Statistical Analysis of the First Passage Path Ensemble of Jump Processes
NASA Astrophysics Data System (ADS)
von Kleist, Max; Schütte, Christof; Zhang, Wei
2018-02-01
The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.
Li, Wenjin
2018-02-28
Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.
Generalized Ensemble Sampling of Enzyme Reaction Free Energy Pathways
Wu, Dongsheng; Fajer, Mikolai I.; Cao, Liaoran; Cheng, Xiaolin; Yang, Wei
2016-01-01
Free energy path sampling plays an essential role in computational understanding of chemical reactions, particularly those occurring in enzymatic environments. Among a variety of molecular dynamics simulation approaches, the generalized ensemble sampling strategy is uniquely attractive for the fact that it not only can enhance the sampling of rare chemical events but also can naturally ensure consistent exploration of environmental degrees of freedom. In this review, we plan to provide a tutorial-like tour on an emerging topic: generalized ensemble sampling of enzyme reaction free energy path. The discussion is largely focused on our own studies, particularly ones based on the metadynamics free energy sampling method and the on-the-path random walk path sampling method. We hope that this mini presentation will provide interested practitioners some meaningful guidance for future algorithm formulation and application study. PMID:27498634
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
A benchmark for reaction coordinates in the transition path ensemble
2016-01-01
The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559
Quantum Gibbs ensemble Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fantoni, Riccardo, E-mail: rfantoni@ts.infn.it; Moroni, Saverio, E-mail: moroni@democritos.it
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Bhatt, Divesh; Zuckerman, Daniel M.
2010-01-01
We performed “weighted ensemble” path–sampling simulations of adenylate kinase, using several semi–atomistic protein models. The models have an all–atom backbone with various levels of residue interactions. The primary result is that full statistically rigorous path sampling required only a few weeks of single–processor computing time with these models, indicating the addition of further chemical detail should be readily feasible. Our semi–atomistic path ensembles are consistent with previous biophysical findings: the presence of two distinct pathways, identification of intermediates, and symmetry of forward and reverse pathways. PMID:21660120
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
NASA Technical Reports Server (NTRS)
MIittman, David S
2011-01-01
Ensemble is an open architecture for the development, integration, and deployment of mission operations software. Fundamentally, it is an adaptation of the Eclipse Rich Client Platform (RCP), a widespread, stable, and supported framework for component-based application development. By capitalizing on the maturity and availability of the Eclipse RCP, Ensemble offers a low-risk, politically neutral path towards a tighter integration of operations tools. The Ensemble project is a highly successful, ongoing collaboration among NASA Centers. Since 2004, the Ensemble project has supported the development of mission operations software for NASA's Exploration Systems, Science, and Space Operations Directorates.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Fluctuating observation time ensembles in the thermodynamics of trajectories
NASA Astrophysics Data System (ADS)
Budini, Adrián A.; Turner, Robert M.; Garrahan, Juan P.
2014-03-01
The dynamics of stochastic systems, both classical and quantum, can be studied by analysing the statistical properties of dynamical trajectories. The properties of ensembles of such trajectories for long, but fixed, times are described by large-deviation (LD) rate functions. These LD functions play the role of dynamical free energies: they are cumulant generating functions for time-integrated observables, and their analytic structure encodes dynamical phase behaviour. This ‘thermodynamics of trajectories’ approach is to trajectories and dynamics what the equilibrium ensemble method of statistical mechanics is to configurations and statics. Here we show that, just like in the static case, there are a variety of alternative ensembles of trajectories, each defined by their global constraints, with that of trajectories of fixed total time being just one of these. We show how the LD functions that describe an ensemble of trajectories where some time-extensive quantity is constant (and large) but where total observation time fluctuates can be mapped to those of the fixed-time ensemble. We discuss how the correspondence between generalized ensembles can be exploited in path sampling schemes for generating rare dynamical trajectories.
Long-time Dynamics of Stochastic Wave Breaking
NASA Astrophysics Data System (ADS)
Restrepo, J. M.; Ramirez, J. M.; Deike, L.; Melville, K.
2017-12-01
A stochastic parametrization is proposed for the dynamics of wave breaking of progressive water waves. The model is shown to agree with transport estimates, derived from the Lagrangian path of fluid parcels. These trajectories are obtained numerically and are shown to agree well with theory in the non-breaking regime. Of special interest is the impact of wave breaking on transport, momentum exchanges and energy dissipation, as well as dispersion of trajectories. The proposed model, ensemble averaged to larger time scales, is compared to ensemble averages of the numerically generated parcel dynamics, and is then used to capture energy dissipation and path dispersion.
Resonance fluorescence trajectories in superconducting qubit
NASA Astrophysics Data System (ADS)
Naghiloo, Mahdi; Tan, Dian; Harrington, Patrick; Lewalle, Philippe; Jordan, Andrew; Murch, Kater
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter. We analyze the ensemble properties of these trajectories by considering paths that connect specific initial and final states. By applying a stochastic path integral formalism, we calculate equations of motion for the most likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories-situations where multiple extrema in the stochastic action occur. We observe such multiple most likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations. Supported by the John Templeton Foundation.
Quantum caustics in resonance-fluorescence trajectories
NASA Astrophysics Data System (ADS)
Naghiloo, M.; Tan, D.; Harrington, P. M.; Lewalle, P.; Jordan, A. N.; Murch, K. W.
2017-11-01
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements. We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations.
Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)
NASA Astrophysics Data System (ADS)
Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.
2016-12-01
On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.
Entanglement between two spatially separated atomic modes
NASA Astrophysics Data System (ADS)
Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten
2018-04-01
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble
NASA Astrophysics Data System (ADS)
Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong
2016-05-01
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
Kingsley, Laura J.; Lill, Markus A.
2014-01-01
Computational prediction of ligand entry and egress paths in proteins has become an emerging topic in computational biology and has proven useful in fields such as protein engineering and drug design. Geometric tunnel prediction programs, such as Caver3.0 and MolAxis, are computationally efficient methods to identify potential ligand entry and egress routes in proteins. Although many geometric tunnel programs are designed to accommodate a single input structure, the increasingly recognized importance of protein flexibility in tunnel formation and behavior has led to the more widespread use of protein ensembles in tunnel prediction. However, there has not yet been an attempt to directly investigate the influence of ensemble size and composition on geometric tunnel prediction. In this study, we compared tunnels found in a single crystal structure to ensembles of various sizes generated using different methods on both the apo and holo forms of cytochrome P450 enzymes CYP119, CYP2C9, and CYP3A4. Several protein structure clustering methods were tested in an attempt to generate smaller ensembles that were capable of reproducing the data from larger ensembles. Ultimately, we found that by including members from both the apo and holo data sets, we could produce ensembles containing less than 15 members that were comparable to apo or holo ensembles containing over 100 members. Furthermore, we found that, in the absence of either apo or holo crystal structure data, pseudo-apo or –holo ensembles (e.g. adding ligand to apo protein throughout MD simulations) could be used to resemble the structural ensembles of the corresponding apo and holo ensembles, respectively. Our findings not only further highlight the importance of including protein flexibility in geometric tunnel prediction, but also suggest that smaller ensembles can be as capable as larger ensembles at capturing many of the protein motions important for tunnel prediction at a lower computational cost. PMID:24956479
NASA Astrophysics Data System (ADS)
Isoguchi, O.; Matsui, K.; Kamachi, M.; Usui, N.; Miyazawa, Y.; Ishikawa, Y.; Hirose, N.
2017-12-01
Several operational ocean assimilation models are currently available for the Northwestern Pacific and surrounding marginal seas. One of the main targets is predicting the Kuroshio/Kuroshio Extension, which have an impact not only on social activities, such as fishery and ship routing, but also on local weather. There is a demand to assess their quality comprehensively and make the best out the available products. In the present study, several ocean data assimilation products and their multi-ensemble product were assessed by comparing with satellite-derived sea surface temperature (SST), sea surface height (SSH), and in-situ hydrographic sections. The Kuroshio axes were also computed from the surface currents of these products and were compared with the Kuroshio Axis data produced analyzing satellite-SST, SSH, and in-situ observations by Marine Information Research Center (MIRC). The multi-model ensemble products generally showed the best accuracy in terms of the comparisons with the satellite-derived SST and SSH. On the other hand, the ensemble products didn't result in the best one in the comparison with the hydrographic sections. It is thus suggested that the multi-model ensemble works efficiently for the horizontally 2D parameters for which each assimilation product tends to have random errors while it does not work well for the vertical 2D comparisons for which it tends to have bias errors with respect to in-situ data. In the assessment with the Kuroshio Axis Data, some products showed more energetic behavior than the Kuroshio Axis data, resulting in the large path errors which are defined as a ratio between an area surrounded by the reference and model-derived ones and a path length. It is however not determined which are real, because in-situ observations are still lacking to resolve energetic Kuroshio behavior even though the Kuroshio is one of the strongest current.
Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.
Tiwari, Ambuj; Ensing, Bernd
2016-12-22
Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
PathVisio-Faceted Search: an exploration tool for multi-dimensional navigation of large pathways
Fried, Jake Y.; Luna, Augustin
2013-01-01
Purpose: The PathVisio-Faceted Search plugin helps users explore and understand complex pathways by overlaying experimental data and data from webservices, such as Ensembl BioMart, onto diagrams drawn using formalized notations in PathVisio. The plugin then provides a filtering mechanism, known as a faceted search, to find and highlight diagram nodes (e.g. genes and proteins) of interest based on imported data. The tool additionally provides a flexible scripting mechanism to handle complex queries. Availability: The PathVisio-Faceted Search plugin is compatible with PathVisio 3.0 and above. PathVisio is compatible with Windows, Mac OS X and Linux. The plugin, documentation, example diagrams and Groovy scripts are available at http://PathVisio.org/wiki/PathVisioFacetedSearchHelp. The plugin is free, open-source and licensed by the Apache 2.0 License. Contact: augustin@mail.nih.gov or jakeyfried@gmail.com PMID:23547033
The integrated process rates (IPR) estimated by the Eta-CMAQ model at grid cells along the trajectory of the air mass transport path were analyzed to quantitatively investigate the relative importance of physical and chemical processes for O3 formation and evolution ov...
NASA Astrophysics Data System (ADS)
Hoteit, I.; Hollt, T.; Hadwiger, M.; Knio, O. M.; Gopalakrishnan, G.; Zhan, P.
2016-02-01
Ocean reanalyses and forecasts are nowadays generated by combining ensemble simulations with data assimilation techniques. Most of these techniques resample the ensemble members after each assimilation cycle. Tracking behavior over time, such as all possible paths of a particle in an ensemble vector field, becomes very difficult, as the number of combinations rises exponentially with the number of assimilation cycles. In general a single possible path is not of interest but only the probabilities that any point in space might be reached by a particle at some point in time. We present an approach using probability-weighted piecewise particle trajectories to allow for interactive probability mapping. This is achieved by binning the domain and splitting up the tracing process into the individual assimilation cycles, so that particles that fall into the same bin after a cycle can be treated as a single particle with a larger probability as input for the next cycle. As a result we loose the possibility to track individual particles, but can create probability maps for any desired seed at interactive rates. The technique is integrated in an interactive visualization system that enables the visual analysis of the particle traces side by side with other forecast variables, such as the sea surface height, and their corresponding behavior over time. By harnessing the power of modern graphics processing units (GPUs) for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real-time, view specific parameter settings or simulation models and move between different spatial or temporal regions without delay. In addition our system provides advanced visualizations to highlight the uncertainty, or show the complete distribution of the simulations at user-defined positions over the complete time series of the domain.
NASA Astrophysics Data System (ADS)
Livorati, André L. P.; Palmero, Matheus S.; Díaz-I, Gabriel; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2018-02-01
We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.
Ensemble: an Architecture for Mission-Operations Software
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Powell, Mark; Fox, Jason; Rabe, Kenneth; Shu, IHsiang; McCurdy, Michael; Vera, Alonso
2008-01-01
Ensemble is the name of an open architecture for, and a methodology for the development of, spacecraft mission operations software. Ensemble is also potentially applicable to the development of non-spacecraft mission-operations- type software. Ensemble capitalizes on the strengths of the open-source Eclipse software and its architecture to address several issues that have arisen repeatedly in the development of mission-operations software: Heretofore, mission-operations application programs have been developed in disparate programming environments and integrated during the final stages of development of missions. The programs have been poorly integrated, and it has been costly to develop, test, and deploy them. Users of each program have been forced to interact with several different graphical user interfaces (GUIs). Also, the strategy typically used in integrating the programs has yielded serial chains of operational software tools of such a nature that during use of a given tool, it has not been possible to gain access to the capabilities afforded by other tools. In contrast, the Ensemble approach offers a low-risk path towards tighter integration of mission-operations software tools.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
High-density amorphous ice: A path-integral simulation
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2012-09-01
Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.
NASA Astrophysics Data System (ADS)
Maleki, Yusef; Zheltikov, Aleksei M.
2018-01-01
An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.
Ovchinnikov, Victor; Karplus, Martin
2012-07-26
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
A New Look into the Effect of Large Drops on Radiative Transfer Process
NASA Technical Reports Server (NTRS)
Marshak, Alexander
2003-01-01
Recent studies indicate that a cloudy atmosphere absorbs more solar radiation than any current 1D or 3D radiation model can predict. The excess absorption is not large, perhaps 10-15 W/sq m or less, but any such systematic bias is of concern since radiative transfer models are assumed to be sufficiently accurate for remote sensing applications and climate modeling. The most natural explanation would be that models do not capture real 3D cloud structure and, as a consequence, their photon path lengths are too short. However, extensive calculations, using increasingly realistic 3D cloud structures, failed to produce photon paths long enough to explain the excess absorption. Other possible explanations have also been unsuccessful so, at this point, conventional models seem to offer no solution to this puzzle. The weakest link in conventional models is the way a size distribution of cloud particles is mathematically handled. Basically, real particles are replaced with a single average particle. This "ensemble assumption" assumes that all particle sizes are well represented in any given elementary volume. But the concentration of larger particles can be so low that this assumption is significantly violated. We show how a different mathematical route, using the concept of a cumulative distribution, avoids the ensemble assumption. The cumulative distribution has jumps, or steps, corresponding to the rarer sizes. These jumps result in an additional term, a kind of Green's function, in the solution of the radiative transfer equation. Solving the cloud radiative transfer equation with the measured particle distributions, described in a cumulative rather than an ensemble fashion, may lead to increased cloud absorption of the magnitude observed.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
An ensemble method for extracting adverse drug events from social media.
Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi
2016-06-01
Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
The Origins of the "Fanga" Dance
ERIC Educational Resources Information Center
Damm, Robert J.
2015-01-01
The "fanga" is a dance taught throughout the United States to children in elementary music classes, students in African dance classes, teachers in multicultural workshops, and professional dancers in touring ensembles. Although the history of the fanga is a path overgrown with myth, this article offers information about the dance's…
Jarzynski equality in the context of maximum path entropy
NASA Astrophysics Data System (ADS)
González, Diego; Davis, Sergio
2017-06-01
In the global framework of finding an axiomatic derivation of nonequilibrium Statistical Mechanics from fundamental principles, such as the maximum path entropy - also known as Maximum Caliber principle -, this work proposes an alternative derivation of the well-known Jarzynski equality, a nonequilibrium identity of great importance today due to its applications to irreversible processes: biological systems (protein folding), mechanical systems, among others. This equality relates the free energy differences between two equilibrium thermodynamic states with the work performed when going between those states, through an average over a path ensemble. In this work the analysis of Jarzynski's equality will be performed using the formalism of inference over path space. This derivation highlights the wide generality of Jarzynski's original result, which could even be used in non-thermodynamical settings such as social systems, financial and ecological systems.
An ensemble-based approach for breast mass classification in mammography images
NASA Astrophysics Data System (ADS)
Ribeiro, Patricia B.; Papa, João. P.; Romero, Roseli A. F.
2017-03-01
Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naïve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.
1989-01-01
The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.
On Certain Wronskians of Multiple Orthogonal Polynomials
NASA Astrophysics Data System (ADS)
Zhang, Lun; Filipuk, Galina
2014-11-01
We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.
ERIC Educational Resources Information Center
Murphy, Sean
2013-01-01
The saxophone section of a wind ensemble can easily be one of the most frustrating to work with when it comes to producing a clear, characteristic tone. Sometimes, the road to an improved sound can be a long path of daily diligence and practice; however, there are many quicker solutions that will drastically improve a student's tone. This article…
Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S
2017-10-01
The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin
2018-04-26
Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance.
Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin
2018-01-01
Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance. PMID:29701668
Free energy landscape from path-sampling: application to the structural transition in LJ38
NASA Astrophysics Data System (ADS)
Adjanor, G.; Athènes, M.; Calvo, F.
2006-09-01
We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Use of combined radar and radiometer systems in space for precipitation measurement: Some ideas
NASA Technical Reports Server (NTRS)
Moore, R. K.
1981-01-01
A brief survey is given of some fundamental physical concepts of optimal polarization characteristics of a transmission path or scatter ensemble of hydrometers. It is argued that, based on this optimization concept, definite advances in remote atmospheric sensing are to be expected. Basic properties of Kennaugh's optimal polarization theory are identified.
Observation of ground-state quantum beats in atomic spontaneous emission.
Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J
2010-09-17
We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.
2016-12-01
Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.
Effects of a mutation on the folding mechanism of a beta-hairpin.
Juraszek, Jarek; Bolhuis, Peter G
2009-12-17
The folding mechanism of a protein is determined by its primary sequence. Yet, how the mechanism is changed by a mutation is still poorly understood, even for basic secondary structures such as beta-hairpins. We perform an extensive simulation study of the effects of mutating the GB1 beta-hairpin into Trpzip4 (Y5W, F12W, V14W) on the folding mechanism. While Trpzip4 has a much more stable native state due to very strong hydrophobic interactions of the side chains, its folding rate does not differ significantly from the wild type beta-hairpin. We sample the free-energy landscapes of both hairpins with Replica Exchange Molecular Dynamics (REMD) and identify the four (meta)stable states (U, H, F, and N). Using Transition Path Sampling (TPS), we then harvest ensembles of unbiased pathways between the H and F states and between the F and N states to investigate the unbiased folding mechanisms. In both hairpins, the hydrophobic collapse (U-H) is followed by the middle hydrogen bond formation (H-F), and finally a closing of the strands in a zipper-like fashion (F-N). For the Trpzip4, the path ensembles indicate that the final F-N step is much more difficult than for GB1 and involves partial unfolding, rezipping of hydrogen bonds, and rearrangement of the Trp-14 side chain. For the rate-limiting (H-F) step, the path ensembles show that in GB1 desolvation and strand closure go hand in hand, while in Trpzip4 desolvation is decoupled from strand closure. Nevertheless, likelihood maximization shows that the reaction coordinate for both hairpins remains the interstrand distance. We conclude that the folding mechanism of both hairpins is a combination of hydrophobic collapse and zipping of hydrogen bonds but that the zipper mechanism is more visible in Trpzip4. A major difference between the two hairpins is that in the transition state of the rate-limiting step for Trpzip4 one tryptophan is exposed to the solvent due to steric hindrance, making the folding mechanism more complex and leading to an increased F-N barrier. Thus, our results show in atomistic detail how a mutation leads to a different folding mechanism and results in a more frustrated folding free-energy landscape.
A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario
NASA Astrophysics Data System (ADS)
Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.
2014-12-01
It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.
Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles.
Höllt, Thomas; Magdy, Ahmed; Zhan, Peng; Chen, Guoning; Gopalakrishnan, Ganesh; Hoteit, Ibrahim; Hansen, Charles D; Hadwiger, Markus
2014-08-01
We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea.
Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy
NASA Astrophysics Data System (ADS)
Minh, David D. L.; Adib, Artur B.
2008-05-01
An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.
NASA Astrophysics Data System (ADS)
Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik
2016-08-01
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.
NASA Astrophysics Data System (ADS)
Li, J. F.; Waliser, D. E.; Chen, W.; Deng, M.; Lebsock, M. D.; Stephens, G. L.; Guan, B.; Christensen, M.; Teixeira, J.
2013-12-01
Representing clouds and cloud climate feedbacks in global climate models (GCMs) remains a pressing challenge to reduce and quantify uncertainties associated with climate change projection. Vertical structures of clouds simulated by present-day models have not been extensively examined using vertically-resolved cloud hydrometers such as cloud ice water (CIW) content and cloud liquid water (CLW) content. The gap in available observations for cloud mass was clearly evident from the wide disparity in the CIW path [Waliser et al., 2009] and CLW path [Li et al., 2008;2011] values exhibited in the CMIP3 GCMs. We present an observationally-based evaluation of the CIW and CLW of present-day GCMs, notably 20th century CMIP5 simulations, and compare these results to the CMIP3 and two recent reanalyses (ECMWF and MERRA). We use three different CloudSat+CALIPSO CIW products as well as three different observation CLW products, CloudSat, MODIS and AMSRE and their combined product for CLW with methods to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate with uncertainty can be obtained for model evaluations. Note, considering the CloudSat's limitations of CLW retrievals due to contamination from the precipitation and from radar clutter near the surface, an alternative CLW is synergistically constructed using MODIS CLW and CloudSat CLW. The results show that for annual mean CIW path, there are factors of 2-10 in the differences between observations and models for a majority of the GCMs and for a number of regions. Based on a number of metrics, the ensemble behavior of CMIP5 has improved considerably relative to CMIP3 (~ 50%), although neither the CMIP5 ensemble mean nor any individual model performs particularly well, and there are still a number of models that exhibit very large biases despite the availability of relevant observations. For CLW, most of the CMIP3/CMIP5 annual mean CLW path values are overestimated by factors of 2-10 compared to observations globally. For the vertical structure of CIW/CLW content, significant systematic biases are found with many models biased significantly. Based on the Taylor diagram, the ensemble performance of CMIP5 CLW path simulation shows little or no improvement relative to CMIP3. The implications of these results on model representations of the earth radiation balance are discussed, along with caveats and uncertainties associated with the observational estimates, model and observation representations of the precipitating and cloudy ice components, relevant physical processes and parameterizations.
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
NASA Astrophysics Data System (ADS)
Weber, Steven; Murch, K. W.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Siddiqi, I.
2014-03-01
We use weak measurements to track individual quantum trajectories of a superconducting qubit embedded in a microwave cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We analyze ensembles of trajectories to determine statistical properties such as the most likely path and most likely time connecting pre and post-selected quantum states. We compare our results with theoretical predictions derived from an action principle for continuous quantum measurement. Furthermore, by introducing a qubit drive, we investigate the interplay between unitary state evolution and non-unitary measurement dynamics. This work was supported by the IARPA CSQ program and the ONR.
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.
Giuliani, Alessandro; Tomita, Masaru
2010-01-01
Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might provide a comprehensive mechanistic view of cell fate decision. PMID:20725638
Quantum chaos inside black holes
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2017-06-01
We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensemble of horizonless naked singularities (eventually smoothed at the Planck scale). We call these new items frizzy-balls, which can be rigorously defined by Euclidean path integral approach. This leads to interesting implications about information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru
2015-09-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.
Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques
NASA Technical Reports Server (NTRS)
Gridley, D.
1982-01-01
A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.
NASA Astrophysics Data System (ADS)
Iachimciuc, Igor
The dissertation is in two parts, a theoretical study and a musical composition. In Part I the music of Gyorgy Kurtag is analyzed from the point of view of sound color. A brief description of what is understood by the term sound color, and various ways of achieving specific coloristic effects, are presented in the Introduction. An examination of Kurtag's approaches to the domain of sound color occupies the chapters that follow. The musical examples that are analyzed are selected from Kurtag's different compositional periods, showing a certain consistency in sound color techniques, the most important of which are already present in the String Quartet, Op. 1. The compositions selected for analysis are written for different ensembles, but regardless of the instrumentation, certain principles of the formation and organization of sound color remain the same. Rather than relying on extended instrumental techniques, Kurtag creates a large variety of sound colors using traditional means such as pitch material, register, density, rhythm, timbral combinations, dynamics, texture, spatial displacement of the instruments, and the overall musical context. Each sound color unit in Kurtag's music is a separate entity, conceived as a complete microcosm. Sound color units can either be juxtaposed as contrasting elements, forming sound color variations, or superimposed, often resulting in a Klangfarbenmelodie effect. Some of the same gestural figures (objets trouves) appear in different compositions, but with significant coloristic modifications. Thus, the principle of sound color variations is not only a strong organizational tool, but also a characteristic stylistic feature of the music of Gyorgy Kurtag. Part II, Leopard's Path (2010), for flute, clarinet, violin, cello, cimbalom, and piano, is an original composition inspired by the painting of Jesse Allen, a San Francisco based artist. The composition is conceived as a cycle of thirteen short movements. Ten of these movements are the musical interpretation of the objects presented in the painting, and are stylistically similar. These movements are scored for the entire ensemble. The other three movements, entitled Interludes, provide a stylistic contrast, and are not directly connected with the painting.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Quantum storage of orbital angular momentum entanglement in an atomic ensemble.
Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can
2015-02-06
Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
NASA Astrophysics Data System (ADS)
Passemier, Damien; McKay, Matthew R.; Chen, Yang
2015-07-01
Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.
Zwier, Matthew C.; Adelman, Joshua L.; Kaus, Joseph W.; Pratt, Adam J.; Wong, Kim F.; Rego, Nicholas B.; Suárez, Ernesto; Lettieri, Steven; Wang, David W.; Grabe, Michael; Zuckerman, Daniel M.; Chong, Lillian T.
2015-01-01
The weighted ensemble (WE) path sampling approach orchestrates an ensemble of parallel calculations with intermittent communication to enhance the sampling of rare events, such as molecular associations or conformational changes in proteins or peptides. Trajectories are replicated and pruned in a way that focuses computational effort on under-explored regions of configuration space while maintaining rigorous kinetics. To enable the simulation of rare events at any scale (e.g. atomistic, cellular), we have developed an open-source, interoperable, and highly scalable software package for the execution and analysis of WE simulations: WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis). WESTPA scales to thousands of CPU cores and includes a suite of analysis tools that have been implemented in a massively parallel fashion. The software has been designed to interface conveniently with any dynamics engine and has already been used with a variety of molecular dynamics (e.g. GROMACS, NAMD, OpenMM, AMBER) and cell-modeling packages (e.g. BioNetGen, MCell). WESTPA has been in production use for over a year, and its utility has been demonstrated for a broad set of problems, ranging from atomically detailed host-guest associations to non-spatial chemical kinetics of cellular signaling networks. The following describes the design and features of WESTPA, including the facilities it provides for running WE simulations, storing and analyzing WE simulation data, as well as examples of input and output. PMID:26392815
Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.
Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide
2017-03-14
We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.
Wikipedias: Collaborative web-based encyclopedias as complex networks
NASA Astrophysics Data System (ADS)
Zlatić, V.; Božičević, M.; Štefančić, H.; Domazet, M.
2006-07-01
Wikipedia is a popular web-based encyclopedia edited freely and collaboratively by its users. In this paper we present an analysis of Wikipedias in several languages as complex networks. The hyperlinks pointing from one Wikipedia article to another are treated as directed links while the articles represent the nodes of the network. We show that many network characteristics are common to different language versions of Wikipedia, such as their degree distributions, growth, topology, reciprocity, clustering, assortativity, path lengths, and triad significance profiles. These regularities, found in the ensemble of Wikipedias in different languages and of different sizes, point to the existence of a unique growth process. We also compare Wikipedias to other previously studied networks.
Wikipedias: collaborative web-based encyclopedias as complex networks.
Zlatić, V; Bozicević, M; Stefancić, H; Domazet, M
2006-07-01
Wikipedia is a popular web-based encyclopedia edited freely and collaboratively by its users. In this paper we present an analysis of Wikipedias in several languages as complex networks. The hyperlinks pointing from one Wikipedia article to another are treated as directed links while the articles represent the nodes of the network. We show that many network characteristics are common to different language versions of Wikipedia, such as their degree distributions, growth, topology, reciprocity, clustering, assortativity, path lengths, and triad significance profiles. These regularities, found in the ensemble of Wikipedias in different languages and of different sizes, point to the existence of a unique growth process. We also compare Wikipedias to other previously studied networks.
Water evaporation: a transition path sampling study.
Varilly, Patrick; Chandler, David
2013-02-07
We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
Nanoscale Electronic Conditioning for Improvement of Nanowire Light-Emitting-Diode Efficiency.
May, Brelon J; Belz, Matthew R; Ahamed, Arshad; Sarwar, A T M G; Selcu, Camelia M; Myers, Roberto C
2018-04-24
Commercial III-Nitride LEDs and lasers spanning visible and ultraviolet wavelengths are based on epitaxial films. Alternatively, nanowire-based III-Nitride optoelectronics offer the advantage of strain compliance and high crystalline quality growth on a variety of inexpensive substrates. However, nanowire LEDs exhibit an inherent property distribution, resulting in uneven current spreading through macroscopic devices that consist of millions of individual nanowire diodes connected in parallel. Despite being electrically connected, only a small fraction of nanowires, sometimes <1%, contribute to the electroluminescence (EL). Here, we show that a population of electrical shorts exists in the devices, consisting of a subset of low-resistance nanowires that pass a large portion of the total current in the ensemble devices. Burn-in electronic conditioning is performed by applying a short-term overload voltage; the nanoshorts experience very high current density, sufficient to render them open circuits, thereby forcing a new current path through more nanowire LEDs in an ensemble device. Current-voltage measurements of individual nanowires are acquired using conductive atomic force microscopy to observe the removal of nanoshorts using burn-in. In macroscopic devices, this results in a 33× increase in peak EL and reduced leakage current. Burn-in conditioning of nanowire ensembles therefore provides a straightforward method to mitigate nonuniformities inherent to nanowire devices.
The Influence of Internal Model Variability in GEOS-5 on Interhemispheric CO2 Exchange
NASA Technical Reports Server (NTRS)
Allen, Melissa; Erickson, David; Kendall, Wesley; Fu, Joshua; Ott, Leslie; Pawson, Steven
2012-01-01
An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability.
Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J
2015-06-28
We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.
Unimodular lattice triangulations as small-world and scale-free random graphs
NASA Astrophysics Data System (ADS)
Krüger, B.; Schmidt, E. M.; Mecke, K.
2015-02-01
Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.
NASA Astrophysics Data System (ADS)
Janicka, Lucja; Szczepanik, Dominika; Borek, Karolina; Heese, Birgit; Stachlewska, Iwona S.
2018-04-01
The aerosol layers of different origin, suspended in the atmosphere on 9-11 August 2015 were observed with the PollyXT-UW lidar in Warsaw, Poland. The HYSPLIT ensemble backward trajectories indicate that the observed air-masses attribute to a few different sources, among others, possible transport paths from Ukraine, Slovakia, and Africa. In this paper, we attempt to analyse and discuss the properties of aerosol particles of different origin that were suspended over Warsaw during this event.
Yang, Li; Sun, Rui; Hase, William L
2011-11-08
In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2016-04-01
Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative impact on the calibration error, but makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Trinh, Allan K.
2018-05-01
The neighbourhood of the largest eigenvalue λmax in the Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble (LUE) is referred to as the soft edge. It is known that there exists a particular centring and scaling such that the distribution of λmax tends to a universal form, with an error term bounded by 1/N2/3. We take up the problem of computing the exact functional form of the leading error term in a large N asymptotic expansion for both the GUE and LUE—two versions of the LUE are considered, one with the parameter a fixed and the other with a proportional to N. Both settings in the LUE case allow for an interpretation in terms of the distribution of a particular weighted path length in a model involving exponential variables on a rectangular grid, as the grid size gets large. We give operator theoretic forms of the corrections, which are corollaries of knowledge of the first two terms in the large N expansion of the scaled kernel and are readily computed using a method due to Bornemann. We also give expressions in terms of the solutions of particular systems of coupled differential equations, which provide an alternative method of computation. Both characterisations are well suited to a thinned generalisation of the original ensemble, whereby each eigenvalue is deleted independently with probability (1 - ξ). In Sec. V, we investigate using simulation the question of whether upon an appropriate centring and scaling a wider class of complex Hermitian random matrix ensembles have their leading correction to the distribution of λmax proportional to 1/N2/3.
Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio
2017-10-12
The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.
NASA Astrophysics Data System (ADS)
Yettella, Vineel; Kay, Jennifer E.
2017-09-01
The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.
NASA Astrophysics Data System (ADS)
Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.
2016-12-01
This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.
Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai
2014-01-01
This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
Improved transition path sampling methods for simulation of rare events
NASA Astrophysics Data System (ADS)
Chopra, Manan; Malshe, Rohit; Reddy, Allam S.; de Pablo, J. J.
2008-04-01
The free energy surfaces of a wide variety of systems encountered in physics, chemistry, and biology are characterized by the existence of deep minima separated by numerous barriers. One of the central aims of recent research in computational chemistry and physics has been to determine how transitions occur between deep local minima on rugged free energy landscapes, and transition path sampling (TPS) Monte-Carlo methods have emerged as an effective means for numerical investigation of such transitions. Many of the shortcomings of TPS-like approaches generally stem from their high computational demands. Two new algorithms are presented in this work that improve the efficiency of TPS simulations. The first algorithm uses biased shooting moves to render the sampling of reactive trajectories more efficient. The second algorithm is shown to substantially improve the accuracy of the transition state ensemble by introducing a subset of local transition path simulations in the transition state. The system considered in this work consists of a two-dimensional rough energy surface that is representative of numerous systems encountered in applications. When taken together, these algorithms provide gains in efficiency of over two orders of magnitude when compared to traditional TPS simulations.
HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.
Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng
2018-03-27
LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .
Nonequilibrium umbrella sampling in spaces of many order parameters
NASA Astrophysics Data System (ADS)
Dickson, Alex; Warmflash, Aryeh; Dinner, Aaron R.
2009-02-01
We recently introduced an umbrella sampling method for obtaining nonequilibrium steady-state probability distributions projected onto an arbitrary number of coordinates that characterize a system (order parameters) [A. Warmflash, P. Bhimalapuram, and A. R. Dinner, J. Chem. Phys. 127, 154112 (2007)]. Here, we show how our algorithm can be combined with the image update procedure from the finite-temperature string method for reversible processes [E. Vanden-Eijnden and M. Venturoli, "Revisiting the finite temperature string method for calculation of reaction tubes and free energies," J. Chem. Phys. (in press)] to enable restricted sampling of a nonequilibrium steady state in the vicinity of a path in a many-dimensional space of order parameters. For the study of transitions between stable states, the adapted algorithm results in improved scaling with the number of order parameters and the ability to progressively refine the regions of enforced sampling. We demonstrate the algorithm by applying it to a two-dimensional model of driven Brownian motion and a coarse-grained (Ising) model for nucleation under shear. It is found that the choice of order parameters can significantly affect the convergence of the simulation; local magnetization variables other than those used previously for sampling transition paths in Ising systems are needed to ensure that the reactive flux is primarily contained within a tube in the space of order parameters. The relation of this method to other algorithms that sample the statistics of path ensembles is discussed.
Residue-level global and local ensemble-ensemble comparisons of protein domains.
Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew
2015-09-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.
Residue-level global and local ensemble-ensemble comparisons of protein domains
Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P
2015-01-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.
2001-12-01
As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html
An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2013-08-01
A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.
A comparison of breeding and ensemble transform vectors for global ensemble generation
NASA Astrophysics Data System (ADS)
Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan
2012-02-01
To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh
2015-04-01
Drought is a natural phenomenon that can cause significant environmental, ecological, and socio-economic losses in water scarce regions. Studies of drought under climate change are essential for water resources planning and management. Dry spells and number of consecutive days with precipitation below a certain threshold can be used to identify the severity of hydrological drought. In this study, we analyzed the projected changes of number of dry days in two future periods, 2011-2040 and 2071-2100, for both seasonal and annual time scales in the Lake Urmia Basin. The lake and its wetlands, located in northwestern Iran, have invaluable environmental, social, and economic importance for the region. The lake level has been shrinking dramatically since 1995 and now the water volume is less than 30% of its original. Moreover, frequent dry spells have struck the region and effected the region's water resources and lake ecosystem as in other parts of Iran too. Analyzing future drought and dry spells characteristics in the region is crucial for sustainable water management and lake restoration plans. We used daily projected precipitation from 20 climate models used in the CMIP5 (Coupled Model Inter-comparison Project Phase 5) driven by three representative paths, RCP2.6, RCP4.5, and, RCP8.5. The model outputs were statistically downscaled and validated based on the historical observation period 1980-2010. We defined days with precipitation less than 1 mm as dry days for both observation periods and model projections. The model validation showed that all models underestimated the number of dry days. An ensemble based on the validation results consisting of five models which were in best agreement with observations was used to assess the changes in number of future dry days in Lake Urmia Basin. The entire ensemble showed increase in number of dry days for all seasons. The projected changes in winter and spring were larger than for summer and autumn. All models projected dryer winter and spring periods in the near and far future periods. The ensemble mean for future annual dry days increased by 6.5 % to 7.3% for the different climate change related emission and concentration pathway RCP2.6, RCP4.5, and, RCP8.5.
Szathmáry, E
2000-01-01
Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914
Szathmáry, E
2000-11-29
Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.
NASA Technical Reports Server (NTRS)
Jahshan, S. N.; Singleterry, R. C.
2001-01-01
The effect of random fuel redistribution on the eigenvalue of a one-speed reactor is investigated. An ensemble of such reactors that are identical to a homogeneous reference critical reactor except for the fissile isotope density distribution is constructed such that it meets a set of well-posed redistribution requirements. The average eigenvalue,
Measuring social interaction in music ensembles
D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano
2016-01-01
Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. PMID:27069054
Measuring social interaction in music ensembles.
Volpe, Gualtiero; D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano
2016-05-05
Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. © 2016 The Author(s).
Ocean Predictability and Uncertainty Forecasts Using Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, M.; Hogan, P. J.; Rowley, C. D.; Smedstad, O. M.; Wallcraft, A. J.; Penny, S. G.
2017-12-01
Ocean predictability and uncertainty are studied with an ensemble system that has been developed based on the US Navy's operational HYCOM using the Local Ensemble Transfer Kalman Filter (LETKF) technology. One of the advantages of this method is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates operational observations using ensemble method. The background covariance during this assimilation process is implicitly supplied with the ensemble avoiding the difficult task of developing tangent linear and adjoint models out of HYCOM with the complicated hybrid isopycnal vertical coordinate for 4D-VAR. The flow-dependent background covariance from the ensemble will be an indispensable part in the next generation hybrid 4D-Var/ensemble data assimilation system. The predictability and uncertainty for the ocean forecasts are studied initially for the Gulf of Mexico. The results are compared with another ensemble system using Ensemble Transfer (ET) method which has been used in the Navy's operational center. The advantages and disadvantages are discussed.
Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways
Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver
2015-01-01
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions. PMID:26488417
Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á
2018-03-01
This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.
H theorem for generalized entropic forms within a master-equation framework
NASA Astrophysics Data System (ADS)
Casas, Gabriela A.; Nobre, Fernando D.; Curado, Evaldo M. F.
2016-03-01
The H theorem is proven for generalized entropic forms, in the case of a discrete set of states. The associated probability distributions evolve in time according to a master equation, for which the corresponding transition rates depend on these entropic forms. An important equation describing the time evolution of the transition rates and probabilities in such a way as to drive the system towards an equilibrium state is found. In the particular case of Boltzmann-Gibbs entropy, it is shown that this equation is satisfied in the microcanonical ensemble only for symmetric probability transition rates, characterizing a single path to the equilibrium state. This equation fulfils the proof of the H theorem for generalized entropic forms, associated with systems characterized by complex dynamics, e.g., presenting nonsymmetric probability transition rates and more than one path towards the same equilibrium state. Some examples considering generalized entropies of the literature are discussed, showing that they should be applicable to a wide range of natural phenomena, mainly those within the realm of complex systems.
Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms
NASA Astrophysics Data System (ADS)
Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.
2018-04-01
Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
ERIC Educational Resources Information Center
Jones, Sara K.
2018-01-01
The purpose of this comparative case study was to examine the motivation for participation in traditional and non-traditional vocal ensembles by students who are not pursuing a career in music and the perceived benefits of this participation. Participants were selected from a traditional mixed choral ensemble and a student-run a cappella ensemble.…
Zheng, Jingjing; Truhlar, Donald G
2012-01-01
Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.
NASA Astrophysics Data System (ADS)
Shen, Feifei; Xu, Dongmei; Xue, Ming; Min, Jinzhong
2017-07-01
This study examines the impacts of assimilating radar radial velocity (Vr) data for the simulation of hurricane Ike (2008) with two different ensemble generation techniques in the framework of the hybrid ensemble-variational (EnVar) data assimilation system of Weather Research and Forecasting model. For the generation of ensemble perturbations we apply two techniques, the ensemble transform Kalman filter (ETKF) and the ensemble of data assimilation (EDA). For the ETKF-EnVar, the forecast ensemble perturbations are updated by the ETKF, while for the EDA-EnVar, the hybrid is employed to update each ensemble member with perturbed observations. The ensemble mean is analyzed by the hybrid method with flow-dependent ensemble covariance for both EnVar. The sensitivity of analyses and forecasts to the two applied ensemble generation techniques is investigated in our current study. It is found that the EnVar system is rather stable with different ensemble update techniques in terms of its skill on improving the analyses and forecasts. The EDA-EnVar-based ensemble perturbations are likely to include slightly less organized spatial structures than those in ETKF-EnVar, and the perturbations of the latter are constructed more dynamically. Detailed diagnostics reveal that both of the EnVar schemes not only produce positive temperature increments around the hurricane center but also systematically adjust the hurricane location with the hurricane-specific error covariance. On average, the analysis and forecast from the ETKF-EnVar have slightly smaller errors than that from the EDA-EnVar in terms of track, intensity, and precipitation forecast. Moreover, ETKF-EnVar yields better forecasts when verified against conventional observations.
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Tunable ion-photon entanglement in an optical cavity.
Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R
2012-05-23
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold
2016-01-01
Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
Diffusion of strongly magnetized cosmic ray particles in a turbulent medium
NASA Technical Reports Server (NTRS)
Ptuskin, V. S.
1985-01-01
Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.
Path integrals, the ABL rule and the three-box paradox
NASA Astrophysics Data System (ADS)
Sokolovski, D.; Puerto Giménez, I.; Sala Mayato, R.
2008-10-01
The three-box problem is analysed in terms of virtual pathways, interference between which is destroyed by a number of intermediate measurements. The Aharonov-Bergmann-Lebowitz (ABL) rule is shown to be a particular case of Feynman's recipe for assigning probabilities to exclusive alternatives. The ‘paradoxical’ features of the three box case arise in an attempt to attribute, in contradiction to the uncertainty principle, properties pertaining to different ensembles produced by different intermediate measurements to the same particle. The effect can be mimicked by a classical system, provided an observation is made to perturb the system in a non-local manner.
Equilibrium Ensembles for Insulin Folding from Bias-Exchange Metadynamics.
Singh, Richa; Bansal, Rohit; Rathore, Anurag Singh; Goel, Gaurav
2017-04-25
Earliest events in the aggregation process, such as single molecule reconfiguration, are extremely important and the most difficult to characterize in experiments. To this end, we have used well-tempered bias exchange metadynamics simulations to determine the equilibrium ensembles of an insulin molecule under amyloidogenic conditions of low pH and high temperature. A bin-based clustering method that uses statistics accumulated in bias exchange metadynamics trajectories was employed to construct a detailed thermodynamic and kinetic model of insulin folding. The highest lifetime, lowest free-energy ensemble identified consisted of native conformations adopted by a folded insulin monomer in solution, namely, the R-, the R f -, and the T-states of insulin. The lowest free-energy structure had a root mean square deviation of only 0.15 nm from native x-ray structure. The second longest-lived metastable state was an unfolded, compact monomer with little similarity to the native structure. We have identified three additional long-lived, metastable states from the bin-based model. We then carried out an exhaustive structural characterization of metastable states on the basis of tertiary contact maps and per-residue accessible surface areas. We have also determined the lowest free-energy path between two longest-lived metastable states and confirm earlier findings of non-two-state folding for insulin through a folding intermediate. The ensemble containing the monomeric intermediate retained 58% of native hydrophobic contacts, however, accompanied by a complete loss of native secondary structure. We have discussed the relative importance of nativelike versus nonnative tertiary contacts for the folding transition. We also provide a simple measure to determine the importance of an individual residue for folding transition. Finally, we have compared and contrasted this intermediate with experimental data obtained in spectroscopic, crystallographic, and calorimetric measurements during early stages of insulin aggregation. We have also determined stability of monomeric insulin by incubation at a very low concentration to isolate protein-protein interaction effects. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges
NASA Astrophysics Data System (ADS)
Fry, C. D.; Eccles, J. V.; Reich, J. P.
2010-12-01
Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.
NASA Astrophysics Data System (ADS)
Resseguier, V.; Memin, E.; Chapron, B.; Fox-Kemper, B.
2017-12-01
In order to better observe and predict geophysical flows, ensemble-based data assimilation methods are of high importance. In such methods, an ensemble of random realizations represents the variety of the simulated flow's likely behaviors. For this purpose, randomness needs to be introduced in a suitable way and physically-based stochastic subgrid parametrizations are promising paths. This talk will propose a new kind of such a parametrization referred to as modeling under location uncertainty. The fluid velocity is decomposed into a resolved large-scale component and an aliased small-scale one. The first component is possibly random but time-correlated whereas the second is white-in-time but spatially-correlated and possibly inhomogeneous and anisotropic. With such a velocity, the material derivative of any - possibly active - tracer is modified. Three new terms appear: a correction of the large-scale advection, a multiplicative noise and a possibly heterogeneous and anisotropic diffusion. This parameterization naturally ensures attractive properties such as energy conservation for each realization. Additionally, this stochastic material derivative and the associated Reynolds' transport theorem offer a systematic method to derive stochastic models. In particular, we will discuss the consequences of the Quasi-Geostrophic assumptions in our framework. Depending on the turbulence amount, different models with different physical behaviors are obtained. Under strong turbulence assumptions, a simplified diagnosis of frontolysis and frontogenesis at the surface of the ocean is possible in this framework. A Surface Quasi-Geostrophic (SQG) model with a weaker noise influence has also been simulated. A single realization better represents small scales than a deterministic SQG model at the same resolution. Moreover, an ensemble accurately predicts extreme events, bifurcations as well as the amplitudes and the positions of the simulation errors. Figure 1 highlights this last result and compares it to the strong error underestimation of an ensemble simulated from the deterministic dynamic with random initial conditions.
On the predictability of outliers in ensemble forecasts
NASA Astrophysics Data System (ADS)
Siegert, S.; Bröcker, J.; Kantz, H.
2012-03-01
In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.
Yang, Shan; Al-Hashimi, Hashim M.
2016-01-01
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693
Zerbino, Daniel R.; Johnson, Nathan; Juetteman, Thomas; Sheppard, Dan; Wilder, Steven P.; Lavidas, Ilias; Nuhn, Michael; Perry, Emily; Raffaillac-Desfosses, Quentin; Sobral, Daniel; Keefe, Damian; Gräf, Stefan; Ahmed, Ikhlak; Kinsella, Rhoda; Pritchard, Bethan; Brent, Simon; Amode, Ridwan; Parker, Anne; Trevanion, Steven; Birney, Ewan; Dunham, Ian; Flicek, Paul
2016-01-01
New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl’s regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org PMID:26888907
NASA Astrophysics Data System (ADS)
Kadoura, Ahmad; Sun, Shuyu; Salama, Amgad
2014-08-01
Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.
Feature selection for the classification of traced neurons.
López-Cabrera, José D; Lorenzo-Ginori, Juan V
2018-06-01
The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.
Relationships among Ensemble Participation, Private Instruction, and Aural Skill Development.
ERIC Educational Resources Information Center
May, William V.; Elliott, Charles A.
1980-01-01
This study sought to determine the relationships that exist among junior high school students' participation in school performing ensembles, those skills measured by the Gaston Test of Musicality, and the number of years of private study on the piano or on ensemble instruments. (Author/SJL)
Gradient Echo Quantum Memory in Warm Atomic Vapor
Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.
2013-01-01
Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586
Gradient echo quantum memory in warm atomic vapor.
Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C
2013-11-11
Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.
Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation
NASA Astrophysics Data System (ADS)
Tsai, Hung-Ming; Poirier, Bill
2016-03-01
In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.
ERIC Educational Resources Information Center
Morford, James B.
2007-01-01
Music teachers are often influenced by pedagogical practices in the collegiate ensembles in which they performed. Opportunities to participate in collegiate world music ensembles have increased in recent decades; West African ensembles and steel bands represent the second and third most common of these in the United States. The absence of…
EnsembleGraph: Interactive Visual Analysis of Spatial-Temporal Behavior for Ensemble Simulation Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Qingya; Guo, Hanqi; Che, Limei
We present a novel visualization framework—EnsembleGraph— for analyzing ensemble simulation data, in order to help scientists understand behavior similarities between ensemble members over space and time. A graph-based representation is used to visualize individual spatiotemporal regions with similar behaviors, which are extracted by hierarchical clustering algorithms. A user interface with multiple-linked views is provided, which enables users to explore, locate, and compare regions that have similar behaviors between and then users can investigate and analyze the selected regions in detail. The driving application of this paper is the studies on regional emission influences over tropospheric ozone, which is based onmore » ensemble simulations conducted with different anthropogenic emission absences using the MOZART-4 (model of ozone and related tracers, version 4) model. We demonstrate the effectiveness of our method by visualizing the MOZART-4 ensemble simulation data and evaluating the relative regional emission influences on tropospheric ozone concentrations. Positive feedbacks from domain experts and two case studies prove efficiency of our method.« less
Multi-Model Ensemble Wake Vortex Prediction
NASA Technical Reports Server (NTRS)
Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.
2015-01-01
Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.
NASA Astrophysics Data System (ADS)
Taniguchi, Kenji
2018-04-01
To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.
Random matrix ensembles for many-body quantum systems
NASA Astrophysics Data System (ADS)
Vyas, Manan; Seligman, Thomas H.
2018-04-01
Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.
Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.
Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K
2018-01-01
Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.
Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction
Mendes, Alexandre; Chalup, Stephan K.
2018-01-01
Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578
ERIC Educational Resources Information Center
Kramer, John R.
2012-01-01
Classical guitar ensembles are increasing in the United States as popular alternatives to band, choir, and orchestra. Classical guitar ensembles are offered at many middle and high schools as fine arts electives as one of the only options for classical guitarists to participate in ensembles. The purpose of this study was to explore the development…
NASA Astrophysics Data System (ADS)
Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.
2018-03-01
We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.
A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.
Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen
2016-05-10
Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water
Juraszek, Jarek; Bolhuis, Peter G.
2008-01-01
We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648
NASA Astrophysics Data System (ADS)
Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-11-01
We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.
Retention of College Students and Freshman-Year Music Ensemble Participation
ERIC Educational Resources Information Center
Crowe, Don R.
2015-01-01
This study investigates the effects of music ensemble participation during the freshman fall semester on the ongoing retention of college students. Retention of college students is a concern across the nation. The research question for the study was, "Is there a correlation between participation in music ensembles during college students'…
Nanni, Loris; Lumini, Alessandra
2009-01-01
The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.
NASA Technical Reports Server (NTRS)
Sippel, Jason A.; Zhang, Fuqing
2009-01-01
This study uses short-range ensemble forecasts initialized with an Ensemble-Kalman filter to study the dynamics and predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. It is found that deep moisture and high convective available potential energy (CAPE) are two of the most important factors for the genesis of Humberto. Variations in CAPE result in as much difference (ensemble spread) in the final hurricane intensity as do variations in deep moisture. CAPE differences here are related to the interaction between the cyclone and a nearby front, which tends to stabilize the lower troposphere in the vicinity of the circulation center. This subsequently weakens convection and slows genesis. Eventually the wind-induced surface heat exchange mechanism and differences in landfall time result in even larger ensemble spread. 1
Structure of marginally jammed polydisperse packings of frictionless spheres
NASA Astrophysics Data System (ADS)
Zhang, Chi; O'Donovan, Cathal B.; Corwin, Eric I.; Cardinaux, Frédéric; Mason, Thomas G.; Möbius, Matthias E.; Scheffold, Frank
2015-03-01
We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres. To this end we expand on the granocentric model [Clusel et al., Nature (London) 460, 611 (2009), 10.1038/nature08158], explicitly taking into account rattlers. This leads to a relationship between the characteristic parameters of the packing, such as the mean number of neighbors and the fraction of rattlers, and the radial distribution function g (r ) . We find excellent agreement between the model predictions for g (r ) and packing simulations, as well as experiments on jammed emulsion droplets. The observed quantitative agreement opens the path towards a full structural characterization of jammed particle systems for imaging and scattering experiments.
Molecular traffic jams on DNA.
Finkelstein, Ilya J; Greene, Eric C
2013-01-01
All aspects of DNA metabolism-including transcription, replication, and repair-involve motor enzymes that move along genomic DNA. These processes must all take place on chromosomes that are occupied by a large number of other proteins. However, very little is known regarding how nucleic acid motor proteins move along the crowded DNA substrates that are likely to exist in physiological settings. This review summarizes recent progress in understanding how DNA-binding motor proteins respond to the presence of other proteins that lie in their paths. We highlight recent single-molecule biophysical experiments aimed at addressing this question, with an emphasis placed on analyzing the single-molecule, ensemble biochemical, and in vivo data from a mechanistic perspective.
Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin
2014-01-01
This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.
Critical diversity: Divided or united states of social coordination
Kelso, J. A. Scott; Tognoli, Emmanuelle
2018-01-01
Much of our knowledge of coordination comes from studies of simple, dyadic systems or systems containing large numbers of components. The huge gap ‘in between’ is seldom addressed, empirically or theoretically. We introduce a new paradigm to study the coordination dynamics of such intermediate-sized ensembles with the goal of identifying key mechanisms of interaction. Rhythmic coordination was studied in ensembles of eight people, with differences in movement frequency (‘diversity’) manipulated within the ensemble. Quantitative change in diversity led to qualitative changes in coordination, a critical value separating régimes of integration and segregation between groups. Metastable and multifrequency coordination between participants enabled communication across segregated groups within the ensemble, without destroying overall order. These novel findings reveal key factors underlying coordination in ensemble sizes previously considered too complicated or 'messy' for systematic study and supply future theoretical/computational models with new empirical checkpoints. PMID:29617371
The Oral Tradition in the Sankofa Drum and Dance Ensemble: Student Perceptions
ERIC Educational Resources Information Center
Hess, Juliet
2009-01-01
The Sankofa Drum and Dance Ensemble is a Ghanaian drum and dance ensemble that focusses on music in the Ewe tradition. It is based in an elementary school in the Greater Toronto Area and consists of students in Grade 4 through Grade 8. Students in the ensemble study Ghanaian traditional Ewe drumming and dancing in the oral tradition. Nine students…
Reciprocity in directed networks
NASA Astrophysics Data System (ADS)
Yin, Mei; Zhu, Lingjiong
2016-04-01
Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.
New technologies for examining the role of neuronal ensembles in drug addiction and fear.
Cruz, Fabio C; Koya, Eisuke; Guez-Barber, Danielle H; Bossert, Jennifer M; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T
2013-11-01
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Spirituality and Synagogue Music: A Case Study of Two Synagogue Music Ensembles
ERIC Educational Resources Information Center
Shansky, Carol
2012-01-01
Participation in community music ensembles is an important and popular form of music education--with members of ensembles that perform within religious services having the opportunity of experiencing a possible extra dimension of a spiritual experience. Thus the intent of this study was to survey adult choir and band members at Temple Emeth in…
Verification of forecast ensembles in complex terrain including observation uncertainty
NASA Astrophysics Data System (ADS)
Dorninger, Manfred; Kloiber, Simon
2017-04-01
Traditionally, verification means to verify a forecast (ensemble) with the truth represented by observations. The observation errors are quite often neglected arguing that they are small when compared to the forecast error. In this study as part of the MesoVICT (Mesoscale Verification Inter-comparison over Complex Terrain) project it will be shown, that observation errors have to be taken into account for verification purposes. The observation uncertainty is estimated from the VERA (Vienna Enhanced Resolution Analysis) and represented via two analysis ensembles which are compared to the forecast ensemble. For the whole study results from COSMO-LEPS provided by Arpae-SIMC Emilia-Romagna are used as forecast ensemble. The time period covers the MesoVICT core case from 20-22 June 2007. In a first step, all ensembles are investigated concerning their distribution. Several tests have been executed (Kolmogorov-Smirnov-Test, Finkelstein-Schafer Test, Chi-Square Test etc.) showing no exact mathematical distribution. So the main focus is on non-parametric statistics (e.g. Kernel density estimation, Boxplots etc.) and also the deviation between "forced" normal distributed data and the kernel density estimations. In a next step the observational deviations due to the analysis ensembles are analysed. In a first approach scores are multiple times calculated with every single ensemble member from the analysis ensemble regarded as "true" observation. The results are presented as boxplots for the different scores and parameters. Additionally, the bootstrapping method is also applied to the ensembles. These possible approaches to incorporating observational uncertainty into the computation of statistics will be discussed in the talk.
Davey, James A; Chica, Roberto A
2014-05-01
Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.
Amozegar, M; Khorasani, K
2016-04-01
In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yuanbing; Min, Jinzhong; Chen, Yaodeng; Huang, Xiang-Yu; Zeng, Mingjian; Li, Xin
2017-01-01
This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to implement. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from time-lagged ensemble into variational cost function without significantly increasing computational cost. Single observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is evaluated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a continuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-lagged ensembles. Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved precipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like a viable alternative or supplement in the complex models for some weather service agencies that have limited computing resources to conduct large size of ensembles.
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
Simulation studies of the fidelity of biomolecular structure ensemble recreation
NASA Astrophysics Data System (ADS)
Lätzer, Joachim; Eastwood, Michael P.; Wolynes, Peter G.
2006-12-01
We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Gō-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" ϕ values, were first constructed from this reference ensemble. The resulting ϕ values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the ϕ values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average ϕ values, but allow fluctuations in ϕ for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in ϕ comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in ϕ (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.
Improving database enrichment through ensemble docking
NASA Astrophysics Data System (ADS)
Rao, Shashidhar; Sanschagrin, Paul C.; Greenwood, Jeremy R.; Repasky, Matthew P.; Sherman, Woody; Farid, Ramy
2008-09-01
While it may seem intuitive that using an ensemble of multiple conformations of a receptor in structure-based virtual screening experiments would necessarily yield improved enrichment of actives relative to using just a single receptor, it turns out that at least in the p38 MAP kinase model system studied here, a very large majority of all possible ensembles do not yield improved enrichment of actives. However, there are combinations of receptor structures that do lead to improved enrichment results. We present here a method to select the ensembles that produce the best enrichments that does not rely on knowledge of active compounds or sophisticated analyses of the 3D receptor structures. In the system studied here, the small fraction of ensembles of up to 3 receptors that do yield good enrichments of actives were identified by selecting ensembles that have the best mean GlideScore for the top 1% of the docked ligands in a database screen of actives and drug-like "decoy" ligands. Ensembles of two receptors identified using this mean GlideScore metric generally outperform single receptors, while ensembles of three receptors identified using this metric consistently give optimal enrichment factors in which, for example, 40% of the known actives outrank all the other ligands in the database.
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
NASA Astrophysics Data System (ADS)
Liu, Li; Xu, Yue-Ping
2017-04-01
Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
The "Accafellows:" Exploring the Music Making and Culture of a Collegiate a Cappella Ensemble
ERIC Educational Resources Information Center
Paparo, Stephen A.
2013-01-01
Despite the growth in number and popularity of collegiate a cappella ensembles in the USA over the past 20 years, few researchers have studied these self-governed, student-run, popular music ensembles. This ethnographic case study examined the music making and culture of the "Accafellows", an all-male a cappella group at a mid-western…
NASA Astrophysics Data System (ADS)
Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.
2002-05-01
Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.
New technologies for examining neuronal ensembles in drug addiction and fear
Cruz, Fabio C.; Koya, Eisuke; Guez-Barber, Danielle H.; Bossert, Jennifer M.; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.
2015-01-01
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear. PMID:24088811
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Regge trajectories and Hagedorn behavior: Hadronic realizations of dynamical dark matter
NASA Astrophysics Data System (ADS)
Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks
2017-11-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. In this talk, we study the properties of a hitherto-unexplored class of DDM ensembles in which the ensemble constituents are the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector. Such ensembles exhibit masses lying along Regge trajectories and Hagedorn-like densities of states that grow exponentially with mass. We investigate the applicable constraints on such dark-"hadronic" DDM ensembles and find that these constraints permit a broad range of mass and confinement scales for these ensembles. We also find that the distribution of the total present-day abundance across the ensemble is highly correlated with the values of these scales. This talk reports on research originally presented in Ref. [1].
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginn, Timothy R.; Weathers, Tess
Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.
2010-01-01
SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468
Constructing better classifier ensemble based on weighted accuracy and diversity measure.
Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.
Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure
Chao, Lidia S.
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402
NASA Astrophysics Data System (ADS)
Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei
2016-08-01
The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.
Exploring diversity in ensemble classification: Applications in large area land cover mapping
NASA Astrophysics Data System (ADS)
Mellor, Andrew; Boukir, Samia
2017-07-01
Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area remote sensing applications, for which training data is costly and resource intensive to collect.
Pauci ex tanto numero: reducing redundancy in multi-model ensembles
NASA Astrophysics Data System (ADS)
Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.
2013-02-01
We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date no attempts in this direction are documented within the air quality (AQ) community, although the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared biases among models will determine a biased ensemble, making therefore essential the errors of the ensemble members to be independent so that bias can cancel out. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated) we discourage selecting the members of the ensemble simply on the basis of scores, that is, independence and skills need to be considered disjointly.
Variety and volatility in financial markets
NASA Astrophysics Data System (ADS)
Lillo, Fabrizio; Mantegna, Rosario N.
2000-11-01
We study the price dynamics of stocks traded in a financial market by considering the statistical properties of both a single time series and an ensemble of stocks traded simultaneously. We use the n stocks traded on the New York Stock Exchange to form a statistical ensemble of daily stock returns. For each trading day of our database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists in most of the trading days with the exception of crash and rally days and of the days following these extreme events. We analyze each ensemble return distribution by extracting its first two central moments. We observe that these moments fluctuate in time and are stochastic processes, themselves. We characterize the statistical properties of ensemble return distribution central moments by investigating their probability density functions and temporal correlation properties. In general, time-averaged and portfolio-averaged price returns have different statistical properties. We infer from these differences information about the relative strength of correlation between stocks and between different trading days. Last, we compare our empirical results with those predicted by the single-index model and we conclude that this simple model cannot explain the statistical properties of the second moment of the ensemble return distribution.
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance. PMID:24695550
Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.
NASA Astrophysics Data System (ADS)
Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.
2009-08-01
The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.
Effects of ensemble and summary displays on interpretations of geospatial uncertainty data.
Padilla, Lace M; Ruginski, Ian T; Creem-Regehr, Sarah H
2017-01-01
Ensemble and summary displays are two widely used methods to represent visual-spatial uncertainty; however, there is disagreement about which is the most effective technique to communicate uncertainty to the general public. Visualization scientists create ensemble displays by plotting multiple data points on the same Cartesian coordinate plane. Despite their use in scientific practice, it is more common in public presentations to use visualizations of summary displays, which scientists create by plotting statistical parameters of the ensemble members. While prior work has demonstrated that viewers make different decisions when viewing summary and ensemble displays, it is unclear what components of the displays lead to diverging judgments. This study aims to compare the salience of visual features - or visual elements that attract bottom-up attention - as one possible source of diverging judgments made with ensemble and summary displays in the context of hurricane track forecasts. We report that salient visual features of both ensemble and summary displays influence participant judgment. Specifically, we find that salient features of summary displays of geospatial uncertainty can be misunderstood as displaying size information. Further, salient features of ensemble displays evoke judgments that are indicative of accurate interpretations of the underlying probability distribution of the ensemble data. However, when participants use ensemble displays to make point-based judgments, they may overweight individual ensemble members in their decision-making process. We propose that ensemble displays are a promising alternative to summary displays in a geospatial context but that decisions about visualization methods should be informed by the viewer's task.
A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Laura; Jakob, Christian; Cheung, K.
2013-06-27
Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-09-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.
Conductor and Ensemble Performance Expressivity and State Festival Ratings
ERIC Educational Resources Information Center
Price, Harry E.; Chang, E. Christina
2005-01-01
This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…
Building Identity in Collegiate Midlevel Choral Ensembles: The Director's Perspective
ERIC Educational Resources Information Center
Major, Marci L.
2017-01-01
This study was designed to explore the director's perspective on the role organizational images play in social identity development in midlevel choral ensembles. Using a phenomenological methodology, I interviewed 10 current or former directors of midlevel choral ensembles from eight midwestern U.S. colleges and universities. Directors cited…
Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.
Tria, Giancarlo; Mertens, Haydyn D T; Kachala, Michael; Svergun, Dmitri I
2015-03-01
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
2012-01-01
Background Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble? Results The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity. Conclusion Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway. PMID:23216969
Günther, Oliver P; Chen, Virginia; Freue, Gabriela Cohen; Balshaw, Robert F; Tebbutt, Scott J; Hollander, Zsuzsanna; Takhar, Mandeep; McMaster, W Robert; McManus, Bruce M; Keown, Paul A; Ng, Raymond T
2012-12-08
Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble? The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity. Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway.
Multi-model analysis in hydrological prediction
NASA Astrophysics Data System (ADS)
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been largely corrected on short-term predictions. For the longer term, the addition of the multi-model member has been beneficial to the quality of the predictions, although it is too early to determine whether the gain is related to the addition of a member or if multi-model member has plus-value itself.
Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
Tiesinga, P H E
2004-03-01
The reproducibility of neural spike train responses to an identical stimulus across different presentations (trials) has been studied extensively. Reliability, the degree of reproducibility of spike trains, was found to depend in part on the amplitude and frequency content of the stimulus [J. Hunter and J. Milton, J. Neurophysiol. 90, 387 (2003)]. The responses across different trials can sometimes be interpreted as the response of an ensemble of similar neurons to a single stimulus presentation. How does the reliability of the activity of neural ensembles affect information transmission between different cortical areas? We studied a model neural system consisting of two ensembles of neurons with Hodgkin-Huxley-type channels. The first ensemble was driven by an injected sinusoidal current that oscillated in the gamma-frequency range (40 Hz) and its output spike trains in turn drove the second ensemble by fast excitatory synaptic potentials with short term depression. We determined the relationship between the reliability of the first ensemble and the response of the second ensemble. In our paradigm the neurons in the first ensemble were initially in a chaotic state with unreliable and imprecise spike trains. The neurons became entrained to the oscillation and responded reliably when the stimulus power was increased by less than 10%. The firing rate of the first ensemble increased by 30%, whereas that of the second ensemble could increase by an order of magnitude. We also determined the response of the second ensemble when its input spike trains, which had non-Poisson statistics, were replaced by an equivalent ensemble of Poisson spike trains. The resulting output spike trains were significantly different from the original response, as assessed by the metric introduced by Victor and Purpura [J. Neurophysiol. 76, 1310 (1996)]. These results are a proof of principle that weak temporal modulations in the power of gamma-frequency oscillations in a given cortical area can strongly affect firing rate responses downstream by way of reliability in spite of rather modest changes in firing rate in the originating area.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Challenges in Visual Analysis of Ensembles
Crossno, Patricia
2018-04-12
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
Challenges in Visual Analysis of Ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossno, Patricia
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs
McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...
2016-05-06
In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less
NASA Astrophysics Data System (ADS)
Walz, Michael; Leckebusch, Gregor C.
2016-04-01
Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.
NASA Astrophysics Data System (ADS)
Re, Matteo; Valentini, Giorgio
2012-03-01
Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been proposed to explain the characteristics and the successful application of ensembles to different application domains. For instance, Allwein, Schapire, and Singer interpreted the improved generalization capabilities of ensembles of learning machines in the framework of large margin classifiers [4,177], Kleinberg in the context of stochastic discrimination theory [112], and Breiman and Friedman in the light of the bias-variance analysis borrowed from classical statistics [21,70]. Empirical studies showed that both in classification and regression problems, ensembles improve on single learning machines, and moreover large experimental studies compared the effectiveness of different ensemble methods on benchmark data sets [10,11,49,188]. The interest in this research area is motivated also by the availability of very fast computers and networks of workstations at a relatively low cost that allow the implementation and the experimentation of complex ensemble methods using off-the-shelf computer platforms. However, as explained in Section 26.2 there are deeper reasons to use ensembles of learning machines, motivated by the intrinsic characteristics of the ensemble methods. The main aim of this chapter is to introduce ensemble methods and to provide an overview and a bibliography of the main areas of research, without pretending to be exhaustive or to explain the detailed characteristics of each ensemble method. The paper is organized as follows. In the next section, the main theoretical and practical reasons for combining multiple learners are introduced. Section 26.3 depicts the main taxonomies on ensemble methods proposed in the literature. In Section 26.4 and 26.5, we present an overview of the main supervised ensemble methods reported in the literature, adopting a simple taxonomy, originally proposed in Ref. [201]. Applications of ensemble methods are only marginally considered, but a specific section on some relevant applications of ensemble methods in astronomy and astrophysics has been added (Section 26.6). The conclusion (Section 26.7) ends this paper and lists some issues not covered in this work.
Effects of Ensemble Configuration on Estimates of Regional Climate Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenson, N.; Mauger, G.; Leung, L. R.
Internal variability in the climate system can contribute substantial uncertainty in climate projections, particularly at regional scales. Internal variability can be quantified using large ensembles of simulations that are identical but for perturbed initial conditions. Here we compare methods for quantifying internal variability. Our study region spans the west coast of North America, which is strongly influenced by El Niño and other large-scale dynamics through their contribution to large-scale internal variability. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find that internal variability can be quantified consistently using a large ensemble or an ensemble ofmore » opportunity that includes small ensembles from multiple models and climate scenarios. The latter also produce estimates of uncertainty due to model differences. We conclude that projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible, which has implications for ensemble design in large modeling efforts.« less
Genetic programming based ensemble system for microarray data classification.
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.
Genetic Programming Based Ensemble System for Microarray Data Classification
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748
Bioactive focus in conformational ensembles: a pluralistic approach
NASA Astrophysics Data System (ADS)
Habgood, Matthew
2017-12-01
Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.
Pauci ex tanto numero: reduce redundancy in multi-model ensembles
NASA Astrophysics Data System (ADS)
Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.
2013-08-01
We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date, no attempts in this direction have been documented within the air quality (AQ) community despite the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared, dependant biases among models do not cancel out but will instead determine a biased ensemble. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated), we discourage selecting the members of the ensemble simply on the basis of scores; that is, independence and skills need to be considered disjointly.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa
NASA Astrophysics Data System (ADS)
Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann
2018-04-01
Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.
TID measurement using oblique transmissions of HF pulses
NASA Astrophysics Data System (ADS)
Galkin, Ivan; Reinisch, Bodo; Huang, Xueqin; Paznukhov, Vadym; Hamel, Ryan; Kozlov, Alexander; Belehaki, Anna
2017-04-01
The Traveling Ionospheric Disturbance (TID), a wave-like signature of moving plasma density modulation in the ionosphere, is widely acknowledged for its utility in backtracking the anomalous events responsible for the TID generation, and as a major inconvenience to high-frequency (HF) operational systems because of its deleterious impact on the accuracy of navigation and geolocation. The pilot project "Net-TIDE" for the real-time detection and evaluation of TIDs began its operation in 2016 based on the remote-sensing data from synchronized, network-coordinated HF sounding between pairs of DPS4D ionosondes at five participating observatories in Europe. Measurement of all signal properties (Doppler frequency, angle of arrival, and time-of-flight from transmitter to receiver) proved to be instrumental in detecting the TID and deducing the TID parameters: amplitude, wavelength, phase velocity, and direction of propagation. Processing of the measured HF signal data required a specialized signal processing technique that is capable of consistently extracting different signals that have propagated along different ionospheric paths. The multi-path signal environment proved to be the greatest challenge for the reliable TID specification by Net-TIDE, demanding the development of an intelligent system for "signal tracking". The intelligent system is based on a neural network model of a pre-attentive vision capable of extracting continuous signal tracks from the multi-path signal ensemble. Specific examples of the Net-TIDE algorithm suite operation and its suitability for a fully automated TID warning service are discussed.
ERIC Educational Resources Information Center
Mages, Wendy K.
2013-01-01
This research analyzes the techniques, strategies, and philosophical foundations that contributed to the quality and maintenance of a strong theatre-in-education ensemble. This study details how the company selected ensemble members and describes the work environment the company developed to promote collaboration and encourage actor-teacher…
Collaborative Composing in High School String Chamber Music Ensembles
ERIC Educational Resources Information Center
Hopkins, Michael T.
2015-01-01
The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…
Just Ask Me: Convergent Validity of Self-Reported Measures of Music Participation
ERIC Educational Resources Information Center
Elpus, Kenneth
2017-01-01
The purpose of this study was to determine the convergent validity of self-reported and objective measures of school music ensemble participation. Self-reported survey responses to a question about high school music ensemble participation and administrative data in the form of high school transcript-indicated ensemble enrollments were compared…
The Effect of Ensemble Performance Quality on the Evaluation of Conducting Expressivity
ERIC Educational Resources Information Center
Silvey, Brian A.
2011-01-01
This study was designed to examine whether the presence of excellent or poor ensemble performances would influence the ratings assigned by ensemble members to conductors who demonstrated highly expressive conducting. Two conductors were videotaped conducting one of two excerpts from an arrangement of Frank Ticheli's "Loch Lomond." These videos…
Gender and Attraction: Predicting Middle School Performance Ensemble Participation
ERIC Educational Resources Information Center
Warnock, Emery C.
2009-01-01
This study was designed to predict middle school sixth graders' group membership in band (n = 81), chorus (n = 45), and as non-participants in music performance ensembles (n = 127), as determined by gender and factors on the Attraction Toward School Performance Ensemble (ATSPE) scale (alpha = 0.88). Students completed the ATSPE as elementary fifth…
NASA Astrophysics Data System (ADS)
Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles
2017-06-01
A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
Lien, Mei-Ching; Ruthruff, Eric
2004-05-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-01-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations. Images FIGURE 5 FIGURE 7 PMID:8873992
Reaction mechanism and reaction coordinates from the viewpoint of energy flow
2016-01-01
Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C7eq → C7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition. PMID:27004858
Reaction mechanism and reaction coordinates from the viewpoint of energy flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu
Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of themore » alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.« less
NASA Astrophysics Data System (ADS)
Torre, Emanuele G. Dalla; Diehl, Sebastian; Lukin, Mikhail D.; Sachdev, Subir; Strack, Philipp
2013-02-01
We investigate nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we show that the distribution function of the photonic mode is thermal, with an effective temperature set by the atom-photon interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated superradiance transition. Motivated by these considerations, we develop a general Keldysh path-integral approach that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard diagrammatic techniques, we take into account the leading-order corrections due to the finite number N of atoms. For finite N, the photon mode behaves as a damped classical nonlinear oscillator at finite temperature. For the atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization due to dissipative dephasing.
Uncertainties associated with parameter estimation in atmospheric infrasound arrays.
Szuberla, Curt A L; Olson, John V
2004-01-01
This study describes a method for determining the statistical confidence in estimates of direction-of-arrival and trace velocity stemming from signals present in atmospheric infrasound data. It is assumed that the signal source is far enough removed from the infrasound sensor array that a plane-wave approximation holds, and that multipath and multiple source effects are not present. Propagation path and medium inhomogeneities are assumed not to be known at the time of signal detection, but the ensemble of time delays of signal arrivals between array sensor pairs is estimable and corrupted by uncorrelated Gaussian noise. The method results in a set of practical uncertainties that lend themselves to a geometric interpretation. Although quite general, this method is intended for use by analysts interpreting data from atmospheric acoustic arrays, or those interested in designing and deploying them. The method is applied to infrasound arrays typical of those deployed as a part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization.
NASA Astrophysics Data System (ADS)
Douglas, Jack
2014-03-01
One of the things that puzzled me when I was a PhD student working under Karl Freed was the curious unity between the theoretical descriptions of excluded volume interactions in polymers, the hydrodynamic properties of polymers in solution, and the critical properties of fluid mixtures, gases and diverse other materials (magnets, superfluids,etc.) when these problems were formally expressed in terms of Wiener path integration and the interactions treated through a combination of epsilon expansion and renormalization group (RG) theory. It seemed that only the interaction labels changed from one problem to the other. What do these problems have in common? Essential clues to these interrelations became apparent when Karl Freed, myself and Shi-Qing Wang together began to study polymers interacting with hyper-surfaces of continuously variable dimension where the Feynman perturbation expansions could be performed through infinite order so that we could really understand what the RG theory was doing. It is evidently simply a particular method for resuming perturbation theory, and former ambiguities no longer existed. An integral equation extension of this type of exact calculation to ``surfaces'' of arbitrary fixed shape finally revealed the central mathematical object that links these diverse physical models- the capacity of polymer chains, whose value vanishes at the critical dimension of 4 and whose magnitude is linked to the friction coefficient of polymer chains, the virial coefficient of polymers and the 4-point function of the phi-4 field theory,...Once this central object was recognized, it then became possible solve diverse problems in material science through the calculation of capacity, and related ``virials'' properties, through Monte Carlo sampling of random walk paths. The essential ideas of this computational method are discussed and some applications given to non-trivial problems: nanotubes treated as either rigid rods or ensembles worm-like chains having finite cross-section, DNA, nanoparticles with grafted chain layers and knotted polymers. The path-integration method, which grew up from research in Karl Freed's group, is evidently a powerful tool for computing basic transport properties of complex-shaped objects and should find increasing application in polymer science, nanotechnological applications and biology.
Jun, Sanghoon; Kim, Namkug; Seo, Joon Beom; Lee, Young Kyung; Lynch, David A
2017-12-01
We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-02-16
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less
Progressive freezing of interacting spins in isolated finite magnetic ensembles
NASA Astrophysics Data System (ADS)
Bhattacharya, Kakoli; Dupuis, Veronique; Le-Roy, Damien; Deb, Pritam
2017-02-01
Self-organization of magnetic nanoparticles into secondary nanostructures provides an innovative way for designing functional nanomaterials with novel properties, different from the constituent primary nanoparticles as well as their bulk counterparts. Collective magnetic properties of such complex closed packing of magnetic nanoparticles makes them more appealing than the individual magnetic nanoparticles in many technological applications. This work reports the collective magnetic behaviour of magnetic ensembles comprising of single domain Fe3O4 nanoparticles. The present work reveals that the ensemble formation is based on the re-orientation and attachment of the nanoparticles in an iso-oriented fashion at the mesoscale regime. Comprehensive dc magnetic measurements show the prevalence of strong interparticle interactions in the ensembles. Due to the close range organization of primary Fe3O4 nanoparticles in the ensemble, the spins of the individual nanoparticles interact through dipolar interactions as realized from remnant magnetization measurements. Signature of super spin glass like behaviour in the ensembles is observed in the memory studies carried out in field cooled conditions. Progressive freezing of spins in the ensembles is corroborated from the Vogel-Fulcher fit of the susceptibility data. Dynamic scaling of relaxation reasserted slow spin dynamics substantiating cluster spin glass like behaviour in the ensembles.
A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment
NASA Technical Reports Server (NTRS)
Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.;
2013-01-01
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
Kim, Jung-Hyun; Powell, Jeffery B; Roberge, Raymond J; Shepherd, Angie; Coca, Aitor
2014-01-01
The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m(2) in fabric/ensemble A, and 909.3 vs. 149.9 W/m(2) in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150-200 W·m(2), and (3) the effects of thermal environments on a level of heat stress in PPE ensemble wearers are greater than ensemble thermal characteristics.
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.
2008-12-01
Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Kim, H.; Utsumi, N.
2017-12-01
This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.
EFS: an ensemble feature selection tool implemented as R-package and web-application.
Neumann, Ursula; Genze, Nikita; Heider, Dominik
2017-01-01
Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.
A study of fuzzy logic ensemble system performance on face recognition problem
NASA Astrophysics Data System (ADS)
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
The Influence of Music Style and Conductor Race on Perceptions of Ensemble and Conductor Performance
ERIC Educational Resources Information Center
Vanweelden, Kimberly; McGee, Isaiah R.
2007-01-01
The purpose of this study was to examine music style and conductor race on perceptions of ensemble and conductor performance. Results found that conductor race and music style significantly affected ratings of ensemble and conductor performance. Evaluators rated a white conductor group higher than a black conductor group conducting the same…
Thermal preparation of an entangled steady state of distant driven spin ensembles
NASA Astrophysics Data System (ADS)
Teper, Natalia
2018-02-01
Entanglement properties are studied in the continuous-variable system of three nitrogen-vacancy center ensembles cou-pled to separate transmission line resonators interconnected by current-biased Josephson junction. The circuit is enhanced by Josephson parametric amplifier, which serves as source of squeezed microwave field. Bosonic modes of nitrogen-vacancy-center ensembles exhibit steady state entanglement for certain range of parameters. Squeezed microwave field can be consider as a driving force of entanglement. Proposed scheme provides generating entanglement for each of the three pairs of spin ensembles.
Ensemble transcript interaction networks: a case study on Alzheimer's disease.
Armañanzas, Rubén; Larrañaga, Pedro; Bielza, Concha
2012-10-01
Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities
NASA Astrophysics Data System (ADS)
Song, L. N.; Wang, Z. H.; Li, Yong
2018-05-01
We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.
High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study
Seshasayee, Aswin Sai Narain
2005-01-01
Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg) and Root Mean Square Deviation (RMSD) have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE), shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here. PMID:15760474
A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)
NASA Astrophysics Data System (ADS)
Gustafsson, N.; Bojarova, J.; Vignes, O.
2014-02-01
A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.
The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016
NASA Astrophysics Data System (ADS)
Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.
2017-12-01
Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity
NASA Astrophysics Data System (ADS)
Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique
2018-05-01
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
Pourhoseingholi, Mohamad Amin; Kheirian, Sedigheh; Zali, Mohammad Reza
2017-12-01
Colorectal cancer (CRC) is one of the most common malignancies and cause of cancer mortality worldwide. Given the importance of predicting the survival of CRC patients and the growing use of data mining methods, this study aims to compare the performance of models for predicting 5-year survival of CRC patients using variety of basic and ensemble data mining methods. The CRC dataset from The Shahid Beheshti University of Medical Sciences Research Center for Gastroenterology and Liver Diseases were used for prediction and comparative study of the base and ensemble data mining techniques. Feature selection methods were used to select predictor attributes for classification. The WEKA toolkit and MedCalc software were respectively utilized for creating and comparing the models. The obtained results showed that the predictive performance of developed models was altogether high (all greater than 90%). Overall, the performance of ensemble models was higher than that of basic classifiers and the best result achieved by ensemble voting model in terms of area under the ROC curve (AUC= 0.96). AUC Comparison of models showed that the ensemble voting method significantly outperformed all models except for two methods of Random Forest (RF) and Bayesian Network (BN) considered the overlapping 95% confidence intervals. This result may indicate high predictive power of these two methods along with ensemble voting for predicting 5-year survival of CRC patients.
Impact of ensemble learning in the assessment of skeletal maturity.
Cunha, Pedro; Moura, Daniel C; Guevara López, Miguel Angel; Guerra, Conceição; Pinto, Daniela; Ramos, Isabel
2014-09-01
The assessment of the bone age, or skeletal maturity, is an important task in pediatrics that measures the degree of maturation of children's bones. Nowadays, there is no standard clinical procedure for assessing bone age and the most widely used approaches are the Greulich and Pyle and the Tanner and Whitehouse methods. Computer methods have been proposed to automatize the process; however, there is a lack of exploration about how to combine the features of the different parts of the hand, and how to take advantage of ensemble techniques for this purpose. This paper presents a study where the use of ensemble techniques for improving bone age assessment is evaluated. A new computer method was developed that extracts descriptors for each joint of each finger, which are then combined using different ensemble schemes for obtaining a final bone age value. Three popular ensemble schemes are explored in this study: bagging, stacking and voting. Best results were achieved by bagging with a rule-based regression (M5P), scoring a mean absolute error of 10.16 months. Results show that ensemble techniques improve the prediction performance of most of the evaluated regression algorithms, always achieving best or comparable to best results. Therefore, the success of the ensemble methods allow us to conclude that their use may improve computer-based bone age assessment, offering a scalable option for utilizing multiple regions of interest and combining their output.
Model Independence in Downscaled Climate Projections: a Case Study in the Southeast United States
NASA Astrophysics Data System (ADS)
Gray, G. M. E.; Boyles, R.
2016-12-01
Downscaled climate projections are used to deduce how the climate will change in future decades at local and regional scales. It is important to use multiple models to characterize part of the future uncertainty given the impact on adaptation decision making. This is traditionally employed through an equally-weighted ensemble of multiple GCMs downscaled using one technique. Newer practices include several downscaling techniques in an effort to increase the ensemble's representation of future uncertainty. However, this practice may be adding statistically dependent models to the ensemble. Previous research has shown a dependence problem in the GCM ensemble in multiple generations, but has not been shown in the downscaled ensemble. In this case study, seven downscaled climate projections on the daily time scale are considered: CLAREnCE10, SERAP, BCCA (CMIP5 and CMIP3 versions), Hostetler, CCR, and MACA-LIVNEH. These data represent 83 ensemble members, 44 GCMs, and two generations of GCMs. Baseline periods are compared against the University of Idaho's METDATA gridded observation dataset. Hierarchical agglomerative clustering is applied to the correlated errors to determine dependent clusters. Redundant GCMs across different downscaling techniques show the most dependence, while smaller dependence signals are detected within downscaling datasets and across generations of GCMs. These results indicate that using additional downscaled projections to increase the ensemble size must be done with care to avoid redundant GCMs and the process of downscaling may increase the dependence of those downscaled GCMs. Climate model generation does not appear dissimilar enough to be treated as two separate statistical populations for ensemble building at the local and regional scales.
Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong
2016-01-01
Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.
"Playing It Like a Professional": Approaches to Ensemble Direction in Tertiary Institutions
ERIC Educational Resources Information Center
Harrison, Scott; O'Bryan, Jessica; Lebler, Don
2013-01-01
This article reports on a case study of three directors of large ensembles within a large conservatoire and the ways in which they attempted to scaffold their students into professional music careers. The core aim in this article is to respond to the question "What is the role and function of the ensemble experience on the training of the…
Selecting a climate model subset to optimise key ensemble properties
NASA Astrophysics Data System (ADS)
Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.
2018-02-01
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning.
Hoshiba, Yoshio; Wada, Takeyoshi; Hayashi-Takagi, Akiko
2017-01-01
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational. With the application of the latest optogenetic tools, it has been possible to collect direct evidence of the contributions of synaptic potentiation in the formation and consolidation of cell ensemble in a learning task specific manner. In this review, we summarize the current view of the causative role of synaptic plasticity as the cellular mechanism underlying the encoding of memory and recalling of learned memories. In particular, we will be focusing on the latest optoprobe developed for the visualization of such "synaptic ensembles." We further discuss how a new synaptic ensemble could contribute to the formation of cell ensembles during learning and memory. With the development and application of novel research tools in the future, studies on synaptic ensembles will pioneer new discoveries, eventually leading to a comprehensive understanding of how the brain works.
The Fukushima-137Cs deposition case study: properties of the multi-model ensemble.
Solazzo, E; Galmarini, S
2015-01-01
In this paper we analyse the properties of an eighteen-member ensemble generated by the combination of five atmospheric dispersion modelling systems and six meteorological data sets. The models have been applied to the total deposition of (137)Cs, following the nuclear accident of the Fukushima power plant in March 2011. Analysis is carried out with the scope of determining whether the ensemble is reliable, sufficiently diverse and if its accuracy and precision can be improved. Although ensemble practice is becoming more and more popular in many geophysical applications, good practice guidelines are missing as to how models should be combined for the ensembles to offer an improvement over single model realisations. We show that the ensemble of models share large portions of bias and variance and make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble mean with the advantage of being poorly correlated, allowing to save computational resources and reduce noise (and thus improving accuracy). We further propose and discuss two methods for selecting subsets of skilful and diverse members, and prove that, in the contingency of the present analysis, their mean outscores the full ensemble mean in terms of both accuracy (error) and precision (variance). Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Miyoshi, Takemasa; Kunii, Masaru
2012-03-01
The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-11-14
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.
Improving ensemble decision tree performance using Adaboost and Bagging
NASA Astrophysics Data System (ADS)
Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie
2015-12-01
Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.
Ensemble perception of color in autistic adults.
Maule, John; Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna
2017-05-01
Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839-851. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Zhang, Li; Ai, Haixin; Chen, Wen; Yin, Zimo; Hu, Huan; Zhu, Junfeng; Zhao, Jian; Zhao, Qi; Liu, Hongsheng
2017-05-18
Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models ( http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/ ).
Crossover ensembles of random matrices and skew-orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in
2011-08-15
Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less
Ensemble perception of color in autistic adults
Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna
2016-01-01
Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839–851. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:27874263
Image Change Detection via Ensemble Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Benjamin W; Vatsavai, Raju
2013-01-01
The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work,more » we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.« less
Multiple scattering in planetary regoliths using first-order incoherent interactions
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti
2017-10-01
We consider scattering of light by a planetary regolith modeled using discrete random media of spherical particles. The size of the random medium can range from microscopic sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the mean free path length of incoherent extinction. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path, and utilize the reciprocity of electromagnetic waves to verify the computation. We illustrate the incoherent volume-element scattering characteristics and compare the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM results for the current cases of sparse and dense discrete random media studied. The novel method can be applied in modeling light scattering by the surfaces of asteroids and other airless solar system objects, including UV-Vis-NIR spectroscopy, photometry, polarimetry, and radar scattering problems.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark
2018-04-10
Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of reaction rates and an improved understanding of activated states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Jun; Zhang, Jiangjiang; Li, Weixuan
2016-10-01
The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less
Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S
2016-11-01
Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krock, L.P.; Navalta, R.; Myhre, L.G.
An open bilayer ground-crew chemical defense ensemble (CDE) was proposed to reduce the thermal burden during vapor-only exposure periods. This study compared the thermal-stress profile of the proposed ensemble to that produced by the currently employed closed CDE. Four subjects, alternating ensembles on separate days, walked on a treadmill in an environmental chamber at 5.3 km/h (3.3 mph) and 2% grade (an energy expenditure of 350 kcal/h) for alternating work/rest to achieve significant recovery. Mean total sweat production was lower (1.38 vs. 2.50 liters) and percent sweat evaporation greater (65.7% vs. 30.0%) in the prototype ensemble than in the CDE.more » The prototype ensemble provided greater heat dissipation and allowed more-efficient sweat evaporation which had the double benefit of reducing heat storage and limiting dehydration.« less
NASA Astrophysics Data System (ADS)
Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.
2017-12-01
Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.
Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set.
Adler, Werner; Gefeller, Olaf; Gul, Asma; Horn, Folkert K; Khan, Zardad; Lausen, Berthold
2016-12-07
Random forests are successful classifier ensemble methods consisting of typically 100 to 1000 classification trees. Ensemble pruning techniques reduce the computational cost, especially the memory demand, of random forests by reducing the number of trees without relevant loss of performance or even with increased performance of the sub-ensemble. The application to the problem of an early detection of glaucoma, a severe eye disease with low prevalence, based on topographical measurements of the eye background faces specific challenges. We examine the performance of ensemble pruning strategies for glaucoma detection in an unbalanced data situation. The data set consists of 102 topographical features of the eye background of 254 healthy controls and 55 glaucoma patients. We compare the area under the receiver operating characteristic curve (AUC), and the Brier score on the total data set, in the majority class, and in the minority class of pruned random forest ensembles obtained with strategies based on the prediction accuracy of greedily grown sub-ensembles, the uncertainty weighted accuracy, and the similarity between single trees. To validate the findings and to examine the influence of the prevalence of glaucoma in the data set, we additionally perform a simulation study with lower prevalences of glaucoma. In glaucoma classification all three pruning strategies lead to improved AUC and smaller Brier scores on the total data set with sub-ensembles as small as 30 to 80 trees compared to the classification results obtained with the full ensemble consisting of 1000 trees. In the simulation study, we were able to show that the prevalence of glaucoma is a critical factor and lower prevalence decreases the performance of our pruning strategies. The memory demand for glaucoma classification in an unbalanced data situation based on random forests could effectively be reduced by the application of pruning strategies without loss of performance in a population with increased risk of glaucoma.
NASA Astrophysics Data System (ADS)
Roberge, S.; Chokmani, K.; De Sève, D.
2012-04-01
The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.
Ali, Safdar; Majid, Abdul; Khan, Asifullah
2014-04-01
Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our analysis demonstrates that ensemble-RF, ensemble-SVM and ensemble-KNN are more effective than their individual counterparts. The proposed 'IDM-PhyChm-Ens' method has shown improved performance compared to existing techniques.
SSAGES: Software Suite for Advanced General Ensemble Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less
SSAGES: Software Suite for Advanced General Ensemble Simulations.
Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J
2018-01-28
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
SSAGES: Software Suite for Advanced General Ensemble Simulations
NASA Astrophysics Data System (ADS)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.
2018-01-01
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
NASA Astrophysics Data System (ADS)
Hu, Jianlin; Li, Xun; Huang, Lin; Ying, Qi; Zhang, Qiang; Zhao, Bin; Wang, Shuxiao; Zhang, Hongliang
2017-11-01
Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 to -0.16) and MFE (0.26-0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06-0.19 and MNE of 0.16-0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Strecker, Claas; Meyer, Bernd
2018-05-29
Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2015-04-01
Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.
A Simple Approach to Account for Climate Model Interdependence in Multi-Model Ensembles
NASA Astrophysics Data System (ADS)
Herger, N.; Abramowitz, G.; Angelil, O. M.; Knutti, R.; Sanderson, B.
2016-12-01
Multi-model ensembles are an indispensable tool for future climate projection and its uncertainty quantification. Ensembles containing multiple climate models generally have increased skill, consistency and reliability. Due to the lack of agreed-on alternatives, most scientists use the equally-weighted multi-model mean as they subscribe to model democracy ("one model, one vote").Different research groups are known to share sections of code, parameterizations in their model, literature, or even whole model components. Therefore, individual model runs do not represent truly independent estimates. Ignoring this dependence structure might lead to a false model consensus, wrong estimation of uncertainty and effective number of independent models.Here, we present a way to partially address this problem by selecting a subset of CMIP5 model runs so that its climatological mean minimizes the RMSE compared to a given observation product. Due to the cancelling out of errors, regional biases in the ensemble mean are reduced significantly.Using a model-as-truth experiment we demonstrate that those regional biases persist into the future and we are not fitting noise, thus providing improved observationally-constrained projections of the 21st century. The optimally selected ensemble shows significantly higher global mean surface temperature projections than the original ensemble, where all the model runs are considered. Moreover, the spread is decreased well beyond that expected from the decreased ensemble size.Several previous studies have recommended an ensemble selection approach based on performance ranking of the model runs. Here, we show that this approach can perform even worse than randomly selecting ensemble members and can thus be harmful. We suggest that accounting for interdependence in the ensemble selection process is a necessary step for robust projections for use in impact assessments, adaptation and mitigation of climate change.
NASA Astrophysics Data System (ADS)
Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie
2016-07-01
This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.
Products of random matrices from fixed trace and induced Ginibre ensembles
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Cikovic, Milan
2018-05-01
We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M ‑ m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
NASA Astrophysics Data System (ADS)
Seko, Hiromu; Kunii, Masaru; Yokota, Sho; Tsuyuki, Tadashi; Miyoshi, Takemasa
2015-12-01
Experiments simulating intense vortices associated with tornadoes that occurred on 6 May 2012 on the Kanto Plain, Japan, were performed with a nested local ensemble transform Kalman filter (LETKF) system. Intense vortices were reproduced by downscale experiments with a 12-member ensemble in which the initial conditions were obtained from the nested LETKF system analyses. The downscale experiments successfully generated intense vortices in three regions similar to the observed vortices, whereas only one tornado was reproduced by a deterministic forecast. The intense vorticity of the strongest tornado, which was observed in the southernmost region, was successfully reproduced by 10 of the 12 ensemble members. An examination of the results of the ensemble downscale experiments showed that the duration of intense vorticities tended to be longer when the vertical shear of the horizontal wind was larger and the lower airflow was more humid. Overall, the study results show that ensemble forecasts have the following merits: (1) probabilistic forecasts of the outbreak of intense vortices associated with tornadoes are possible; (2) the miss rate of outbreaks should decrease; and (3) environmental factors favoring outbreaks can be obtained by comparing the multiple possible scenarios of the ensemble forecasts.
NASA Astrophysics Data System (ADS)
Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu
2016-06-01
To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.
Effects of ensembles on methane hydrate nucleation kinetics.
Zhang, Zhengcai; Liu, Chan-Juan; Walsh, Matthew R; Guo, Guang-Jun
2016-06-21
By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.
Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.
2017-12-01
We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.
The Ensembl REST API: Ensembl Data for Any Language.
Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul
2015-01-01
We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Tito Arandia Martinez, Fabian
2014-05-01
Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and combined to form a grand ensemble. Results show that the hydrological forecasts derived from the grand ensemble perform better than the pseudo ensemble forecasts actually used operationally at Hydro-Québec. References: [1] M. Verbunt, A. Walser, J. Gurtz et al., "Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies," Journal of Hydrometeorology, vol. 8, no. 4, pp. 897-909, Aug, 2007. [2] N. Evora, Valorisation des prévisions météorologiques d'ensemble, Institu de recherceh d'Hydro-Québec 2005. [3] V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, Institut de recherche d'Hydro-Québec, 2000.
Ensembl BioMarts: a hub for data retrieval across taxonomic space.
Kinsella, Rhoda J; Kähäri, Andreas; Haider, Syed; Zamora, Jorge; Proctor, Glenn; Spudich, Giulietta; Almeida-King, Jeff; Staines, Daniel; Derwent, Paul; Kerhornou, Arnaud; Kersey, Paul; Flicek, Paul
2011-01-01
For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.
NASA Astrophysics Data System (ADS)
Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping
2017-11-01
Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For peak values taking flood forecasts from each individual member into account is more appropriate.
Insights into the deterministic skill of air quality ensembles ...
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each stati
Moyer, Jason T.; Halterman, Benjamin L.; Finkel, Leif H.; Wolf, John A.
2014-01-01
Striatal medium spiny neurons (MSNs) receive lateral inhibitory projections from other MSNs and feedforward inhibitory projections from fast-spiking, parvalbumin-containing striatal interneurons (FSIs). The functional roles of these connections are unknown, and difficult to study in an experimental preparation. We therefore investigated the functionality of both lateral (MSN-MSN) and feedforward (FSI-MSN) inhibition using a large-scale computational model of the striatal network. The model consists of 2744 MSNs comprised of 189 compartments each and 121 FSIs comprised of 148 compartments each, with dendrites explicitly represented and almost all known ionic currents included and strictly constrained by biological data as appropriate. Our analysis of the model indicates that both lateral inhibition and feedforward inhibition function at the population level to limit non-ensemble MSN spiking while preserving ensemble MSN spiking. Specifically, lateral inhibition enables large ensembles of MSNs firing synchronously to strongly suppress non-ensemble MSNs over a short time-scale (10–30 ms). Feedforward inhibition enables FSIs to strongly inhibit weakly activated, non-ensemble MSNs while moderately inhibiting activated ensemble MSNs. Importantly, FSIs appear to more effectively inhibit MSNs when FSIs fire asynchronously. Both types of inhibition would increase the signal-to-noise ratio of responding MSN ensembles and contribute to the formation and dissolution of MSN ensembles in the striatal network. PMID:25505406
Ensemble perception in autism spectrum disorder: Member-identification versus mean-discrimination.
Van der Hallen, Ruth; Lemmens, Lisa; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2017-07-01
To efficiently represent the outside world our brain compresses sets of similar items into a summarized representation, a phenomenon known as ensemble perception. While most studies on ensemble perception investigate this perceptual mechanism in typically developing (TD) adults, more recently, researchers studying perceptual organization in individuals with autism spectrum disorder (ASD) have turned their attention toward ensemble perception. The current study is the first to investigate the use of ensemble perception for size in children with and without ASD (N = 42, 8-16 years). We administered a pair of tasks pioneered by Ariely [2001] evaluating both member-identification and mean-discrimination. In addition, we varied the distribution types of our sets to allow a more detailed evaluation of task performance. Results show that, overall, both groups performed similarly in the member-identification task, a test of "local perception," and similarly in the mean identification task, a test of "gist perception." However, in both tasks performance of the TD group was affected more strongly by the degree of stimulus variability in the set, than performance of the ASD group. These findings indicate that both TD children and children with ASD use ensemble statistics to represent a set of similar items, illustrating the fundamental nature of ensemble coding in visual perception. Differences in sensitivity to stimulus variability between both groups are discussed in relation to recent theories of information processing in ASD (e.g., increased sampling, decreased priors, increased precision). Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1291-1299. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Interpolation of property-values between electron numbers is inconsistent with ensemble averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda-Quintana, Ramón Alain; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1; Ayers, Paul W.
2016-06-28
In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integermore » electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem’s surroundings in determining its properties.« less
Glyph-based analysis of multimodal directional distributions in vector field ensembles
NASA Astrophysics Data System (ADS)
Jarema, Mihaela; Demir, Ismail; Kehrer, Johannes; Westermann, Rüdiger
2015-04-01
Ensemble simulations are increasingly often performed in the geosciences in order to study the uncertainty and variability of model predictions. Describing ensemble data by mean and standard deviation can be misleading in case of multimodal distributions. We present first results of a glyph-based visualization of multimodal directional distributions in 2D and 3D vector ensemble data. Directional information on the circle/sphere is modeled using mixtures of probability density functions (pdfs), which enables us to characterize the distributions with relatively few parameters. The resulting mixture models are represented by 2D and 3D lobular glyphs showing direction, spread and strength of each principal mode of the distributions. A 3D extension of our approach is realized by means of an efficient GPU rendering technique. We demonstrate our method in the context of ensemble weather simulations.
NASA Astrophysics Data System (ADS)
Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles
2010-05-01
An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to provide reliable probabilistic forecasts of streamflow, based on ensemble weather predictions. The models were therefore adapted to run in a forecasting mode, i.e., to update initial conditions according to the last observed discharge at the time of the forecast, and to cope with ensemble weather scenarios. All models are lumped, i.e., the hydrological behavior is integrated over the spatial scale of the catchment, and run at daily time steps. The complexity of tested models varies between 3 and 13 parameters. The models are tested on 29 French catchments. Daily streamflow time series extend over 17 months, from March 2005 to July 2006. Catchment areas range between 1470 km2 and 9390 km2, and represent a variety of hydrological and meteorological conditions. The 12 UTC 10-day ECMWF rainfall ensemble (51 members) was used, which led to daily streamflow forecasts for a 9-day lead time. In order to assess the performance and reliability of the hydrological ensemble predictions, we computed the Continuous Ranked probability Score (CRPS) (Matheson and Winkler, 1976), as well as the reliability diagram (e.g. Wilks, 1995) and the rank histogram (Talagrand et al., 1999). Since the ECMWF deterministic forecasts are also available, the performance of the hydrological forecasting systems was also evaluated by comparing the deterministic score (MAE) with the probabilistic score (CRPS). The results obtained for the 18 hydrological models and the 29 studied catchments are discussed in the perspective of improving the operational use of ensemble forecasting in hydrology. References Bartholmes, J. and Todini, E.: Coupling meteorological and hydrological models for flood forecasting, Hydrol. Earth Syst. Sci., 9, 333-346, 2005. Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review. Journal of Hydrology 375 (3-4): 613-626, 2009. Jaun, S., Ahrens, B., Walser, A., Ewen, T., and Schär, C.: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Nat. Hazards Earth Syst. Sci., 8, 281-291, 2008. Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Manage Sci., 22, 1087-1096, 1976. Perrin, C., Michel C. and Andréassian,V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275-301, 2001. Renner, M., Werner, M. G. F., Rademacher, S., and Sprokkereef, E.: Verification of ensemble flow forecast for the River Rhine, J. Hydrol., 376, 463-475, 2009. Roulin, E. and Vannitsem, S.: Skill of medium-range hydrological ensemble predictions, J. Hydrometeorol., 6, 729-744, 2005. Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of the probabilistic prediction systems, in: Proceedings, ECMWF Workshop on Predictability, Shinfield Park, Reading, Berkshire, ECMWF, 1-25, 1999. Velázquez, J.A., Petit, T., Lavoie, A., Boucher M.-A., Turcotte R., Fortin V., and Anctil, F. : An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrol. Earth Syst. Sci., 13, 2221-2231, 2009. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, CA, 465 pp., 1995.
Applying Ensemble Kalman Filter to Regional Ocean Circulation Model in the East Asian Marginal Sea
NASA Astrophysics Data System (ADS)
Pak, Gyun-Do; Kim, Young Ho; Chang, Kyung-Il
2010-05-01
We successfully apply the ensemble Kalman filter (EnKF) data assimilation scheme to the East Sea Regional Ocean Model (ESROM). The ESROM solves the three dimensional ocean primitive equations with the hydrostatic and Boussinesq approximations. The domain of ESROM fully covers East Sea with grid intervals of approximately 0.1˚. The ESROM has one inflow port, the Korea Strait, and two outflow ports, the Tsugaru and Soya straits. High resolution bathymetry of 1/60˚ (Choi et al., 2002) is adopted for the model topography. The ESROM is initialized using hydrographic data from World Ocean Atlas (WOA), and forced by monthly mean surface and open boundary conditions supplied from European Centre for Medium-Range Weather Forecast data, WOA and so on. The EnKF system is composed of 16 ensembles and thousands of observation data are assimilated at every assimilation step into its parallel version, which significantly reduces the required memory and computational time more than 3-fold compared with its serial version. To prevent the collapse of ensembles due to rank deficiency, we employ various schemes such as localization and inflation of the background error covariance and disturbance of observations. Sea surface temperature from the Advanced Very High Resolution Radiometer and in-situ temperature profiles from various sources including Argo floats have been assimilated into the EnKF system. For cyclonic circulation in the northern East Sea and paths of the East Korean Warm Current and the Nearshore Branch, the EnKF system reproduces the mean surface circulation more realistically than that in the case without data assimilation. Simulated area-averaged vertical temperature profiles also agrees well with the Generalized Digital Environmental Model data, which indicates that the EnKF system corrects the warming of subsurface temperature and the erosion of the permanent thermocline that are usually observed in numerical models without data assimilation. We also quantitatively validate the EnKF system by comparing its results with observed temperatures at 100 m for two years in the southwestern East Sea. We find that spatial and temporal correlations are higher and root-mean-square errors are lower in the EnKF system as compared with those systems without data assimilation.
Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble
NASA Astrophysics Data System (ADS)
Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim
2017-04-01
Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.
2018-04-01
A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.
Ensemble coding of face identity is present but weaker in congenital prosopagnosia.
Robson, Matthew K; Palermo, Romina; Jeffery, Linda; Neumann, Markus F
2018-03-01
Individuals with congenital prosopagnosia (CP) are impaired at identifying individual faces but do not appear to show impairments in extracting the average identity from a group of faces (known as ensemble coding). However, possible deficits in ensemble coding in a previous study (CPs n = 4) may have been masked because CPs relied on pictorial (image) cues rather than identity cues. Here we asked whether a larger sample of CPs (n = 11) would show intact ensemble coding of identity when availability of image cues was minimised. Participants viewed a "set" of four faces and then judged whether a subsequent individual test face, either an exemplar or a "set average", was in the preceding set. Ensemble coding occurred when matching (vs. mismatching) averages were mistakenly endorsed as set members. We assessed both image- and identity-based ensemble coding, by varying whether test faces were either the same or different images of the identities in the set. CPs showed significant ensemble coding in both tasks, indicating that their performance was independent of image cues. As a group, CPs' ensemble coding was weaker than controls in both tasks, consistent with evidence that perceptual processing of face identity is disrupted in CP. This effect was driven by CPs (n= 3) who, in addition to having impaired face memory, also performed particularly poorly on a measure of face perception (CFPT). Future research, using larger samples, should examine whether deficits in ensemble coding may be restricted to CPs who also have substantial face perception deficits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2017-03-01
Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.
Precision bounds for gradient magnetometry with atomic ensembles
NASA Astrophysics Data System (ADS)
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
NASA Astrophysics Data System (ADS)
Wu, Xiongwu; Brooks, Bernard R.
2011-11-01
The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.
The Ensembl REST API: Ensembl Data for Any Language
Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R. S.; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul
2015-01-01
Motivation: We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. Availability and implementation: The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. Contact: ayates@ebi.ac.uk or flicek@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236461
Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method
NASA Astrophysics Data System (ADS)
Gilbreth, C. N.; Alhassid, Y.
2015-03-01
Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.
Analyzing the impact of changing size and composition of a crop model ensemble
NASA Astrophysics Data System (ADS)
Rodríguez, Alfredo
2017-04-01
The use of an ensemble of crop growth simulation models is a practice recently adopted in order to quantify aspects of uncertainties in model simulations. Yet, while the climate modelling community has extensively investigated the properties of model ensembles and their implications, this has hardly been investigated for crop model ensembles (Wallach et al., 2016). In their ensemble of 27 wheat models, Martre et al. (2015) found that the accuracy of the multi-model ensemble-average only increases up to an ensemble size of ca. 10, but does not improve when including more models in the analysis. However, even when this number of members is reached, questions about the impact of the addition or removal of a member to/from the ensemble arise. When selecting ensemble members, identifying members with poor performance or giving implausible results can make a large difference on the outcome. The objective of this study is to set up a methodology that defines indicators to show the effects of changing the ensemble composition and size on simulation results, when a selection procedure of ensemble members is applied. Ensemble mean or median, and variance are measures used to depict ensemble results among other indicators. We are utilizing simulations from an ensemble of wheat models that have been used to construct impact response surfaces (Pirttioja et al., 2015) (IRSs). These show the response of an impact variable (e.g., crop yield) to systematic changes in two explanatory variables (e.g., precipitation and temperature). Using these, we compare different sub-ensembles in terms of the mean, median and spread, and also by comparing IRSs. The methodology developed here allows comparing an ensemble before and after applying any procedure that changes the ensemble composition and size by measuring the impact of this decision on the ensemble central tendency measures. The methodology could also be further developed to compare the effect of changing ensemble composition and size on IRS features. References Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Muller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stockle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F.L., Travasso, M., Waha, K., White, J.W., Wolf, J., 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911-925. Pirttioja N., Carter T., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos, M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Doro L., Dumont B., Ewert F., Ferrise R., Francois L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.-C., Kollas C., Krzyszczak J., Lorite I. J., Minet J., Minguez M. I., Montesion M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodriguez, A., Ruane A.C., Ruget F., Sanna M., Semenov M., Slawinski C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., Rötter R.P, 2015. A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65:87-105, doi:10.3354/cr01322 Wallach, D., Mearns, L.O. Ruane, A.C., Rötter, R.P., Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climate Change (in press) doi:10.1007/s10584-016-1803-1.
Decadal climate predictions improved by ocean ensemble dispersion filtering
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-06-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.
A simple analytical model for dynamics of time-varying target leverage ratios
NASA Astrophysics Data System (ADS)
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-07-02
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less
Dual-wavelength pump-probe microscopy analysis of melanin composition
NASA Astrophysics Data System (ADS)
Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.
2016-11-01
Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.
Dual-wavelength pump-probe microscopy analysis of melanin composition
Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.
2016-01-01
Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
Multiple-instance ensemble learning for hyperspectral images
NASA Astrophysics Data System (ADS)
Ergul, Ugur; Bilgin, Gokhan
2017-10-01
An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.
NASA Astrophysics Data System (ADS)
Fernández, J.; Primo, C.; Cofiño, A. S.; Gutiérrez, J. M.; Rodríguez, M. A.
2009-08-01
In a recent paper, Gutiérrez et al. (Nonlinear Process Geophys 15(1):109-114, 2008) introduced a new characterization of spatiotemporal error growth—the so called mean-variance logarithmic (MVL) diagram—and applied it to study ensemble prediction systems (EPS); in particular, they analyzed single-model ensembles obtained by perturbing the initial conditions. In the present work, the MVL diagram is applied to multi-model ensembles analyzing also the effect of model formulation differences. To this aim, the MVL diagram is systematically applied to the multi-model ensemble produced in the EU-funded DEMETER project. It is shown that the shared building blocks (atmospheric and ocean components) impose similar dynamics among different models and, thus, contribute to poorly sampling the model formulation uncertainty. This dynamical similarity should be taken into account, at least as a pre-screening process, before applying any objective weighting method.
Differences in the emergent coding properties of cortical and striatal ensembles
Ma, L.; Hyman, J.M.; Lindsay, A.J.; Phillips, A.G.; Seamans, J.K.
2016-01-01
The function of a given brain region is often defined by the coding properties of its individual neurons, yet how this information is combined at the ensemble level is an equally important consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis in the two regions. At the ensemble level, sequence-specific representations in the DS appeared synchronously but transiently along with the representation of lever location, while these two streams of information appeared independently and asynchronously in the ACC. As a result the ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which information was combined across neurons in an ensemble determined the functional separation of the ACC and DS on this task. PMID:24974796
A target recognition method for maritime surveillance radars based on hybrid ensemble selection
NASA Astrophysics Data System (ADS)
Fan, Xueman; Hu, Shengliang; He, Jingbo
2017-11-01
In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
Prediction of Weather Impacted Airport Capacity using Ensemble Learning
NASA Technical Reports Server (NTRS)
Wang, Yao Xun
2011-01-01
Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.
NASA Astrophysics Data System (ADS)
Tasaki, Hal
2018-06-01
We study a quantum spin system on the d-dimensional hypercubic lattice Λ with N=L^d sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β _0 and the microcanonical ensemble with the corresponding energy U_N(β _0) . For an arbitrary self-adjoint operator \\hat{A} whose support is contained in a hypercubic block B inside Λ , we prove that the expectation values of \\hat{A} with respect to these two ensembles are close to each other for large N provided that β _0 is sufficiently small and the number of sites in B is o(N^{1/2}) . This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.
A shared neural ensemble links distinct contextual memories encoded close in time
NASA Astrophysics Data System (ADS)
Cai, Denise J.; Aharoni, Daniel; Shuman, Tristan; Shobe, Justin; Biane, Jeremy; Song, Weilin; Wei, Brandon; Veshkini, Michael; La-Vu, Mimi; Lou, Jerry; Flores, Sergio E.; Kim, Isaac; Sano, Yoshitake; Zhou, Miou; Baumgaertel, Karsten; Lavi, Ayal; Kamata, Masakazu; Tuszynski, Mark; Mayford, Mark; Golshani, Peyman; Silva, Alcino J.
2016-06-01
Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.
Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory
NASA Astrophysics Data System (ADS)
Gould, Tim; Kronik, Leeor; Pittalis, Stefano
2018-05-01
By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.
2010-01-01
Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org. PMID:20459805
NASA Astrophysics Data System (ADS)
Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens
2017-04-01
Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.
ERIC Educational Resources Information Center
McKee, Lori L.; Heydon, Rachel M.
2015-01-01
This exploratory case study considered the opportunities for print literacy learning within multimodal ensembles that featured art, singing and digital media within the context of an intergenerational programme that brought together 13 kindergarten children (4 and 5 years) with seven elder companions. Study questions concerned how reading and…
Trends in the predictive performance of raw ensemble weather forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas
2015-04-01
Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Annealed importance sampling with constant cooling rate
NASA Astrophysics Data System (ADS)
Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo
2015-02-01
Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories. In particular, the equilibrium average of a generic physical quantity can be computed by a weighted average exploiting weights and estimates of this quantity associated to the final configurations of the annealed trajectories. Here, we review annealed importance sampling from the perspective of nonequilibrium path-ensemble averages [G. E. Crooks, Phys. Rev. E 61, 2361 (2000)]. The equivalence of Neal's and Crooks' treatments highlights the generality of the method, which goes beyond the mere thermal-based protocols. Furthermore, we show that a temperature schedule based on a constant cooling rate outperforms stepwise cooling schedules and that, for a given elapsed computer time, performances of annealed importance sampling are, in general, improved by increasing the number of intermediate temperatures.
Experimental realization of entanglement in multiple degrees of freedom between two quantum memories
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom. PMID:27841274
NASA Astrophysics Data System (ADS)
Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.
2018-03-01
Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.
Selecting climate simulations for impact studies based on multivariate patterns of climate change.
Mendlik, Thomas; Gobiet, Andreas
In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.
Single Aerosol Particle Studies Using Optical Trapping Raman And Cavity Ringdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Due to the physical and chemical complexity of aerosol particles and the interdisciplinary nature of aerosol science that involves physics, chemistry, and biology, our knowledge of aerosol particles is rather incomplete; our current understanding of aerosol particles is limited by averaged (over size, composition, shape, and orientation) and/or ensemble (over time, size, and multi-particles) measurements. Physically, single aerosol particles are the fundamental units of any large aerosol ensembles. Chemically, single aerosol particles carry individual chemical components (properties and constituents) in particle ensemble processes. Therefore, the study of single aerosol particles can bridge the gap between aerosol ensembles and bulk/surface properties and provide a hierarchical progression from a simple benchmark single-component system to a mixed-phase multicomponent system. A single aerosol particle can be an effective reactor to study heterogeneous surface chemistry in multiple phases. Latest technological advances provide exciting new opportunities to study single aerosol particles and to further develop single aerosol particle instrumentation. We present updates on our recent studies of single aerosol particles optically trapped in air using the optical-trapping Raman and cavity ringdown spectroscopy.
Ensemble Methods for MiRNA Target Prediction from Expression Data.
Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong
2015-01-01
microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials.
Ensemble Methods for MiRNA Target Prediction from Expression Data
Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong
2015-01-01
Background microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. Results In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials. PMID:26114448
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
Kinetics and reaction coordinates of the reassembly of protein fragments via forward flux sampling.
Borrero, Ernesto E; Contreras Martínez, Lydia M; DeLisa, Matthew P; Escobedo, Fernando A
2010-05-19
We studied the mechanism of the reassembly and folding process of two fragments of a split lattice protein by using forward flux sampling (FFS). Our results confirmed previous thermodynamics and kinetics analyses that suggested that the disruption of the critical core (of an unsplit protein that folds by a nucleation mechanism) plays a key role in the reassembly mechanism of the split system. For several split systems derived from a parent 48-mer model, we estimated the reaction coordinates in terms of collective variables by using the FFS least-square estimation method and found that the reassembly transition is best described by a combination of the total number of native contacts, the number of interchain native contacts, and the total conformational energy of the split system. We also analyzed the transition path ensemble obtained from FFS simulations using the estimated reaction coordinates as order parameters to identify the microscopic features that differentiate the reassembly of the different split systems studied. We found that in the fastest folding split system, a balanced distribution of the original-core amino acids (of the unsplit system) between protein fragments propitiates interchain interactions at early stages of the folding process. Only this system exhibits a different reassembly mechanism from that of the unsplit protein, involving the formation of a different folding nucleus. In the slowest folding system, the concentration of the folding nucleus in one fragment causes its early prefolding, whereas the second fragment tends to remain as a detached random coil. We also show that the reassembly rate can be either increased or decreased by tuning interchain cooperativeness via the introduction of a single point mutation that either strengthens or weakens one of the native interchain contacts (prevalent in the transition state ensemble). Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.
Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig
2017-01-01
The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.
Spectral partitioning in equitable graphs.
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Spectral partitioning in equitable graphs
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Adaptive correction of ensemble forecasts
NASA Astrophysics Data System (ADS)
Pelosi, Anna; Battista Chirico, Giovanni; Van den Bergh, Joris; Vannitsem, Stephane
2017-04-01
Forecasts from numerical weather prediction (NWP) models often suffer from both systematic and non-systematic errors. These are present in both deterministic and ensemble forecasts, and originate from various sources such as model error and subgrid variability. Statistical post-processing techniques can partly remove such errors, which is particularly important when NWP outputs concerning surface weather variables are employed for site specific applications. Many different post-processing techniques have been developed. For deterministic forecasts, adaptive methods such as the Kalman filter are often used, which sequentially post-process the forecasts by continuously updating the correction parameters as new ground observations become available. These methods are especially valuable when long training data sets do not exist. For ensemble forecasts, well-known techniques are ensemble model output statistics (EMOS), and so-called "member-by-member" approaches (MBM). Here, we introduce a new adaptive post-processing technique for ensemble predictions. The proposed method is a sequential Kalman filtering technique that fully exploits the information content of the ensemble. One correction equation is retrieved and applied to all members, however the parameters of the regression equations are retrieved by exploiting the second order statistics of the forecast ensemble. We compare our new method with two other techniques: a simple method that makes use of a running bias correction of the ensemble mean, and an MBM post-processing approach that rescales the ensemble mean and spread, based on minimization of the Continuous Ranked Probability Score (CRPS). We perform a verification study for the region of Campania in southern Italy. We use two years (2014-2015) of daily meteorological observations of 2-meter temperature and 10-meter wind speed from 18 ground-based automatic weather stations distributed across the region, comparing them with the corresponding COSMO-LEPS ensemble forecasts. Deterministic verification scores (e.g., mean absolute error, bias) and probabilistic scores (e.g., CRPS) are used to evaluate the post-processing techniques. We conclude that the new adaptive method outperforms the simpler running bias-correction. The proposed adaptive method often outperforms the MBM method in removing bias. The MBM method has the advantage of correcting the ensemble spread, although it needs more training data.
Can decadal climate predictions be improved by ocean ensemble dispersion filtering?
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-12-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www.fona-miklip.de/decadal-forecast-2017-2026/decadal-forecast-for-2017-2026/ More informations about this study in JAMES:DOI: 10.1002/2016MS000787
Assessment of Surface Air Temperature over China Using Multi-criterion Model Ensemble Framework
NASA Astrophysics Data System (ADS)
Li, J.; Zhu, Q.; Su, L.; He, X.; Zhang, X.
2017-12-01
The General Circulation Models (GCMs) are designed to simulate the present climate and project future trends. It has been noticed that the performances of GCMs are not always in agreement with each other over different regions. Model ensemble techniques have been developed to post-process the GCMs' outputs and improve their prediction reliabilities. To evaluate the performances of GCMs, root-mean-square error, correlation coefficient, and uncertainty are commonly used statistical measures. However, the simultaneous achievements of these satisfactory statistics cannot be guaranteed when using many model ensemble techniques. Meanwhile, uncertainties and future scenarios are critical for Water-Energy management and operation. In this study, a new multi-model ensemble framework was proposed. It uses a state-of-art evolutionary multi-objective optimization algorithm, termed Multi-Objective Complex Evolution Global Optimization with Principle Component Analysis and Crowding Distance (MOSPD), to derive optimal GCM ensembles and demonstrate the trade-offs among various solutions. Such trade-off information was further analyzed with a robust Pareto front with respect to different statistical measures. A case study was conducted to optimize the surface air temperature (SAT) ensemble solutions over seven geographical regions of China for the historical period (1900-2005) and future projection (2006-2100). The results showed that the ensemble solutions derived with MOSPD algorithm are superior over the simple model average and any single model output during the historical simulation period. For the future prediction, the proposed ensemble framework identified that the largest SAT change would occur in the South Central China under RCP 2.6 scenario, North Eastern China under RCP 4.5 scenario, and North Western China under RCP 8.5 scenario, while the smallest SAT change would occur in the Inner Mongolia under RCP 2.6 scenario, South Central China under RCP 4.5 scenario, and South Central China under RCP 8.5 scenario.
Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling setup was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME.
Multimodel ensembles of wheat growth: many models are better than one.
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost
2015-02-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.
Multimodel Ensembles of Wheat Growth: More Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Multimodel Ensembles of Wheat Growth: Many Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Changing precipitation in western Europe, climate change or natural variability?
NASA Astrophysics Data System (ADS)
Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart
2017-04-01
Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.
MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging
NASA Astrophysics Data System (ADS)
Chen, Lei; Kamel, Mohamed S.
2016-01-01
In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, I. A., E-mail: Aleksandrov@isp.nsc.ru; Mansurov, V. G.; Zhuravlev, K. S.
2016-08-15
The carrier recombination dynamics in an ensemble of GaN/AlN quantum dots is studied. The model proposed for describing this dynamics takes into account the transition of carriers between quantum dots and defects in a matrix. Comparison of the experimental and calculated photoluminescence decay curves shows that the interaction between quantum dots and defects slows down photoluminescence decay in the ensemble of GaN/AlN quantum dots.
Estimation of the uncertainty of a climate model using an ensemble simulation
NASA Astrophysics Data System (ADS)
Barth, A.; Mathiot, P.; Goosse, H.
2012-04-01
The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar
2014-05-01
Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Utsumi, N.; Take, M.; Iida, A.
2016-12-01
This study aims to develop a new approach to assess the impact of climate change on the small oceanic islands in the Pacific. In the new approach, the change of the probabilities of various situations was projected with considering the spread of projection derived from ensemble simulations, instead of projecting the most probable situation. The database for Policy Decision making for Future climate change (d4PDF) is a database of long-term high-resolution climate ensemble experiments, which has the results of 100 ensemble simulations. We utilized the database for Policy Decision making for Future climate change (d4PDF), which was (a long-term and high-resolution database) composed of results of 100 ensemble experiments. A new methodology, Multi Threshold Ensemble Assessment (MTEA), was developed using the d4PDF in order to assess the impact of climate change. We focused on the impact of climate change on tourism because it has played an important role in the economy of the Pacific Islands. The Yaeyama Region, one of the tourist destinations in Okinawa, Japan, was selected as the case study site. Two kinds of impact were assessed: change in probability of extreme climate phenomena and tourist satisfaction associated with weather. The database of long-term high-resolution climate ensemble experiments and the questionnaire survey conducted by a local government were used for the assessment. The result indicated that the strength of extreme events would be increased, whereas the probability of occurrence would be decreased. This change should result in increase of the number of clear days and it could contribute to improve the tourist satisfaction.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Entropy of spatial network ensembles
NASA Astrophysics Data System (ADS)
Coon, Justin P.; Dettmann, Carl P.; Georgiou, Orestis
2018-04-01
We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.
Reduced set averaging of face identity in children and adolescents with autism.
Rhodes, Gillian; Neumann, Markus F; Ewing, Louise; Palermo, Romina
2015-01-01
Individuals with autism have difficulty abstracting and updating average representations from their diet of faces. These averages function as perceptual norms for coding faces, and poorly calibrated norms may contribute to face recognition difficulties in autism. Another kind of average, known as an ensemble representation, can be abstracted from briefly glimpsed sets of faces. Here we show for the first time that children and adolescents with autism also have difficulty abstracting ensemble representations from sets of faces. On each trial, participants saw a study set of four identities and then indicated whether a test face was present. The test face could be a set average or a set identity, from either the study set or another set. Recognition of set averages was reduced in participants with autism, relative to age- and ability-matched typically developing participants. This difference, which actually represents more accurate responding, indicates weaker set averaging and thus weaker ensemble representations of face identity in autism. Our finding adds to the growing evidence for atypical abstraction of average face representations from experience in autism. Weak ensemble representations may have negative consequences for face processing in autism, given the importance of ensemble representations in dealing with processing capacity limitations.
An adaptive Gaussian process-based iterative ensemble smoother for data assimilation
NASA Astrophysics Data System (ADS)
Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao
2018-05-01
Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.
FLETCHER, Oclla Michele; GUERRINA, Ryan; ASHLEY, Candi D.; BERNARD, Thomas E.
2014-01-01
The purpose of this study was to examine the heat stress effects of three protective clothing ensembles: (1) protective apron over cloth coveralls including full face negative pressure respirator (APRON); (2) the apron over cloth coveralls with respirator plus protective pants (APRON+PANTS); and (3) protective coveralls over cloth coveralls with respirator (PROTECTIVE COVERALLS). In addition, there was a no-respirator ensemble (PROTECTIVE COVERALLS-noR), and WORK CLOTHES as a reference ensemble. Four acclimatized male participants completed a full set of five trials, and two of the participants repeated the full set. The progressive heat stress protocol was used to find the critical WBGT (WBGTcrit) and apparent total evaporative resistance (Re,T,a) at the upper limit of thermal equilibrium. The results (WBGTcrit [°C-WBGT] and Re,T,a [kPa m2 W−1]) were WORK CLOTHES (35.5, 0.0115), APRON (31.6, 0.0179), APRON+PANTS (27.7, 0.0244), PROTECTIVE COVERALLS (25.9, 0.0290), and PROTECTIVE COVERALLS-noR (26.2, 0.0296). There were significant differences among the ensembles. Supporting previous studies, there was little evidence to suggest that the respirator contributed to heat stress. PMID:24705801
Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model
NASA Astrophysics Data System (ADS)
Joshi, Sneh; Kar, S. C.
2018-01-01
This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.
ERIC Educational Resources Information Center
Matthews, Wendy K.; Kitsantas, Anastasia
2007-01-01
In the present study, we examined whether collective efficacy, group cohesion (task and social), and perceived motivational climate (task-involving and ego-involving orientations) in a music ensemble predict instrumentalists' perceived conductor support. Ninety-one (N = 91) skilled high school instrumentalists participated in the study. To assess…
Effect of Conductor Expressivity on Ensemble Evaluations by Nonmusic Majors
ERIC Educational Resources Information Center
Price, Harry E.; Mann, Alison; Morrison, Steven J.
2016-01-01
This study continues research that examines effects that conductors have on the assessment of ensemble performances. The current study used the same four recordings orders of two strict and two expressive examples by two conductors with a single repeated recording used in previous research, but the participants were not music majors. In addition…
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.
The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia
NASA Astrophysics Data System (ADS)
Kim, Hyunjung; Kim, Hyun Mee; Kim, Jinwoong; Cho, Chun-Ho
2018-02-01
In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.
Muhlestein, Whitney E; Akagi, Dallin S; Kallos, Justiss A; Morone, Peter J; Weaver, Kyle D; Thompson, Reid C; Chambless, Lola B
2018-04-01
Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.
SVM and SVM Ensembles in Breast Cancer Prediction.
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.
SVM and SVM Ensembles in Breast Cancer Prediction
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807
Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A
2015-01-15
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.
Three-model ensemble wind prediction in southern Italy
NASA Astrophysics Data System (ADS)
Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo
2016-03-01
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.
Understanding the Central Equatorial African long-term drought using AMIP-type simulations
NASA Astrophysics Data System (ADS)
Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay
2018-02-01
Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.
Gruber, Susan; Logan, Roger W.; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A.
2014-01-01
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. PMID:25316152
Negative correlation learning for customer churn prediction: a comparison study.
Rodan, Ali; Fayyoumi, Ayham; Faris, Hossam; Alsakran, Jamal; Al-Kadi, Omar
2015-01-01
Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis.
Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process
NASA Technical Reports Server (NTRS)
Racette, Paul
2010-01-01
Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.
NASA Astrophysics Data System (ADS)
Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.
2017-12-01
There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.
Monthly ENSO Forecast Skill and Lagged Ensemble Size
DelSole, T.; Tippett, M.K.; Pegion, K.
2018-01-01
Abstract The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real‐time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real‐time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8–10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities. PMID:29937973
Monthly ENSO Forecast Skill and Lagged Ensemble Size
NASA Astrophysics Data System (ADS)
Trenary, L.; DelSole, T.; Tippett, M. K.; Pegion, K.
2018-04-01
The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.
Generalized canonical ensembles and ensemble equivalence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costeniuc, M.; Ellis, R.S.; Turkington, B.
2006-02-15
This paper is a companion piece to our previous work [J. Stat. Phys. 119, 1283 (2005)], which introduced a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor e{sup -{beta}}{sup H} of the canonical ensemble with an exponential factor involving a continuous function g of the Hamiltonian H. We provide here a simplified introduction to our previous work, focusing now on a number of physical rather than mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable choices of g, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibriummore » properties of the many-body system represented by H even if this system has a nonconcave microcanonical entropy function. This is something that in general the standard (g=0) canonical ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often be made equivalent to the microcanonical ensemble in cases in which the canonical ensemble cannot. The case of quadratic g functions is discussed in detail; it leads to the so-called Gaussian ensemble.« less
Random density matrices versus random evolution of open system
NASA Astrophysics Data System (ADS)
Pineda, Carlos; Seligman, Thomas H.
2015-10-01
We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cacioppo, G.M.; Annis, J.F.
1982-12-01
Experiments were performed to evaluate the quality of sleep experienced by individuals wearing different chemical protective ensembles (CPE). A series of seven experiments were conducted in which two test subjects slept overnight in an environmentally controlled room while wearing either pajamas (control ensemble) or one of three different CPEs. The three CPEs tested were: the standard West German ground crew ensemble, an ensemble comprised of a combination of equipment of which the Canadian chemical protective coverall was the principal item of clothing, and the U.S. Army standard ground crew ensemble Body temperatures, sleep records, and other physiological measurements were monitoredmore » overnight and form the basis of the objective evaluation. Subjective data were collected by an experiment monitor who kept the test participants under constant observation. Additionally, the participants were required to complete a standard debriefing questionnaire form each post-experiment morning. Because of the limited scope of the experiment, statistical analysis was not appropriate. However, both the objective and subjective data reflected consistent trends and allow confidence in the assessment that current U.S. and NATO CPE combinations provide for adequate sleep quality.« less
Clustering cancer gene expression data by projective clustering ensemble
Yu, Xianxue; Yu, Guoxian
2017-01-01
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.
2013-09-01
The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.
NASA Astrophysics Data System (ADS)
Gustafson, W. I., Jr.; Vogelmann, A. M.; Li, Z.; Cheng, X.; Endo, S.; Krishna, B.; Toto, T.; Xiao, H.
2017-12-01
Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence and cloud development. However, the results are sensitive to the choice of forcing data sets used to drive the LES model, and the most realistic forcing data is difficult to identify a priori. Knowing the sensitivity of boundary layer and cloud processes to forcing data selection is critical when using LES to understand atmospheric processes and when developing associated parameterizations. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES based on a selection of plausible input forcing data sets. The LES ARM Symbiotic Simulation and Observation (LASSO) project is initially generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. This talk will examine 13 days with shallow convection selected from the period May-August 2016, with multiple forcing sources and spatial scales used to generate an LES ensemble for each of the days, resulting in hundreds of LES runs with coincident observations from ARM's extensive suite of in situ and retrieval-based products. This talk will focus particularly on the sensitivity of the cloud development and its relation to forcing data. Variability of the PBL characteristics, lifting condensation level, cloud base height, cloud fraction, and liquid water path will be examined. More information about the LASSO project can be found at https://www.arm.gov/capabilities/modeling/lasso.
Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting
NASA Astrophysics Data System (ADS)
Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.
2009-04-01
In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.
A Theoretical Analysis of Why Hybrid Ensembles Work.
Hsu, Kuo-Wei
2017-01-01
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.
Haberman, Jason; Brady, Timothy F; Alvarez, George A
2015-04-01
Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).
Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data.
Li, Jiuyong; Liu, Lin; Liu, Jixue; Green, Ryan
2017-12-01
It is common that a trained classification model is applied to the operating data that is deviated from the training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capability for classifying instances in a new laboratory using the classifier built on the instances of another laboratory. DMT is tested on three real world biomedical data sets from different laboratories in comparison with four benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been conducted on studying the limitation of DMT and its possible variations. Experimental results show that DMT is significantly more accurate than other benchmark ensemble classifiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the classifier. This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.
NASA Astrophysics Data System (ADS)
Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.
2015-10-01
The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.
National Centers for Environmental Prediction
Ensemble Users Meetings 7th NCEP/NWS Ensemble User Workshop 13-15 June 2016 6th NCEP/NWS Ensemble User Workshop 25 - 27 March 2014 5th NCEP/NWS Ensemble User Workshop 10 - 12 May, 2011 4th NCEP/NWS Ensemble User Workshop 13 - 15 May, 2008 3rd NCEP/NWS Ensemble User Workshop 31 Oct - 2 Nov, 2006 2nd NCEP/NWS
On the generation of climate model ensembles
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy; Phipps, Steven J.
2014-10-01
Climate model ensembles are used to estimate uncertainty in future projections, typically by interpreting the ensemble distribution for a particular variable probabilistically. There are, however, different ways to produce climate model ensembles that yield different results, and therefore different probabilities for a future change in a variable. Perhaps equally importantly, there are different approaches to interpreting the ensemble distribution that lead to different conclusions. Here we use a reduced-resolution climate system model to compare three common ways to generate ensembles: initial conditions perturbation, physical parameter perturbation, and structural changes. Despite these three approaches conceptually representing very different categories of uncertainty within a modelling system, when comparing simulations to observations of surface air temperature they can be very difficult to separate. Using the twentieth century CMIP5 ensemble for comparison, we show that initial conditions ensembles, in theory representing internal variability, significantly underestimate observed variance. Structural ensembles, perhaps less surprisingly, exhibit over-dispersion in simulated variance. We argue that future climate model ensembles may need to include parameter or structural perturbation members in addition to perturbed initial conditions members to ensure that they sample uncertainty due to internal variability more completely. We note that where ensembles are over- or under-dispersive, such as for the CMIP5 ensemble, estimates of uncertainty need to be treated with care.
An ensemble predictive modeling framework for breast cancer classification.
Nagarajan, Radhakrishnan; Upreti, Meenakshi
2017-12-01
Molecular changes often precede clinical presentation of diseases and can be useful surrogates with potential to assist in informed clinical decision making. Recent studies have demonstrated the usefulness of modeling approaches such as classification that can predict the clinical outcomes from molecular expression profiles. While useful, a majority of these approaches implicitly use all molecular markers as features in the classification process often resulting in sparse high-dimensional projection of the samples often comparable to that of the sample size. In this study, a variant of the recently proposed ensemble classification approach is used for predicting good and poor-prognosis breast cancer samples from their molecular expression profiles. In contrast to traditional single and ensemble classifiers, the proposed approach uses multiple base classifiers with varying feature sets obtained from two-dimensional projection of the samples in conjunction with a majority voting strategy for predicting the class labels. In contrast to our earlier implementation, base classifiers in the ensembles are chosen based on maximal sensitivity and minimal redundancy by choosing only those with low average cosine distance. The resulting ensemble sets are subsequently modeled as undirected graphs. Performance of four different classification algorithms is shown to be better within the proposed ensemble framework in contrast to using them as traditional single classifier systems. Significance of a subset of genes with high-degree centrality in the network abstractions across the poor-prognosis samples is also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Hernández, Griselda; Anderson, Janet S.; LeMaster, David M.
2012-01-01
The acute sensitivity to conformation exhibited by amide hydrogen exchange reactivity provides a valuable test for the physical accuracy of model ensembles developed to represent the Boltzmann distribution of the protein native state. A number of molecular dynamics studies of ubiquitin have predicted a well-populated transition in the tight turn immediately preceding the primary site of proteasome-directed polyubiquitylation Lys 48. Amide exchange reactivity analysis demonstrates that this transition is 103-fold rarer than these predictions. More strikingly, for the most populated novel conformational basin predicted from a recent 1 ms MD simulation of bovine pancreatic trypsin inhibitor (at 13% of total), experimental hydrogen exchange data indicates a population below 10−6. The most sophisticated efforts to directly incorporate experimental constraints into the derivation of model protein ensembles have been applied to ubiquitin, as illustrated by three recently deposited studies (PDB codes 2NR2, 2K39 and 2KOX). Utilizing the extensive set of experimental NOE constraints, each of these three ensembles yields a modestly more accurate prediction of the exchange rates for the highly exposed amides than does a standard unconstrained molecular simulation. However, for the less frequently exposed amide hydrogens, the 2NR2 ensemble offers no improvement in rate predictions as compared to the unconstrained MD ensemble. The other two NMR-constrained ensembles performed markedly worse, either underestimating (2KOX) or overestimating (2K39) the extent of conformational diversity. PMID:22425325
Morabito, Marco; Pavlinic, Daniela Z; Crisci, Alfonso; Capecchi, Valerio; Orlandini, Simone; Mekjavic, Igor B
2011-07-01
Military and civil defense personnel are often involved in complex activities in a variety of outdoor environments. The choice of appropriate clothing ensembles represents an important strategy to establish the success of a military mission. The main aim of this study was to compare the known clothing insulation of the garment ensembles worn by soldiers during two winter outdoor field trials (hike and guard duty) with the estimated optimal clothing thermal insulations recommended to maintain thermoneutrality, assessed by using two different biometeorological procedures. The overall aim was to assess the applicability of such biometeorological procedures to weather forecast systems, thereby developing a comprehensive biometeorological tool for military operational forecast purposes. Military trials were carried out during winter 2006 in Pokljuka (Slovenia) by Slovene Armed Forces personnel. Gastrointestinal temperature, heart rate and environmental parameters were measured with portable data acquisition systems. The thermal characteristics of the clothing ensembles worn by the soldiers, namely thermal resistance, were determined with a sweating thermal manikin. Results showed that the clothing ensemble worn by the military was appropriate during guard duty but generally inappropriate during the hike. A general under-estimation of the biometeorological forecast model in predicting the optimal clothing insulation value was observed and an additional post-processing calibration might further improve forecast accuracy. This study represents the first step in the development of a comprehensive personalized biometeorological forecast system aimed at improving recommendations regarding the optimal thermal insulation of military garment ensembles for winter activities.
Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post
Project fires. Volume 2: Protective ensemble performance standards, phase 1B
NASA Astrophysics Data System (ADS)
Abeles, F. J.
1980-05-01
The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.
Ensemble training to improve recognition using 2D ear
NASA Astrophysics Data System (ADS)
Middendorff, Christopher; Bowyer, Kevin W.
2009-05-01
The ear has gained popularity as a biometric feature due to the robustness of the shape over time and across emotional expression. Popular methods of ear biometrics analyze the ear as a whole, leaving these methods vulnerable to error due to occlusion. Many researchers explore ear recognition using an ensemble, but none present a method for designing the individual parts that comprise the ensemble. In this work, we introduce a method of modifying the ensemble shapes to improve performance. We determine how different properties of an ensemble training system can affect overall performance. We show that ensembles built from small parts will outperform ensembles built with larger parts, and that incorporating a large number of parts improves the performance of the ensemble.
A Theoretical Analysis of Why Hybrid Ensembles Work
2017-01-01
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296
Cant, Jonathan S; Xu, Yaoda
2017-02-01
Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.
Morales, M M; Giannini, N P
2013-05-01
Morphology of extant felids is regarded as highly conservative. Most previous studies have focussed on skull morphology, so a vacuum exists about morphofunctional variation in postcranium and its role in structuring ensembles of felids in different continents. The African felid ensemble is particularly rich in ecologically specialized felids. We studied the ecomorphology of this ensemble using 31 cranial and 93 postcranial morphometric variables measured in 49 specimens of all 10 African species. We took a multivariate approach controlling for phylogeny, with and without body size correction. Postcranial and skull + postcranial analyses (but not skull-only analyses) allowed for a complete segregation of species in morphospace. Morphofunctional factors segregating species included body size, bite force, zeugopodial lengths and osteological features related to parasagittal leg movement. A general gradient of bodily proportions was recovered: lightly built, long-legged felids with small heads and weak bite forces vs. the opposite. Three loose groups were recognized: small terrestrial felids, mid-to-large sized scansorial felids and specialized Acinonyx jubatus and Leptailurus serval. As predicted from a previous study, the assembling of the African felid ensemble during the Plio-Pleistocene occurred by the arrival of distinct felid lineages that occupied then vacant areas of morphospace, later diversifying in the continent. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Multi-criterion model ensemble of CMIP5 surface air temperature over China
NASA Astrophysics Data System (ADS)
Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming
2018-05-01
The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the South Central China (the Inner Mongolia), the North Eastern China (the South Central China), and the North Western China (the South Central China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.
NASA Astrophysics Data System (ADS)
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2015-11-01
Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.
The interplay between cooperativity and diversity in model threshold ensembles
Cervera, Javier; Manzanares, José A.; Mafe, Salvador
2014-01-01
The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks. PMID:25142516
Sampling-based ensemble segmentation against inter-operator variability
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Pope, Whitney; Brown, Matthew
2011-03-01
Inconsistency and a lack of reproducibility are commonly associated with semi-automated segmentation methods. In this study, we developed an ensemble approach to improve reproducibility and applied it to glioblastoma multiforme (GBM) brain tumor segmentation on T1-weigted contrast enhanced MR volumes. The proposed approach combines samplingbased simulations and ensemble segmentation into a single framework; it generates a set of segmentations by perturbing user initialization and user-specified internal parameters, then fuses the set of segmentations into a single consensus result. Three combination algorithms were applied: majority voting, averaging and expectation-maximization (EM). The reproducibility of the proposed framework was evaluated by a controlled experiment on 16 tumor cases from a multicenter drug trial. The ensemble framework had significantly better reproducibility than the individual base Otsu thresholding method (p<.001).
Negative Correlation Learning for Customer Churn Prediction: A Comparison Study
Faris, Hossam
2015-01-01
Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis. PMID:25879060
Probabilistic flood warning using grand ensemble weather forecasts
NASA Astrophysics Data System (ADS)
He, Y.; Wetterhall, F.; Cloke, H.; Pappenberger, F.; Wilson, M.; Freer, J.; McGregor, G.
2009-04-01
As the severity of floods increases, possibly due to climate and landuse change, there is urgent need for more effective and reliable warning systems. The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. An ensemble of weather forecasts from one Ensemble Prediction System (EPS), when used on catchment hydrology, can provide improved early flood warning as some of the uncertainties can be quantified. EPS forecasts from a single weather centre only account for part of the uncertainties originating from initial conditions and stochastic physics. Other sources of uncertainties, including numerical implementations and/or data assimilation, can only be assessed if a grand ensemble of EPSs from different weather centres is used. When various models that produce EPS from different weather centres are aggregated, the probabilistic nature of the ensemble precipitation forecasts can be better retained and accounted for. The availability of twelve global EPSs through the 'THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for the design of an improved probabilistic flood forecasting framework. This work presents a case study using the TIGGE database for flood warning on a meso-scale catchment. The upper reach of the River Severn catchment located in the Midlands Region of England is selected due to its abundant data for investigation and its relatively small size (4062 km2) (compared to the resolution of the NWPs). This choice was deliberate as we hypothesize that the uncertainty in the forcing of smaller catchments cannot be represented by a single EPS with a very limited number of ensemble members, but only through the variance given by a large number ensembles and ensemble system. A coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts is set up to study the potential benefits of using the TIGGE database in early flood warning. Physically based and fully distributed LISFLOOD suite of models is selected to simulate discharge and flood inundation consecutively. The results show the TIGGE database is a promising tool to produce forecasts of discharge and flood inundation comparable with the observed discharge and simulated inundation driven by the observed discharge. The spread of discharge forecasts varies from centre to centre, but it is generally large, implying a significant level of uncertainties. Precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial variability of precipitation on a comparatively small catchment. This perhaps indicates the need to improve NWPs resolution and/or disaggregation techniques to narrow down the spatial gap between meteorology and hydrology. It is not necessarily true that early flood warning becomes more reliable when more ensemble forecasts are employed. It is difficult to identify the best forecast centre(s), but in general the chance of detecting floods is increased by using the TIGGE database. Only one flood event was studied because most of the TIGGE data became available after October 2007. It is necessary to test the TIGGE ensemble forecasts with other flood events in other catchments with different hydrological and climatic regimes before general conclusions can be made on its robustness and applicability.
Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles
NASA Astrophysics Data System (ADS)
Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae
2016-04-01
Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.
Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA
2017-01-01
Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository. PMID:28263984
Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.
Biggs, Matthew B; Papin, Jason A
2017-03-01
Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.
Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models.
Li, Wenlin; Schaeffer, R Dustin; Otwinowski, Zbyszek; Grishin, Nick V
2016-01-01
The Critical Assessment of techniques for protein Structure Prediction (or CASP) is a community-wide blind test experiment to reveal the best accomplishments of structure modeling. Assessors have been using the Global Distance Test (GDT_TS) measure to quantify prediction performance since CASP3 in 1998. However, identifying significant score differences between close models is difficult because of the lack of uncertainty estimations for this measure. Here, we utilized the atomic fluctuations caused by structure flexibility to estimate the uncertainty of GDT_TS scores. Structures determined by nuclear magnetic resonance are deposited as ensembles of alternative conformers that reflect the structural flexibility, whereas standard X-ray refinement produces the static structure averaged over time and space for the dynamic ensembles. To recapitulate the structural heterogeneous ensemble in the crystal lattice, we performed time-averaged refinement for X-ray datasets to generate structural ensembles for our GDT_TS uncertainty analysis. Using those generated ensembles, our study demonstrates that the time-averaged refinements produced structure ensembles with better agreement with the experimental datasets than the averaged X-ray structures with B-factors. The uncertainty of the GDT_TS scores, quantified by their standard deviations (SDs), increases for scores lower than 50 and 70, with maximum SDs of 0.3 and 1.23 for X-ray and NMR structures, respectively. We also applied our procedure to the high accuracy version of GDT-based score and produced similar results with slightly higher SDs. To facilitate score comparisons by the community, we developed a user-friendly web server that produces structure ensembles for NMR and X-ray structures and is accessible at http://prodata.swmed.edu/SEnCS. Our work helps to identify the significance of GDT_TS score differences, as well as to provide structure ensembles for estimating SDs of any scores.
NASA Astrophysics Data System (ADS)
Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.
2013-10-01
This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.
Extreme Value Analysis of hydro meteorological extremes in the ClimEx Large-Ensemble
NASA Astrophysics Data System (ADS)
Wood, R. R.; Martel, J. L.; Willkofer, F.; von Trentini, F.; Schmid, F. J.; Leduc, M.; Frigon, A.; Ludwig, R.
2017-12-01
Many studies show an increase in the magnitude and frequency of hydrological extreme events in the course of climate change. However the contribution of natural variability to the magnitude and frequency of hydrological extreme events is not yet settled. A reliable estimate of extreme events is from great interest for water management and public safety. In the course of the ClimEx Project (www.climex-project.org) a new single-model large-ensemble was created by dynamically downscaling the CanESM2 large-ensemble with the Canadian Regional Climate Model version 5 (CRCM5) for an European Domain and a Northeastern North-American domain. By utilizing the ClimEx 50-Member Large-Ensemble (CRCM5 driven by CanESM2 Large-Ensemble) a thorough analysis of natural variability in extreme events is possible. Are the current extreme value statistical methods able to account for natural variability? How large is the natural variability for e.g. a 1/100 year return period derived from a 50-Member Large-Ensemble for Europe and Northeastern North-America? These questions should be answered by applying various generalized extreme value distributions (GEV) to the ClimEx Large-Ensemble. Hereby various return levels (5-, 10-, 20-, 30-, 60- and 100-years) based on various lengths of time series (20-, 30-, 50-, 100- and 1500-years) should be analyzed for the maximum one day precipitation (RX1d), the maximum three hourly precipitation (RX3h) and the streamflow for selected catchments in Europe. The long time series of the ClimEx Ensemble (7500 years) allows us to give a first reliable estimate of the magnitude and frequency of certain extreme events.
Stanescu, Ana; Caragea, Doina
2015-01-01
Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.
2015-01-01
Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
Rethinking the Default Construction of Multimodel Climate Ensembles
Rauser, Florian; Gleckler, Peter; Marotzke, Jochem
2015-07-21
Here, we discuss the current code of practice in the climate sciences to routinely create climate model ensembles as ensembles of opportunity from the newest phase of the Coupled Model Intercomparison Project (CMIP). We give a two-step argument to rethink this process. First, the differences between generations of ensembles corresponding to different CMIP phases in key climate quantities are not large enough to warrant an automatic separation into generational ensembles for CMIP3 and CMIP5. Second, we suggest that climate model ensembles cannot continue to be mere ensembles of opportunity but should always be based on a transparent scientific decision process.more » If ensembles can be constrained by observation, then they should be constructed as target ensembles that are specifically tailored to a physical question. If model ensembles cannot be constrained by observation, then they should be constructed as cross-generational ensembles, including all available model data to enhance structural model diversity and to better sample the underlying uncertainties. To facilitate this, CMIP should guide the necessarily ongoing process of updating experimental protocols for the evaluation and documentation of coupled models. Finally, with an emphasis on easy access to model data and facilitating the filtering of climate model data across all CMIP generations and experiments, our community could return to the underlying idea of using model data ensembles to improve uncertainty quantification, evaluation, and cross-institutional exchange.« less
Engineering paradigms and anthropogenic global change
NASA Astrophysics Data System (ADS)
Bohle, Martin
2016-04-01
This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative, the paradigm of 'ecomodernism' implies to accentuate some of the current development paths of societies with the goal to 'decouple' anthropogenic and natural fluxes of matter and energy. Applying the paradigm 'geoengineering', engineering works shall 'modulate' natural fluxes of matter to counter the effect of anthropogenic fluxes of matter instead to alter the development paths of societies. Thus, anthropogenic global change is a composite process in which engineering intercedes the 'noosphere' and in the 'bio-geosphere'. Paradigms 'how to engineering earth systems' reflect different concepts ('shared subjective insights') how to combine knowledge with use, function and purpose. Currently, four paradigms are distinguishable how to engineer anthropogenic global change. They convene recipes human activity and bio-geosphere should intersect.
NASA Astrophysics Data System (ADS)
Lee, Sang-Min; Nam, Ji-Eun; Choi, Hee-Wook; Ha, Jong-Chul; Lee, Yong Hee; Kim, Yeon-Hee; Kang, Hyun-Suk; Cho, ChunHo
2016-08-01
This study was conducted to evaluate the prediction accuracies of THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data at six operational forecast centers using the root-mean square difference (RMSD) and Brier score (BS) from April to July 2012. And it was performed to test the precipitation predictability of ensemble prediction systems (EPS) on the onset of the summer rainy season, the day of withdrawal in spring drought over South Korea on 29 June 2012 with use of the ensemble mean precipitation, ensemble probability precipitation, 10-day lag ensemble forecasts (ensemble mean and probability precipitation), and effective drought index (EDI). The RMSD analysis of atmospheric variables (geopotential-height at 500 hPa, temperature at 850 hPa, sea-level pressure and specific humidity at 850 hPa) showed that the prediction accuracies of the EPS at the Meteorological Service of Canada (CMC) and China Meteorological Administration (CMA) were poor and those at the European Center for Medium-Range Weather Forecasts (ECMWF) and Korea Meteorological Administration (KMA) were good. Also, ECMWF and KMA showed better results than other EPSs for predicting precipitation in the BS distributions. It is also evaluated that the onset of the summer rainy season could be predicted using ensemble-mean precipitation from 4-day leading time at all forecast centers. In addition, the spatial distributions of predicted precipitation of the EPS at KMA and the Met Office of the United Kingdom (UKMO) were similar to those of observed precipitation; thus, the predictability showed good performance. The precipitation probability forecasts of EPS at CMA, the National Centers for Environmental Prediction (NCEP), and UKMO (ECMWF and KMA) at 1-day lead time produced over-forecasting (under-forecasting) in the reliability diagram. And all the ones at 2˜4-day lead time showed under-forecasting. Also, the precipitation on onset day of the summer rainy season could be predicted from a 4-day lead time to initial time by using the 10-day lag ensemble mean and probability forecasts. Additionally, the predictability for withdrawal day of spring drought to be ended due to precipitation on onset day of summer rainy season was evaluated using Effective Drought Index (EDI) to be calculated by ensemble mean precipitation forecasts and spreads at five EPSs.
NASA Astrophysics Data System (ADS)
Stanzel, Philipp; Kling, Harald
2017-04-01
EURO-CORDEX Regional Climate Model (RCM) data are available as result of the latest initiative of the climate modelling community to provide ever improved simulations of past and future climate in Europe. The spatial resolution of the climate models increased from 25 x 25 km in the previous coordinated initiative, ENSEMBLES, to 12 x 12 km in the CORDEX EUR-11 simulations. This higher spatial resolution might yield improved representation of the historic climate, especially in complex mountainous terrain, improving applicability in impact studies. CORDEX scenario simulations are based on Representative Concentration Pathways, while ENSEMBLES applied the SRES greenhouse gas emission scenarios. The new emission scenarios might lead to different projections of future climate. In this contribution we explore these two dimensions of development from ENSEMBLES to CORDEX - representation of the past and projections for the future - in the context of a hydrological climate change impact study for the Danube River. We replicated previous hydrological simulations that used ENSEMBLES data of 21 RCM simulations under SRES A1B emission scenario as meteorological input data (Kling et al. 2012), and now applied CORDEX EUR-11 data of 16 RCM simulations under RCP4.5 and RCP8.5 emission scenarios. The climate variables precipitation and temperature were used to drive a monthly hydrological model of the upper Danube basin upstream of Vienna (100,000 km2). RCM data was bias corrected and downscaled to the scale of hydrological model units. Results with CORDEX data were compared with results with ENSEMBLES data, analysing both the driving meteorological input and the resulting discharge projections. Results with CORDEX data show no general improvement in the accuracy of representing historic climatic features, despite the increase in spatial model resolution. The tendency of ENSEMBLES scenario projections of increasing precipitation in winter and decreasing precipitation in summer is reproduced with the CORDEX RCMs, albeit with slightly higher precipitation in the CORDEX data. The distinct pattern of future change in discharge seasonality - increasing winter discharge and decreasing summer discharge - is confirmed with the new CORDEX data, with a range of projections very similar to the range projected by the ENSEMBLES RCMs. References: Kling, H., Fuchs, M., Paulin, M. 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology 424-425, 264-277.
NASA Astrophysics Data System (ADS)
Solvang Johansen, Stian; Steinsland, Ingelin; Engeland, Kolbjørn
2016-04-01
Running hydrological models with precipitation and temperature ensemble forcing to generate ensembles of streamflow is a commonly used method in operational hydrology. Evaluations of streamflow ensembles have however revealed that the ensembles are biased with respect to both mean and spread. Thus postprocessing of the ensembles is needed in order to improve the forecast skill. The aims of this study is (i) to to evaluate how postprocessing of streamflow ensembles works for Norwegian catchments within different hydrological regimes and to (ii) demonstrate how post processed streamflow ensembles are used operationally by a hydropower producer. These aims were achieved by postprocessing forecasted daily discharge for 10 lead-times for 20 catchments in Norway by using EPS forcing from ECMWF applied the semi-distributed HBV-model dividing each catchment into 10 elevation zones. Statkraft Energi uses forecasts from these catchments for scheduling hydropower production. The catchments represent different hydrological regimes. Some catchments have stable winter condition with winter low flow and a major flood event during spring or early summer caused by snow melting. Others has a more mixed snow-rain regime, often with a secondary flood season during autumn, and in the coastal areas, the stream flow is dominated by rain, and the main flood season is autumn and winter. For post processing, a Bayesian model averaging model (BMA) close to (Kleiber et al 2011) is used. The model creates a predictive PDF that is a weighted average of PDFs centered on the individual bias corrected forecasts. The weights are here equal since all ensemble members come from the same model, and thus have the same probability. For modeling streamflow, the gamma distribution is chosen as a predictive PDF. The bias correction parameters and the PDF parameters are estimated using a 30-day sliding window training period. Preliminary results show that the improvement varies between catchments depending on where they are situated and the hydrological regime. There is an improvement in CRPS for all catchments compared to raw EPS ensembles. The improvement is up to lead-time 5-7. The postprocessing also improves the MAE for the median of the predictive PDF compared to the median of the raw EPS. But less compared to CRPS, often up to lead-time 2-3. The streamflow ensembles are to some extent used operationally in Statkraft Energi (Hydro Power company, Norway), with respect to early warning, risk assessment and decision-making. Presently all forecast used operationally for short-term scheduling are deterministic, but ensembles are used visually for expert assessment of risk in difficult situations where e.g. there is a chance of overflow in a reservoir. However, there are plans to incorporate ensembles in the daily scheduling of hydropower production.
Quiet planting in the locked constraints satisfaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdeborova, Lenka; Krzakala, Florent
2009-01-01
We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble, thus providing hard satisfiable benchmarks. In a part of that hard region instances have with high probability a single satisfying assignment.
Generalized ensemble method applied to study systems with strong first order transitions
Malolepsza, E.; Kim, J.; Keyes, T.
2015-09-28
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub, where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM).more » This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. Lastly, the method is illustrated in a study of the very strong solid/liquid transition in water.« less
Generalized ensemble method applied to study systems with strong first order transitions
NASA Astrophysics Data System (ADS)
Małolepsza, E.; Kim, J.; Keyes, T.
2015-09-01
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.
Zhu, Guanhua; Liu, Wei; Bao, Chenglong; Tong, Dudu; Ji, Hui; Shen, Zuowei; Yang, Daiwen; Lu, Lanyuan
2018-05-01
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Merker, Claire; Ament, Felix; Clemens, Marco
2017-04-01
The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.
Assimilation of water temperature and discharge data for ensemble water temperature forecasting
NASA Astrophysics Data System (ADS)
Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André
2017-11-01
Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara
2016-06-01
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
The Nature and Variability of Ensemble Sensitivity Fields that Diagnose Severe Convection
NASA Astrophysics Data System (ADS)
Ancell, B. C.
2017-12-01
Ensemble sensitivity analysis (ESA) is a statistical technique that uses information from an ensemble of forecasts to reveal relationships between chosen forecast metrics and the larger atmospheric state at various forecast times. A number of studies have employed ESA from the perspectives of dynamical interpretation, observation targeting, and ensemble subsetting toward improved probabilistic prediction of high-impact events, mostly at synoptic scales. We tested ESA using convective forecast metrics at the 2016 HWT Spring Forecast Experiment to understand the utility of convective ensemble sensitivity fields in improving forecasts of severe convection and its individual hazards. The main purpose of this evaluation was to understand the temporal coherence and general characteristics of convective sensitivity fields toward future use in improving ensemble predictability within an operational framework.The magnitude and coverage of simulated reflectivity, updraft helicity, and surface wind speed were used as response functions, and the sensitivity of these functions to winds, temperatures, geopotential heights, and dew points at different atmospheric levels and at different forecast times were evaluated on a daily basis throughout the HWT Spring Forecast experiment. These sensitivities were calculated within the Texas Tech real-time ensemble system, which possesses 42 members that run twice daily to 48-hr forecast time. Here we summarize both the findings regarding the nature of the sensitivity fields and the evaluation of the participants that reflects their opinions of the utility of operational ESA. The future direction of ESA for operational use will also be discussed.
Landsgesell, Jonas; Holm, Christian; Smiatek, Jens
2017-02-14
We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.
NASA Astrophysics Data System (ADS)
Peterson, Brittany Ann
Winter storms can affect millions of people, with impacts such as disruptions to transportation, hazards to human health, reduction in retail sales, and structural damage. Blizzard forecasts for Alberta Clippers can be a particular challenge in the Northern Plains, as these systems typically depart from the Canadian Rockies, intensify, and impact the Northern Plains all within 24 hours. The purpose of this study is to determine whether probabilistic forecasts derived from a local physics-based ensemble can improve specific aspects of winter storm forecasts for three Alberta Clipper cases. Verification is performed on the ensemble members and ensemble mean with a focus on quantifying uncertainty in the storm track, two-meter winds, and precipitation using the MERRA and NOHRSC SNODAS datasets. This study finds that addition improvements are needed to proceed with operational use of the ensemble blizzard products, but the use of a proxy for blizzard conditions yields promising results.
Verifying and Postprocesing the Ensemble Spread-Error Relationship
NASA Astrophysics Data System (ADS)
Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli
2013-04-01
With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiwei; Domcke, Wolfgang; Farantos, Stavros C.
A trajectory method of calculating tunneling probabilities from phase integrals along straight line tunneling paths, originally suggested by Makri and Miller [J. Chem. Phys. 91, 4026 (1989)] and recently implemented by Truhlar and co-workers [Chem. Sci. 5, 2091 (2014)], is tested for one- and two-dimensional ab initio based potentials describing hydrogen dissociation in the {sup 1}B{sub 1} excited electronic state of pyrrole. The primary observables are the tunneling rates in a progression of bending vibrational states lying below the dissociation barrier and their isotope dependences. Several initial ensembles of classical trajectories have been considered, corresponding to the quasiclassical and themore » quantum mechanical samplings of the initial conditions. It is found that the sampling based on the fixed energy Wigner density gives the best agreement with the quantum mechanical dissociation rates.« less
Monetary economics from econophysics perspective
NASA Astrophysics Data System (ADS)
Yakovenko, Victor M.
2016-12-01
This is an invited article for the Discussion and Debate special issue of The European Physical Journal Special Topics on the subject "Can Economics be a Physical Science?" The first part of the paper traces the personal path of the author from theoretical physics to economics. It briefly summarizes applications of statistical physics to monetary transactions in an ensemble of economic agents. It shows how a highly unequal probability distribution of money emerges due to irreversible increase of entropy in the system. The second part examines deep conceptual and controversial issues and fallacies in monetary economics from econophysics perspective. These issues include the nature of money, conservation (or not) of money, distinctions between money vs. wealth and money vs. debt, creation of money by the state and debt by the banks, the origins of monetary crises and capitalist profit. Presentation uses plain language understandable to laypeople and may be of interest to both specialists and general public.
Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles
NASA Astrophysics Data System (ADS)
Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.
2016-05-01
We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.
Artificial Diversity and Defense Security (ADDSec) Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Adrian R.; Hamlet, Jason; Stout, William M.S.
Critical infrastructure systems continue to foster predictable communication patterns and static configurations over extended periods of time. The static nature of these systems eases the process of gathering reconnaissance information that can be used to design, develop, and launch attacks by adversaries. In this research effort, the early phases of an attack vector will be disrupted by randomizing application port numbers, IP addresses, and communication paths dynamically through the use of overlay networks within Industrial Control Systems (ICS). These protective measures convert static systems into "moving targets," adding an additional layer of defense. Additionally, we have developed a framework thatmore » automatically detects and defends against threats within these systems using an ensemble of machine learning algorithms that classify and categorize abnormal behavior. Our proof-of-concept has been demonstrated within a representative ICS environment. Performance metrics of our proof-of-concept have been captured with latency impacts of less than a millisecond, on average.« less
Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome
Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.
2001-01-01
We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203
NASA Astrophysics Data System (ADS)
Reyers, Mark; Moemken, Julia; Pinto, Joaquim; Feldmann, Hendrik; Kottmeier, Christoph; MiKlip Module-C Team
2017-04-01
Decadal climate predictions can provide a useful basis for decision making support systems for the public and private sectors. Several generations of decadal hindcasts and predictions have been generated throughout the German research program MiKlip. Together with the global climate predictions computed with MPI-ESM, the regional climate model (RCM) COSMO-CLM is used for regional downscaling by MiKlip Module-C. The RCMs provide climate information on spatial and temporal scales closer to the needs of potential users. In this study, two downscaled hindcast generations are analysed (named b0 and b1). The respective global generations are both initialized by nudging them towards different reanalysis anomaly fields. An ensemble of five starting years (1961, 1971, 1981, 1991, and 2001), each comprising ten ensemble members, is used for both generations in order to quantify the regional decadal prediction skill for precipitation and near-surface temperature and wind speed over Europe. All datasets (including hindcasts, observations, reanalysis, and historical MPI-ESM runs) are pre-processed in an analogue manner by (i) removing the long-term trend and (ii) re-gridding to a common grid. Our analysis shows that there is potential for skillful decadal predictions over Europe in the regional MiKlip ensemble, but the skill is not systematic and depends on the PRUDENCE region and the variable. Further, the differences between the two hindcast generations are mostly small. As we used detrended time series, the predictive skill found in our study can probably attributed to reasonable predictions of anomalies which are associated with the natural climate variability. In a sensitivity study, it is shown that the results may strongly change when the long-term trend is kept in the datasets, as here the skill of predicting the long-term trend (e.g. for temperature) also plays a major role. The regionalization of the global ensemble provides an added value for decadal predictions for some complex regions like the Mediterranean and Iberian Peninsula, while for other regions no systematic improvement is found. A clear dependence of the performance of the regional MiKlip system on the ensemble size is detected. For all variables in both hindcast generations, the skill increases when the ensemble is enlarged. The results indicate that a number of ten members is an appropriate ensemble size for decadal predictions over Europe.
Imprinting and recalling cortical ensembles.
Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael
2016-08-12
Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.
Growing into and out of the bouncing barrier in planetesimal formation
NASA Astrophysics Data System (ADS)
Kruss, Maximilian; Teiser, Jens; Wurm, Gerhard
2017-04-01
In recent laboratory studies the robustness of a bouncing barrier in planetesimal formation was studied with an ensemble of pre-formed compact mm-sized aggregates. Here we show that a bouncing barrier indeed evolves self-consistently by hit-and-stick from an ensemble of smaller dust aggregates. In addition, we feed small aggregates to an ensemble of larger bouncing aggregates. The stickiness temporarily increases, but the final number of aggregates still bouncing remains the same. However, feeding on the small particle supply, the size of the bouncing aggregates increases. This suggests that in the presence of a dust reservoir aggregates grow into but also out of a bouncing barrier at larger size.
Fidelity decay of the two-level bosonic embedded ensembles of random matrices
NASA Astrophysics Data System (ADS)
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2010-12-01
We study the fidelity decay of the k-body embedded ensembles of random matrices for bosons distributed over two single-particle states. Fidelity is defined in terms of a reference Hamiltonian, which is a purely diagonal matrix consisting of a fixed one-body term and includes the diagonal of the perturbing k-body embedded ensemble matrix, and the perturbed Hamiltonian which includes the residual off-diagonal elements of the k-body interaction. This choice mimics the typical mean-field basis used in many calculations. We study separately the cases k = 2 and 3. We compute the ensemble-averaged fidelity decay as well as the fidelity of typical members with respect to an initial random state. Average fidelity displays a revival at the Heisenberg time, t = tH = 1, and a freeze in the fidelity decay, during which periodic revivals of period tH are observed. We obtain the relevant scaling properties with respect to the number of bosons and the strength of the perturbation. For certain members of the ensemble, we find that the period of the revivals during the freeze of fidelity occurs at fractional times of tH. These fractional periodic revivals are related to the dominance of specific k-body terms in the perturbation.
Uehara, Shota; Tanaka, Shigenori
2017-04-24
Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.
Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.
2009-01-01
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models. Crown Copyright ?? 2008.
Training set extension for SVM ensemble in P300-speller with familiar face paradigm.
Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou
2018-03-27
P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.
A new approach to human microRNA target prediction using ensemble pruning and rotation forest.
Mousavi, Reza; Eftekhari, Mahdi; Haghighi, Mehdi Ghezelbash
2015-12-01
MicroRNAs (miRNAs) are small non-coding RNAs that have important functions in gene regulation. Since finding miRNA target experimentally is costly and needs spending much time, the use of machine learning methods is a growing research area for miRNA target prediction. In this paper, a new approach is proposed by using two popular ensemble strategies, i.e. Ensemble Pruning and Rotation Forest (EP-RTF), to predict human miRNA target. For EP, the approach utilizes Genetic Algorithm (GA). In other words, a subset of classifiers from the heterogeneous ensemble is first selected by GA. Next, the selected classifiers are trained based on the RTF method and then are combined using weighted majority voting. In addition to seeking a better subset of classifiers, the parameter of RTF is also optimized by GA. Findings of the present study confirm that the newly developed EP-RTF outperforms (in terms of classification accuracy, sensitivity, and specificity) the previously applied methods over four datasets in the field of human miRNA target. Diversity-error diagrams reveal that the proposed ensemble approach constructs individual classifiers which are more accurate and usually diverse than the other ensemble approaches. Given these experimental results, we highly recommend EP-RTF for improving the performance of miRNA target prediction.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2014-11-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
ERIC Educational Resources Information Center
Matthews, Wendy K.; Kitsantas, Anastasia
2013-01-01
This study examined the effects of the conductor's goal orientation (mastery vs. performance) and use of shared performance cues (basic vs. interpretive vs. expressive) on instrumentalists' self-efficacy, collective efficacy, attributions, and performance. Eighty-one college instrumentalists from two musical ensembles participated in the study. It…
ERIC Educational Resources Information Center
Sours, James P.
2009-01-01
This study was conducted to examine the effectiveness of embedding character education into the daily functions of instrumental music ensembles at Franklin High School in Portland Oregon. The participants in the study were the students of the researcher which may have been a delimitation. Their ages were from 14 to 19 years. Students from…
The Effect of Conductor Expressivity on Ensemble Performance Evaluation
ERIC Educational Resources Information Center
Morrison, Steven J.; Price, Harry E.; Geiger, Carla G.; Cornacchio, Rachel A.
2009-01-01
In this study, the authors examined whether a conductor's use of high-expressivity or low-expressivity techniques affected evaluations of ensemble performances that were identical across conducting conditions. Two conductors each conducted two 1-minute parallel excerpts from Percy Grainger's "Walking Tune." Each directed one excerpt…
A global sampling approach to designing and reengineering RNA secondary structures.
Levin, Alex; Lis, Mieszko; Ponty, Yann; O'Donnell, Charles W; Devadas, Srinivas; Berger, Bonnie; Waldispühl, Jérôme
2012-11-01
The development of algorithms for designing artificial RNA sequences that fold into specific secondary structures has many potential biomedical and synthetic biology applications. To date, this problem remains computationally difficult, and current strategies to address it resort to heuristics and stochastic search techniques. The most popular methods consist of two steps: First a random seed sequence is generated; next, this seed is progressively modified (i.e. mutated) to adopt the desired folding properties. Although computationally inexpensive, this approach raises several questions such as (i) the influence of the seed; and (ii) the efficiency of single-path directed searches that may be affected by energy barriers in the mutational landscape. In this article, we present RNA-ensign, a novel paradigm for RNA design. Instead of taking a progressive adaptive walk driven by local search criteria, we use an efficient global sampling algorithm to examine large regions of the mutational landscape under structural and thermodynamical constraints until a solution is found. When considering the influence of the seeds and the target secondary structures, our results show that, compared to single-path directed searches, our approach is more robust, succeeds more often and generates more thermodynamically stable sequences. An ensemble approach to RNA design is thus well worth pursuing as a complement to existing approaches. RNA-ensign is available at http://csb.cs.mcgill.ca/RNAensign.
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-07
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
NASA Astrophysics Data System (ADS)
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-01
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
A global sampling approach to designing and reengineering RNA secondary structures
Levin, Alex; Lis, Mieszko; Ponty, Yann; O’Donnell, Charles W.; Devadas, Srinivas; Berger, Bonnie; Waldispühl, Jérôme
2012-01-01
The development of algorithms for designing artificial RNA sequences that fold into specific secondary structures has many potential biomedical and synthetic biology applications. To date, this problem remains computationally difficult, and current strategies to address it resort to heuristics and stochastic search techniques. The most popular methods consist of two steps: First a random seed sequence is generated; next, this seed is progressively modified (i.e. mutated) to adopt the desired folding properties. Although computationally inexpensive, this approach raises several questions such as (i) the influence of the seed; and (ii) the efficiency of single-path directed searches that may be affected by energy barriers in the mutational landscape. In this article, we present RNA-ensign, a novel paradigm for RNA design. Instead of taking a progressive adaptive walk driven by local search criteria, we use an efficient global sampling algorithm to examine large regions of the mutational landscape under structural and thermodynamical constraints until a solution is found. When considering the influence of the seeds and the target secondary structures, our results show that, compared to single-path directed searches, our approach is more robust, succeeds more often and generates more thermodynamically stable sequences. An ensemble approach to RNA design is thus well worth pursuing as a complement to existing approaches. RNA-ensign is available at http://csb.cs.mcgill.ca/RNAensign. PMID:22941632
Law, Andrew J.; Rivlis, Gil
2014-01-01
Pioneering studies demonstrated that novel degrees of freedom could be controlled individually by directly encoding the firing rate of single motor cortex neurons, without regard to each neuron's role in controlling movement of the native limb. In contrast, recent brain-computer interface work has emphasized decoding outputs from large ensembles that include substantially more neurons than the number of degrees of freedom being controlled. To bridge the gap between direct encoding by single neurons and decoding output from large ensembles, we studied monkeys controlling one degree of freedom by comodulating up to four arbitrarily selected motor cortex neurons. Performance typically exceeded random quite early in single sessions and then continued to improve to different degrees in different sessions. We therefore examined factors that might affect performance. Performance improved with larger ensembles. In contrast, other factors that might have reflected preexisting synaptic architecture—such as the similarity of preferred directions—had little if any effect on performance. Patterns of comodulation among ensemble neurons became more consistent across trials as performance improved over single sessions. Compared with the ensemble neurons, other simultaneously recorded neurons showed less modulation. Patterns of voluntarily comodulated firing among small numbers of arbitrarily selected primary motor cortex (M1) neurons thus can be found and improved rapidly, with little constraint based on the normal relationships of the individual neurons to native limb movement. This rapid flexibility in relationships among M1 neurons may in part underlie our ability to learn new movements and improve motor skill. PMID:24920030
Multiple Scattering in Planetary Regoliths Using Incoherent Interactions
NASA Astrophysics Data System (ADS)
Muinonen, K.; Markkanen, J.; Vaisanen, T.; Penttilä, A.
2017-12-01
We consider scattering of light by a planetary regolith using novel numerical methods for discrete random media of particles. Understanding the scattering process is of key importance for spectroscopic, photometric, and polarimetric modeling of airless planetary objects, including radar studies. In our modeling, the size of the spherical random medium can range from microscopic to macroscopic sizes, whereas the particles are assumed to be of the order of the wavelength in size. We extend the radiative transfer and coherent backscattering method (RT-CB) to the case of dense packing of particles by adopting the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path. Furthermore, we replace the far-field interactions of the RT-CB method with rigorous interactions facilitated by the Superposition T-matrix method (STMM). This gives rise to a new RT-RT method, radiative transfer with reciprocal interactions. For microscopic random media, we then compare the new results to asymptotically exact results computed using the STMM, succeeding in the numerical validation of the new methods.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Joys of Community Ensemble Playing: The Case of the Happy Roll Elastic Ensemble in Taiwan
ERIC Educational Resources Information Center
Hsieh, Yuan-Mei; Kao, Kai-Chi
2012-01-01
The Happy Roll Elastic Ensemble (HREE) is a community music ensemble supported by Tainan Culture Centre in Taiwan. With enjoyment and friendship as its primary goals, it aims to facilitate the joys of ensemble playing and the spirit of social networking. This article highlights the key aspects of HREE's development in its first two years…
Ensemble coding of face identity is not independent of the coding of individual identity.
Neumann, Markus F; Ng, Ryan; Rhodes, Gillian; Palermo, Romina
2018-06-01
Information about a group of similar objects can be summarized into a compressed code, known as ensemble coding. Ensemble coding of simple stimuli (e.g., groups of circles) can occur in the absence of detailed exemplar coding, suggesting dissociable processes. Here, we investigate whether a dissociation would still be apparent when coding facial identity, where individual exemplar information is much more important. We examined whether ensemble coding can occur when exemplar coding is difficult, as a result of large sets or short viewing times, or whether the two types of coding are positively associated. We found a positive association, whereby both ensemble and exemplar coding were reduced for larger groups and shorter viewing times. There was no evidence for ensemble coding in the absence of exemplar coding. At longer presentation times, there was an unexpected dissociation, where exemplar coding increased yet ensemble coding decreased, suggesting that robust information about face identity might suppress ensemble coding. Thus, for face identity, we did not find the classic dissociation-of access to ensemble information in the absence of detailed exemplar information-that has been used to support claims of distinct mechanisms for ensemble and exemplar coding.
Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve
2017-04-01
An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.
The interplay between cooperativity and diversity in model threshold ensembles.
Cervera, Javier; Manzanares, José A; Mafe, Salvador
2014-10-06
The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Confidence-based ensemble for GBM brain tumor segmentation
NASA Astrophysics Data System (ADS)
Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew
2011-03-01
It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide
NASA Astrophysics Data System (ADS)
Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.
2017-08-01
We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.
Gender and Participation in High School and College Instrumental Jazz Ensembles
ERIC Educational Resources Information Center
McKeage, Kathleen M.
2004-01-01
This study is an examination of the relationship between gender and participation in high school and college instrumental jazz ensembles. Student demographic and attitudinal information was collected using the researcher-designed Instrumental Jazz Participation Survey (IJPS). Undergraduate college band students (N = 628) representing 15 programs…
Peer Connectedness in the Middle School Band Program
ERIC Educational Resources Information Center
Rawlings, Jared R.; Stoddard, Sarah A.
2017-01-01
Previous research suggests that students participating in school-based musical ensembles are more engaged in school and more likely to connect to their peers in school; however, researchers have not specifically investigated peer connectedness among adolescents in school-based music ensembles. The purpose of this study was to explore middle school…
Multimodel ensembles of wheat growth: many models are better than one
USDA-ARS?s Scientific Manuscript database
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but suc...
Adult Musicians' Experiences in a Homogeneous Ensemble Setting
ERIC Educational Resources Information Center
Taylor, Donald M.; Kruse, Nathan B.; Nickel, Bethany J.; Lee, Betty B.; Bowen, Tiffany N.
2011-01-01
The purpose of this study was to describe the experiences of adult musicians in two long-standing flute choirs. Data were collected through observations, field notes, and in-depth interviews with 16 ensemble members. Salient statements were grouped into meaning units and clustered into 5 themes: Serendipity, Rewards, Challenges, Directors'…
Supermodeling With A Global Atmospheric Model
NASA Astrophysics Data System (ADS)
Wiegerinck, Wim; Burgers, Willem; Selten, Frank
2013-04-01
In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra-tropical circulation in the Northern Hemisphere winter.
NASA Astrophysics Data System (ADS)
Ali, Mumtaz; Deo, Ravinesh C.; Downs, Nathan J.; Maraseni, Tek
2018-07-01
Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively mitigating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System ('ensemble-ANFIS') executed via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data. Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying 10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought behaviours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and its prime importance for estimating drought properties over confidence intervals to generate better information for strategic decision-making.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
Climate Model Ensemble Methodology: Rationale and Challenges
NASA Astrophysics Data System (ADS)
Vezer, M. A.; Myrvold, W.
2012-12-01
A tractable model of the Earth's atmosphere, or, indeed, any large, complex system, is inevitably unrealistic in a variety of ways. This will have an effect on the model's output. Nonetheless, we want to be able to rely on certain features of the model's output in studies aiming to detect, attribute, and project climate change. For this, we need assurance that these features reflect the target system, and are not artifacts of the unrealistic assumptions that go into the model. One technique for overcoming these limitations is to study ensembles of models which employ different simplifying assumptions and different methods of modelling. One then either takes as reliable certain outputs on which models in the ensemble agree, or takes the average of these outputs as the best estimate. Since the Intergovernmental Panel on Climate Change's Fourth Assessment Report (IPCC AR4) modellers have aimed to improve ensemble analysis by developing techniques to account for dependencies among models, and to ascribe unequal weights to models according to their performance. The goal of this paper is to present as clearly and cogently as possible the rationale for climate model ensemble methodology, the motivation of modellers to account for model dependencies, and their efforts to ascribe unequal weights to models. The method of our analysis is as follows. We will consider a simpler, well-understood case of taking the mean of a number of measurements of some quantity. Contrary to what is sometimes said, it is not a requirement of this practice that the errors of the component measurements be independent; one must, however, compensate for any lack of independence. We will also extend the usual accounts to include cases of unknown systematic error. We draw parallels between this simpler illustration and the more complex example of climate model ensembles, detailing how ensembles can provide more useful information than any of their constituent models. This account emphasizes the epistemic importance of considering degrees of model dependence, and the practice of ascribing unequal weights to models of unequal skill.
Decadal climate prediction in the large ensemble limit
NASA Astrophysics Data System (ADS)
Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.
2017-12-01
In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.
Summary statistics in the attentional blink.
McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M
2017-01-01
We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.
2008073000 2008072900 2008072800 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias | NAEFS Products | NAEFS | EMC Ensemble Products EMC | NCEP | National Weather Service
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
NASA Astrophysics Data System (ADS)
Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.
2015-09-01
Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles. Electronic supplementary information (ESI) available: NMR, MS, ATR-IR, UV-Vis spectra, CV graphs, femto- and nano-second transient absorption spectra of oligothiophenes and their ensembles with exfoliated graphene. See DOI: 10.1039/c5nr04875c
Distinct cognitive mechanisms involved in the processing of single objects and object ensembles
Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda
2015-01-01
Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156
Entropy criteria applied to pattern selection in systems with free boundaries
NASA Astrophysics Data System (ADS)
Kirkaldy, J. S.
1985-10-01
The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.
Deng, Nan-jie; Dai, Wei
2013-01-01
Understanding how kinetics in the unfolded state affects protein folding is a fundamentally important yet less well-understood issue. Here we employ three different models to analyze the unfolded landscape and folding kinetics of the miniprotein Trp-cage. The first is a 208 μs explicit solvent molecular dynamics (MD) simulation from D. E. Shaw Research containing tens of folding events. The second is a Markov state model (MSM-MD) constructed from the same ultra-long MD simulation; MSM-MD can be used to generate thousands of folding events. The third is a Markov state model built from temperature replica exchange MD simulations in implicit solvent (MSM-REMD). All the models exhibit multiple folding pathways, and there is a good correspondence between the folding pathways from direct MD and those computed from the MSMs. The unfolded populations interconvert rapidly between extended and collapsed conformations on time scales ≤ 40 ns, compared with the folding time of ≈ 5 μs. The folding rates are independent of where the folding is initiated from within the unfolded ensemble. About 90 % of the unfolded states are sampled within the first 40 μs of the ultra-long MD trajectory, which on average explores ~27 % of the unfolded state ensemble between consecutive folding events. We clustered the folding pathways according to structural similarity into “tubes”, and kinetically partitioned the unfolded state into populations that fold along different tubes. From our analysis of the simulations and a simple kinetic model, we find that when the mixing within the unfolded state is comparable to or faster than folding, the folding waiting times for all the folding tubes are similar and the folding kinetics is essentially single exponential despite the presence of heterogeneous folding paths with non-uniform barriers. When the mixing is much slower than folding, different unfolded populations fold independently leading to non-exponential kinetics. A kinetic partition of the Trp-cage unfolded state is constructed which reveals that different unfolded populations have almost the same probability to fold along any of the multiple folding paths. We are investigating whether the results for the kinetics in the unfolded state of the twenty-residue Trp-cage is representative of larger single domain proteins. PMID:23705683
Metadynamic metainference: Enhanced sampling of the metainference ensemble using metadynamics
Bonomi, Massimiliano; Camilloni, Carlo; Vendruscolo, Michele
2016-01-01
Accurate and precise structural ensembles of proteins and macromolecular complexes can be obtained with metainference, a recently proposed Bayesian inference method that integrates experimental information with prior knowledge and deals with all sources of errors in the data as well as with sample heterogeneity. The study of complex macromolecular systems, however, requires an extensive conformational sampling, which represents a separate challenge. To address such challenge and to exhaustively and efficiently generate structural ensembles we combine metainference with metadynamics and illustrate its application to the calculation of the free energy landscape of the alanine dipeptide. PMID:27561930
Improvement in T2* via Cancellation of Spin Bath Induced Dephasing in Solid-State Spins
NASA Astrophysics Data System (ADS)
Bauch, Erik; Hart, Connor; Schloss, Jennifer; Turner, Matthew; Barry, John; Walsworth, Ronald L.
2017-04-01
In measurements using ensembles of nitrogen vacancy (NV) centers in diamond, the magnetic field sensitivity can be improved by increasing the NV spin dephasing time, T2*. For NV ensembles, T2* is limited by dephasing arising from variations in the local environment sensed by individual NVs, such as applied magnetic fields, noise induced by other nearby spins, and strain. Here, we describe a systematic study of parameters influencing the NV ensemble T2*, and efforts to mitigate sources of inhomogeneity with demonstrated T2* improvements exceeding one order of magnitude.
NASA Astrophysics Data System (ADS)
Kumar, Sujay V.; Wang, Shugong; Mocko, David M.; Peters-Lidard, Christa D.; Xia, Youlong
2017-11-01
Multimodel ensembles are often used to produce ensemble mean estimates that tend to have increased simulation skill over any individual model output. If multimodel outputs are too similar, an individual LSM would add little additional information to the multimodel ensemble, whereas if the models are too dissimilar, it may be indicative of systematic errors in their formulations or configurations. The article presents a formal similarity assessment of the North American Land Data Assimilation System (NLDAS) multimodel ensemble outputs to assess their utility to the ensemble, using a confirmatory factor analysis. Outputs from four NLDAS Phase 2 models currently running in operations at NOAA/NCEP and four new/upgraded models that are under consideration for the next phase of NLDAS are employed in this study. The results show that the runoff estimates from the LSMs were most dissimilar whereas the models showed greater similarity for root zone soil moisture, snow water equivalent, and terrestrial water storage. Generally, the NLDAS operational models showed weaker association with the common factor of the ensemble and the newer versions of the LSMs showed stronger association with the common factor, with the model similarity increasing at longer time scales. Trade-offs between the similarity metrics and accuracy measures indicated that the NLDAS operational models demonstrate a larger span in the similarity-accuracy space compared to the new LSMs. The results of the article indicate that simultaneous consideration of model similarity and accuracy at the relevant time scales is necessary in the development of multimodel ensemble.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
Advanced Atmospheric Ensemble Modeling Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Chiswell, S.; Kurzeja, R.
Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911
NASA Astrophysics Data System (ADS)
Fayaz, S. M.; Rajanikant, G. K.
2014-07-01
Programmed cell death has been a fascinating area of research since it throws new challenges and questions in spite of the tremendous ongoing research in this field. Recently, necroptosis, a programmed form of necrotic cell death, has been implicated in many diseases including neurological disorders. Receptor interacting serine/threonine protein kinase 1 (RIPK1) is an important regulatory protein involved in the necroptosis and inhibition of this protein is essential to stop necroptotic process and eventually cell death. Current structure-based virtual screening methods involve a wide range of strategies and recently, considering the multiple protein structures for pharmacophore extraction has been emphasized as a way to improve the outcome. However, using the pharmacophoric information completely during docking is very important. Further, in such methods, using the appropriate protein structures for docking is desirable. If not, potential compound hits, obtained through pharmacophore-based screening, may not have correct ranks and scores after docking. Therefore, a comprehensive integration of different ensemble methods is essential, which may provide better virtual screening results. In this study, dual ensemble screening, a novel computational strategy was used to identify diverse and potent inhibitors against RIPK1. All the pharmacophore features present in the binding site were captured using both the apo and holo protein structures and an ensemble pharmacophore was built by combining these features. This ensemble pharmacophore was employed in pharmacophore-based screening of ZINC database. The compound hits, thus obtained, were subjected to ensemble docking. The leads acquired through docking were further validated through feature evaluation and molecular dynamics simulation.
NASA Astrophysics Data System (ADS)
Greenway, D. P.; Hackett, E.
2017-12-01
Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.
Method and apparatus for quantum information processing using entangled neutral-atom qubits
Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan
2018-04-03
A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.
ERIC Educational Resources Information Center
Faber, Ardis R.
2010-01-01
The purpose of this study was to investigate factors that influence first-year nonmusic majors' decisions regarding participation in music ensembles at small liberal arts colleges in Indiana. A survey questionnaire was used to gather data. The data collected was analyzed to determine significant differences between the nonmusic majors who have…
Minimalist ensemble algorithms for genome-wide protein localization prediction.
Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun
2012-07-03
Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
Minimalist ensemble algorithms for genome-wide protein localization prediction
2012-01-01
Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.
2009-12-01
Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
2013-01-01
Background Many problems in protein modeling require obtaining a discrete representation of the protein conformational space as an ensemble of conformations. In ab-initio structure prediction, in particular, where the goal is to predict the native structure of a protein chain given its amino-acid sequence, the ensemble needs to satisfy energetic constraints. Given the thermodynamic hypothesis, an effective ensemble contains low-energy conformations which are similar to the native structure. The high-dimensionality of the conformational space and the ruggedness of the underlying energy surface currently make it very difficult to obtain such an ensemble. Recent studies have proposed that Basin Hopping is a promising probabilistic search framework to obtain a discrete representation of the protein energy surface in terms of local minima. Basin Hopping performs a series of structural perturbations followed by energy minimizations with the goal of hopping between nearby energy minima. This approach has been shown to be effective in obtaining conformations near the native structure for small systems. Recent work by us has extended this framework to larger systems through employment of the molecular fragment replacement technique, resulting in rapid sampling of large ensembles. Methods This paper investigates the algorithmic components in Basin Hopping to both understand and control their effect on the sampling of near-native minima. Realizing that such an ensemble is reduced before further refinement in full ab-initio protocols, we take an additional step and analyze the quality of the ensemble retained by ensemble reduction techniques. We propose a novel multi-objective technique based on the Pareto front to filter the ensemble of sampled local minima. Results and conclusions We show that controlling the magnitude of the perturbation allows directly controlling the distance between consecutively-sampled local minima and, in turn, steering the exploration towards conformations near the native structure. For the minimization step, we show that the addition of Metropolis Monte Carlo-based minimization is no more effective than a simple greedy search. Finally, we show that the size of the ensemble of sampled local minima can be effectively and efficiently reduced by a multi-objective filter to obtain a simpler representation of the probed energy surface. PMID:24564970
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
A Statistical Description of Neural Ensemble Dynamics
Long, John D.; Carmena, Jose M.
2011-01-01
The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility. PMID:22319486
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
The Hydrologic Ensemble Prediction Experiment (HEPEX)
NASA Astrophysics Data System (ADS)
Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.
2012-12-01
The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.
Constraining a Coastal Ocean Model by Surface Observations Using an Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
De Mey, P. J.; Ayoub, N. K.
2016-02-01
We explore the impact of assimilating sea surface temperature (SST) and sea surface height (SSH) observations in the Bay of Biscay (North-East Atlantic). The study is conducted in the SYMPHONIE coastal circulation model (Marsaleix et al., 2009) on a 3kmx3km grid, with 43 sigma levels. Ensembles are generated by perturbing the wind forcing to analyze the model error subspace spanned by its response to wind forcing uncertainties. The assimilation method is a 4D Ensemble Kalman Filter algorithm with localization. We use the SDAP code developed in the team (https://sourceforge.net/projects/sequoia-dap/). In a first step before the assimilation of real observations, we set up an Ensemble twin experiment protocol where a nature run as well as noisy pseudo-observations of SST and SSH are generated from an Ensemble member (later discarded from the assimilative Ensemble). Our objectives are to assess (1) the adequacy of the choice of error source and perturbation strategy and (2) how effective the surface observational constraint is at constraining the surface and subsurface fields. We first illustrate characteristics of the error subspace generated by the perturbation strategy. We then show that, while the EnKF solves a single seamless problem regardless of the region within our domain, the nature and effectiveness of the data constraint over the shelf differ from those over the abyssal plain.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2015-04-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
Ozcift, Akin; Gulten, Arif
2011-12-01
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2018-06-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
Zheng, Lianqing; Chen, Mengen; Yang, Wei
2009-06-21
To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.
Preservation of physical properties with Ensemble-type Kalman Filter Algorithms
NASA Astrophysics Data System (ADS)
Janjic, T.
2017-12-01
We show the behavior of the localized Ensemble Kalman filter (EnKF) with respect to preservation of positivity, conservation of mass, energy and enstrophy in toy models that conserve these properties. In order to preserve physical properties in the analysis as well as to deal with the non-Gaussianity in an EnKF framework, Janjic et al. 2014 proposed the use of physically based constraints in the analysis step to constrain the solution. In particular, constraints were used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In the study, mass and positivity were both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicated that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that were more physically plausible both for individual ensemble members and for the ensemble mean. Moreover, in experiments designed to mimic the most important characteristics of convective motion, it is shown that the mass conservation- and positivity-constrained rain significantly suppresses noise seen in localized EnKF results. This is highly desirable in order to avoid spurious storms from appearing in the forecast starting from this initial condition (Lange and Craig 2014). In addition, the root mean square error is reduced for all fields and total mass of the rain is correctly simulated. Similarly, the enstrophy, divergence, as well as energy spectra can as well be strongly affected by localization radius, thinning interval, and inflation and depend on the variable that is observed (Zeng and Janjic, 2016). We constructed the ensemble data assimilation algorithm that conserves mass, total energy and enstrophy (Zeng et al., 2017). With 2D shallow water model experiments, it is found that the conservation of enstrophy within the data assimilation effectively avoids the spurious energy cascade of rotational part and thereby successfully suppresses the noise generated by the data assimilation algorithm. The 14-day deterministic and ensemble free forecast, starting from the initial condition enforced by both total energy and enstrophy constraints, produces the best prediction.
Ensembl genomes 2016: more genomes, more complexity
USDA-ARS?s Scientific Manuscript database
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...
Proposed hybrid-classifier ensemble algorithm to map snow cover area
NASA Astrophysics Data System (ADS)
Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir
2018-01-01
Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.
Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.
Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi
2014-01-01
In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.