; Lorenz, C.; Babic, D.; Hoppenbrouwers, J.; Homan, R.; Nachabe, R.; Racadio, J. M.; Grass, M.

    2017-03-01

    Spinal fusion is a common procedure to stabilize the spinal column by fixating parts of the spine. In such procedures, metal screws are inserted through the patients back into a vertebra, and the screws of adjacent vertebrae are connected by metal rods to generate a fixed bridge. In these procedures, 3D image guidance for intervention planning and outcome control is required. Here, for anatomical guidance, an automated approach for vertebra segmentation from C-arm CT images of the spine is introduced and evaluated. As a prerequisite, 3D C-arm CT images are acquired covering the vertebrae of interest. An automatic model-based segmentation approach is applied to delineate the outline of the vertebrae of interest. The segmentation approach is based on 24 partial models of the cervical, thoracic and lumbar vertebrae which aggregate information about (i) the basic shape itself, (ii) trained features for image based adaptation, and (iii) potential shape variations. Since the volume data sets generated by the C-arm system are limited to a certain region of the spine the target vertebra and hence initial model position is assigned interactively. The approach was trained and tested on 21 human cadaver scans. A 3-fold cross validation to ground truth annotations yields overall mean segmentation errors of 0.5 mm for T1 to 1.1 mm for C6. The results are promising and show potential to support the clinician in pedicle screw path and rod planning to allow accurate and reproducible insertions.

  6. European light dosimeter network (ELDONET): 1998 data

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Lebert, M.; Colombetti, G.; Figueroa, F.

    2001-03-01

    The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280-315 nm), UV-A (315-400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4-5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk.

  7. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  8. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  9. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  10. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  11. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  12. Validation of GOSAT XCO2 and XCH4 retrieved by PPDF-S method and evaluation of sensitivity of aerosols to gas concentrations

    NASA Astrophysics Data System (ADS)

    Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Rokotyan, N.; Zakharov, V.; Gribanov, K.

    2017-12-01

    Photon path length probability density function-Simultaneous (PPDF-S) method is one of effective algorithms for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing SATellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR) [Oshchepkov et al., 2013]. In this study, we validated XCO2 and XCH4 retrieved by the PPDF-S method through comparison with the Total Carbon Column Observing Network (TCCON) data [Wunch et al., 2011] from 26 sites including additional site of the Ural Atmospheric Station at Kourovka [57.038°N and 59.545°E], Russia. Validation results using TCCON data show that bias and its standard deviation of PPDF-S data are respectively 0.48 and 2.10 ppm for XCO2, and -0.73 and 15.77 ppb for XCH4. The results for XCO2 are almost identical with those of Iwasaki et al. [2017] for which the validation data were limited at selected 11 sites. However, the bias of XCH4 shows opposite sign against that of Iwasaki et al. [2017]. Furthermore, the data at Kourouvka showed different features particularly for XCH4. In order to investigate the causes for the differences, we have carried out simulation studies mainly focusing on the effects of aerosols which modify the light path length of solar radiation [O'Brien and Rayner, 2002; Aben et al., 2007; Oshchepkov et al., 2008]. Based on the simulation studies using multiple radiation transfer code based on Discrete Ordinate Method (DOM), Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [Ota et al., 2010], sensitivity of aerosols to gas concentrations was examined.

  13. Properties and pathways of Mediterranean water eddies in the Atlantic

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I.; Neves, F.; Calheiros, T.; Carton, X.

    2015-09-01

    Data from ship vertical casts (NODC data-set), ARGO profiling floats (Coriolis data-set) and RAFOS-type neutral density floats (WOCE data-set) are used to study characteristics of meddies in the Northeast Atlantic. In total 241 Mediterranean water eddies (meddies) and 236 parts of float trajectories within meddies are selected for detailed analysis. The results suggest that the meddy generation rate at the southern and southwestern Iberian Peninsula (Portimao Canyon, cap St. Vincent, Estremadura Promontory, Gorringe Bank) is 3 times that at the northwestern Iberian Peninsula (Porto-Aveiro Canyons, Cape Finisterre and Galicia Bank). Meddies generated south of Estremadura Promontory (the southern meddies), as compared to those generated north of it (the northern meddies), have smaller radii, smaller vertical extension, higher aspect ratio, higher Rossby number and higher stability (stronger potential vorticity anomaly). These latter properties result from the southern meddies higher relative vorticity and stronger buoyancy frequency anomaly. Away from the generation regions, meddy drift concentrates along four main paths: three quasi-zonal paths (Northern, Central, Southern) and a path following the African coast (Coastal). The quasi-zonal paths are aligned to the isolines of the ambient potential vorticity field. Several cross-path exchanges, identified in this work, are aligned to topographic rises. Northward translation of the northern meddies within the North Atlantic Current to the subpolar gyre is detected. Within the first 600 km from the coast, meddy merger is proved to be a common event. This explains the observed difference in radii between the newly generated meddies and those away from the Iberian margin. The decay of the southern meddies proceeds mainly via the loss of their skirts and does not affect meddy cores until the latest stages. The decay of the northern meddies goes in parallel with the decay of their cores. In average meddy decay is achieved within 1-2 years, although may take over 3 years. Collisions with the Mid-Atlantic Ridge and seamounts sensibly decrease meddy lifetimes. Meddy decay also speeds up when meddies meet the Azores Current or the North Atlantic Current. A rapid drop in the number of meddies south of the Azores Current proves that it represents a dynamic barrier for weak meddies.

  14. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed laser near 1651 nm from a wavelength tunable diode laser. Incident photons from the pump laser pulse are converted into two photons, with one at the wavelength of the injection seeder. The wavelength of the OPA output is tuned via the wavelength of diode laser. Our laser is tunable, operates near 1651 nm and generates approximately 4 uJ/pulse at 6 KHz. We vary the emission wavelengths within this band by tuning the diode laser's wavelength. We have used this OPA transmitter to make measurements of CH4 at various pressures in a gas cell and over open outdoor horizontal paths. We have measured the lineshape of methane in a 6 cm long cell at various energy levels with this transmitter, with excellent agreement with the lineshape calculated by HITRAN. We have also measured the absorption lineshape of atmospheric methane in an open 3 km outdoor path. The agreement between the measurements and HITRAN, for 1746 ppb and 760 Torr was quite good. We have also made pulsed two wavelength lidar measurements of methane line absorption in the column to a tower at 1.5 km range. These used on- and off-line wavelengths of 1650.957 nm, and 1651.072 nm, and a 20 cm diameter receiver telescope with an infrared PMT detector. The absorption of the on-line photons was 30%. The methane column absorption was estimated via HITRAN, and was in good agreement with the expected methane absorption for a concentration of 1750 ppm. Finally we have calculated the measurement performance of an airborne methane lidar using this transmitter, as well as the energy and telescope scaling needed for a lidar for space. These results, and more details of our experiments will be described in the presentation.

  15. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    NASA Astrophysics Data System (ADS)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-05-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65, 2.2, 3.4 and 7.8 μm. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed laser near 1651 nm from a wavelength tunable diode laser. Incident photons from the pump laser pulse are converted into two photons, with one at the wavelength of the injection seeder. The wavelength of the OPA output is tuned via the wavelength of diode laser. Our laser is tunable, operates near 1651 nm and generates ~4 uJ/pulse at 6 KHz. We vary the emission wavelengths within this band by tuning the diode laser's wavelength. We have used this OPA transmitter to make measurements of CH4 at various pressures in a gas cell and over open outdoor horizontal paths. We have measured the lineshape of methane in a 6 cm long cell at various energy levels with this transmitter, with excellent agreement with the lineshape calculated by HITRAN. We have also measured the absorption lineshape of atmospheric methane in an open 3 km outdoor path. The agreement between the measurements and HITRAN, for 1746 ppb and 760 Torr was quite good. We have also made pulsed two wavelength lidar measurements of methane line absorption in the column to a tower at 1.5 km range. These used on- and off-line wavelengths of 1650.957 nm, and 1651.072 nm, and a 20 cm diameter receiver telescope with an infrared PMT detector. The absorption of the on-line photons was 30%. The methane column absorption was estimated via HITRAN, and was in good agreement with the expected methane absorption for a concentration of 1750 ppm. Finally we have calculated the measurement performance of an airborne methane lidar using this transmitter, as well as the energy and telescope scaling needed for a lidar for space. These results, and more details of our experiments will be described in the presentation.

  16. Effects of ethanol-based fuel contamination: microbial community changes, production of regulated compounds, and methane generation.

    PubMed

    Nelson, Denice K; Lapara, Timothy M; Novak, Paige J

    2010-06-15

    Ethanol-based fuels are becoming more heavily used, increasing the likelihood of ethanol-based fuel spills during transportation and storage. Although ethanol is well-known to be readily biodegradable, very little is known about the effects that such a spill might have on an indigenous microbial community. Of particular concern is that ethanol contamination could stimulate the growth of organisms that can generate regulated compounds and/or produce explosive quantities of methane gas. A column-based study was performed to elucidate the potential impacts of ethanol-based fuel (E85) on the indigenous microbial community during a simulated fuel spill. A continuous dilute supply of E85 resulted in profound shifts in both the bacterial and archaeal communities. The shift was accompanied by the production of high concentrations of volatile fatty acids and butanol, a compound that is regulated in groundwater by some states. Results also indicated that a continuous feed of dilute E85 generated explosive levels of methane within one month of column operation. Quantitative PCR data showed a statistically significant increase in methanogenic populations when compared to a control column. The elevated population numbers correlated to areas of the column receiving a sustained carbon load. Toxicity data indicated that microbial growth was completely inhibited (as evidenced by absence of ethanol breakdown products) at ethanol levels above 6% (v/v). These data suggest that ethanol from ethanol-based fuel can be readily degraded, but can also produce metabolic products that are regulated as well as explosive levels of methane. The core of an E85 spill may serve as a long-term source of contamination as it cannot be degraded until significant dilution has occurred.

  17. Global Free Tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique Applied to Satellite Observations from the Aura Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx. Stratospheric column NO2 obtained from cloud slicing agrees well with other independently-generated estimates, providing further confidence in the free-tropospheric results.

  18. A new method for photon transport in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ogawa, K.

    1999-12-01

    Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.

  19. Exploring Issues of Quality of Service in a Next Generation Internet Testbed: A Case Study Using PathMaster

    PubMed Central

    Shifman, Mark A.; Sayward, Frederick G.; Mattie, Mark E.; Miller, Perry L.

    2002-01-01

    This case study describes a project that explores issues of quality of service (QoS) relevant to the next-generation Internet (NGI), using the PathMaster application in a testbed environment. PathMaster is a prototype computer system that analyzes digitized cell images from cytology specimens and compares those images against an image database, returning a ranked set of “similar” cell images from the database. To perform NGI testbed evaluations, we used a cluster of nine parallel computation workstations configured as three subclusters using Cisco routers. This architecture provides a local “simulated Internet” in which we explored the following QoS strategies: (1) first-in-first-out queuing, (2) priority queuing, (3) weighted fair queuing, (4) weighted random early detection, and (5) traffic shaping. The study describes the results of using these strategies with a distributed version of the PathMaster system in the presence of different amounts of competing network traffic and discusses certain of the issues that arise. The goal of the study is to help introduce NGI QoS issues to the Medical Informatics community and to use the PathMaster NGI testbed to illustrate concretely certain of the QoS issues that arise. PMID:12223501

  20. Terahop and Lawrence Livermore National LaboratoryStructural Fire RF Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, P; Pratt, G

    The Georgia Public Safety Training Center's Live Fire Training Facility in Forsyth, GA is a three story structure constructed of rebar-reinforced concrete wall and floors. All the door and window coverings on the building are constructed of thick, plate metal to withstand the high temperatures generated inside the building during training exercises. All of the building's walls and floors are 1-foot thick, and regular concrete columns run up along the inside of the wall increasing the thickness to 20-inches in those locations. A center concrete staircase divides the structure in half. For typical exercises, fires are started in the backmore » right corner of the building on the first floor and in the front right corner on the second floor as shown in Figure 2. Due to the high heat generated during these exercises, measured at 300 F on the floor and 700 F near the ceilings, there were limited locations at which equipment could be placed that did not incorporate heat shielding, such as the Lawrence Livermore National Laboratory's UWB system. However, upon inspection of the building, two preferable locations were identified in which equipment could be placed that would be protected from the temperature extremes generated by the fires. These locations are identified in Figure 2 as the tested TX locations. These were preferred locations because, while they protected the hardware from temperature extremes, they also force the RF transmission path through the building to cross very near the fire locations and anticipated plasma generation regions. Both of the locations listed in Figure 2 were tested by the UWB equipment and found to be suitable deployment locations to establish a solid RF link for data collection. The transmission location on the first floor was ultimately chosen for use during the actual exercises because it was accessible to the data collection team during the exercises. This allowed them to remove the hardware once the testing was complete without having to wait for the entire day of exercises to complete. Unfortunately, RF transmission directly through the central location of the fire on the first floor was not possible, so the transmission path had to be shifted approximately 6-feet off the side of the fire's center. The corner where the fire was located on the first floor was re-enforced with a mixture of concrete and metal fibers for heat resistance. This material was highly reflective, permitting very little RF energy to pass through it. This phenomenon was also observed and verified by Terahop's testing, discussed in the next section. An image of these re-enforced walls and a close up of the actual wall material containing the metal fibers can bee seen in Figure 3.« less

  1. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    PubMed

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  2. The Direction and Autonomy of Interdisciplinary Study and Research Paths in Teacher Education

    ERIC Educational Resources Information Center

    Rasmussen, Klaus

    2016-01-01

    This paper presents a case study of didactic infrastructures to direct Study and Research Paths (SRP) in teacher education within the context of interdisciplinary inquiry. The disciplines of school mathematics and school biology, and their didactics, are made to interconnect through the investigation of a generating question concerning the illness…

  3. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2006-05-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.

  4. Evolved atmospheric entry corridor with safety factor

    NASA Astrophysics Data System (ADS)

    Liang, Zixuan; Ren, Zhang; Li, Qingdong

    2018-02-01

    Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.

  5. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadbandmore » excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.« less

  6. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  7. The navigation system of the JPL robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  8. Elution of Re-188 from W-188/Re-188 generators with salts of weak acids permits efficient concentration to low volumes using a new tandem cation/anion exchange system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guhlke, S.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    Re-188, available from a W-188/Re-188 generator, is an important therapeutic radioisotope for bone pain palliation, cancer therapy and intravascular brachytherapy, etc. Because of the relatively low specific activity of reactor-produced W-188 (ORNL HFIR, 296-370 MBq mCi/mg W-186 for 2 cycles), methods of concentrating the Re-188 bolus (10-12 mL) from clinical scale (18.5-37 BGq W-188) generators (5-6 gm alumina) are thus very important. We demonstrate for the first time a new strategy of generator elution with salts of weak acids and specific perrhenate anion {open_quotes}trapping{close_quotes} with QMA anion columns. Re-188 perrhenate is efficiently eluted (65-75%) from the alumina-based generator with 0.15-0.3more » M ammonium acetate. An acetic acid solution of Re-188 perrhenic acid is obtained by subsequent on-line passage of the generator eluant through a DOWEX AG 50Wx8 (200-400 mesh, H{sup +} form) column. Since acetic acid is not ionized (< 0.001%) at this pH (< pK{sub a} = 4.76) the perrhenate anion is then specifically trapped on a QMA {open_quotes}Light{close_quotes} anion extraction column. QMA elution with 0.9% NaCl, provides Re-188 perrhenate solution in <1 mL. Concentration of 10-20 mL of Re-188 solution (> 15 BGq) in <1 mL has been demonstrated using this simple new approach, which is also effective for concentration of Tc-99m from low specific activity Mo-99 (n,y) generators. The cation/anion tandem system is inexpensive and disposable and use can be easily automated. The availability of this very simple, efficient system is important for broad use of rhenium-188.« less

  9. Beamlike photon pairs entangled by a 2x2 fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Hsin-Pin; Department of Electrophysics, National Chiao-Tung University, Hsinchu, 300, Taiwan; Yabushita, Atsushi

    Polarization-entangled photon pairs have been widely used as a light source of quantum communication. The polarization-entangled photon pairs are generally obtained at the crossing points of the light cones that are generated from a type-II nonlinear crystal. However, it is hard to pick up the photon pairs coming out from the crossing points because of their invisible wavelength and low intensity. In our previous work, we succeeded in generating polarization-entangled photon pairs by overlapping two light paths for the photon-pair generation. The photon pairs could be entangled in all of the generated photon pairs without clipping the crossing points, evenmore » with some difficulty in its alignment to overlap the two light paths. In this paper, we have developed an optical system which generates polarization-entangled photon pairs using a beamlike photon pair, without the difficulty in alignment. The measured results show that the photon pairs generated in the system are entangled in their polarizations.« less

  10. Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns.

    PubMed

    Rittfeldt, L

    2001-06-01

    The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.

  11. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  12. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  13. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow model (Koyaguchi, 2005) allows us to intuitively and quantitatively understand how the eruption column dynamics approaches to the CCC as the crater radius increases during the waxing stage of an eruption, or as the magma chamber pressure decreases during the waning stage.

  14. A fault-tolerant control architecture for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Drozeski, Graham R.

    Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.

  15. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  16. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.

    PubMed

    Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2014-06-20

    In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. HPLC determination of cefprozil in tablets using monolithic and C18 silica columns.

    PubMed

    Can, Nafiz O

    2011-08-01

    Cefprozil (CPZ) is a second-generation semi-synthetic cephalosporin antibiotic that commonly exists as the mixture of Z and E diastereoisomers, at the ratio of approximately 9:1. A novel reversed-phase HPLC method for the determination of CPZ in tablets was described. The separation of CPZ diastereoisomers and caffeine (internal standard) was carried out by applying the same analytical and instrumental conditions on two stationary phases, which have different surface chemistries. The columns used in the study were monolithic silica Merck Chromolith Performance RP-18e and conventional C18 silica Phenomenex Synergi Hydro RP columns. In total, 10 μL aliquots of samples were injected into the system and eluted using water-acetonitrile (90:10, v/v) solution, which was pumped through the column at a flow rate of 1.0 mL/min. The analyte peaks were detected at 200 nm using diode array detector with high specificity. CPZ diastereoisomers and caffeine were measured within 13 min using the C18 column, whereas <5 min was required for the monolithic one. Validation studies were performed according to official recommendations. Value of a monolithic column for the assay of diastereoisomers in pharmaceutical tablets was evaluated for the first time and found as a powerful alternative to highly efficient C18 columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    PubMed

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  20. STS-41 mission charts, computer-generated and artist concept drawings, photos

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).

  1. Path planning on cellular nonlinear network using active wave computing technique

    NASA Astrophysics Data System (ADS)

    Yeniçeri, Ramazan; Yalçın, Müstak E.

    2009-05-01

    This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riza, Nabeel Agha; Perez, Frank

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less

  3. Path planning algorithms for assembly sequence planning. [in robot kinematics

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Sanderson, Arthur C.

    1991-01-01

    Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.

  4. Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs

    PubMed Central

    Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.

    2014-01-01

    A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692

  5. Method and apparatus for probing relative volume fractions

    DOEpatents

    Jandrasits, Walter G.; Kikta, Thomas J.

    1998-01-01

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  6. Method and apparatus for probing relative volume fractions

    DOEpatents

    Jandrasits, W.G.; Kikta, T.J.

    1998-03-17

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.

  7. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  8. On-line preconcentration and speciation of arsenic by flow injection hydride generation atomic absorption spectrophotometry.

    PubMed

    Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R

    2005-12-15

    A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.

  9. The symmetric MSD encoder for one-step adder of ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  10. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-05

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A real-time path rating calculation tool powered by HPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    If transmission path ratings are determined in real time and optimized control methods can be implemented, congestion problems can be more effectively managed using the existing transmission assets, reducing congestion costs, avoiding capital expenditures for new physical assets, increasing revenues from the existing system, and maintaining reliability. In just one illustrative case, a BPA study has shown that a 1000-MW rating increase for a transmission path generates $15M in annual revenue, even if only 25% of the increased margin can be tapped for just 25% of the year.

  12. Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies

    DTIC Science & Technology

    2012-10-30

    control algorithm for UAVs in 3D space. Section IV derives a strategy for time-critical cooperative path following of multiple UAVs that relies on the...UAVs in 3D space, in which a fleet of UAVs is tasked to converge to and follow a set of desired feasible paths so as to meet spatial and temporal...cooperative trajectory generation is not addressed in this paper. In fact, it is assumed that a set of desired 3D time trajectories pd,i(td) : R → R3

  13. Path Planning Based on Ply Orientation Information for Automatic Fiber Placement on Mesh Surface

    NASA Astrophysics Data System (ADS)

    Pei, Jiazhi; Wang, Xiaoping; Pei, Jingyu; Yang, Yang

    2018-03-01

    This article introduces an investigation of path planning with ply orientation information for automatic fiber placement (AFP) on open-contoured mesh surface. The new method makes use of the ply orientation information generated by loading characteristics on surface, divides the surface into several zones according to the ply orientation information and then designs different fiber paths in different zones. This article also gives new idea of up-layer design in order to make up for defects between parts and improve product's strength.

  14. A New Resonance Tube

    NASA Astrophysics Data System (ADS)

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  15. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    PubMed

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide direct evidence for the unintended spreading of contaminants as a result of remediation efforts, which can, under some circumstances, result in enhanced risks for soil vapour intrusion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Global observations of atmospheric CH4 by Integrated Path Differential-Absorption Lidar: the French-German Climate Monitoring Initiative

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Flamant, Pierre; Ciais, Philippe; Fabien, Gibert; Amediek, Axel; Kiemle, Christoph; Fix, Andreas; Quatrevalet, Mathieu; Wirth, Martin

    Atmospheric methane (CH4) is a powerful greenhouse gas, which has a Greenhouse Warming Potential (GWP) of 25 relative to CO2 on a time scale of 100 years. Despite the fact that the imbalance between the sources and sinks has decreased in the early 1990's to an insignificant value, a significant renewal of the CH4 growth is reported in recent years. Questions arise whether an increase of atmospheric CH4 might be fostered through melting of permafrost soil in the Arctic region or arise from changes of the tropical wetlands which comprise the biggest natural methane source. Another reason could be the change in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The French-German Climate Monitoring Initiative, which has recently been selected to undergo Phase0/A studies in a joint project by the space agencies CNES (France)and DLR (Germany), targets on satellite observations of atmospheric CH4 for the improvement of our knowledge on regional to synoptic scale CH4 sources on a global basis. As a novel feature, the observational instrument of this mission will be an Integrated Path Differential-Absorption (IPDA) Lidar system embarked on board of the French Myriade platform for the measurement of the column-weighted dry-air mixing ratio of CH4 in a nadir viewing configuration. This data will be provided by the lidar technique with no bias due to particles scattering in the light path and can directly be used as input for flux inversion models. In our presentation we will discuss the observational principle and the sampling strategy of the envisaged mission in connection to the needs for CH4 flux inversion experiments. In addition, we report on supporting campaign activities on airborne measurements of Lidar reflectivity data in the respective spectral region. The airborne data is of prime interest for the generation of pseudo CH4 data examples using the satellite instrument in order to address questions how to optimally aggregate the satellite measurements for maximum information content and minimum error. The field campaign was funded by the European Space Agency (ESA) in the framework of the A-SCOPE mission evaluation activity on active remote sensing of CO2 from space-borne platform.

  17. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantitative) analysis of solvent extract in paragraph (c)(3)(iv) of this section. The design of the generator.... Finally, the design of most chemical tests and many ecological and health tests requires precise knowledge..., molality, and mole fraction. For example, to convert from weight/volume to molarity molecular mass is...

  18. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quantitative) analysis of solvent extract in paragraph (c)(3)(iv) of this section. The design of the generator.... Finally, the design of most chemical tests and many ecological and health tests requires precise knowledge..., molality, and mole fraction. For example, to convert from weight/volume to molarity molecular mass is...

  19. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantitative) analysis of solvent extract in paragraph (c)(3)(iv) of this section. The design of the generator.... Finally, the design of most chemical tests and many ecological and health tests requires precise knowledge..., molality, and mole fraction. For example, to convert from weight/volume to molarity molecular mass is...

  20. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  1. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    PubMed

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  2. EPA Science Matters Newsletter: Volume 2, Number 2

    EPA Pesticide Factsheets

    In order to support our growing planet and meet the needs of the current generation while preserving the ability of future generations to meet their needs, we must continue on the path toward sustainability through innovation.

  3. How minimal executive feedback influences creative idea generation

    PubMed Central

    Camarda, Anaëlle; Agogué, Marine; Houdé, Olivier; Weil, Benoît; Le Masson, Pascal

    2017-01-01

    The fixation effect is known as one of the most dominant of the cognitive biases against creativity and limits individuals’ creative capacities in contexts of idea generation. Numerous techniques and tools have been established to help overcome these cognitive biases in various disciplines ranging from neuroscience to design sciences. Several works in the developmental cognitive sciences have discussed the importance of inhibitory control and have argued that individuals must first inhibit the spontaneous ideas that come to their mind so that they can generate creative solutions to problems. In line with the above discussions, in the present study, we performed an experiment on one hundred undergraduates from the Faculty of Psychology at Paris Descartes University, in which we investigated a minimal executive feedback-based learning process that helps individuals inhibit intuitive paths to solutions and then gradually drive their ideation paths toward creativity. Our results provide new insights into novel forms of creative leadership for idea generation. PMID:28662154

  4. How minimal executive feedback influences creative idea generation.

    PubMed

    Ezzat, Hicham; Camarda, Anaëlle; Cassotti, Mathieu; Agogué, Marine; Houdé, Olivier; Weil, Benoît; Le Masson, Pascal

    2017-01-01

    The fixation effect is known as one of the most dominant of the cognitive biases against creativity and limits individuals' creative capacities in contexts of idea generation. Numerous techniques and tools have been established to help overcome these cognitive biases in various disciplines ranging from neuroscience to design sciences. Several works in the developmental cognitive sciences have discussed the importance of inhibitory control and have argued that individuals must first inhibit the spontaneous ideas that come to their mind so that they can generate creative solutions to problems. In line with the above discussions, in the present study, we performed an experiment on one hundred undergraduates from the Faculty of Psychology at Paris Descartes University, in which we investigated a minimal executive feedback-based learning process that helps individuals inhibit intuitive paths to solutions and then gradually drive their ideation paths toward creativity. Our results provide new insights into novel forms of creative leadership for idea generation.

  5. Experimental framework to study tip vortex interactions in multirotor wakes

    NASA Astrophysics Data System (ADS)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  6. Chaotic bubbling and nonstagnant foams.

    PubMed

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  7. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Activated Carbon-hydrogen based Continuous Sorption Cooling in Single Adsorbent Bed with LN2 Heat Sink

    NASA Astrophysics Data System (ADS)

    Koley, Susmita; Ghosh, Indranil

    Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.

  9. Path-Specific Effects on Shear Motion Generation Using LargeN Array Waveform Data at the Source Physics Experiment (SPE) Site

    NASA Astrophysics Data System (ADS)

    Pitarka, A.; Mellors, R. J.; Walter, W. R.

    2016-12-01

    Depending on emplacement conditions and underground structure, and contrary to what is theoretically predicted for isotropic sources, recorded local, regional, and teleseismic waveforms from chemical explosions often contain shear waves with substantial energy. Consequently, the transportability of empirical techniques for yield estimation and source discrimination to regions with complex underground structure becomes problematic. Understanding the mechanisms of generation and conversion of shear waves caused by wave path effects during explosions can help improve techniques used in nuclear explosion monitoring. We used seismic data from LargeN, a dense array of three and one component geophones, to analyze far-field waveforms from the underground chemical explosion recorded during shot 5 of the Source Physics Experiment (SPE-5) at the Nevada National Security Site. Combined 3D elastic wave propagation modeling and frequency-wavenumber beam-forming on small arrays containing selected stations were used to detect and identify several wave phases, including primary and secondary S waves, and Rgwaves, and determine their direction of propagation. We were able to attribute key features of the waveforms, and wave phases to either source processes or propagation path effects, such as focusing and wave conversions. We also found that coda waves were more likely generated by path effects outside the source region, rather than by interaction of source generated waves with the emplacement structure. Waveform correlation and statistical analysis were performed to estimate average correlation length of small-scale heterogeneity in the upper sedimentary layers of the Yucca Flat basin in the area covered by the array. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 699180

  10. Thermal Characterization for a Modular 3-D Multichip Module

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Plante, Jeannette; Shaw, Harry

    2000-01-01

    NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.

  11. Flow path oscillations in transient ground-water simulations of large peatland systems

    USGS Publications Warehouse

    Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.

    2006-01-01

    Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.

  12. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles

    NASA Astrophysics Data System (ADS)

    Hu, Xuemin; Chen, Long; Tang, Bo; Cao, Dongpu; He, Haibo

    2018-02-01

    This paper presents a real-time dynamic path planning method for autonomous driving that avoids both static and moving obstacles. The proposed path planning method determines not only an optimal path, but also the appropriate acceleration and speed for a vehicle. In this method, we first construct a center line from a set of predefined waypoints, which are usually obtained from a lane-level map. A series of path candidates are generated by the arc length and offset to the center line in the s - ρ coordinate system. Then, all of these candidates are converted into Cartesian coordinates. The optimal path is selected considering the total cost of static safety, comfortability, and dynamic safety; meanwhile, the appropriate acceleration and speed for the optimal path are also identified. Various types of roads, including single-lane roads and multi-lane roads with static and moving obstacles, are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method, and indicate its wide practical application to autonomous driving.

  13. Paths to nursing leadership.

    PubMed

    Bondas, Terese

    2006-07-01

    The aim was to explore why nurses enter nursing leadership and apply for a management position in health care. The study is part of a research programme in nursing leadership and evidence-based care. Nursing has not invested enough in the development of nursing leadership for the development of patient care. There is scarce research on nurses' motives and reasons for committing themselves to a career in nursing leadership. A strategic sample of 68 Finnish nurse leaders completed a semistructured questionnaire. Analytic induction was applied in an attempt to generate a theory. A theory, Paths to Nursing Leadership, is proposed for further research. Four different paths were found according to variations between the nurse leaders' education, primary commitment and situational factors. They are called the Path of Ideals, the Path of Chance, the Career Path and the Temporary Path. Situational factors and role models of good but also bad nursing leadership besides motivational and educational factors have played a significant role when Finnish nurses have entered nursing leadership. The educational requirements for nurse leaders and recruitment to nursing management positions need serious attention in order to develop a competent nursing leadership.

  14. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE PAGES

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.; ...

    2018-03-01

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  15. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  16. Ozone and nitrogen dioxide ground based monitoring by zenith sky visible spectrometry in Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Goutail, F.

    1988-01-01

    Unattended diode array spectrometers have been designed for ground based stratospheric trace species monitoring by zenith sky visible spectrometry. Measurements are performed with a 1.0 nm resolution between 290 nm and 590 nm in order to allow simultaneous evaluations of column densities of ozone, nitrogen dioxide. Field tests have shown that the species can be monitored with a precision of + or - 2 Dobson for the first and + or - 2.10 to the 15th mol/sq cm for the second, although the absolute accuracy of the method is limited by the error of the estimation of the atmospheric optical path of the scattered light. Two identical instruments were set up in January 1988, one in Antarctica at Dumont d'Urville (66 S, 140 E) to be operated all year and another one in the Arctic at ESRANGE at Kiruna (68 N; 22 E) which will operate to the final warming of spring 1988. The data are processed in real time at both stations. O3 and NO2 columns are transmitted together with surface and stratospheric temperature and winds. They are also recorded for further treatment and search for OClO and BrO. Only one month of data from Antarctica is available at the moment. Obtained during polar summer, they cannot show more than stable columns of O3 and NO2 and for the last species, the buildup of its diurnal variation.

  17. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    NASA Astrophysics Data System (ADS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-03-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.

  18. Compensation of high order harmonic long quantum-path attosecond chirp

    NASA Astrophysics Data System (ADS)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies inmore » the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.« less

  20. Utilization of DIRSIG in support of real-time infrared scene generation

    NASA Astrophysics Data System (ADS)

    Sanders, Jeffrey S.; Brown, Scott D.

    2000-07-01

    Real-time infrared scene generation for hardware-in-the-loop has been a traditionally difficult challenge. Infrared scenes are usually generated using commercial hardware that was not designed to properly handle the thermal and environmental physics involved. Real-time infrared scenes typically lack details that are included in scenes rendered in no-real- time by ray-tracing programs such as the Digital Imaging and Remote Sensing Scene Generation (DIRSIG) program. However, executing DIRSIG in real-time while retaining all the physics is beyond current computational capabilities for many applications. DIRSIG is a first principles-based synthetic image generation model that produces multi- or hyper-spectral images in the 0.3 to 20 micron region of the electromagnetic spectrum. The DIRSIG model is an integrated collection of independent first principles based on sub-models, each of which works in conjunction to produce radiance field images with high radiometric fidelity. DIRSIG uses the MODTRAN radiation propagation model for exo-atmospheric irradiance, emitted and scattered radiances (upwelled and downwelled) and path transmission predictions. This radiometry submodel utilizes bidirectional reflectance data, accounts for specular and diffuse background contributions, and features path length dependent extinction and emission for transmissive bodies (plumes, clouds, etc.) which may be present in any target, background or solar path. This detailed environmental modeling greatly enhances the number of rendered features and hence, the fidelity of a rendered scene. While DIRSIG itself cannot currently be executed in real-time, its outputs can be used to provide scene inputs for real-time scene generators. These inputs can incorporate significant features such as target to background thermal interactions, static background object thermal shadowing, and partially transmissive countermeasures. All of these features represent significant improvements over the current state of the art in real-time IR scene generation.

  1. On the efficacy of spatial sampling using manual scanning paths to determine the spatial average sound pressure level in rooms.

    PubMed

    Hopkins, Carl

    2011-05-01

    In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.

  2. Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning

    NASA Astrophysics Data System (ADS)

    Kawewong, Aram; Honda, Yutaro; Tsuboyama, Manabu; Hasegawa, Osamu

    Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.

  3. Comparison of some evolutionary algorithms for optimization of the path synthesis problem

    NASA Astrophysics Data System (ADS)

    Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna

    2018-01-01

    The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.

  4. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    PubMed

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  5. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of lidar measurements at 11 km altitude reached 376, which was equivalent to a 10-s CO2 error 0.33 ppm. For the entire processed 2014 summer flight campaign data, the mean differences between lidar remote sensed and in-situ estimated CO2 values were about -0.013 ppm. These results indicate that current laser absorption lidar approach could meet space measurement requirements for CO2 science goals.

  6. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.

    PubMed

    Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J

    2018-02-17

    New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.

  7. Comparison between the intra-particle diffusivity in the hydrophilic interaction chromatography and reversed phase liquid chromatography modes. Impact on the column efficiency.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2013-07-05

    The effective diffusion coefficients of five low molecular weigh compounds (naphthalene, uracil, uridine, adenosine, and cytosine) were measured at room temperature in a 4.6mm×100mm column packed with 3.5μm XBridge HILIC particles. The mobile phase was an acetonitrile-water mixture (92.5/7.5, v/v) containing 10mM ammonium acetate and 0.02% acetic acid. Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), accurate estimates of the intra-particle diffusivities in the HILIC particles were obtained as a function of the retention of these analytes. The HILIC diffusion coefficients were compared to those previously obtained for endcapped RPLC-C18 particles (5.0μm Gemini-C18). The experimental results confirm that adsorption sites are not localized in RPLC whereas they are so in the HILIC mode. In contrast to RPLC columns, HILIC columns provide longitudinal diffusion B/u terms that increase very little with increasing retention factors. This confirms the absence of surface diffusion in HILIC. The impact of intra-particle diffusivity on the column efficiency was projected in HILIC and RPLC on the basis of the measured intra-particle diffusivities and on the well established theory of band broadening in particulate columns. Accordingly, RPLC columns generate short-range eddy dispersion and solid-liquid mass transfer resistance Cu terms that increase less than do HILIC column with increasing retention factors. The HETP contribution caused by the trans-column structure heterogeneity is smaller in the HILIC than in the RPLC modes because the transverse excursion length is smaller in HILIC. Even though the overall column efficiencies are comparable in HILIC and RPLC, this study shows that the individual mass transfer phenomena are inherently different in the HILIC and the RPLC retention modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    PubMed

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  9. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  10. [Spectral investigation of atmospheric pressure plasma column].

    PubMed

    Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

    2012-07-01

    Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft.

  11. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides.

    PubMed

    de Blois, Erik; Sze Chan, Ho; Naidoo, Clive; Prince, Deidre; Krenning, Eric P; Breeman, Wouter A P

    2011-02-01

    PET scintigraphy with (68)Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO(2)-based (68)Ge/(68)Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Characteristics of 4 SnO(2)-based generators (range 0.4-1 GBq (68)Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO(2)-based (68)Ge/(68)Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the (68)Ga eluate were performed using anion and cation exchange. Concentrated (68)Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. (68)Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. The amount of elutable (68)Ga activity varies when the concentration of the eluens, HCl, was varied, while (68)Ge activity remains virtually constant. SnO(2)-based (68)Ge/(68)Ga generator elutes at 0.6 M HCl >100% of the (68)Ga activity at calibration time and ±75% after 300 days. Eluate at discharge was sterile and Endotoxins were <0.5 EU/mL, RNP was always <0.01%. Metal ions in the eluate were <10 ppm (in total). Highest desorption for anion purification was obtained with the 30 mg Oasis WAX column (>80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a (68)Ga desorption of 68±8%. With all (68)Ge/(68)Ga generators and for all 3 purification methods a SA up to 50 MBq/nmol with >95% incorporation (ITLC) and RCP (radiochemical purity) by HPLC ±90% could be achieved. Purification and concentration of the eluate with anion exchange has the benefit of more elutable (68)Ga with 1 M HCl as eluens. The additional washing step of the anion column with NaCl and ethanol, resulted in a lower and less variable [H(+)] in the eluate, and, as a result the pH in the reaction vial is better controlled, more constant, and less addition of buffer is required and concordant smaller reaction volumes. Desorption of (68)Ga-DOTA-TATE of SPE columns varied, highest desorption was obtained with Baker C(18) 100 mg (84%). Purification of (68)Ga-DOTA-TATE by SPE resulted in an RNP of <10(-4)%. Eluate of SnO(2)-based (68)Ge/(68)Ga generator, either by fractionated elution as by ion exchange can be used for labelling DOTA-peptides with (68)Ga at a SA of 50 MBq/nmol at >95% incorporation and a RCP of ±90%. SPE columns are very effective to increase RNP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    PubMed

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  13. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    PubMed

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  14. TabPath: interactive tables for metabolic pathway analysis.

    PubMed

    Moraes, Lauro Ângelo Gonçalves de; Felestrino, Érica Barbosa; Assis, Renata de Almeida Barbosa; Matos, Diogo; Lima, Joubert de Castro; Lima, Leandro de Araújo; Almeida, Nalvo Franco; Setubal, João Carlos; Garcia, Camila Carrião Machado; Moreira, Leandro Marcio

    2018-03-15

    Information about metabolic pathways in a comparative context is one of the most powerful tool to help the understanding of genome-based differences in phenotypes among organisms. Although several platforms exist that provide a wealth of information on metabolic pathways of diverse organisms, the comparison among organisms using metabolic pathways is still a difficult task. We present TabPath (Tables for Metabolic Pathway), a web-based tool to facilitate comparison of metabolic pathways in genomes based on KEGG. From a selection of pathways and genomes of interest on the menu, TabPath generates user-friendly tables that facilitate analysis of variations in metabolism among the selected organisms. TabPath is available at http://200.239.132.160:8686. lmmorei@gmail.com.

  15. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.

  16. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less

  17. Intergenerational Relationship Quality, Gender, and Grandparent Involvement

    ERIC Educational Resources Information Center

    Barnett, Melissa A.; Scaramella, Laura V.; Neppl, Tricia K.; Ontai, Lenna; Conger, Rand D.

    2010-01-01

    This prospective, intergenerational study (N = 181) considered how parent (G1, Generation 1) and child (G2, Generation 2) relationship quality during adolescence and adulthood is associated with G1's level of involvement with their 3- to 4-year-old grandchildren (G3, Generation 3). Path model analyses indicated different patterns of results for…

  18. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.

    PubMed

    Chatterjee, Sumantra; Sivakamasundari, V; Yap, Sook Peng; Kraus, Petra; Kumar, Vibhor; Xing, Xing; Lim, Siew Lan; Sng, Joel; Prabhakar, Shyam; Lufkin, Thomas

    2014-12-05

    Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.

  19. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    NASA Astrophysics Data System (ADS)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  20. Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: a developmental and evolutionary analysis.

    PubMed

    Buchholtz, Emily A; Booth, Amy C; Webbink, Katherine E

    2007-06-01

    The vertebral column of the Florida manatee presents an unusual suite of morphological traits. Key among these are a small precaudal count, elongate thoracic vertebrae, extremely short neural spines, lack of a sacral series, high lumbar variability, and the presence of six instead of seven cervical vertebrae. This study documents vertebral morphology, size, and lumbar variation in 71 skeletons of Trichechus manatus latirostris (Florida manatee) and uses the skeletons of Trichechus senegalensis (west African manatee) and Dugong dugon (dugong) in comparative analysis. Vertebral traits are used to define morphological, and by inference developmental, column modules and to propose their hierarchical relationships. A sequence of evolutionary innovations in column morphology is proposed. Results suggest that the origin of the fluke and low rates of cervical growth originated before separation of trichechids (manatees) and dugongids (dugongs). Meristic reduction in count is a later, trichechid innovation and is expressed across the entire precaudal column. Elongation of thoracic vertebrae may be an innovative strategy to generate an elongate column in an animal with a small precaudal count. Elimination of the lumbus through both meristic and homeotic reduction is currently in progress. 2007 Wiley-Liss, Inc.

Top