Quantum phase estimation using path-symmetric entangled states
Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul
2016-01-01
We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ〉|0〉 + |0〉|φ〉, where an arbitrary state |φ〉 occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ〉. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ〉. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation. PMID:27457267
Quantum correlation of path-entangled two-photon states in waveguide arrays with defects
Dou, Yiling; Xu, Lei; Han, Bin; Bo, Fang; Xu, Jingjun; Zhang, Guoquan
2014-04-15
We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled states in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.
Path entanglement of surface plasmons
NASA Astrophysics Data System (ADS)
Fakonas, James S.; Mitskovets, Anna; Atwater, Harry A.
2015-02-01
Metals can sustain traveling electromagnetic waves at their surfaces supported by the collective oscillations of their free electrons in unison. Remarkably, classical electromagnetism captures the essential physics of these ‘surface plasma’ waves using simple models with only macroscopic features, accounting for microscopic electron-electron and electron-phonon interactions with a single, semi-empirical damping parameter. Nevertheless, in quantum theory these microscopic interactions could be important, as any substantial environmental interactions could decohere quantum superpositions of surface plasmons, the quanta of these waves. Here we report a measurement of path entanglement between surface plasmons with 95% contrast, confirming that a path-entangled state can indeed survive without measurable decoherence. Our measurement suggests that elastic scattering mechanisms of the type that might cause pure dephasing in plasmonic systems must be weak enough not to significantly perturb the state of the metal under the experimental conditions we investigated.
Path entanglement of continuous-variable quantum microwaves.
Menzel, E P; Di Candia, R; Deppe, F; Eder, P; Zhong, L; Ihmig, M; Haeberlein, M; Baust, A; Hoffmann, E; Ballester, D; Inomata, K; Yamamoto, T; Nakamura, Y; Solano, E; Marx, A; Gross, R
2012-12-21
Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies.
Path entanglement of continuous-variable quantum microwaves.
Menzel, E P; Di Candia, R; Deppe, F; Eder, P; Zhong, L; Ihmig, M; Haeberlein, M; Baust, A; Hoffmann, E; Ballester, D; Inomata, K; Yamamoto, T; Nakamura, Y; Solano, E; Marx, A; Gross, R
2012-12-21
Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies. PMID:23368439
Bloch oscillations of path-entangled photons.
Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron
2010-12-31
We show that when photons in N-particle path-entangled |N,0)+|0,N) or N00N states undergo Bloch oscillations, they exhibit a periodic transition between spatially bunched and antibunched states. The period of the bunching-antibunching oscillation is N times faster than the period of the oscillation of the photon density, manifesting the unique coherence properties of N00N states. The transition occurs even when the photons are well separated in space.
Measures of entanglement in multipartite bound entangled states
Wei, T.-C.; Altepeter, Joseph B.; Goldbart, Paul M.; Munro, William J.
2004-08-01
Bound entangled states are states that are entangled but from which no entanglement can be distilled if all parties are allowed only local operations and classical communication. However, in creating these states one needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound entangled states is determined analytically in terms of a geometric measure of entanglement and a related quantity. The results are compared with those for the negativity and the relative entropy of entanglement.
The generation of entangled states from independent particle sources
NASA Technical Reports Server (NTRS)
Rubin, Morton H.; Shih, Yan-Hua
1994-01-01
The generation of entangled states of two systems from product states is discussed for the case in which the paths of the two systems do not overlap. A particular method of measuring allows one to project out the nonlocal entangled state. An application to the production of four photon entangled states is outlined.
Extremal extensions of entanglement witnesses: Finding new bound entangled states
Sengupta, R.; Arvind
2011-09-15
In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.
Path Entanglement of Continuous-Variable Quantum Microwaves
NASA Astrophysics Data System (ADS)
Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.
2013-03-01
Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Limited-path-length entanglement percolation in quantum complex networks
Cuquet, Marti; Calsamiglia, John
2011-03-15
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Entanglement teleportation via werner states
Lee; Kim
2000-05-01
Transfer of entanglement and information is studied for quantum teleportation of an unknown entangled state through noisy quantum channels. We find that the quantum entanglement of the unknown state can be lost during the teleportation even when the channel is quantum correlated. We introduce a fundamental parameter of correlation information which dissipates linearly during the teleportation through the noisy channel. Analyzing the transfer of correlation information, we show that the purity of the initial state is important in determining the entanglement of the replica state.
Entanglement swapping of two arbitrarily degraded entangled states
NASA Astrophysics Data System (ADS)
Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael
2016-07-01
We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.
Are all maximally entangled states pure?
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.
2005-10-01
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
Are all maximally entangled states pure?
Cavalcanti, D.; Brandao, F.G.S.L.; Terra Cunha, M.O.
2005-10-15
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
Local cloning of entangled states
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-08-15
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Guerreiro, T; Monteiro, F; Martin, A; Brask, J B; Vértesi, T; Korzh, B; Caloz, M; Bussières, F; Verma, V B; Lita, A E; Mirin, R P; Nam, S W; Marsilli, F; Shaw, M D; Gisin, N; Brunner, N; Zbinden, H; Thew, R T
2016-08-12
We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.
Guerreiro, T; Monteiro, F; Martin, A; Brask, J B; Vértesi, T; Korzh, B; Caloz, M; Bussières, F; Verma, V B; Lita, A E; Mirin, R P; Nam, S W; Marsilli, F; Shaw, M D; Gisin, N; Brunner, N; Zbinden, H; Thew, R T
2016-08-12
We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement. PMID:27563941
NASA Astrophysics Data System (ADS)
Guerreiro, T.; Monteiro, F.; Martin, A.; Brask, J. B.; Vértesi, T.; Korzh, B.; Caloz, M.; Bussières, F.; Verma, V. B.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsilli, F.; Shaw, M. D.; Gisin, N.; Brunner, N.; Zbinden, H.; Thew, R. T.
2016-08-01
We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Mixtures of maximally entangled pure states
NASA Astrophysics Data System (ADS)
Flores, M. M.; Galapon, E. A.
2016-09-01
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
Maximally Entangled Multipartite States: A Brief Survey
NASA Astrophysics Data System (ADS)
Enríquez, M.; Wintrowicz, I.; Życzkowski, K.
2016-03-01
The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used.
Path-integral Monte Carlo method for Rényi entanglement entropies.
Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A
2014-07-01
We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.
Squashed entanglement and approximate private states
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2016-09-01
The squashed entanglement is a fundamental entanglement measure in quantum information theory, finding application as an upper bound on the distillable secret key or distillable entanglement of a quantum state or a quantum channel. This paper simplifies proofs that the squashed entanglement is an upper bound on distillable key for finite-dimensional quantum systems and solidifies such proofs for infinite-dimensional quantum systems. More specifically, this paper establishes that the logarithm of the dimension of the key system (call it log 2K ) in an ɛ -approximate private state is bounded from above by the squashed entanglement of that state plus a term that depends only ɛ and log 2K . Importantly, the extra term does not depend on the dimension of the shield systems of the private state. The result holds for the bipartite squashed entanglement, and an extension of this result is established for two different flavors of the multipartite squashed entanglement.
NASA Astrophysics Data System (ADS)
Uchida, Nariya; Grest, Gary S.; Everaers, Ralf
2008-01-01
We combine computer simulations and scaling arguments to develop a unified view of polymer entanglement based on the primitive path analysis of the microscopic topological state. Our results agree with experimentally measured plateau moduli for three different polymer classes over a wide range of reduced polymer densities: (i) semidilute theta solutions of synthetic polymers, (ii) the corresponding dense melts above the glass transition or crystallization temperature, and (iii) solutions of semiflexible (bio)polymers such as F-actin or suspensions of rodlike viruses. Together, these systems cover the entire range from loosely to tightly entangled polymers. In particular, we argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Spin-path entanglement in single-neutron interferometer experiments
Hasegawa, Yuji; Erdoesi, Daniel
2011-09-23
There are two powerful arguments against the possibility of extending quantum mechanics (QM) into a more fundamental theory yielding a deterministic description of nature. One is the experimental violation of Bell inequalities, which discards local hidden-variable theories as a possible extension to QM. The other is the Kochen-Specker (KS) theorem, which stresses the incompatibility of QM with a larger class of hidden-variable theories, known as noncontextual hidden-variable theories. We performed experiments with neutron interferometer, which exploits spin-path entanglements in single neutrons. A Bell-like state is generated to demonstrate a violation of the Bell-like inequality and phenomena in accordance with KS theorem: both experiments study quantum contextuality and show clear evidence of the incompatibility of noncontextual hidden variable theories with QM. The value S = 2.202{+-}0.007 Neither-Less-Than-Nor-Equal-To 2 is obtained in the new measurement of the Bell-like inequality, which shows a larger violation than the previous measurement. For the study of KS theorem, the obtained violation 2.291{+-}0.008 Neither-Less-Than-Nor-Equal-To 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.
Entanglement classification with matrix product states.
Sanz, M; Egusquiza, I L; Di Candia, R; Saberi, H; Lamata, L; Solano, E
2016-07-26
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Detecting multiparticle entanglement of Dicke states.
Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten
2014-04-18
Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of -11.4(5) dB.
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Quantum states prepared by realistic entanglement swapping
Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-15
Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.
Entangled States, Holography and Quantum Surfaces
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
Algorithmic complexity and entanglement of quantum states.
Mora, Caterina E; Briegel, Hans J
2005-11-11
We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.
Diagnosing Topological Edge States via Entanglement Monogamy.
Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
Deterministic dense coding with partially entangled states
Mozes, Shay; Reznik, Benni; Oppenheim, Jonathan
2005-01-01
The utilization of a d-level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d. In general, we numerically find that the maximal alphabet size is any integer in the range [d,d{sup 2}] with the possible exception of d{sup 2}-1. We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
Entanglement of quantum circular states of light
NASA Astrophysics Data System (ADS)
Horoshko, D. B.; De Bièvre, S.; Kolobov, M. I.; Patera, G.
2016-06-01
We present a general approach to calculating the entanglement of formation for superpositions of two-mode coherent states, placed equidistantly on a circle in phase space. We show that in the particular case of rotationally invariant circular states the Schmidt decomposition of two modes, and therefore the value of their entanglement, are given by analytical expressions. We analyze the dependence of the entanglement on the radius of the circle and number of components in the superposition. We also show that the set of rotationally invariant circular states creates an orthonormal basis in the state space of the harmonic oscillator, and this basis is advantageous for representation of other circular states of light.
Entanglement concentration of three-partite states
Groisman, Berry; Linden, Noah; Popescu, Sandu
2005-12-15
We investigate the concentration of multiparty entanglement by focusing on a simple family of three-partite pure states, superpositions of Greenberger-Horne-Zeilinger states and singlets. Despite the simplicity of the states, we show that they cannot be reversibly concentrated by the standard entanglement concentration procedure, to which they seem ideally suited. Our results cast doubt on the idea that for each N there might be a finite set of N-party states into which any pure state can be reversibly transformed. We further relate our results to the concept of locking of entanglement of formation.
Chen Lixiang; She Weilong
2011-03-15
We propose a scheme to generate hybrid Greenberger-Horne-Zeilinger (GHZ) entanglement where multiple photons are entangled in different degrees of freedom of spin, orbital angular momentum (OAM), and path (linear momentum). The generation involves mapping the preliminary OAM entanglement of photon pairs onto their spin-orbit and spin-path degrees of freedom, respectively. Based on the hybrid GHZ entanglement, we demonstrate an open-destination teleportation with multiples degrees of freedom, via which a spin state of a single photon is teleported onto a superposition of multiple photons with the postselection technique and the original information could be read out at any photon in individual spin, OAM, or the linear-momentum state. Our scheme holds promise for asymmetric optical quantum network.
Bell states and entanglement dynamics on two coupled quantum molecules
Oliveira, P.A.; Sanz, L.
2015-05-15
This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.
Symmetric states: Their nonlocality and entanglement
Wang, Zizhu; Markham, Damian
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Entanglement as minimal discord over state extensions
NASA Astrophysics Data System (ADS)
Luo, Shunlong
2016-09-01
The characterization and quantification of quantum correlations, which play an instrumental role in exploring and exploiting the quantum world, have been extensively and intensively studied in the past few decades. Of special prominence and significance are the concepts of entanglement and discord, which are usually regarded as very distinctive quantum correlations, with the latter going beyond the former. In this work we establish a direct and natural link between entanglement and discord via state extensions and reveal that entanglement is actually the intrinsic discord, by which we mean that entanglement is the irreducible residue of discord viewed from ambient spaces. Our approach, taking into account the contextuality of a quantum state and being of a global nature, stands in sharp contrast to the local operations and classical communication paradigm of entanglement, which focuses on the state itself via a local approach. Furthermore, we introduce a figure of merit which, on the one hand, captures the essence of entanglement, i.e., nonlocality and quantumness of correlations, and, on the other hand, leads to a quantitative decomposition of total correlations into classical correlations, dissonance, and entanglement. This demystifies the meaning of entanglement from the perspective of quantum measurements and provides a unified framework for the interplay of various correlations in terms of quantum measurements and mutual information.
All entangled quantum states are nonlocal.
Buscemi, Francesco
2012-05-18
Departing from the usual paradigm of local operations and classical communication adopted in entanglement theory, we study here the interconversion of quantum states by means of local operations and shared randomness. A set of necessary and sufficient conditions for the existence of such a transformation between two given quantum states is given in terms of the payoff they yield in a suitable class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum state. An example illustrating this fact is provided.
Analytical formula connecting entangled states and the closest disentangled state
Ishizaka, Satoshi
2003-06-01
The separable state closest to a given entangled state in the relative entropy measure is called the closest disentangled state. We provide an analytical formula connecting the entangled states and the closest disentangled state in two qubits. Using this formula, when any disentangled state {sigma} located at the entangle-disentangle boundary is given, entangled states to which {sigma} is closest can be obtained analytically. Further, this formula naturally defines the direction normal to the boundary surface. The direction is uniquely determined by {sigma} in almost all cases.
Entangled photon-added coherent states
NASA Astrophysics Data System (ADS)
Domínguez-Serna, Francisco A.; Mendieta-Jimenez, Francisco J.; Rojas, Fernando
2016-08-01
We study the degree of entanglement of arbitrary superpositions of m, n photon-added coherent states (PACS) {|{ψ }rangle } ∝ u {|{{α },m}rangle }{|{{β },n }rangle }+ v {|{{β },n}rangle }{|{{α },m}rangle } using the concurrence and obtain the general conditions for maximal entanglement. We show that photon addition process can be identified as an entanglement enhancer operation for superpositions of coherent states (SCS). Specifically for the known bipartite positive SCS: {|{ψ }rangle } ∝ {|{α }rangle }_a{|{-α }rangle }_b + {|{-α }rangle }_a{|{α }rangle }_b whose entanglement tends to zero for α → 0, can be maximal if al least one photon is added in a subsystem. A full family of maximally entangled PACS is also presented. We also analyzed the decoherence effects in the entangled PACS induced by a simple depolarizing channel . We find that robustness against depolarization is increased by adding photons to the coherent states of the superposition. We obtain the dependence of the critical depolarization p_{ {crit}} for null entanglement as a function of m,n, α and β.
Realizing quantum advantage without entanglement in single-photon states
NASA Astrophysics Data System (ADS)
Maldonado Trapp, Alejandra; Solano, Pablo; Hu, Anzi; Clark, Charles W.
2016-05-01
Quantum discord expresses quantum correlations beyond those associated with entanglement. Although it has been extensively studied theoretically, quantum discord has yet to become a standard tool in experimental studies of correlation. We propose a class of experiments in which quantum correlations are present in the absence of entanglement, and are best understood in terms of quantum discord.. These utilize X-states of two qubits, which correspond to the polarization and the optical path of a single photon within a Mach-Zehnder interferometer. We show how to produce states with diverse measures of discord and entanglement, including the case of discord without entanglement. With these states we show how a classical random variable K can be encoded by Alice and decoded by Bob. Using our previous results we analytically study the correlations between the spin and path qubits and its relation with the information about K that can be decoded by Bob using local measurements with or without two-qubit gate operations.
Iterative path integral calculations of non-linear spectra and entanglement dynamics
NASA Astrophysics Data System (ADS)
Sahrapour, Mohammad Mehdi
We review an iterative path integral method that allows the computation of exact, long-time dynamics of small systems interacting with a dissipative bath. The method takes advantage of the finite memory of large environments at finite temperature to allow an iterative evaluation of the dynamics, thereby replacing an exponential scaling in simulation time with a linear scaling. This method is applied to calculate the dynamics of two model systems. The first consists of two-qubits interacting with a common bath. In this case we observe a variety of entanglement effects. If the qubits are initially separable, through an indirect coupling, the bath can create steady state entanglement between the qubits. This effect is due to the existence of a decoherence-free subspace as a result of the form of the qubit Hamiltonian and system-bath coupling. Entanglement created by the bath is shown to decrease with increasing temperature and system-bath coupling strength. However large system-bath coupling causes a faster increase in the entanglement. Initially entangled qubits lose their entanglement as a result of interactions with the bath, an effect that is heightened at higher temperatures. Direct coupling between the qubits is shown to slow the decay of entanglement and preserve some entanglement at long times; however at high temperatures this steady state entanglement becomes negligible. The second system we consider is vibrational degree of freedom coupled to a bath of harmonic oscillators or two-level systems. We compute four-time correlation functions which are used to calculate response functions relevant to third order infrared or seventh order Raman experiments for harmonic, Morse, and quadratic-quartic potentials. Our calculations reveal the role of potential features (anharmonicity and eigenvalue spectrum), both on short and long time scales, on the response function. Further, thermal excitation causes dramatic changes in the appearance of the response function
Entanglement classification with matrix product states.
Sanz, M; Egusquiza, I L; Di Candia, R; Saberi, H; Lamata, L; Solano, E
2016-01-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273
Entanglement classification with matrix product states
Sanz, M.; Egusquiza, I. L.; Di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-01-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273
Telecloning of qudits via partially entangled states
NASA Astrophysics Data System (ADS)
Araneda, Gabriel; Cisternas, Nataly; Delgado, Aldo
2016-08-01
We study the process of quantum telecloning of d-dimensional pure quantum states using partially entangled pure states as quantum channel. This process efficiently mixes optimal universal symmetric cloning with quantum teleportation. It is shown that it is possible to implement universal symmetric telecloning in a probabilistic way using unambiguous state discrimination and quantum state separation schemes. It is also shown that other strategies, such as minimum error discrimination, lead to a decrease in the fidelity of the copies and that certain partially entangled pure states with maximal Schmidt rank lead to an average telecloning fidelity which is always above the optimal fidelity of measuring and preparation of quantum states. We also discuss the case of partially entangled pure states with non-maximal Schmidt rank. The results presented here are valid for arbitrary numbers of copies of a single-input qudit state of any dimension.
Entanglement witnesses and geometry of entanglement of two-qutrit states
Bertlmann, Reinhold A. Krammer, Philipp
2009-07-15
We construct entanglement witnesses with regard to the geometric structure of the Hilbert-Schmidt space and investigate the geometry of entanglement. In particular, for a two-parameter family of two-qutrit states that are part of the magic simplex, we calculate the Hilbert-Schmidt measure of entanglement. We present a method to detect bound entanglement which is illustrated for a three-parameter family of states. In this way, we discover new regions of bound entangled states. Furthermore, we outline how to use our method to distinguish entangled from separable states.
Topological minimally entangled states via geometric measure
NASA Astrophysics Data System (ADS)
Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh
2014-11-01
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.
Genuine multipartite nonlocality of entangled thermal states
McKeown, G.; Paternostro, M.; Semiao, F. L.; Jeong, H.
2010-08-15
We assess quantum nonlocality of multiparty entangled thermal states by studying, quantitatively, both tripartite and quadripartite states belonging to the Greenberger-Horne-Zeilinger, W, and linear cluster-state classes and showing violation of relevant Bell-like inequalities. We discuss the conditions for maximizing the degree of violation against the local thermal character of the states and the inefficiency of the detection apparatuses. We demonstrate that such classes of multipartite entangled states can be made to last quite significantly, notwithstanding adverse operating conditions. This opens up the possibility for coherent exploitation of multipartite quantum channels made out of entangled thermal states. Our study is accompanied by a detailed description of possible generation schemes for the states analyzed.
Nonbilocal measurement via an entangled state
Shmaya, Eran
2005-08-15
Two observers, who share a pair of particles in an entangled mixed state, can use it to perform some nonbilocal measurements over another bipartite system. In particular, one can construct a specific game played by the observers against a coordinator, in which they can score better than a pair of observers who only share a classical communication channel. The existence of such a game is an operational implication of an entanglement witness.
Maximal entanglement versus entropy for mixed quantum states
Wei, T.-C.; Goldbart, Paul M.; Kwiat, Paul G.; Nemoto, Kae; Munro, William J.; Verstraete, Frank
2003-02-01
Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures, the form of the corresponding maximally entangled mixed states is determined primarily analytically. As measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms of the maximally entangled mixed states can vary with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a given value of entropy, achieve maximal violation of Bell's inequality.
Entanglement Degree of Parasupersymmetric Coherent States of Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Akhtarshenas, S. J.
2006-12-01
We study the boson parafermion entanglement of the parasupersymmetric coherent states of the harmonic oscillator and derive the degree of entanglement in terms of the concurrence. The conditions for obtaining the maximal entanglement is also examined, and it is shown that in the usual supersymmetry situation we can obtain maximally entangled Bell states.
Spatial entanglement of nonvacuum Gaussian states
NASA Astrophysics Data System (ADS)
Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej
2016-06-01
The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state. PMID:27367369
Entanglement and Coherence in Quantum State Merging
NASA Astrophysics Data System (ADS)
Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M. N.; Winter, A.; Lewenstein, M.
2016-06-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Multipartite entangled states in particle mixing
Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
Entanglement of spin coherent mixed states
NASA Astrophysics Data System (ADS)
Mansour, Mostafa; Hassouni, Yassine
2016-04-01
In this paper, we quantify the amount of entanglement of bipartite mixed states represented by a statistical mixture of the more general type of two-qubit non-orthogonal states of the form: |ψi>=ui|χi>⊗|ηi>+vi|χi>⊗|ηi‧>+wi|χi‧>⊗|ηi>+zi|χi‧>⊗|ηi‧>, constructed by linearly independent spin coherent states. We use the concurrence as a measure of entanglement and we study its behavior in terms of the amplitudes of SU(2) coherent states.
Optimal path for a quantum teleportation protocol in entangled networks
NASA Astrophysics Data System (ADS)
di Franco, C.; Ballester, D.
2012-01-01
Bellman's optimality principle has been of enormous importance in the development of whole branches of applied mathematics, computer science, optimal control theory, economics, decision making, and classical physics. Examples are numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of variations, and the brachistochrone problem. Here we show that Bellman's optimality principle is violated in a teleportation problem on a quantum network. This implies that finding the optimal fidelity route for teleporting a quantum state between two distant nodes on a quantum network with bipartite entanglement will be a tough problem and will require further investigation.
Coherent state quantum key distribution based on entanglement sudden death
NASA Astrophysics Data System (ADS)
Jaeger, Gregg; Simon, David; Sergienko, Alexander V.
2016-03-01
A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of `macroscopic' average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.
Tripartite information of highly entangled states
NASA Astrophysics Data System (ADS)
Rota, Massimiliano
2016-04-01
Holographic systems require monogamous mutual information for validity of semiclassical geometry. This is encoded by the sign of the tripartite information ( I3). We investigate the behaviour of I3 for all partitionings of systems in states which are highly entangled in a multipartite or bipartite sense. In the case of multipartite entanglement we propose an algorithmic construction that we conjecture can be used to build local maxima of I3 for any partitioning. In case of bipartite entanglement we classify the possible values of I3 for perfect states and investigate, in some examples, the effect on its sign definiteness due to deformations of the states. Finally we comment on the proposal of using I3 as a parameter of scrambling, arguing that in general its average over qubits permutations could be a more sensible measure.
Delayed birth of distillable entanglement in the evolution of bound entangled states
Derkacz, Lukasz; Jakobczyk, Lech
2010-08-15
The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.
Quantum entanglement of quark colour states
Buividovich, P. V.; Kuvshinov, V. I.
2010-03-24
An analysis of quantum entanglement between the states of static colour charges in the vacuum of pure Yang-Mills theory is carried out. Hilbert space of physical states of the fields and the charges is endowed with a direct product structure by attaching an infinite Dirac string to each charge.
Evaluation of two different entanglement measures on a bound entangled state
Branciard, Cyril; Zhu Huangjun; Chen Lin; Scarani, Valerio
2010-07-15
We consider the mixed three-qubit bound entangled state defined as the normalized projector on the subspace that is complementary to an unextendible product basis [C. H. Bennett et al., Phys. Rev. Lett. 82, 5385 (1999)]. Using the fact that no product state lies in the support of that state, we compute its entanglement by providing a basis of its subspace formed by ''minimally entangled'' states. The approach is in principle applicable to any entanglement measure; here we provide explicit values for both the geometric measure of entanglement and a generalized concurrence.
Entanglement and symmetry in permutation-symmetric states
Markham, Damian J. H.
2011-04-15
We investigate the relationship between multipartite entanglement and symmetry, focusing on permutation symmetric states. We give a highly intuitive geometric interpretation to entanglement via the Majorana representation, where these states correspond to points on a unit sphere. We use this to show how various entanglement properties are determined by the symmetry properties of the states. The geometric measure of entanglement is thus phrased entirely as a geometric optimization and a condition for the equivalence of entanglement measures written in terms of point symmetries. Finally, we see that different symmetries of the states correspond to different types of entanglement with respect to interconvertibility under stochastic local operations and classical communication.
Entanglement bound for multipartite pure states based on local measurements
Jiang Lizhen; Chen Xiaoyu; Ye Tianyu
2011-10-15
An entanglement bound based on local measurements is introduced for multipartite pure states. It is the upper bound of the geometric measure and the relative entropy of entanglement. It is the lower bound of the minimal-measurement entropy. For pure bipartite states, the bound is equal to the entanglement entropy. The bound is applied to pure tripartite qubit states and the exact tripartite relative entropy of entanglement is obtained for a wide class of states.
Entanglement purification of unknown quantum states
NASA Astrophysics Data System (ADS)
Brun, Todd A.; Caves, Carlton M.; Schack, Rüdiger
2001-04-01
A concern has been expressed that ``the Jaynes principle can produce fake entanglement'' [R. Horodecki et al., Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state ρ(N) of the N copies of the quantum system is exchangeable, one can write down a simple general expression for ρ(N). By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.
Entanglement purification of unknown quantum states
Brun, Todd A.; Caves, Carlton M.; Schack, Ru''diger
2001-04-01
A concern has been expressed that ''the Jaynes principle can produce fake entanglement'' [R. Horodecki , Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state {rho}{sup (N)} of the N copies of the quantum system is exchangeable, one can write down a simple general expression for {rho}{sup (N)}. By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-07-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
Testing nonlocal realism with entangled coherent states
Paternostro, Mauro; Jeong, Hyunseok
2010-03-15
We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.
NASA Astrophysics Data System (ADS)
Qin, Su-Juan; Wen, Qiao-Yan; Lin, Song; Guo, Fen-Zhuo; Zhu, Fu-Chen
2009-10-01
The security of a deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping [X.M. Xiu, H.K. Dong, L. Dong, Y.J. Cao, F. Chi, Opt. Commun. 282 (2009) 2457] is analyzed. It is shown that an eavesdropper can entangle an ancilla without introducing any error in the security test utilizing a speciality of the four-particle genuine entangled state. Moreover, the eavesdropper can distill a quarter of the secret information from her entangled ancilla. Finally, a simple improvement to resist this attack is proposed.
NASA Astrophysics Data System (ADS)
Dai, Hong-Yi; Zhang, Ming; Li, Cheng-Zu
2008-04-01
We present a scheme for probabilistically teleporting an unknown three-level bipartite entangled state by using a partial entangled three-level bipartite state as quantum channel. This scheme can be directly generalized to probabilistically teleport an unknown three-level k-particle entangled state by a partial three-level bipartite entangled state. All kinds of unitary transformations are given in detail. We calculate the successful total probability and the total classical communication cost required for this scheme.
Negative entanglement measure for bipartite separable mixed states
Zhang Chengjie; Han Yongjian; Zhang Yongsheng; Wu Yuchun; Zhou Xiangfa; Guo Guangcan
2010-12-15
We define a negative entanglement measure for separable states which shows how much entanglement one should compensate the unentangled state, at the least, to change it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure (NEM) have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the one-dimensional (1D) Bose-Hubbard model, the NEM as a function of t/U changes from zero to negative on approaching the critical point of quantum phase transition.
Teleportation of entangled states without Bell-state measurement
Cardoso, Wesley B.; Baseia, B.; Avelar, A.T.; Almeida, N.G. de
2005-10-15
In a recent paper [Phys. Rev. A 70, 025803 (2004)] we presented a scheme to teleport an entanglement of zero- and one-photon states from a bimodal cavity to another one, with 100% success probability. Here, inspired by recent results in the literature, we have modified our previous proposal to teleport the same entangled state without using Bell-state measurements. For comparison, the time spent, the fidelity, and the success probability for this teleportation are considered.
NASA Astrophysics Data System (ADS)
Wang, Li-Die; Wang, Li-Tao; Yang, Mou; Xu, Jing-Zhou; Wang, Z. D.; Bai, Yan-Kui
2016-06-01
The maximally entangled state can be in a mixed state as well as the well-known pure state. Taking the negativity as a measure of entanglement, we study the entanglement dynamics of bipartite, mixed maximally entangled states (MMESs) in multipartite cavity-reservoir systems. It is found that the MMES can exhibit the phenomenon of entanglement sudden death, which is quite different from the asymptotic decay of the pure-Bell-state case. We also find that maximal entanglement cannot guarantee maximal nonlocality, and the MMES does not correspond to the state with maximal measurement-induced nonlocality (MIN). In fact, the value and dynamic behavior of the MIN for the MMESs are dependent on the mixed-state probability. In addition, we investigate the distributions of negativity and the MIN in a multipartite system, where the two types of correlations have different monogamous properties.
Unitarily localizable entanglement of Gaussian states
Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-03-01
We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.
NASA Astrophysics Data System (ADS)
Liu, Shu-Guang; Fan, Hong-Yi
2009-12-01
We find that constructing the two mutually-conjugate tripartite entangled state representations naturally leads to the entangled Fourier transformation. We then derive the convolution theorem for the threedimensional entangled fractional Fourier transformation in the context of quantum mechanics.
Multiple teleportation via partially entangled GHZ state
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen
2016-08-01
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.
Measurement-device-independent entanglement witnesses for all entangled quantum states.
Branciard, Cyril; Rosset, Denis; Liang, Yeong-Cherng; Gisin, Nicolas
2013-02-01
The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled state, which may be an unjustified assumption. Inspired by the recent work of F. Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], we introduce the concept of measurement-device-independent entanglement witnesses (MDI-EWs), which allow one to demonstrate entanglement of all entangled quantum states with untrusted measurement apparatuses. We show how to systematically obtain such MDI-EWs from standard entanglement witnesses. Our construction leads to MDI-EWs that are loss tolerant and can be implemented with current technology.
Operational multipartite entanglement classes for symmetric photonic qubit states
Kiesel, N.; Wieczorek, W.; Weinfurter, H.; Krins, S.; Bastin, T.; Solano, E.
2010-03-15
We present experimental schemes that allow us to study the entanglement classes of all symmetric states in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
Teleporting entanglements of cavity-field states
Pires, Geisa; Baseia, B.; Almeida, N.G. de; Avelar, A. T.
2004-08-01
We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.
Negative Correlations and Entanglement in Higher-Spin Dicke States
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Zhong, Wei; Wang, Xiaoguang
2016-10-01
We consider entanglement criteria based on the spin squeezing inequalities for arbitrary spin systems. Here we use the negative correlations to detect the entanglement in the system with exchange symmetry. For arbitrary spin systems, we can find that the state is entangled, when the minimal pairwise correlation is negative. Then we give a parameter which is defined by the collective angular momentum operator, to detect the entanglement for the Dicke state with N spin -1 particles, and the results are as the same as negative correlation. We also consider the directions of negative correlation, the state is entangled in two orthogonal directions for the superposition of Dicke state without parity.
Faithful teleportation with partially entangled states
Gour, Gilad
2004-10-01
We write explicitly a general protocol for faithful teleportation of a d-state particle (qudit) via a partially entangled pair of (pure) n-state particles. The classical communication cost (CCC) of the protocol is log{sub 2}(nd) bits, and it is implemented by a projective measurement performed by Alice, and a unitary operator performed by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a comparison with the concentrate and teleport strategy. We also show that if d>n/2, or if there is no residual entanglement left after the faithful teleportation, the CCC of any protocol is at least log{sub 2}(nd) bits. Furthermore, we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local operation and classical communication.
Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari
2016-06-01
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.
Entanglement of assistance and multipartite state distillation
Smolin, John A.; Verstraete, Frank; Winter, Andreas
2005-11-15
We find that the asymptotic entanglement of assistance of a general bipartite mixed state is equal to the smaller of its two local entropies. Our protocol gives rise to the asymptotically optimal Einstein-Podolsky-Rosen (EPR) pair distillation procedure for a given tripartite pure state, and we show that it actually yields EPR and Greenberger-Horne-Zeilinger (GHZ) states; in fact, under a restricted class of protocols, which we call ''one-way broadcasting,'' the GHZ rate is shown to be optimal. This result implies a capacity theorem for quantum channels where the environment helps transmission by broadcasting the outcome of an optimally chosen measurement. We discuss generalizations to m parties and show (for m=4) that the maximal amount of entanglement that can be localized between two parties is given by the smallest entropy of a group of parties of which the one party is a member, but not the other. This gives an explicit expression for the asymptotic localizable entanglement and shows that any nontrivial ground state of a spin system can be used as a perfect quantum repeater if many copies are available in parallel. Finally, we provide evidence that any unital channel is asymptotically equivalent to a mixture of unitaries and any general channel to a mixture of partial isometries.
Usefulness of classical communication for local cloning of entangled states
Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Bruss, Dagmar
2006-03-15
We solve the problem of the optimal cloning of pure entangled two-qubit states with a fixed degree of entanglement using local operations and classical communication. We show that, amazingly, classical communication between the parties can improve the fidelity of local cloning if and only if the initial entanglement is higher than a certain critical value. It is completely useless for weakly entangled states. We also show that bound entangled states with positive partial transpose are not useful as a resource to improve the best local cloning fidelity.
Entanglement and Squeezing in Solid State Circuits
Wen Yihuo; Gui Lulong
2008-11-07
We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.
Generation of three-photon polarization-entangled decoherence-free states
NASA Astrophysics Data System (ADS)
Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun
2016-08-01
We present a generation proposal of three-photon polarization-entangled decoherence-free states, which are immune to the collective decoherence. Based on weak cross-Kerr nonlinearities, the polarization and spacial entanglement gates are realized, and thus three-photon polarization-entangled decoherence-free states can be produced. According to the outcomes of Homodyne measurement performed in the spacial entanglement gate, one Swap gate is inserted into two paths of the photon 1 to swap its spacial modes, by means of classical feed forward. In addition, in the process for realizing two entanglement gates, unitary transformation operations are performed on the appropriate photons conditioned on the different phase shifts occurred on the coherent states, aiming to obtain the same state under two scenarios of the different path compositions of photons. At the output ports of the circuit, three-photon polarization-entangled decoherence-free states which can be utilized to represent two logical qubits, |0>L and |1>L are achieved. Apart from Kerr media, only simple linear optical elements and the classical feed forward techniques are necessary in this proposal, facilitating its practical implementation.
Teleportation of continuous variable multimode Greeberger Horne Zeilinger entangled states
NASA Astrophysics Data System (ADS)
He, Guangqiang; Zhang, Jingtao; Zeng, Guihua
2008-11-01
Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).
Mixed entangled states with two or more common stabilizers
Hsu, L.-Y.
2007-08-15
We investigate a family of mixed entangled states wherein there exist common stabilizers among the mixtures of the corresponding density matrix. The nonlocality of these mixed entangled states can be verified by the maximal violation of stabilizer-based Bell-type inequalities. Some of these states with specific probability distributions are bound entangled, which can be superactivated. Potential applications of these mixed states in quantum key distribution and quantum repeaters are also introduced.
Optimal detection of entanglement in Greenberger-Horne-Zeilinger states
Kay, Alastair
2011-02-15
We present a broad class of N-qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement, including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove that the entanglement can be extremely robust to system imperfections.
Preparing entangled states by Lyapunov control
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Wang, L. C.; Yi, X. X.
2016-09-01
By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.
NASA Astrophysics Data System (ADS)
Huang, Li-Yuan; Fang, Mao-Fa
2008-07-01
The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.
Multi-Particle Interferometry Based on Double Entangled States
NASA Technical Reports Server (NTRS)
Pittman, Todd B.; Shih, Y. H.; Strekalov, D. V.; Sergienko, A. V.; Rubin, M. H.
1996-01-01
A method for producing a 4-photon entangled state based on the use of two independent pair sources is discussed. Of particular interest is that each of the pair sources produces a two-photon state which is simultaneously entangled in both polarization and space-time variables. Performing certain measurements which exploit this double entanglement provides an opportunity for verifying the recent demonstration of nonlocality by Greenberger, Horne, and Zeilinger.
Macroscopic entanglement in many-particle quantum states
NASA Astrophysics Data System (ADS)
Tichy, Malte C.; Park, Chae-Yeun; Kang, Minsu; Jeong, Hyunseok; Mølmer, Klaus
2016-04-01
We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states, despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low geometric entanglement and strong and robust macroscopicity.
Multipartite entanglement in four-qubit graph states
NASA Astrophysics Data System (ADS)
Jafarpour, Mojtaba; Assadi, Leila
2016-03-01
We consider a compendium of the non-trivial four-qubit graphs, derive their corresponding quantum states and classify them into equivalent classes. We use Meyer-Wallach measure and its generalizations to study block-partition and global entanglement in these states. We obtain several entanglement quantities for each graph state, which present a comprehensive characterization of the entanglement properties of the latter. As a result, a number of correlations between the graph structure and multipartite entanglement quantities have also been established.
Entanglement-fluctuation relation for bipartite pure states
NASA Astrophysics Data System (ADS)
Villaruel, Aura Mae B.; Paraan, Francis N. C.
2016-08-01
We identify subsystem fluctuations (variances) that measure entanglement in an arbitrary bipartite pure state. These fluctuations are of observables that generalize the notion of polarization to an arbitrary N -level subsystem. We express this polarization fluctuation in terms of subsystem purity and other entanglement measures. The derived entanglement-fluctuation relation is evaluated for the ground states of a one-dimensional free-fermion gas and the Affleck-Kennedy-Lieb-Tasaki spin chain. Our results provide a framework for experimentally measuring entanglement using Stern-Gerlach-type state selectors.
Genuinely multipartite entangled states and orthogonal arrays
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Życzkowski, Karol
2014-08-01
A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, which we call a k-uniform state, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudit Greenberger-Horne-Zeilinger states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N >5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Furthermore, we establish links between the existence of k-uniform states and classical and quantum error correction codes and provide a graph representation for such states.
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu
2016-06-01
We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.
Improving entanglement concentration of Gaussian states by local displacements
Fiurasek, Jaromir
2011-07-15
We investigate entanglement concentration of continuous-variable Gaussian states by local single-photon subtractions combined with local Gaussian operations. We first analyze the local squeezing-enhanced entanglement-concentration protocol proposed very recently by Zhang and van Loock [arXiv:1103.4500] and discuss the mechanism by which local squeezing before photon subtraction helps to increase the entanglement of the output state of the protocol. We next show that a similar entanglement improvement can be achieved by using local coherent displacements instead of single-mode squeezing.
Discrete Coherent State Path Integrals
NASA Astrophysics Data System (ADS)
Marchioro, Thomas L., II
1990-01-01
The quantum theory provides a fundamental understanding of the physical world; however, as the number of degrees of freedom rises, the information required to specify quantum wavefunctions grows geometrically. Because basis set expansions mirror this geometric growth, a strict practical limit on quantum mechanics as a numerical tool arises, specifically, three degrees of freedom or fewer. Recent progress has been made utilizing Feynman's Path Integral formalism to bypass this geometric growth and instead calculate time -dependent correlation functions directly. The solution of the Schrodinger equation is converted into a large dimensional (formally infinite) integration, which can then be attacked with Monte Carlo techniques. To date, work in this area has concentrated on developing sophisticated mathematical algorithms for evaluating the highly oscillatory integrands occurring in Feynman Path Integrals. In an alternative approach, this work demonstrates two formulations of quantum dynamics for which the number of mathematical operations does not scale geometrically. Both methods utilize the Coherent State basis of quantum mechanics. First, a localized coherent state basis set expansion and an approximate short time propagator are developed. Iterations of the short time propagator lead to the full quantum dynamics if the coherent state basis is sufficiently dense along the classical phase space path of the system. Second, the coherent state path integral is examined in detail. For a common class of Hamiltonians, H = p^2/2 + V( x) the path integral is reformulated from a phase space-like expression into one depending on (q,dot q). It is demonstrated that this new path integral expression contains localized damping terms which can serve as a statistical weight for Monte Carlo evaluation of the integral--a process which scales approximately linearly with the number of degrees of freedom. Corrections to the traditional coherent state path integral, inspired by a
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli; Xu, Jingzhou
2016-08-01
We show how to concentrate an arbitrary four-photon polarization entangled state into a maximally entangled state based on some quantum nondemolition detectors. The entanglement concentration protocol (ECP) resorts to an ancillary single-photon resource and the conventional projection measurement on photons to assist the concentration, which makes it more economical. Our ECP involves weak cross-Kerr nonlinearities, X homodyne measurement and basic linear-optical elements, which make it feasible in the current experimental technology. Moreover, the ECP considers cyclic utilization to enhance a higher success probability. Thus, our scheme is meaningful in practical applications in quantum communication.
Classification of multipartite entangled states by multidimensional determinants
Miyake, Akimasa
2003-01-01
We find that multidimensional determinants 'hyperdeterminants', related to entanglement measures (the so-called concurrence, or 3-tangle for two or three qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n{>=}4 qubits), contrary to the widely known bipartite or three-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.
Tsirelson's bound and supersymmetric entangled states
Borsten, L.; Brádler, K.; Duff, M. J.
2014-01-01
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964
Entangled states of spin and clock oscillators
NASA Astrophysics Data System (ADS)
Polzik, Eugene
2016-05-01
Measurements of one quadrature of an oscillator with precision beyond its vacuum state uncertainty have occupied a central place in quantum physics for decades. We have recently reported the first experimental implementation of such measurement with a magnetic oscillator. However, a much more intriguing goal is to trace an oscillator trajectory with the precision beyond the vacuum state uncertainty in both position and momentum, a feat naively assumed not possible due to the Heisenberg uncertainty principle. We have demonstrated that such measurement is possible if the oscillator is entangled with a quantum reference oscillator with an effective negative mass. The key element is the cancellation of the back action of the measurement on the composite system of two oscillators. Applications include measurements of e.-m. fields, accelleration, force and time with practically unlimited accuracy. In a more general sense, this approach leads to trajectories without quantum uncertainties and to achieving new fundamental bounds on the measurement precision.
Bernstein's paradox of entangled quantum states
NASA Astrophysics Data System (ADS)
Belinsky, A. V.; Chirkin, A. S.
2013-11-01
Bernstein's classical paradox of a regular colored-faced tetrahedron, while designed to illustrate the subtleties of probability theory, is strongly flawed in being asymmetric. Faces of tetrahedron are nonequivalent: three of them are single-colored, and one is many-colored. Therefore, even prior to formal calculations, a strong suspicion as to the independence of the color resulting statistics arises. Not so with entangled quantum states. In the schematic solutions proposed, while photon detection channels are completely symmetric and equivalent, the events that occur in them turn out to be statistically dependent, making the Bernstein paradox even more impressive due to the unusual behavior of quantum particles not obeying classical laws. As an illustrative example of the probability paradox, Greenberger-Horne-Zeilinger multiqubit states are considered.
NASA Astrophysics Data System (ADS)
Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song
2011-11-01
We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.
Entanglement dynamics in three-qubit X states
Weinstein, Yaakov S.
2010-09-15
I explore the entanglement dynamics of a three-qubit system in an initial X state undergoing decoherence including the possible exhibition of entanglement sudden death. To quantify entanglement I utilize negativity measures and make use of appropriate entanglement witnesses. The negativity results are then extended to X states with an arbitraty number of qubits. I also demonstrate nonstandard behavior of the tripartite negativity entanglement metric: its sudden appearance after some amount of decoherence, followed quickly by its disappearance. Finally, I solve for a lower bound on the three-qubit X-state concurrence, demonstrate when this bound goes to 0, and outline simplifcations for the calculation of higher-order X-state concurrences.
Quantum entanglement swapping of two arbitrary biqubit pure states
NASA Astrophysics Data System (ADS)
Xie, ChuanMei; Liu, YiMin; Chen, JianLan; Yin, XiaoFeng; Zhang, ZhanJun
2016-10-01
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation (EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established. Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability; however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.
Cluster-type entangled coherent states: Generation and application
An, Nguyen Ba; Kim, Jaewan
2009-10-15
We consider a type of (M+N)-mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.
Cluster-type entangled coherent states: Generation and application
NASA Astrophysics Data System (ADS)
An, Nguyen Ba; Kim, Jaewan
2009-10-01
We consider a type of (M+N) -mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.
Semiquantum secret sharing using entangled states
Li Qin; Chan, W. H.; Long Dongyang
2010-08-15
Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.
Distillation and purification of symmetric entangled Gaussian states
Fiurasek, Jaromir
2010-10-15
We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.
Projection of two biphoton qutrits onto a maximally entangled state.
Halevy, A; Megidish, E; Shacham, T; Dovrat, L; Eisenberg, H S
2011-04-01
Bell state measurements, in which two quantum bits are projected onto a maximally entangled state, are an essential component of quantum information science. We propose and experimentally demonstrate the projection of two quantum systems with three states (qutrits) onto a generalized maximally entangled state. Each qutrit is represented by the polarization of a pair of indistinguishable photons-a biphoton. The projection is a joint measurement on both biphotons using standard linear optics elements. This demonstration enables the realization of quantum information protocols with qutrits, such as teleportation and entanglement swapping. PMID:21517363
Quantum steganography with large payload based on entanglement swapping of χ-type entangled states
NASA Astrophysics Data System (ADS)
Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian
2011-04-01
In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.
Generalized geometric measure of entanglement for multiparty mixed states
NASA Astrophysics Data System (ADS)
Das, Tamoghna; Roy, Sudipto Singha; Bagchi, Shrobona; Misra, Avijit; SenDe, Aditi; Sen, Ujjwal
2016-08-01
Computing entanglement of an arbitrary bipartite or multipartite mixed state is in general not an easy task as it usually involves complex optimization. Here we show that, exploiting symmetries of certain multiqudit mixed states, we can compute a genuine multiparty entanglement measure, the generalized geometric measure, for these classes of mixed states. The chosen states have different ranks and consist of an arbitrary number of parties.
Entanglement analysis for macroscopic Schrödinger's Cat state
NASA Astrophysics Data System (ADS)
Sheng, Yu-Bo; Zhou, Lan
2015-02-01
Macroscopic entanglement, or say the Schrödinger's Cat state has attracted much attention for a long time. Recently, the first theoretical work of Fröwis and Dür (Phys. Rev. Lett., 106 (2011) 110402) and the first experiment of Lu et al. (Nat. Photon., 8 (2014) 364) both showed that, a new type of Schrödinger's Cat state, the logic-qubit entanglement (concatenated Greenberger-Horne-Zeilinger (C-GHZ) state) is immune and robust to the noise, and is possible to be applied in future large-scale quantum networks. In this paper, we describe a protocol of entanglement analysis for this kind of Schrödinger's Cat state. Both the Bell-state type of logic-qubit entanglement and multipartite C-GHZ state can be completely distinguished. Based on the entanglement analysis, an arbitrary unknown macroscopic Schrödinger's Cat superposed state can be teleportated and we can also perform the macroscopic entanglement swapping. Our protocol shows that it is possible to realize long-distance quantum communication and large-scale quantum network based on logic-qubit entanglement.
Photon-number entangled states generated in Kerr media with optical parametric pumping
Kowalewska-Kudlaszyk, A.; Leonski, W.; Perina, Jan Jr.
2011-05-15
Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.
Entanglement as a resource to distinguish orthogonal product states.
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-07-26
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.
Entanglement as a resource to distinguish orthogonal product states
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Entanglement as a resource to distinguish orthogonal product states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-07-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.
Entanglement as a resource to distinguish orthogonal product states.
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Quantum frequency up-conversion of continuous variable entangled states
Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin
2015-12-07
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.
Entangled State Representation for Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Ma, Shan-Jun; Lu, Hai-Liang; Fan, Hong-Yi
2008-08-01
We introduce the entangled state representation to describe the four-wave mixing. We find that the four-wave mixing operator, which engenders the correct input-output field transformation, has a natural representation in the entangled state representation. In this way, we see that the four-wave mixing process not only involves squeezing but also is an entanglement process. This analysis brings convenience to the calculation of quadrature-amplitude measurement for the output state of four-wave mixing process.
Fast entanglement detection for unknown states of two spatial qutrits
Lima, G.; Gomez, E. S.; Saavedra, C.; Vargas, A.; Vianna, R. O.
2010-07-15
We investigate the practicality of the method proposed by Maciel et al. [Phys. Rev. A. 80, 032325 (2009).] for detecting the entanglement of two spatial qutrits (three-dimensional quantum systems), which are encoded in the discrete transverse momentum of single photons transmitted through a multislit aperture. The method is based on the acquisition of partial information of the quantum state through projective measurements, and a data processing analysis done with semidefinite programs. This analysis relies on generating gradually an optimal entanglement witness operator, and numerical investigations have shown that it allows for the entanglement detection of unknown states with a cost much lower than full state tomography.
Multi-state Quantum Teleportation via One Entanglement State
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee
2008-08-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
Squeezed states and path integrals
NASA Technical Reports Server (NTRS)
Daubechies, Ingrid; Klauder, John R.
1992-01-01
The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.
Manipulation of Entangled States for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.
Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.
NASA Astrophysics Data System (ADS)
Chen, Hui-Na; Liu, Jin-Ming
2009-10-01
We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.
Protecting quantum entanglement and nonlocality for tripartite states under decoherence
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yin, Yu Hao; Ma, Wen Chao; Ye, Liu
2016-06-01
Quantum entanglement and nonlocality will suffer inevitable harm from decoherence environment. Based on GHZ state, we study the harm of the generalized amplitude damping (GAD) operation and the protection by the single local filtering (SLF) operation in this paper. We verify that the SLF functions to depress the loss of entanglement and nonlocality from GAD. This conclusion will guide us to select the best method to protect the GHZ state from GAD decoherence.
NASA Astrophysics Data System (ADS)
Hu, Juju; Xu, Lin
2015-07-01
We demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). In our scheme, the easy integration of solid-state quantum circuit is exploited. In particular, through manipulating the external capacitor or external classical microwave impulse, the coupling between superconducting qubits and cavity can be manipulated, the entanglement effect between qubit and field modes can be enhanced and the decoherence effect can be effectively suppressed. We further discuss the correspondence between quantum entanglement and some non-classical effects such as the squeezing of entangled coherent state field, the anti-buching effect. The results show that the time evolution of the quantum entanglement between field modes is always accompanied by the synchronous changes of certain non-classical effect. When the quantum entanglement reaches maximum, the anti-bunching (or compression effect) almost reaches maximum synchronously. Once entanglement sudden death occurs, the non-classical effects disappear.
Stability of global entanglement in thermal states of spin chains
Brennen, Gavin K.; Bullock, Stephen S.
2004-11-01
We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement.
Dynamical generation of maximally entangled states in two identical cavities
Alexanian, Moorad
2011-11-15
The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.
Quantitative bound entanglement in two-qutrit states
NASA Astrophysics Data System (ADS)
Sentís, Gael; Eltschka, Christopher; Siewert, Jens
2016-08-01
Among the many facets of quantum correlations, bound entanglement has remained one the most enigmatic phenomena, despite the fact that it was discovered in the early days of quantum information. Even its detection has proven to be difficult, let alone its precise quantitative characterization. In this work, we present the exact quantification of entanglement for a two-parameter family of highly symmetric two-qutrit mixed states, which contains a sizable part of bound entangled states. We achieve this by explicitly calculating the convex-roof extensions of the linear entropy as well as the concurrence for every state within the family. Our results provide a benchmark for future quantitative studies of bipartite entanglement in higher-dimensional systems.
Harnessing gauge fields for maximally entangled state generation
NASA Astrophysics Data System (ADS)
Reyes, S. A.; Morales-Molina, L.; Orszag, M.; Spehner, D.
2014-10-01
We study the generation of entanglement between two species of bosons living on a ring lattice, where each group of particles can be described by a d-dimensional Hilbert space (qudit). Gauge fields are exploited to create an entangled state between the pair of qudits. Maximally entangled eigenstates are found for well-defined values of the Aharonov-Bohm phase, which are zero-energy eigenstates of both the kinetic and interacting parts of the Bose-Hubbard Hamiltonian, making them quite exceptional and robust. We propose a protocol to reach the maximally entangled state (MES) by starting from an initially prepared ground state. Also, an indirect method to detect the MES by measuring the current of the particles is proposed.
Harnessing gauge fields for maximally entangled state generation
NASA Astrophysics Data System (ADS)
Reyes, Sebastian; Morales-Molina, Luis; Orszag, Miguel; Spehner, Dominique
2015-03-01
We study the generation of entanglement between two species of bosons living on a ring lattice, where each group of particles can be described by a d-dimensional Hilbert space (qudit). Gauge fields are exploited to create an entangled state between the pair of qudits. Maximally entangled eigenstates are found for well-defined values of the Aharonov-Bohm phase, which are zero-energy eigenstates of both the kinetic and interacting parts of the Bose-Hubbard Hamiltonian, making them quite exceptional. We propose a protocol to reach the maximally entangled state (MES) by starting from an initially prepared ground state. Also, an indirect method to detect the MES by measuring the current of the particles is proposed.
Persistence of entanglement in thermal states of spin systems
NASA Astrophysics Data System (ADS)
Sadiek, Gehad; Kais, Sabre
2013-12-01
We study and compare the persistence of bipartite entanglement (BE) and multipartite entanglement (ME) in one-dimensional and two-dimensional spin XY models in an external transverse magnetic field under the effect of thermal excitations. We compare the threshold temperature at which the entanglement vanishes in both types of entanglement. We use the entanglement of formation as a measure of the BE and the geometric measure to evaluate the ME of the system. We have found that in both dimensions in the anisotropic and partially anisotropic spin systems at zero temperatures, all types of entanglement decay as the magnetic field increases but are sustained with very small magnitudes at high field values. Also we found that for the same systems, the threshold temperatures of the nearest neighbour (nn) BEs are higher than both of the next-to-nearest neighbour BEs and MEs and the three of them increase monotonically with the magnetic field strength. Thus, as the temperature increases, the ME and the far parts BE of the system become more fragile to thermal excitations compared to the nn BE. For the isotropic system, all types of entanglement and threshold temperatures vanish at the same exact small value of the magnetic field. We emphasise the major role played by both the properties of the ground state of the system and the energy gap in controlling the characteristics of the entanglement and threshold temperatures. In addition, we have shown how an inserted magnetic impurity can be used to preserve all types of entanglement and enhance their threshold temperatures. Furthermore, we found that the quantum effects in the spin systems can be maintained at high temperatures, as the different types of entanglements in the spin lattices are sustained at high temperatures by applying sufficiently high magnetic fields.
Duality in entanglement of macroscopic states of light
NASA Astrophysics Data System (ADS)
Lee, Su-Yong; Lee, Chang-Woo; Kurzyński, Paweł; Kaszlikowski, Dagomir; Kim, Jaewan
2016-08-01
We investigate duality in entanglement of a bipartite multiphoton system generated from a coherent state of light. The system can exhibit polarization entanglement if the two parts are distinguished by their parity, or parity entanglement if the parts are distinguished by polarization. It was shown in Phys. Rev. Lett. 110, 140404 (2013), 10.1103/PhysRevLett.110.140404 that this phenomenon can be exploited as a method to test indistinguishability of two particles and it was conjectured that one can also test indistinguishability of macroscopic systems. We propose a setup to test this conjecture. Contrary to the previous studies using two-particle interference effect as in the Hong-Ou- Mandel setup, our setup neither assumes that the tested state is composed of single particles nor requires that the total number of particles be fixed. Consequently, the notion of entanglement duality is shown to be compatible with a broader class of physical systems. Moreover, by observing duality in entanglement in the above system one can confirm that macroscopic systems exhibit quantum behavior. As a practical side, entanglement duality is a useful concept that enables adaptive conversion of entanglement of one degree of freedom (DOF) to that of another DOF according to varying quantum protocols.
Spatial entanglement entropy in the ground state of the Lieb-Liniger model
NASA Astrophysics Data System (ADS)
Herdman, C. M.; Roy, P.-N.; Melko, R. G.; Del Maestro, A.
2016-08-01
We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one spatial dimension interacting via a contact interaction. Using ground-state path integral quantum Monte Carlo we numerically compute the Rényi entropy of the reduced density matrix of the subsystem as a measure of entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors, which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a logarithmic scaling of the Rényi entropy with subsystem size that is expected from conformal field theory, and compute the nonuniversal subleading constant for interaction strengths ranging over two orders of magnitude. In the strongly interacting limit, we find agreement with the known free fermion result.
Experimental hybrid entanglement between quantum and classical states of light
NASA Astrophysics Data System (ADS)
Costanzo, Luca S.; Zavatta, Alessandro; Grandi, Samuele; Bellini, Marco; Jeong, Hyunseok; Kang, Minsu; Lee, Seung-Woo; Ralph, Timothy C.
2014-12-01
The realization of hybrid entanglement between a microscopic (quantum) and a macroscopic (classical) system, in analogy to the situation of the famous Schrödinger's cat paradox, is an important milestone, both from the fundamental perspective and for possible applications in the processing of quantum information. The most straightforward optical implementation of this condition is that of the entanglement between a single-photon and a coherent state. In this work, we describe the first step towards the generation of this type of hybrid entanglement from the experimental perspective.
Multi-mode entangled states represented as Grassmannian polynomials
NASA Astrophysics Data System (ADS)
Maleki, Y.
2016-09-01
We introduce generalized Grassmannian representatives of multi-mode state vectors. By implementing the fundamental properties of Grassmann coherent states, we map the Hilbert space of the finite-dimensional multi-mode states to the space of some Grassmannian polynomial functions. These Grassmannian polynomials form a well-defined space in the framework of Grassmann variables; namely Grassmannian representative space. Therefore, a quantum state can be uniquely defined and determined by an element of Grassmannian representative space. Furthermore, the Grassmannian representatives of some maximally entangled states are considered, and it is shown that there is a tight connection between the entanglement of the states and their Grassmannian representatives.
Multidimensional pump-probe spectroscopy with entangled twin-photon states
Roslyak, Oleksiy; Mukamel, Shaul
2010-01-01
We show that entangled photons may be used in coherent multidimensional nonlinear spectroscopy to provide information on matter by scanning photon wave function parameters (entanglement time and delay of twin photons), rather than frequencies and time delays, as is commonly done with classical pulses. Signals are expressed and interpreted intuitively in terms of products of matter and field correlation functions using a diagrammatic close time path loop formalism which reveals the entangled quantum pathways of the fields and matter. The pump-probe signal measured when the pump and the probe are in a twin entangled state shows two-photon resonant contributions which scale linearly rather than quadratically with the incident beam intensity and reveal frequencies of off-resonant transitions. Two-dimensional spectrograms obtained by double Fourier transform of the signal with respect to the entanglement time and delay of the twins could provide detailed information on correlations among states and dynamical processes with high temporal resolution. The analogy with multidimensional time-domain optical techniques which use sequences of short classical pulses and pulse shaping algorithms is pointed out. PMID:20607106
Entangled coherent states versus entangled photon pairs for practical quantum-information processing
Park, Kimin; Jeong, Hyunseok
2010-12-15
We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.
Excitonic entanglement of protected states in quantum dot molecules
NASA Astrophysics Data System (ADS)
Borges, H. S.; Sanz, L.; Alcalde, A. M.
2016-09-01
The entanglement of an optically generated electron-hole pair in artificial quantum dot molecules is calculated considering the effects of decoherence by interaction with environment. Since the system evolves into mixed states and due to the complexity of energy level structure, we use the negativity as entanglement quantifier, which is well defined in D ⊗D‧ composite vector spaces. By a numerical analysis of the non-unitary dynamics of the exciton states, we establish the feasibility of producing protected entangled superposition by an appropriate tuning of bias electric field, F. A stationary state with a high value of negativity (high degree of entanglement) is obtained by fine tuning of F close to a resonant condition between indirect excitons. We also found that when the optical excitation is approximately equal to the electron tunneling coupling, Ω /Te ∼ 1, the entanglement reaches a maximum value. In front of the experimental feasibility of the specific condition mentioned before, our proposal becomes an useful strategy to find robust entangled states in condensed matter systems.
Hybrid entanglement concentration assisted with single coherent state
NASA Astrophysics Data System (ADS)
Rui, Guo; Lan, Zhou; Shi-Pu, Gu; Xing-Fu, Wang; Yu-Bo, Sheng
2016-03-01
Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No. 15KJA120002), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.
Optimal processing of quantum information via W-type entangled coherent states
An, Nguyen Ba
2004-02-01
Optimized probabilistic teleportation and remote symmetric entangling of an arbitrary logical qubit are studied using particular forms of W-type entangled coherent states. Of interest is the fact that, while the teleportation can alternatively be performed by the GHZ-type entangled coherent states, the remote symmetric entangling strictly requires those of the W type.
Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Alsina, Daniel; Latorre, José I.; Riera, Arnau; Życzkowski, Karol
2015-09-01
Absolutely maximally entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible bipartitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing, and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME states, namely, their relation to tensors, which can be understood as unitary transformations in all of their bipartitions. We call this property multiunitarity.
Minimum-error discrimination of entangled quantum states
Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.
2010-10-15
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Concurrence-based entanglement measures for isotropic states
Rungta, Pranaw; Caves, Carlton M.
2003-01-01
We discuss properties of entanglement measures called I-concurrence and tangle. For a bipartite pure state, I-concurrence and tangle are simply related to the purity of the marginal density operators. The I-concurrence (tangle) of a bipartite mixed state is the minimum average I-concurrence (tangle) of ensemble decompositions of pure states of the joint density operator. Terhal and Vollbrecht [Phys. Rev. Lett. 85, 2625 (2000)] have given an explicit formula for the entanglement of formation of isotropic states in arbitrary dimensions. We use their formalism to derive comparable expressions for the I-concurrence and tangle of isotropic states.
Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality
Sen, Aditi; Sen, Ujjwal; Brukner, Caslav; Buzek, Vladimir; Zukowski, Marek
2005-10-15
We address the question as to whether an entangled state that satisfies local realism will give a violation of the same after entanglement swapping in a suitable scenario. We consider such a possibility as a kind of superadditivity in nonclassicality. Importantly, it will indicate that checking for violation of local realism, in the state obtained after entanglement swapping, can be a method for detecting entanglement in the input state of the swapping procedure. We investigate various entanglement swapping schemes, which involve mixed initial states. The strength of violation of local realism by the state obtained after entanglement swapping is compared with the one for the input states. We obtain a kind of superadditivity of violation of local realism for Werner states, consequent upon entanglement swapping involving Greenberger-Horne-Zeilinger-state measurements. We also discuss whether entanglement swapping of specific states may be used in quantum repeaters with a substantially reduced need to perform the entanglement distillation step.
Entanglement equivalence of N-qubit symmetric states
NASA Astrophysics Data System (ADS)
Mathonet, P.; Krins, S.; Godefroid, M.; Lamata, L.; Solano, E.; Bastin, T.
2010-05-01
We study the interconversion of multipartite symmetric N-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or Greenberger-Horne-Zeilinger (GHZ) entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric N-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Entangled Coherent States Generation in two Superconducting LC Circuits
Chen Meiyu; Zhang Weimin
2008-11-07
We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.
Entanglement equivalence of N-qubit symmetric states
Mathonet, P.; Krins, S.; Bastin, T.; Godefroid, M.; Solano, E.
2010-05-15
We study the interconversion of multipartite symmetric N-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or Greenberger-Horne-Zeilinger (GHZ) entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric N-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Entanglement and Majorana edge states in the Kitaev model
NASA Astrophysics Data System (ADS)
Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala
2016-07-01
We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.
Entanglement universality of two-qubit X-states
Mendonça, Paulo E.M.F.; Marchiolli, Marcelo A.; Galetti, Diógenes
2014-12-15
We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. - Highlights: • Parametrization of separable, entangled and rank-specific two-qubit X-states. • Construction of a set of two-qubit X-states exhausting a two-qubit CP-diagram. • Parametrization of a disentangling unitary transformation for any two-qubit X-state. • Unitary transformation of any two-qubit state into a X-state of same entanglement.
Controlled Teleportation of a Qudit State by Partially Entangled GHZ States
NASA Astrophysics Data System (ADS)
Wang, Jin-wei; Shu, Lan; Mo, Zhi-wen; Zhang, Zhi-hua
2014-08-01
In this paper, we propose a controlled teleportation scheme which communicates an arbitrary ququart state via two sets of partially entangled GHZ state. The necessary measurements and operations are given detailedly. Furthmore the scheme is generalized to teleport a qudit state via s sets of partially entangled GHZ state.
NASA Astrophysics Data System (ADS)
A, Karimi; M, K. Tavassoly
2016-04-01
In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes–Cummings model.
Geometric descriptions of entangled states by auxiliary varieties
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
Identifying non-Abelian topological order through minimal entangled states.
Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N
2014-03-01
The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions. PMID:24655269
NASA Astrophysics Data System (ADS)
Wang, Zhen; Li, Heng-Mei; Yuan, Hong-Chun
2016-10-01
We theoretically introduce a kind of non-Gaussian entangled states, i.e., photon-subtracted two-mode squeezed coherent states (PSTMSCS), by successively subtracting photons from each mode of the two-mode squeezed coherent states. The normalization factor which is related to bivariate Hermite polynomials is obtained by virtue of the two-mode squeezing operator in entangled-states representation. The sub-Poissonian photon statistics, antibunching effects, and partial negative Wigner function, respectively, are observed numerically, which fully reflect the nonclassicality of the resultant states. Finally, employing the SV criteria and the EPR correlation, respectively, the entangled property of PSTMSCS is analyzed. It is shown that the photon subtraction operation can effectively enhance the inseparability between the two modes.
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2016-09-01
Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Supported by the National Natural Science Foundation of China under Grant No. 61402407
Bipartite quantum channels using multipartite cluster-type entangled coherent states
Munhoz, P. P.; Semiao, F. L.; Roversi, J. A.; Vidiella-Barranco, A.
2010-04-15
We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel. For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state amplitude, the entanglement life span is shortened if redundancy is increased.
Entangled quantum state of magnetic dipoles.
Ghosh, S; Rosenbaum, T F; Aeppli, G; Coppersmith, S N
2003-09-01
Free magnetic moments usually manifest themselves in Curie laws, where weak external magnetic fields produce magnetizations that vary as the reciprocal of the temperature (1/T). For a variety of materials that do not display static magnetism, including doped semiconductors and certain rare-earth intermetallics, the 1/T law is replaced by a power law T(-alpha) with alpha < 1. Here we show that a much simpler material system-namely, the insulating magnetic salt LiHo(x)Y(1-x)F(4)-can also display such a power law. Moreover, by comparing the results of numerical simulations of this system with susceptibility and specific-heat data, we show that both energy-level splitting and quantum entanglement are crucial to describing its behaviour. The second of these quantum mechanical effects-entanglement, where the wavefunction of a system with several degrees of freedom cannot be written as a product of wavefunctions for each degree of freedom-becomes visible for remarkably small tunnelling terms, and is activated well before tunnelling has visible effects on the spectrum. This finding is significant because it shows that entanglement, rather than energy-level redistribution, can underlie the magnetic behaviour of a simple insulating quantum spin system. PMID:12955135
Quantum state and quantum entanglement protection using quantum measurements
NASA Astrophysics Data System (ADS)
Wang, Shuchao; Li, Ying; Wang, Xiangbin; Kwek, Leong Chuan; Yu, Zongwen; Zou, Wenjie
2015-03-01
The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though thequantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions. Besides, we report the quantum entanglement protection using weak measurement and measurement reversal scheme. Exposed in the nonzero temperature environment, a quantum system can both lose and gain excitations by interacting with the environment. In this work, we show how to optimally protect quantum states and quantum entanglement in such a situation based on measurement reversal from weak measurement. In particular, we present explicit formulas of protection. We find that this scheme can circumvent the entanglement sudden death in certain conditions.
Maximally entangled mixed-state generation via local operations
Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J. P.
2007-06-15
We present a general theoretical method to generate maximally entangled mixed states of a pair of photons initially prepared in the singlet polarization state. This method requires only local operations upon a single photon of the pair and exploits spatial degrees of freedom to induce decoherence. We report also experimental confirmation of these theoretical results.
Optimal local transformations of flip and exchange symmetric entangled states
NASA Astrophysics Data System (ADS)
Karpat, G.; Gedik, Z.
2011-12-01
Local quantum operations relating multiqubit flip (0-1) and exchange symmetric (FES) states, with the maximum possible probability of success, have been determined by assuming that the states are converted via one-shot FES transformations. It has been shown that certain entangled states are more robust than others, in the sense that the optimum probability of converting these robust states to the states lying in the close neighborhood of separable ones vanish under local FES operations.
Neutral atoms are entangled in hyperfine states via Rydberg blockade
Miller, Johanna
2010-02-15
Ions and neutral atoms held in electromagnetic traps are two of many candidates that may one day become the qubits in a quantum computer: Their hyperfine states could serve as the computer's ones and zeroes. Ions interact via long-range Coulomb forces, which can facilitate creation of the entangled states that are the prerequisite for quantum computation. But that same Coulomb interaction gives rise to collective motions that can disrupt a qubit array. Atoms aren't susceptible to such disruptions. But they're also more difficult to entangle.
Entangled mixed-state generation by twin-photon scattering
Puentes, G.; Aiello, A.; Woerdman, J. P.; Voigt, D.
2007-03-15
We report experimental results on mixed-state generation by multiple scattering of polarization-entangled photon pairs created from parametric down-conversion. By using a large variety of scattering optical systems we have experimentally obtained entangled mixed states that lie upon and below the Werner curve in the linear entropy-tangle plane. We have also introduced a simple phenomenological model built on the analogy between classical polarization optics and quantum maps. Theoretical predictions from such a model are in full agreement with our experimental findings.
Time evolution of entangled biatomic states in a cavity
Figueiredo, E. G.; Linhares, C. A.; Malbouisson, A. P. C.
2011-10-15
We study the time evolution of entangled states of a pair of identical atoms, considered in the harmonic approximation, coupled to an environment represented by an infinite set of free oscillators, with the whole system confined within a spherical cavity of radius R. Taking the center-of-mass and the relative-position coordinates, and using the dressed-state approach, we present the time evolution of some quantities measuring the entanglement for both limits of a very large and a small cavity; the chosen examples are simple and illustrate these very distinct behaviors.
Exploration of multiphoton entangled states by using weak nonlinearities
He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting
2016-01-01
We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044
Topological Entanglement and Clustering of Jain Hierarchy States
Regnault, N.; Bernevig, B. A.; Haldane, F. D. M.
2009-07-03
We obtain several clustering properties of the Jain states at filling (k/2k+1): they are a product of a Vandermonde determinant and a bosonic polynomial at filling (k/k+1) which vanishes when k+1 particles cluster together. We show that all Jain states satisfy a 'squeezing rule' which severely reduces the dimension of the Hilbert space necessary to generate them. We compute the topological entanglement spectrum of the Jain nu=(2/5) state and compare it to both the Coulomb ground state and the nonunitary Gaffnian state. All three states have a very similar 'low-energy' structure. However, the Jain state entanglement 'edge' state counting matches both the Coulomb counting as well as two decoupled U(1) free bosons, whereas the Gaffnian edge counting misses some of the edge states of the Coulomb spectrum.
Bulk entanglement spectrum reveals quantum criticality within a topological state.
Hsieh, Timothy H; Fu, Liang
2014-09-01
A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.
Interference and complementarity for two-photon hybrid entangled states
Nogueira, W. A. T.; Santibanez, M.; Delgado, A.; Saavedra, C.; Neves, L.; Lima, G.; Padua, S.
2010-10-15
In this work we generate two-photon hybrid entangled states (HESs), where the polarization of one photon is entangled with the transverse spatial degree of freedom of the second photon. The photon pair is created by parametric down-conversion in a polarization-entangled state. A birefringent double-slit couples the polarization and spatial degrees of freedom of these photons, and finally, suitable spatial and polarization projections generate the HES. We investigate some interesting aspects of the two-photon hybrid interference and present this study in the context of the complementarity relation that exists between the visibility of the one-photon and that of the two-photon interference patterns.
Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain
Yeo Ye
2002-12-01
Recently, entanglement teleportation has been investigated by Lee and Kim [Phys. Rev. Lett. 84, 4236 (2000)]. In this paper we study entanglement teleportation via two separate thermally entangled states of a two-qubit Heisenberg XX chain. We established the condition under which the parameters of the model have to satisfy in order to teleport entanglement. The necessary minimum amount of thermal entanglement for some fixed strength of exchange coupling is a function of the magnetic field and the temperature.
Remote State Preparation of a Two-Atom Entangled State in Cavity QED
NASA Astrophysics Data System (ADS)
Xiao, Xiao-Qi; Xiao, Junfang; Ren, Yuan; Li, Yuan; Ji, Chunlei; Huang, Xin-Gang
2016-06-01
A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender's side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver's side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-01
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor. PMID:21248751
Experimental perfect state transfer of an entangled photonic qubit
NASA Astrophysics Data System (ADS)
Chapman, Robert J.; Santandrea, Matteo; Huang, Zixin; Corrielli, Giacomo; Crespi, Andrea; Yung, Man-Hong; Osellame, Roberto; Peruzzo, Alberto
2016-04-01
The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems.
Experimental perfect state transfer of an entangled photonic qubit.
Chapman, Robert J; Santandrea, Matteo; Huang, Zixin; Corrielli, Giacomo; Crespi, Andrea; Yung, Man-Hong; Osellame, Roberto; Peruzzo, Alberto
2016-04-18
The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems.
Experimental perfect state transfer of an entangled photonic qubit.
Chapman, Robert J; Santandrea, Matteo; Huang, Zixin; Corrielli, Giacomo; Crespi, Andrea; Yung, Man-Hong; Osellame, Roberto; Peruzzo, Alberto
2016-01-01
The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems. PMID:27088483
Experimental perfect state transfer of an entangled photonic qubit
Chapman, Robert J.; Santandrea, Matteo; Huang, Zixin; Corrielli, Giacomo; Crespi, Andrea; Yung, Man-Hong; Osellame, Roberto; Peruzzo, Alberto
2016-01-01
The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems. PMID:27088483
NASA Astrophysics Data System (ADS)
Cardoso B., W.; Almeida G. de, N.
2008-07-01
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.
Generating and probing entangled states for optical atomic clocks
NASA Astrophysics Data System (ADS)
Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan
2016-05-01
The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.
Maximally entangled states in a Bose-Hubbard trimer
NASA Astrophysics Data System (ADS)
Reyes, Sebastian; Morales-Molina, Luis; Orszag, Miguel
2014-03-01
We study the generation of entanglement for interacting cold atoms in a three-site Bose-Hubbard ring. We propose a scheme by which maximally entangled states (MES) between two distinct atomic species can be prepared. Depending on the choice of experimental parameters, we demonstrate that it is possible to obtain different types of MES. Furthermore, we show that these MES are highly protected against experimental noise, making them good candidates for potential applications. S. R. acknowledges the support of FONDECYT grant 11110537.
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
Physical realization of quantum teleportation for a nonmaximal entangled state
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2010-08-15
Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.
Bandyopadhyay, Somshubhro
2010-02-15
It is shown that while entanglement ensures difficulty in discriminating a set of mutually orthogonal states perfectly by local operations and classical communication (LOCC), entanglement content does not. In particular, for a class of entangled multiqubit states, the maximum number of perfectly LOCC distinguishable orthogonal states is shown to be independent of the average entanglement of the states, and the spatial configuration with respect to which LOCC operations may be carried out. It is also pointed out that for this class, the makeup of an ensemble, that is whether it consists only of entangled states or not, determines the maximum number of perfectly distinguishable states.
Local hidden-variable models for entangled quantum states
NASA Astrophysics Data System (ADS)
Augusiak, R.; Demianowicz, M.; Acín, A.
2014-10-01
While entanglement and violation of Bell inequalities were initially thought to be equivalent quantum phenomena, we now have different examples of entangled states whose correlations can be described by local hidden-variable models and, therefore, do not violate any of the Bell inequalities. We provide an up-to-date overview of the existing literature regarding local hidden-variable models for entangled quantum states, in both the bipartite and multipartite cases, and discuss some of the most relevant open questions in this context. Our review covers twenty five years of this line of research, beginning with the seminal work by Werner (1989 Phys. Rev. A 40 8), which provided the first example of an entangled state with a local model. Werner's work, in turn, appeared twenty five years after the seminal work by Bell (1964 Physics 1 195), about the impossibility of recovering the predictions of quantum mechanics using a local hidden-variable theory. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
A note on entanglement entropy, coherent states and gravity
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2016-03-01
The entanglement entropy of a free quantum field in a coherent state is independent of its stress energy content. We use this result to highlight the fact that while the Einstein equations for first order variations about a locally maximally symmetric vacuum state of geometry and quantum fields seem to follow from Jacobson's principle of maximal vacuum entanglement entropy, their possible derivation from this principle for the physically relevant case of finite but small variations remains an open issue. We also apply this result to the context of Bianchi's identification, independent of unknown Planck scale physics, of the first order variation of Bekenstein-Hawking area with that of vacuum entanglement entropy. We argue that under certain technical assumptions this identification seems not to be extendible to the context of finite but small variations to coherent states. Our particular method of estimation of entanglement entropy variation reveals the existence of certain contributions over and above those of References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012). We discuss the sense in which these contributions may be subleading to those in References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012).
Speedup of quantum evolution of multiqubit entanglement states.
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-06-10
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.
Speedup of quantum evolution of multiqubit entanglement states
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
NASA Astrophysics Data System (ADS)
Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan
2016-06-01
Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.
Generation of energy-entangled W states via parametric fluorescence in integrated devices
NASA Astrophysics Data System (ADS)
Menotti, M.; Maccone, L.; Sipe, J. E.; Liscidini, M.
2016-07-01
Tripartite entangled states, such as Greenberger-Horne-Zeilinger and W states, are typically generated by manipulating two pairs of polarization-entangled photons in bulk optics. Here we propose a scheme to generate W states that are entangled in the energy degree of freedom in an integrated optical circuit. Our approach employs photon pairs generated by spontaneous four-wave mixing in a microring resonator. We also present a feasible procedure for demonstrating the generation of such a state, and we compare polarization-entangled and energy-entangled schemes for the preparation of W states.
The maximally entangled set of 4-qubit states
NASA Astrophysics Data System (ADS)
Spee, C.; de Vicente, J. I.; Kraus, B.
2016-05-01
Entanglement is a resource to overcome the natural restriction of operations used for state manipulation to Local Operations assisted by Classical Communication (LOCC). Hence, a bipartite maximally entangled state is a state which can be transformed deterministically into any other state via LOCC. In the multipartite setting no such state exists. There, rather a whole set, the Maximally Entangled Set of states (MES), which we recently introduced, is required. This set has on the one hand the property that any state outside of this set can be obtained via LOCC from one of the states within the set and on the other hand, no state in the set can be obtained from any other state via LOCC. Recently, we studied LOCC transformations among pure multipartite states and derived the MES for three and generic four qubit states. Here, we consider the non-generic four qubit states and analyze their properties regarding local transformations. As already the most coarse grained classification, due to Stochastic LOCC (SLOCC), of four qubit states is much richer than in case of three qubits, the investigation of possible LOCC transformations is correspondingly more difficult. We prove that most SLOCC classes show a similar behavior as the generic states, however we also identify here three classes with very distinct properties. The first consists of the GHZ and W class, where any state can be transformed into some other state non-trivially. In particular, there exists no isolation. On the other hand, there also exist classes where all states are isolated. Last but not least we identify an additional class of states, whose transformation properties differ drastically from all the other classes. Although the possibility of transforming states into local-unitary inequivalent states by LOCC turns out to be very rare, we identify those states (with exception of the latter class) which are in the MES and those, which can be obtained (transformed) non-trivially from (into) other states
Vortex Images, q-Calculus and Entangled Coherent States
NASA Astrophysics Data System (ADS)
Pashaev, Oktay K.
2012-02-01
The two circles theorem for hydrodynamic flow in annular domain bounded by two concentric circles is derived. Complex potential and velocity of the flow are represented as q-periodic functions and rewritten in terms of the Jackson q-integral. This theorem generalizes the Milne-Thomson one circle theorem and reduces to the last on in the limit q → ∞. By this theorem problem of vortex images in annular domain between coaxial cylinders is solved in terms of q-elementary functions. An infinite set of images, as symmetric points under two circles, is determined completely by poles of the q-logarithmic function, where dimensionless parameter q = r22/r21 is given by square ratio of the cylinder radii. Motivated by Möbius transformation for symmetrical points under generalized circle in complex plain, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. By these states we construct the maximally entangled orthonormal two qubit spin coherent state basis, in the limiting case reducible to the Bell basis. Average energy of XYZ model in these states, describing finite localized structure with characteristic extremum points, appears as an energy surface in maximally entangled two qubit space. Generalizations to three and higher multiple qubits are found. We show that our entangled N qubit states are determined by set of complex Fibonacci and Lucas polynomials and corresponding Binet-Fibonacci q-calculus.
Teleportation of the three-level three-particle entangled state and classical communication cost
NASA Astrophysics Data System (ADS)
Dai, Hong-Yi; Zhang, Ming; Kuang, Le-Man
2008-06-01
We propose a scheme to probabilistically teleport an unknown three-level three-particle entangled state. The quantum channel is composed of a partial entangled three-level two-particle state and a partial entangled three-level three-particle state. We calculate the successful total probability and the classical communication cost required in the ideal probabilistic teleportation process, respectively. It is shown that an unknown three-level three-particle entangled state can be teleported using fewer entangled particles and lesser classical communication cost than Bennett et al.’s original protocol.
Entanglement entropy of highly degenerate States and fractal dimensions.
Castro-Alvaredo, Olalla A; Doyon, Benjamin
2012-03-23
We consider the bipartite entanglement entropy of ground states of extended quantum systems with a large degeneracy. Often, as when there is a spontaneously broken global Lie group symmetry, basis elements of the lowest-energy space form a natural geometrical structure. For instance, the spins of a spin-1/2 representation, pointing in various directions, form a sphere. We show that for subsystems with a large number m of local degrees of freedom, the entanglement entropy diverges as d/2 logm, where d is the fractal dimension of the subset of basis elements with nonzero coefficients. We interpret this result by seeing d as the (not necessarily integer) number of zero-energy Goldstone bosons describing the ground state. We suggest that this result holds quite generally for largely degenerate ground states, with potential applications to spin glasses and quenched disorder.
Asymptotic entanglement transformation between W and GHZ states
Vrana, Péter; Christandl, Matthias
2015-02-15
We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.
Amplitude-Damping Decoherence Suppression of Two-Qubit Entangled States by Weak Measurements
NASA Astrophysics Data System (ADS)
Tan, Qiao-Yun; Wang, Lin; Li, Jin-Xiang; Tang, Jiao-Wen; Wang, Xin-Wen
2013-02-01
Taming decoherence is a critical issue in quantum information science. We here investigate amplitude-damping decoherence suppression of two-qubit entangled states by weak quantum measurements. It is shown that the weak measurements can effectively suppress the decoherence for different initial entangled states. More interestingly, we show that the weak measurements have different effects on the entanglement protection for two entangled states which are equivalent under a local unitary operation. This result implies that the entanglement protection effect could be modulated according to different demands.
Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou
2016-01-18
We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.
Direct measurement of nonlocal entanglement of two-qubit spin quantum states
Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation. PMID:26778340
Building projected entangled pair states with a local gauge symmetry
NASA Astrophysics Data System (ADS)
Zohar, Erez; Burrello, Michele
2016-04-01
Tensor network states, and in particular projected entangled pair states (PEPS), suggest an innovative approach for the study of lattice gauge theories, both from a pure theoretic point of view, and as a tool for the analysis of the recent proposals for quantum simulations of lattice gauge theories. In this paper we present a framework for describing locally gauge invariant states on lattices using PEPS. The PEPS constructed hereby shall include both bosonic and fermionic states, suitable for all combinations of matter and gauge fields in lattice gauge theories defined by either finite or compact Lie groups.
Chiral projected entangled-pair state with topological order.
Yang, Shuo; Wahl, Thorsten B; Tu, Hong-Hao; Schuch, Norbert; Cirac, J Ignacio
2015-03-13
We show that projected entangled-pair states (PEPS) can describe chiral topologically ordered phases. For that, we construct a simple PEPS for spin-1/2 particles in a two-dimensional lattice. We reveal a symmetry in the local projector of the PEPS that gives rise to the global topological character. We also extract characteristic quantities of the edge conformal field theory using the bulk-boundary correspondence. PMID:25815954
Local cloning of arbitrarily entangled multipartite states
Kay, Alastair; Ericsson, Marie
2006-01-15
We examine the perfect cloning of nonlocal, orthogonal states using only local operations and classical communication. We provide a complete characterisation of the states that can be cloned under these restrictions, and their relation to distinguishability. We also consider the case of catalytic cloning, which we show provides no enhancement to the set of clonable states.
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
Adesso, Gerardo; Illuminati, Fabrizio
2005-09-15
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they
Quantum-field coherent control: Preparation of broken-symmetry entangled states
Kral, Petr; Thanopulos, Ioannis; Shapiro, Moshe
2005-08-15
We show that entangled radiation-matter states with broken symmetries can be prepared by using nonclassical light in the coherent control techniques. We demonstrate the method by realizing the entanglement in degenerate continuum electronic momentum states of opposite directionality and discrete states of opposite handedness in chiral molecules. When the material system is excited simultaneously by classical light and quantum light in a state with several semiclassical phases, the interference conditions guide the system to such entangled radiation-matter states.
Quantum nonlocality of four-qubit entangled states
Wu, Chunfeng; Yeo, Ye; Oh, C. H.; Kwek, L. C.
2007-03-15
We derive a Bell inequality for testing violation of local realism. Quantum nonlocality of several four-qubit states is investigated. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, linear cluster state, and the state |{chi}> that has recently been proposed in [Phys. Rev. Lett. 96, 060502 (2006)]. The Bell inequality is optimally violated by |{chi}> but not violated by the GHZ state. The linear cluster state also violates the Bell inequality though not optimally. The state |{chi}> can thus be discriminated from the linear cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [Phys. Rev. Lett. 72, 797 (1994)].
Discrimination strategies for inequivalent classes of multipartite entangled states
Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried
2010-08-15
How can one discriminate different inequivalent classes of multiparticle entanglement experimentally? We present an approach for the discrimination of an experimentally prepared state from the equivalence class of another state. We consider two possible measures for the discrimination strength of an observable. The first measure is based on the difference of expectation values, the second on the relative entropy of the probability distributions of the measurement outcomes. The interpretation of these measures and their usefulness for experiments with limited resources are discussed. In the case of graph states, the stabilizer formalism is employed to compute these quantities and to find sets of observables that result in the most decisive discrimination.
Entanglement thermodynamics for an excited state of Lifshitz system
NASA Astrophysics Data System (ADS)
Chakraborty, Somdeb; Dey, Parijat; Karar, Sourav; Roy, Shibaji
2015-04-01
A class of (2+1)-dimensional quantum many body system characterized by an anisotropic scaling symmetry (Lifshitz symmetry) near their quantum critical point can be described by a (3+1)-dimensional dual gravity theory with negative cosmological constant along with a massive vector field, where the scaling symmetry is realized by the metric as an isometry. We calculate the entanglement entropy of an excited state of such a system holographically, i.e., from the asymptotic perturbation of the gravity dual using the prescription of Ryu and Takayanagi, when the subsystem is sufficiently small. With suitable identifications, we show that this entanglement entropy satisfies an energy conservation relation analogous to the first law of thermodynamics. The non-trivial massive vector field here plays a crucial role and contributes to an additional term in the energy relation.
Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter
NASA Astrophysics Data System (ADS)
Ge, Wenchao; Tasgin, Mehmet Emre; Zubairy, M. Suhail
2015-11-01
We study the relation between single-mode nonclassicality and two-mode entanglement in a beam splitter. We show that single-mode nonclassicality (the entanglement potential) of incident light cannot be transformed into two-mode entanglement completely after a single beam splitter. Some of the entanglement potential remains as single-mode nonclassicality in the two entangled output modes. Two-mode entanglement generated in the process can be equivalently quantified as an increase in the minimum uncertainty widths (or decrease in the squeezing) of the output states compared to the input states. We use the nonclassical depth and logarithmic negativity as single-mode nonclassicality and entanglement measures, respectively. We realize that a conservation relation between the two quantities can be adopted for Gaussian states, if one works in terms of uncertainty width. This conservation relation is extended to many sets of beam splitters.
NASA Astrophysics Data System (ADS)
Zhan, You-Bang; Zhang, Qun-Yong; Wang, Yu-Wu; Ma, Peng-Cheng
2010-01-01
We propose a scheme to teleport an unknown single-qubit state by using a high-dimensional entangled state as the quantum channel. As a special case, a scheme for teleportation of an unknown single-qubit state via three-dimensional entangled state is investigated in detail. Also, this scheme can be directly generalized to an unknown f-dimensional state by using a d-dimensional entangled state (d > f) as the quantum channel.
Dzyaloshinskii-Moriya interaction as an agent to free the bound entangled states
NASA Astrophysics Data System (ADS)
Sharma, Kapil K.; Pandey, S. N.
2016-04-01
In the present paper, we investigate the efficacy of Dzyaloshinskii-Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement.
Guehne, Otfried; Jungnitsch, Bastian; Moroder, Tobias; Weinstein, Yaakov S.
2011-11-15
The characterization of genuine multiparticle entanglement is important for entanglement theory as well as experimental studies related to quantum-information theory. Here, we completely characterize genuine multiparticle entanglement for four-qubit states diagonal in the cluster-state basis. In addition, we give a complete characterization of multiparticle entanglement for all five-qubit graph states mixed with white noise, for states diagonal in the basis corresponding to the five-qubit Y-shaped graph, and for a family of graph states with an arbitrary number of qubits.
Entanglement as a resource for local state discrimination in multipartite systems
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael
2016-08-01
We explore the question of using an entangled state as a universal resource for implementing quantum measurements by local operations and classical communication (LOCC). We show that for most systems consisting of three or more subsystems, there is no entangled state from the same space that can enable all measurements by LOCC. This is in direct contrast to the bipartite case, where a maximally entangled state is a universal resource. Our results are obtained showing an equivalence between the problem of local state transformation and that of entanglement-assisted local unambiguous state discrimination.
Faithful test of nonlocal realism with entangled coherent states
Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro
2011-02-15
We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.
Entangled states of two quantum dots mediated by Majorana fermions
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Wang, W.; Yi, X. X.
2016-02-01
With the assistance of a pair of Majorana fermions, we propose schemes to entangle two quantum dots by Lyapunov control in the charge and spin degrees of freedom. Four different schemes are considered, i.e., the teleportation scheme, the crossed Andreev reflection scheme, the intradot spin flip scheme, and the scheme beyond the intradot spin flip. We demonstrate that the entanglement can be generated by modulating the chemical potential of quantum dots with square pulses, which is easily realized in practice. In contrast to Lyapunov control, the preparation of entangled states by adiabatic passage is also discussed. There are two advantages in the scheme by Lyapunov control, i.e., it is flexible to choose a control Hamiltonian, and the control time is much shorter with respect to the scheme by adiabatic passage. Furthermore, we find that the results are quite different by different adiabatic passages in the scheme beyond the intradot spin flip, which can be understood as an effect of quantum destructive interference.
Degradation of entanglement between two accelerated parties: Bell states under the Unruh effect
NASA Astrophysics Data System (ADS)
Richter, Benedikt; Omar, Yasser
2015-08-01
We study the entanglement of families of Unruh modes in the Bell states | Φ±>=1 / √{2 }(|00 > ±|11 >) and | Ψ±>=1 / √{2 }(|01 > ±|10 >) shared by two accelerated observers and find fundamental differences in the robustness of entanglement against acceleration for these states. States Ψ± are entangled for all finite accelerations, whereas, due to the Unruh effect, states Φ± lose their entanglement for finite accelerations. This is true for Bell states of two bosonic modes, as well as for Bell states of a bosonic and a fermionic mode. Furthermore, there are also differences in the degradation of entanglement for Bell states of fermionic modes. We reveal the origin of these distinct characteristics of entanglement degradation and discuss the role that is played by particle statistics. Our studies suggest that the behavior of entanglement in accelerated frames strongly depends on the occupation patterns of the constituent states, whose superposition constitutes the entangled state, where especially states Φ± and Ψ± exhibit distinct characteristics regarding entanglement degradation. Finally, we point out possible implications of hovering over a black hole for these states.
Stability of Flip and Exchange Symmetric Entangled State Classes
NASA Astrophysics Data System (ADS)
Zafer Gedik, Mehmet
2010-03-01
Flip and exchange symmetric (FES) many-qubit states, which can be obtained from a state with the same symmetries by means of invertible local operations (ILO), constitute a one-parameter family of curves in the Hilbert space. Eigenstates of FES ILOs correspond to vectors that cannot be transformed to other FES states. Therefore, equivalence classes of states under ILO can be determined in a systematic way for an arbitrary number of qubits. More important, for entangled states, at the boundaries of neighboring equivalence classes, one can show that when the fidelity between the final state after an ILO and a state of the neighboring class approaches unity, probability of success decreases to zero. In other words, the classes are stable under ILOs.
Robustness in projected entangled pair states
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Michalakis, Spyridon; Pérez-García, David; Schuch, Norbert
2013-09-01
We analyze a criterion which guarantees that the ground states of certain many-body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low energy physics arising from local interactions. In order to assess stability in the framework of PEPS, one thus needs to understand how physically allowed perturbations of the local tensor affect the properties of the global state. In this paper, we show that a restricted version of the local topological quantum order (LTQO) condition [Michalakis and Pytel, Commun. Math. Phys.10.1007/s00220-013-1762-6 322, 277 (2013)] provides a checkable criterion which allows us to assess the stability of local properties of PEPS under physical perturbations. We moreover show that LTQO itself is stable under perturbations which preserve the spectral gap, leading to nontrivial examples of PEPS which possess LTQO and are thus stable under arbitrary perturbations.
Bound entangled states with a private key and their classical counterpart.
Ozols, Maris; Smith, Graeme; Smolin, John A
2014-03-21
Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question--they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with a private key based on classical probability distributions. From this emerge states possessing a new classical analogue of bound entanglement, distinct from the long-sought bound information. We also find states of smaller dimensions and higher key rates than previously known. Our construction has implications for classical cryptography: we show that existing protocols are insufficient for extracting private key from our distributions due to their "bound-entangled" nature. We propose a simple extension of existing protocols that can extract a key from them. PMID:24702340
Experimental characterization of two spatial qutrits using entanglement witnesses.
Gutiérrez-Esparza, A J; Pimenta, W M; Marques, B; Matoso, A A; Lucio M, J L; Pádua, S
2012-11-19
We present an experimental technique for a complete characterization of entanglement in a two-qutrit state generated using transverse spatial correlations of two parametric down-converted photons. We verify entanglement for a particular case via entanglement witness operators which are decomposed into a sum of local observables of single path and superposition projection operators. Experimentally, these operators are accomplished by using a spatial light modulator and a polarizing beam splitter which allow to modulate the amplitude of individually chosen path states. The quantification of entanglement is computed by the negativity obtained from the expectation values of the entanglement witnesses implemented. PMID:23187490
Diagonal unitary entangling gates and contradiagonal quantum states
NASA Astrophysics Data System (ADS)
Lakshminarayan, Arul; Puchała, Zbigniew; Życzkowski, Karol
2014-09-01
Nonlocal properties of an ensemble of diagonal random unitary matrices of order N2 are investigated. The average Schmidt strength of such a bipartite diagonal quantum gate is shown to scale as lnN, in contrast to the lnN2 behavior characteristic of random unitary gates. Entangling power of a diagonal gate U is related to the von Neumann entropy of an auxiliary quantum state ρ =AA†/N2, where the square matrix A is obtained by reshaping the vector of diagonal elements of U of length N2 into a square matrix of order N. This fact provides a motivation to study the ensemble of non-Hermitian unimodular matrices A, with all entries of the same modulus and random phases and the ensemble of quantum states ρ, such that all their diagonal entries are equal to 1/N. Such a state is contradiagonal with respect to the computational basis, in the sense that among all unitary equivalent states it maximizes the entropy copied to the environment due to the coarse-graining process. The first four moments of the squared singular values of the unimodular ensemble are derived, based on which we conjecture a connection to a recently studied combinatorial object called the "Borel triangle." This allows us to find exactly the mean von Neumann entropy for random phase density matrices and the average entanglement for the corresponding ensemble of bipartite pure states.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Nonmaximally entangled states can be better for multiple linear optical teleportation.
Modławska, Joanna; Grudka, Andrzej
2008-03-21
We investigate multiple linear optical teleportation in the Knill-Laflamme-Milburn scheme with both maximally and nonmaximally entangled states. We show that if the qubit is teleported several times via a nonmaximally entangled state, then the errors introduced in the previous teleportations can be corrected by the errors introduced in the following teleportations. This effect is so strong that it leads to another interesting phenomenon: i.e., the total probability of successful multiple linear optical teleportation is higher for nonmaximally entangled states than maximally entangled states.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the
Quantum state of wormholes and path integral
Garay, L.J. )
1991-08-15
The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.
Witnessing trustworthy single-photon entanglement with local homodyne measurements.
Morin, Olivier; Bancal, Jean-Daniel; Ho, Melvyn; Sekatski, Pavel; D'Auria, Virginia; Gisin, Nicolas; Laurat, Julien; Sangouard, Nicolas
2013-03-29
Single-photon entangled states, i.e., states describing two optical paths sharing a single photon, constitute the simplest form of entanglement. Yet they provide a valuable resource in quantum information science. Specifically, they lie at the heart of quantum networks, as they can be used for quantum teleportation, swapped, and purified with linear optics. The main drawback of such entanglement is the difficulty in measuring it. Here, we present and experimentally test an entanglement witness allowing one to say whether a given state is path entangled and also that entanglement lies in the subspace, where the optical paths are each filled with one photon at most, i.e., refers to single-photon entanglement. It uses local homodyning only and relies on no assumption about the Hilbert space dimension of the measured system. Our work provides a simple and trustworthy method for verifying the proper functioning of future quantum networks. PMID:23581297
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-03-01
Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.
Adiabatic corrections to holographic entanglement in thermofield doubles and confining ground states
NASA Astrophysics Data System (ADS)
Marolf, Donald; Wien, Jason
2016-09-01
We study entanglement in states of holographic CFTs defined by Euclidean path integrals over geometries with slowly varying metrics. In particular, our CFT space-times have S 1 fibers whose size b varies along one direction ( x) of an {{R}}^{{{}^d}^{-1}} base. Such examples respect an {{R}}^{{{}^d}^{-2}} Euclidean symmetry. Treating the S 1 direction as time leads to a thermofield double state on a spacetime with adiabatically varying redshift, while treating another direction as time leads to a confining ground state with slowly varying confinement scale. In both contexts the entropy of slab-shaped regions defined by | x - x 0| ≤ L exhibits well-known phase transitions at length scales L = L crit characterizing the CFT entanglements. For the thermofield double, the numerical coefficients governing the effect of variations in b( x) on the transition are surprisingly small and exhibit an interesting change of sign: gradients reduce L crit for d ≤ 3 but increase L crit for d ≥ 4. This means that, while for general L > L crit they significantly increase the mutual information of opposing slabs as one would expect, for d ≥ 4 gradients cause a small decrease near the phase transition. In contrast, for the confining ground states gradients always decrease L crit, with the effect becoming more pronounced in higher dimensions.
How often is a random quantum state k-entangled?
NASA Astrophysics Data System (ADS)
Szarek, Stanisław J.; Werner, Elisabeth; Życzkowski, Karol
2011-01-01
The set of trace-preserving, positive maps acting on density matrices of size d forms a convex body. We investigate its nested subsets consisting of k-positive maps, where k = 2, ..., d. Working with the measure induced by the Hilbert-Schmidt distance we derive asymptotically tight bounds for the volumes of these sets. Our results strongly suggest that the inner set of (k + 1) -positive maps forms a small fraction of the outer set of k-positive maps. These results are related to analogous bounds for the relative volume of the sets of k-entangled states describing a bipartite d × d system.
Muon-fluorine entangled states in molecular magnets.
Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A
2007-12-31
The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.
Entanglement dynamics of spin systems in pure states
NASA Astrophysics Data System (ADS)
Furman, G. B.; Meerovich, V. M.; Sokolovsky, V. L.
2009-09-01
We investigate numerically the appearance and evolution of entanglement in spin systems prepared initially in a pure state. We consider the dipolar coupling spin systems of different molecular structures: benzene C6H6 , cyclopentane C5H10 , sodium butyrate CH3(CH2)2CO2Na , and calcium hydroxyapatite Ca5(OH)(PO4)3 . Numerical simulations show that the close relationship exists between the intensity of second order (2Q) coherences and concurrences of nearest spins in a cyclopentane molecule.
Considerations on gravity as an entropic force and entangled states
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; Neto, Jorge Ananias
2013-12-01
Verlinde's ideas considered gravity as an emergent force originated from entropic concepts. This hypothesis generated a huge number of papers through the last recent years concerning classical and quantum approaches about the issue. In a recent paper Kobakhidze, using ultra-cold neutrons experiment, claimed that Verlinde's entropic gravity is not correct. In this Letter, by considering the Tsallis nonadditivity entropy concerning the holographic screen, where we assumed that the bits are entangled states, we showed that it is possible to confirm Verlinde's formalism.
Teleportation of entangled states without Bell-state measurement via a two-photon process
NASA Astrophysics Data System (ADS)
dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.
2011-02-01
In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.
New bipartite coherent-entangled state in two-mode Fock space and its applications
NASA Astrophysics Data System (ADS)
Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi
2011-04-01
A new bipartite coherent-entangled state (CES) is found which exhibits both coherent state and entangled state properties. The set of CESs constitute a complete and partly nonorthogonal representation. Using an asymmetric beamsplitter a experimental scheme to produce the CES is proposed. Applications of CESs in quantum optics are also presented.
Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation
Yeo, Ye
2003-08-01
We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit Heisenberg XX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the pairwise thermal concurrence of the state. In particular, two mixtures of different pairs of W states, which result in the same concurrence, could yield very different average teleportation fidelities.
Entanglement of three-qubit pure states in terms of teleportation capability
Lee, Soojoon; Joo, Jaewoo; Kim, Jaewan
2005-08-15
We define an entanglement measure, called the partial tangle, which represents the residual two-qubit entanglement of a three-qubit pure state. By its explicit calculations for three-qubit pure states, we show that the partial tangle is closely related to the faithfulness of a teleportation scheme over a three-qubit pure state.
Teleportation with insurance of an entangled atomic state via cavity decay
Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam
2005-03-01
We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; Saif, Farhan
2011-09-15
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Su, Qian; Guo, Ying; Huang, Dazu
2013-02-01
We demonstrate an anonymous quantum communication (AQC) via the non-maximally entanglement state analysis (NESA) based on the dining cryptographer problem (DCP). The security of the present AQC is ensured due to the quantum-mechanical impossibility of local unitary transformations between non-maximally entanglement states, which provides random numbers for the secure AQC. The analysis shows that the DCP-based AQC can be performed without intractability through the NESA in the multi-photon entangled quantum system.
Tower of states and the entanglement spectrum in a coplanar antiferromagnet
NASA Astrophysics Data System (ADS)
Rademaker, Louk
2015-10-01
I extend the analytical arguments of Metlitski and Grover (arXiv:1112.5166) to compute the entanglement spectrum and entanglement entropy of coplanar antiferromagnets with S O (3 ) order parameter symmetry. The low-energy states in the entanglement spectrum exhibit the tower-of-states structure, as is expected for systems that undergo spontaneous symmetry breaking. My results are consistent with numerical results on the triangular and Kagomé lattice.
Comparison of qubit and qutrit like entangled squeezed and coherent states of light
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-10-01
Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).
Heralded entanglement between solid-state qubits separated by three metres.
Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R
2013-05-01
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks. PMID:23615617
Heralded entanglement between solid-state qubits separated by three metres.
Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R
2013-05-01
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.
Pattern classification using maximally entangled quantum states (MES)
NASA Astrophysics Data System (ADS)
Singh, Manu Pratap; Rajput, B. S.
2014-04-01
Pattern classifications have been performed by employing the method of Grover's iteration on Bell's MES and Singh-Rajput MES in a two-qubit system and it has been demonstrated that, for any pattern classification, in a two-qubit system the maximally entangled states of Singh-Rajput eigenbasis provide the most suitable choice of search states while, in no case, any of Bell's states is suitable for such pattern classifications. Applying the method of Grover's iterate on three different superpositions in a three-qubit system, it has been shown that the choice of exclusive superposition, as the search state, is the most suitable one for the desired pattern classifications based on Grover's iterative search algorithm.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-01
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks. PMID:20686569
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-01
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Smallest state spaces for which bipartite entangled quantum states are separable
NASA Astrophysics Data System (ADS)
Anwar, Hussain; Jevtic, Sania; Rudolph, Oliver; Virmani, Shashank
2015-09-01
According to usual definitions, entangled states cannot be given a separable decomposition in terms of products of local density operators. If we relax the requirement that the local operators be positive, then an entangled quantum state may admit a separable decomposition in terms of more general sets of single-system operators. This form of separability can be used to construct classical models and simulation methods when only a restricted set of measurements is available. With these motivations in mind, we ask what are the smallest sets of local operators such that a pure bipartite entangled quantum state becomes separable? We find that in the case of maximally entangled states there are many inequivalent solutions, including for example the sets of phase point operators that arise in the study of discrete Wigner functions. We therefore provide a new way of interpreting these operators, and more generally, provide an alternative method for constructing local hidden variable models for entangled quantum states under subsets of quantum measurements.
Variational optimization with infinite projected entangled-pair states
NASA Astrophysics Data System (ADS)
Corboz, Philippe
2016-07-01
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states, a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local Hamiltonian. The method is based on a systematic summation of Hamiltonian contributions using the corner-transfer-matrix method. Benchmark results for challenging problems are presented, including the two-dimensional Heisenberg model, the Shastry-Sutherland model, and the t -J model, which show that the variational scheme yields considerably more accurate results than the previously best imaginary-time evolution algorithm, with a similar computational cost and with a faster convergence towards the ground state.
Entanglement and communication-reducing properties of noisy N-qubit states
Laskowski, Wieslaw; Paterek, Tomasz; Brukner, Caslav; Zukowski, Marek
2010-04-15
We consider properties of states of many qubits, which arise after sending certain entangled states via various noisy channels (white noise, colored noise, local depolarization, dephasing, and amplitude damping). Entanglement of these states and their ability to violate certain classes of Bell inequalities are studied. States which violate them allow a higher than classical efficiency in solving related distributed computational tasks with constrained communication. This is a direct property of such states--not requiring their further modification via stochastic local operations and classical communication such as entanglement purification or distillation procedures. We identify families of multiparticle states which are entangled but nevertheless allow the local realistic description of specific Bell experiments. For some of them, the 'gap' between the critical values for entanglement and violation of Bell inequality remains finite even in the limit of infinitely many qubits.
NASA Astrophysics Data System (ADS)
Zhong, Zhi-Rong
2008-05-01
An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-15
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Entangled entanglement: A construction procedure
NASA Astrophysics Data System (ADS)
Uchida, Gabriele; Bertlmann, Reinhold A.; Hiesmayr, Beatrix C.
2015-10-01
The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.
Minimally entangled typical thermal states of fermions in DMRG++
NASA Astrophysics Data System (ADS)
Alvarez, Gonzalo
2014-03-01
I will discuss the minimally entangled typical thermal states (METTS) algorithm (developed by White in PRL 2009) in the context of fermionic systems such as the Hubbard model. The additional idea here (http://prb.aps.org/abstract/PRB/v87/i24/e245130) is to combine METTS with the Krylov-space approach to evolve the classical product states in imaginary time. The issues to be addressed include ergodicity, ``collapse'' bases, and convergence. For the temperature dependence of the superconducting correlations, METTS will be shown to yield the correct exponential decay with distance, and exponents proportional to the temperature at low temperatures. The talk will conclude with a few remarks about recent directions and future plans for DMRG++ (https://web.ornl.gov/gz1/dmrgPlusPlus/) and related codes. Sponsors: CNMS ORNL, Scientific User Facilities Division, BES, U.S. DOE, and DOE early career research program.
NASA Astrophysics Data System (ADS)
Xia, Yan; Song, Jie; Song, He-Shan
2008-06-01
We present an explicit protocol for probabilistic teleport an arbitrary and unknown two-qubit entangled state via a one-dimensional four-particle non-maximally entangled cluster state. By construction, our four-partite state is not reducible to a pair of Bell states. We show that teleportation can be successfully realized with a certain probability. This protocol indicate that the four-qubit state is a likely candidate for the genuine four-particle analogue to a Bell state.
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
NASA Astrophysics Data System (ADS)
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Entangled ions in thermal motion
Soerensen, Anders; Moelmer, Klaus
1999-03-11
We propose a method to entangle the internal states of traped ions via virtual vibrational excitations. Transition paths involving unpopulated, vibrational states interfere destructively to eliminate the dependence of rates and revolution frequencies on vibrational quantum numbers, and our procedure is insensitive to the initial vibrational quantum state and to changes in the vibrational state occuring during operation.
NASA Astrophysics Data System (ADS)
Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José
2016-06-01
Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.
Entangling qubit registers via many-body states of ultracold atoms
NASA Astrophysics Data System (ADS)
Melko, R. G.; Herdman, C. M.; Iouchtchenko, D.; Roy, P.-N.; Del Maestro, A.
2016-04-01
Inspired by the experimental measurement of the Rényi entanglement entropy in a lattice of ultracold atoms by Islam et al. [Nature (London) 528, 77 (2015), 10.1038/nature15750], we propose a method to entangle two spatially separated qubits using the quantum many-body state as a resource. Through local operations accessible in an experiment, entanglement is transferred to a qubit register from atoms at the ends of a one-dimensional chain. We compute the operational entanglement, which bounds the entanglement physically transferable from the many-body resource to the register, and discuss a protocol for its experimental measurement. Finally, we explore measures for the amount of entanglement available in the register after transfer, suitable for use in quantum information applications.
A Kind of New Three-Mode Coherent-Entangled State and Its Application
NASA Astrophysics Data System (ADS)
Li, Hong-Qi; Ren, Ting-Qi; Zhang, Yun-Hai; Xu, Xing-Lei
2011-11-01
A kind of new continuous variable three-mode coherent-entangled state (CV-CES) is proposed in Fock space by the technique of integration within an ordered product (IWOP), which exhibits both the properties of coherent state and entangled state, and spans a complete and orthonormal representation. The conjugate state of CV-CES is derived by Fourier transformation. Moreover, the simple experimental protocol of generating a CV-CES is proposed by beam-splitters. As applications of this CV-CES, a three-mode entangled state and a three-mode squeezing-Fresnel operator are constructed.
Generating Entangled Spin States for Quantum Metrology by Single-Photon Detection
NASA Astrophysics Data System (ADS)
McConnell, Robert; Zhang, Hao; Cuk, Senka; Hu, Jiazhong; Schleier-Smith, Monika; Vuletic, Vladan
2014-05-01
We present a proposal and latest experimental results on a probabilistic but heralded scheme to generate non-Gaussian entangled states of collective spin in large atomic ensembles by means of single-photon detection. One photon announces the preparation of a Dicke state, while two or more photons announce Schrödinger cat states. The entangled states thus produced allow interferometry below the Standard Quantum Limit (SQL). The method produces nearly pure states even for finite photon detection efficiency and weak atom-photon coupling. The entanglement generation can be made quasi-deterministic by means of repeated trial and feedback.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
NASA Astrophysics Data System (ADS)
Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong
2010-06-01
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.
NASA Astrophysics Data System (ADS)
Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui
2011-05-01
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states
NASA Astrophysics Data System (ADS)
Seshadreesan, Kaushik P.; Dowling, Jonathan P.; Agarwal, Girish S.
2015-06-01
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrödinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, (a) the fidelity, and (b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output. A review in honor of V Manko and M Manko.
Improvement on "Quantum Key Agreement Protocol with Maximally Entangled States"
NASA Astrophysics Data System (ADS)
Chong, Song-Kong; Tsai, Chia-Wei; Hwang, Tzonelih
2011-06-01
Recently, Hsueh and Chen [in Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236-242, 2004] proposed a quantum key agreement (QKA) protocol with maximally entangled states. Their protocol allows two users to negotiate a secret key in such a way that no one can predetermine the shared key alone. This study points out two security flaws in their protocol: (1) a legitimate but malicious user can fully control the shared key alone; (2) an eavesdropper can obtain the shared key without being detected. A possible solution is presented to avoid these attacks and also Tsai et al.'s CNOT attack [in Proceedings of the 20th Cryptology and Information Security Conference, National Chiao Tung University, Hsinchu, pp. 210-213, 2010] on Hsueh and Chen protocol to obtain the shared key without being detected.
Quantum metrology. Fisher information and entanglement of non-Gaussian spin states.
Strobel, Helmut; Muessel, Wolfgang; Linnemann, Daniel; Zibold, Tilman; Hume, David B; Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K
2014-07-25
Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here, we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement, which we confirm by Bayesian phase estimation with sub-shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems.
Sheng Yubo; Deng Fuguo
2010-03-15
Entanglement purification is a very important element for long-distance quantum communication. Different from all the existing entanglement purification protocols (EPPs) in which two parties can only obtain some quantum systems in a mixed entangled state with a higher fidelity probabilistically by consuming quantum resources exponentially, here we present a deterministic EPP with hyperentanglement. Using this protocol, the two parties can, in principle, obtain deterministically maximally entangled pure states in polarization without destroying any less-entangled photon pair, which will improve the efficiency of long-distance quantum communication exponentially. Meanwhile, it will be shown that this EPP can be used to complete nonlocal Bell-state analysis perfectly. We also discuss this EPP in a practical transmission.
Probabilistic teleportation of a three-particle state via three pairs of entangled particles
Fang Jianxing; Lin Yinsheng; Zhu Shiqun; Chen Xianfeng
2003-01-01
A scheme for teleporting an arbitrary three-particle state is proposed when three pairs of entangled particles are used as quantum channels. Quantum teleportation can be successfully realized with a certain probability if the receiver adopts an appropriate unitary-reduction strategy. The probability of successful teleportation is determined by the smallest coefficients of the three entangled pairs.
NASA Astrophysics Data System (ADS)
Shan, Chuan-Jia; Liu, Ji-Bing; Chen, Tao; Chen, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong
2010-09-01
We investigate the sudden birth and sudden death of entanglement of two qubits interacting with un-correlated structured reservoirs. The system is initially prepared in two-qubit extended Werner-like state. We work out the dependence of the entanglement dynamics on both non-Markovian environments and the purity of initial state, and show that non-Markovian environments and the purity can control the time of the two-qubit entanglement sudden death and the reservoirs' entanglement sudden birth. Furthermore, under the conditions of different purity and initial entanglement, the revival of qubits' entanglement can manifest before, simultaneously or even after the disentanglement of their corresponding reservoirs.
Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED
Chen Changyong; Feng Mang; Gao Kelin
2006-03-15
We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.
Comment on 'Teleportation of entangled states without Bell-state measurement'
Zela, F. de
2006-08-15
We consider a protocol recently proposed by Cardoso et al. for teleporting entangled photon states from a bimodal cavity to another one. It is shown that the proposed protocol can afford full fidelity instead of the 97% fidelity that the authors ascribed to their scheme.
NASA Astrophysics Data System (ADS)
Wang, Dong; Hoehn, Ross D.; Ye, Liu; Kais, Sabre
2016-07-01
We present a strategy for realizing multiparty-controlled remote state preparation (MCRSP) for a family of four-qubit cluster-type states by taking a pair of partial entanglements as the quantum channels. In this scenario, the encoded information is transmitted from the sender to a spatially separated receiver with control of the transmission by multiple parties. Predicated on the collaboration of all participants, the desired state can be faithfully restored at the receiver's location with high success probability by application of additional appropriate local operations and necessary classical communication. Moreover, this proposal for MCRSP can be faithfully achieved with unit total success probability when the quantum channels are distilled to maximally entangled ones.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics
NASA Astrophysics Data System (ADS)
Vivo, Pierpaolo; Pato, Mauricio P.; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M . Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N ≤M , a general relation between the n -point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N ,M . Then, we focus on the moments E {Ka} of the Schmidt number K , the reciprocal of the purity. This is a random variable supported on [1 ,N ] , which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E {Ka} for N =2 and 3 and arbitrary M , and also for square N =M systems by spotting for the latter a connection with the probability P (xminGUE≥√{2 N }ξ ) that the smallest eigenvalue xminGUE of an N ×N matrix belonging to the Gaussian unitary ensemble is larger than √{2 N }ξ . As a by-product, we present an exact asymptotic expansion for P (xminGUE≥√{2 N }ξ ) for finite N as ξ →∞ . Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics.
Vivo, Pierpaolo; Pato, Mauricio P; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,M. Then, we focus on the moments E{K^{a}} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{K^{a}} for N=2 and 3 and arbitrary M, and also for square N=M systems by spotting for the latter a connection with the probability P(x_{min}^{GUE}≥sqrt[2N]ξ) that the smallest eigenvalue x_{min}^{GUE} of an N×N matrix belonging to the Gaussian unitary ensemble is larger than sqrt[2N]ξ. As a by-product, we present an exact asymptotic expansion for P(x_{min}^{GUE}≥sqrt[2N]ξ) for finite N as ξ→∞. Our results are corroborated by numerical simulations whenever possible, with excellent agreement. PMID:27300829
Entanglement dynamics of quantum states generated by a Kerr medium and a beam splitter
NASA Astrophysics Data System (ADS)
Rohith, M.; Sudheesh, C.; Rajeev, R.
2016-01-01
We study theoretically the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Dynamics of entanglement shows local minima at the instants of fractional revivals. These minima correspond to the generation of two-component Schrödinger cat states or multi-component Schrödinger cat-like states if the initial state considered is a coherent state. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence due to photon absorption by an environment than those formed by an initial classical state.
Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics
Li Wenan; Huang Guangyao
2011-02-15
A scheme is proposed for the generation of a three-dimensional entangled state for two atoms trapped in a cavity via quantum Zeno dynamics. Because the scheme is based on the resonant interaction, the time required to produce entanglement is very short compared with the dispersive protocols. We show that the resulting effective dynamics allows for the creation of robust qutrit-qutrit entanglement. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is investigated. Numerical results show that the scheme is robust against the cavity decay since the evolution of the system is restricted to a subspace with null-excitation cavity fields. Furthermore, the present scheme has been generalized to realize N-dimensional entanglement for two atoms.
Teleportation of an arbitrary unknown N-qubit entangled state under the controlling of M controllers
NASA Astrophysics Data System (ADS)
Liu, Yu-Ling; Man, Zhong-Xiao; Xia, Yun-Jie
2008-07-01
A new quantum protocol to teleport an arbitrary unknown N-qubit entangled state from a sender to a fixed receiver under M controllers( M < N) is proposed. The quantum resources required are M non-maximally entangled Greenberger-Horne-Zeilinger (GHZ) state and N-M non-maximally entangled Einstein-Podolsky-Rosen (EPR) pairs. The sender performs N generalized Bell-state measurements on the 2 N particles. Controllers take M single-particle measurement along x-axis, and the receiver needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if controllers cooperate with it.
Photonic Four-qubit Entangled Decoherence-free States Assisted by Cavity-QED System
NASA Astrophysics Data System (ADS)
Chen, Chao
2016-07-01
We propose an efficient preparation of photonic four-qubit entangled decoherence-free states assisted by the cavity-QED system. By using the optical selection rule derived by a single electron charged self-assembled GaAs/InAs quantum dot in a micropillar resonator, two photons are used to generate four-qubit entangled decoherence-free states. Compared with previous entanglement based photonic protocols, the present one requires single-photon resources and is deterministic. These states may be applied to long-distance communications because only two photons are transmitted.
Not all pure entangled states are useful for sub-shot-noise interferometry
Hyllus, Philipp; Smerzi, Augusto; Guehne, Otfried
2010-07-15
We investigate the connection between the shot-noise limit in linear interferometers and particle entanglement. In particular, we ask whether sub-shot-noise sensitivity can be reached with all pure entangled input states of N particles if they can be optimized with local operations. Results on the optimal local transformations allow us to show that for N=2 all pure entangled states can be made useful for sub-shot-noise interferometry while for N>2 this is not the case. We completely classify the useful entangled states available in a bosonic two-mode interferometer. We apply our results to several states, in particular to multiparticle singlet states and to cluster states. The latter turn out to be practically useless for sub-shot-noise interferometry. Our results are based on the Cramer-Rao bound and the Fisher information.
Entanglement of periodic states, the quantum Fourier transform, and Shor's factoring algorithm
Most, Yonatan; Biham, Ofer; Shimoni, Yishai
2010-05-15
The preprocessing stage of Shor's algorithm generates a class of quantum states referred to as periodic states, on which the quantum Fourier transform is applied. Such states also play an important role in other quantum algorithms that rely on the quantum Fourier transform. Since entanglement is believed to be a necessary resource for quantum computational speedup, we analyze the entanglement of periodic states and the way it is affected by the quantum Fourier transform. To this end, we derive a formula that evaluates the Groverian entanglement measure for periodic states. Using this formula, we explain the surprising result that the Groverian entanglement of the periodic states built up during the preprocessing stage is only slightly affected by the quantum Fourier transform.
Continuous-variable entanglement distillation of non-Gaussian mixed states
Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.
2010-07-15
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
Barium Qubit State Detection and Ba Ion-Photon Entanglement
NASA Astrophysics Data System (ADS)
Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher
2016-05-01
A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.
How a single photon can mediate entanglement between two others
NASA Astrophysics Data System (ADS)
de Lima Bernardo, Bertúlio
2016-10-01
We describe a novel quantum information protocol, which probabilistically entangles two distant photons that have never interacted. Different from the entanglement swapping protocol, which requires two pairs of maximally entangled photons as the input states, as well as a Bell-state measurement (BSM), the present scheme only requires three photons: two to be entangled and another to mediate the correlation, and no BSM, in a process that we call "entanglement mediation". Furthermore, in analyzing the paths of the photons in our arrangement, we conclude that one of them, the mediator, exchanges information with the two others simultaneously, which seems to be a new quantum-mechanical feature.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation. PMID:24270806
A New Kind of Bipartite Coherent-Entangled State and Its Applications in Quantum Optics
NASA Astrophysics Data System (ADS)
Meng, Xiang-Guo; Wang, Ji-Suo; Liang, Bao-Long
2011-03-01
A new kind of bipartite coherent-entangled state (CES) is introduced in the two-mode Fock space which exhibits the properties of both coherent state and entangled state. The set of CESs make up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the CES is proposed by using a beam splitter. Some applications of the CES are also presented in quantum optics.
A proposal to generate entangled compass states with sub-Planck structure
Choudhury, Sayan; Panigrahi, Prasanta K.
2011-09-23
We illustrate a procedure to generate a bipartite, entangled compass state, which shows sub-Planck structure. The proposed method uses the interaction of a standing wave laser field, with two, two-level atoms and relies on the ability of this system to choose certain mesoscopic bipartite states to couple with the internal degrees of freedom. An appropriate measurement on the internal degrees of freedom then leads to the entangled state, which shows sub-Planck structures, desired for quantum metrology.
Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.
Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul
2012-06-18
We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies. PMID:22714485
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality
NASA Astrophysics Data System (ADS)
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M. H.; Schoelkopf, R. J.
2015-11-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser-Horne-Shimony-Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality.
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M H; Schoelkopf, R J
2015-11-27
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser-Horne-Shimony-Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators.
Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States
NASA Astrophysics Data System (ADS)
Yu, L.-z.; Zhong, F.
2016-06-01
This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.
Room-temperature steady-state optomechanical entanglement on a chip
Zou Changling; Zou Xubo; Sun Fangwen; Han Zhengfu; Guo Guangcan
2011-09-15
A potential experimental system, based on high-stress stoichiometric silicon nitride (Si{sub 3}N{sub 4}), is proposed to generate steady-state optomechanical entanglement at room temperature. In the proposed structure, a nanostring interacts dispersively and reactively with a microdisk cavity via the evanescent field. We study the role of both dispersive and reactive couplings in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings under the reasonable experimental parameters. In particular, in the limits of high temperature (T) and high mechanical quality factor (Q{sub m}), we find that the logarithmic entanglement depends only on the ratio T/Q{sub m}. This indicates that improvements of the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.
State Preparation, Entanglement and Decoherence in Cavity QED
NASA Astrophysics Data System (ADS)
Haroche, S.; Raimond, J. M.
1998-05-01
By manipulating circular Rydberg atoms one by one in a high Q--superconducting cavity, we generate entanglement à la Einstein--Podolsky--Rosen between matter and radiation and between spatially separated atoms (E. Hagley et al., Phys. Rev. Lett. , 79), 1 (1997).. We also prepare quantum superpositions involving coherent field states with different phases. These superpositions can be considered as small laboratory versions of the famous Schrödinger cat coherently suspended between life and death. The progressive decoherence of these states has been observed and shown to increase at a rate proportional to the ``size" of the system (M. Brune et al., Phys. Rev. Lett., 77), 4887 (1996).. These experiments shed light on the elusive quantum--classical boundary (S. Haroche et al. La Recherche, Sept. 1997, p. 50; S. Haroche, Phys. Today, to be published.). They can also be turned into demonstrations of simple quantum information processing devices such as elementary quantum memories (X. Maître et al., Phys. Rev. Lett. 79), 769 (1997). or quantum gates (P. Domokos et al., Phys. Rev. A52), 3554, (1995).. Future experiments will explore even weirder situations, in which a coherent field is delocalized between two separate cavities, mixing together the strangeness of Schrödinger's cat with the one of non-locality.
Detection of genuinely entangled and nonseparable n-partite quantum states
Gao Ting; Hong, Yan
2010-12-15
We investigate the detection of entanglement in n-partite quantum states. We obtain practical separability criteria to identify genuinely entangled and nonseparable mixed quantum states. No numerical optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. We provide examples in which our criteria perform better than all known separability criteria. Specifically, we are able to detect genuine n-partite entanglement which has previously not been identified. In addition, our criteria can be used in today's experiments.
Interlayer coherence and entanglement in bilayer quantum Hall states at filling factor ν=2/λ.
Calixto, M; Pérez-Romero, E
2014-12-01
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by λ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglement (and its fluctuations) are analyzed for a set of U(4) coherent (quasiclassical) states generalizing the standard pseudospin U(2) coherent states for the spin-frozen case. The interplay between spin and pseudospin degrees of freedom opens new possibilities with regard to the spin-frozen case. Actually, spin degrees of freedom make interlayer entanglement more effective and robust under perturbations than in the spin-frozen situation, mainly for a large number of flux quanta λ. Interlayer entanglement of an equilibrium thermal state and its dependence with temperature and bias voltage is also studied for a pseudo-Zeeman interaction.
Decoherence-immune generation of highly entangled states for two atoms
NASA Astrophysics Data System (ADS)
Zheng, Shi-Biao
2010-04-01
This paper proposes a decoherence-immune scheme for generating highly entangled states for two atoms trapped in a cavity. The scheme is based on two resonant atom-cavity interactions. Conditional upon the detection of no photon, the two atoms may exchange an excitation via the first resonant interaction, which leads to entanglement. Due to the loss of the excitation, the two atoms are in a mixed entangled state. With the help of an auxiliary ground state not coupled to the cavity mode, the state related to the excitation loss is eliminated by the detection of a photon resulting from the second resonant interaction. Thus, the fidelity of entanglement is almost not affected by the decoherence.
NASA Astrophysics Data System (ADS)
Pan, Jun; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo; Wang, Qin
2016-04-01
Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes physical qubits in a logic qubit, has great application in the future quantum communication. We present an efficient entanglement concentration protocol (ECP) for recovering less-entangled C-GHZ state into the maximally entangled C-GHZ state with the help of cross-Kerr nonlinearities and photon detectors. With the help of the cross-Kerr nonlinearity, the obtained maximally entangled C-GHZ state can be remained for other applications. Moreover, the ECP can be used repeatedly, which can increase the success probability largely. Based on the advantages above, our ECP may be useful in the future long-distance quantum communication.
Teleportation of a two-atom entangled state with a thermal cavity
Jin Lihua; Jin Xingri; Zhang Shou
2005-08-15
We present a scheme to teleport an unknown atomic entangled state in driven cavity QED. In our scheme, the success probability can reach 1.0. In addition, the scheme is insensitive to the cavity decay and the thermal field.
Carving complex many-atom entangled states by single-photon detection
NASA Astrophysics Data System (ADS)
Hu, Jiazhong; Chen, Wenlan; Duan, Yiheng; Braverman, Boris; Zhang, Hao; Vuletic, Vladan
We propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multi-frequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure entangled state. This method can be implemented with existing technology, yields high success probability per trials, and can generate complex entangled states such as multicomponent Schrödinger cat states with high fidelity.
Some applications of a new coherent-entangled state in two-mode Fock space
NASA Astrophysics Data System (ADS)
Meng, Xiang-Guo; Wang, Ji-Suo; Liang, Bao-Long
2011-05-01
Using the technique of integration within an ordered product of operators, we find a new kind of coherent-entangled state (CES), which exhibits both coherent and entangled state properties. The set of CESs makes up a complete and partly nonorthogonal representation. Using a beam splitter, we propose a simple experimental scheme to produce the CES. Finally, we present some applications of CESs in quantum optics.
Arbitrated quantum signature scheme based on χ-type entangled states
NASA Astrophysics Data System (ADS)
Zuo, Huijuan; Huang, Wei; Qin, Sujuan
2013-10-01
An arbitrated quantum signature scheme, which is mainly applied in electronic-payment systems, is proposed and investigated. The χ-type entangled states are used for quantum key distribution and quantum signature in this protocol. Compared with previous quantum signature schemes which also utilize χ-type entangled states, the proposed scheme provides higher efficiency. Finally, we also analyze its security under various kinds of attacks.
Practical single-photon-assisted remote state preparation with non-maximally entanglement
NASA Astrophysics Data System (ADS)
Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu
2016-08-01
Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
NASA Astrophysics Data System (ADS)
Chen, LiBing; Lu, Hong
2015-03-01
We show how a remote positive operator valued measurement (POVM) can be implemented deterministically by using partially entangled state(s). Firstly, we present a theoretical scheme for implementing deterministically a remote and controlled POVM onto any one of N qubits via a partially entangled ( N + 1)-qubit Greenberger-Horne-Zeilinger (GHZ) state, in which ( N - 1) administrators are included. Then, we design another scheme for implementing deterministically a POVM onto N remote qubits via N partially entangled qubit pairs. Our schemes have been designed for obtaining the optimal success probabilities: i.e. they are identical to those in the ordinary, local, POVMs. In these schemes, the POVM dictates the amount of entanglement needed. The fact that such overall treatment can save quantum resources is notable.
Distillation of mixed-state continuous-variable entanglement by photon subtraction
Zhang Shengli; Loock, Peter van
2010-12-15
We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible even for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.
NASA Astrophysics Data System (ADS)
Jen, Hsiang-Hua
2016-05-01
We consider a scheme of multiplexed cold atomic ensembles that generate a frequency-entangled biphoton state with controllable entropy of entanglement. The biphoton state consists of a telecommunication photon (signal) immediately followed by an infrared one (idler) via four-wave mixing with two classical pump fields. Multiplexing the atomic ensembles with frequency and phase-shifted signal and idler emissions, we can manipulate and control the spectral property of the biphoton state. Mapping out the entropy of entanglement in the scheme provides the optimal configuration for entanglement resources. This paves the way for efficient long-distance quantum communication and for potentially useful multimode structures in quantum information processing. Ministry of Science and Technology, Taiwan, under Grant No. MOST-101-2112-M-001-021-MY3 and the support of NCTS.
Dong Yunxia; Zhang Xiangdong
2010-03-15
A rigorous quantum theory for the generation of multiphoton entangled states based on two consecutive three-frequency interactions of waves in a one-dimensional nonlinear photonic crystal is developed using the field expansion and differentiation methods. The three-photon correlation coefficient and the average photon numbers generated in the structure are calculated. All order expansion terms are included in the calculation. The generation conditions for multiphoton entangled states in such a structure are also analyzed. It is shown that the created photons in the present structures obey the super-Poisson statistics at the interacting frequencies and are in a multiparticle entangled state. This means the nonlinear photonic crystal can be applied as a highly efficient source of an entangled multiphoton for highly integrated all-optical circuits.
NASA Astrophysics Data System (ADS)
Jiang, Li-Nan; Ma, Jing; Yu, Si-Yuan; Tan, Li-Ying; Ran, Qi-Wen
2015-02-01
The entanglement evolution of the bipartite quantum system which is initially prepared in extended Werner-like state under the influence of independent or collective noisy channels are investigated by solving the master equation in Lindblad form. With the aid of the concurrence, we find that the initial state can preserve more entanglement in certain region when it is transmitted through the collective Pauli σ x or σ y noisy channel than the corresponding independent noisy channel. For the Pauli σ z or the depolarizing channel, however, the collective decoherence can speed up the process of entanglement decay. Meanwhile, we show that the purity of initial state has a great influence on the region which the entanglement can be preserved.
Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states
Parashar, Preeti; Rana, Swapan
2011-03-15
We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log{sub 2}N.
Podoshvedov, S. A.
2008-03-15
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.
Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state
NASA Astrophysics Data System (ADS)
Zhang, Da; Zha, Xin-wei; Duan, Ya-jun; Yang, Yu-quan
2016-05-01
In this paper, we presented a controlled bidirectional remote state preparation scheme which used the six-qubit entangled state as quantum channel. In our scheme, Alice and Bob can prepare simultaneously an arbitrary single-qubit state in each other's place with the control of the supervisor Charlie. The success probability for our scheme reaches unit. Furthermore, we analyze the expression of quantum channel for controlled bidirectional remote state preparation. Finally, we discuss the security of our scheme, the detailed security analysis shows that the supervisor Charlie's control can greatly improve the security of our scheme.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Tight bound on coherent-state-based entanglement generation over lossy channels
Azuma, Koji; Sota, Naoya; Koashi, Masato; Imoto, Nobuyuki
2010-02-15
The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable by utilizing a proposed protocol [K. Azuma, N. Sota, R. Namiki, S. K. Oezdemir, T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 80, 060303(R) (2009)] composed of a simple combination of linear optical elements and photon-number-resolving detectors.
Localizable Entanglement and Partial K-way Negativities of Four Qubit States
NASA Astrophysics Data System (ADS)
Sharma, Santosh Shelly; Sharma, Naresh Kumar
2009-05-01
We use selective partial tansposition to construct partial K- way negativities (K is 2 to 4) that measure the bi-partite, tripartite, and genuine 4-partite entanglement of single copy four qubit states in normal form. For a state in normal form, the partial K-way negativities are polynomial functions of local invariants characterizing the state, as such proper entanglement measures. Nine families of four qubit states, obtained by Versraete et al. [F. Versraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A65, 052112 (2002)], are grouped in two distinct classes that is, (i) states with zero three-way partial negativity and, (ii) states with finite three-way partial negativity. We derive relations between the contribution of a K-way partial transpose to negativity of global partial transpose and the optimum localizable entanglement that may be filtered out from the state through qubit state measurement and classical communication.
Hamada, Mitsuru
2003-07-01
The teleportation channel associated with an arbitrary bipartite state denotes the map that represents the change suffered by a teleported state when the bipartite state is used instead of the ideal maximally entangled state for teleportation. This work presents and proves an explicit expression of the teleportation channel for teleportation using Weyl's projective unitary representation of (Z/dZ){sup 2n} for integers d{>=}2, n{>=}1, which has been known for n=1. This formula allows any correlation among the n bipartite mixed states, and an application shows the existence of reliable schemes for distillation of entanglement from a sequence of mixed states with correlation.
Influences of Initial States on Entanglement Dynamics of Two Central Spins in a Spin Environment
NASA Astrophysics Data System (ADS)
Yu, Wen-Jian; Xu, Bao-Ming; Li, Lin; Zou, Jian; Li, Hai; Shao, Bin
2016-03-01
We investigate the entanglement dynamics of two electronic spins coupled to a bath of nuclear spins for two special cases, one is that two central spins both interact with a common bath, and the other is that one of two spins interacts with a bath. We consider three types of initial states with different correlations between the system and the bath, i.e., quantum correlation, classical correlation, and no-correlation. We show that the initial correlations (no matter quantum correlations or classical correlations) can effectively avoid the occurrence of entanglement sudden death. Irrespective of whether both two spins or only one of the two spins interacts with the bath, the system can gain more entanglement in the process of the time evolution for initial quantum correlations. In addition, we find that the effects of the distribution of coupling constants on entanglement dynamics crucially depend on the initial state of the spin bath.
Steady-state two-atom entanglement in a pumped cavity
Nihira, Hideomi; Stroud, C. R. Jr.
2009-10-15
In this paper we explore the possibility of a steady-state entanglement of two two-level atoms inside a pumped cavity by taking into account cavity leakage and the spontaneous emission of photons by the atoms. We describe the system in the dressed state picture in which the coherence is built into the dressed states while transitions between the dressed states are incoherent. Our model assumes the vacuum Rabi splitting of the dressed states to be much larger than any of the decay parameters of the system which allows atom-field coherence to build up before any decay process takes over. We show that, under our model, a pumping field cannot entangle two closed two-level atoms inside the cavity in the steady-state, but a steady-state entanglement can be achieved with two open two-level atoms.
Entanglement and purity of two-mode Gaussian states in noisy channels
Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.
2004-02-01
We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.
Spectral engineering of entangled two-photon states
Carrasco, Silvia; Sergienko, Alexander V.; Saleh, Bahaa E. A.; Teich, Malvin C.; Torres, Juan P.; Torner, Lluis
2006-06-15
We experimentally demonstrate an approach for manipulating the spectral profiles of entangled-photon pairs. The spectral properties are determined by selecting both the appropriate spatial profile of the pump laser radiation and the geometry of the noncollinear spontaneous parametric downconversion. Both spectra, the spectrum of the individual signal and idler photons, and the joint spectrum of the entangled-photon pairs, can be modified at will over a substantial range of values. This technique is therefore expected to be useful for an array of quantum-optics applications.
Steady-state entanglement between distant quantum dots in photonic crystal dimers
NASA Astrophysics Data System (ADS)
Vasco, J. P.; Gerace, D.; Guimarães, P. S. S.; Santos, M. F.
2016-10-01
We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave excitation can be strongly entangled in the steady state, thanks to their radiative coupling by mutual interaction through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism to quantify the steady-state entanglement by calculating the system negativity. Calculations are specified to consider realistic semiconductor nanostructure parameters for the photonic crystal dimer-quantum dots coupled system, determined by a guided-mode expansion solution of Maxwell equations. Negativity values of the order of 0.1 (20 % of the maximum value) are shown for interdot distances that are larger than the resonant wavelength of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are promising for practical applications of entangled states at short time scales.
Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states.
Liu, Feng; Gao, Fei; Qin, Su-Juan; Xie, Shu-Cui; Wen, Qiao-Yan
2016-02-04
Constructed from Bai-Xu-Wang-class monogamy relations, multipartite entanglement indicators can detect the entanglement not stored in pairs of the focus particle and the other subset of particles. We investigate the k-partite entanglement indicators related to the αth power of entanglement of formation (αEoF) for k ≤ n, αϵ and n-qubit symmetric states. We then show that (1) The indicator based on αEoF is a monotonically increasing function of k. (2) When n is large enough, the indicator based on αEoF is a monotonically decreasing function of α, and then the n-partite indicator based on works best. However, the indicator based on 2 EoF works better when n is small enough.
Generation of the quadripartite Greenberger-Horne-Zeilinger entangled state in quantum beat lasers
NASA Astrophysics Data System (ADS)
Wang, Fei
2013-12-01
In this letter, a scheme is presented to obtain quadripartite Greenberger-Horne-Zeilinger (GHZ) entanglement via quantum beats in a four-level diamond configuration atomic system. When the top and the ground states are initially prepared in a coherent superposition, the four quantized fields coupling with four dipole-allowed transitions can be correlated with each other by using a strong microwave field to drive the dipole-forbidden transition. It is the combined effect of atomic coherence-controlled correlated-spontaneous emission and double quantum beats that results in the quadripartite GHZ-type entanglement. Our numerical results show that the quadripartite entanglement, which can be controlled effectively by varying the amplitude and phase of the microwave field, occurs in a very wide parameter range. In addition, using input-output theory, we find that the output quadripartite entanglement is robust against thermal fluctuations, which may be useful for long-distance quantum communications.
NASA Astrophysics Data System (ADS)
Orús, Román
2014-10-01
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed.
Entanglement sudden death as an indicator of fidelity in a four-qubit cluster state
Weinstein, Yaakov S.
2009-05-15
I explore the entanglement evolution of a four-qubit cluster state in a dephasing environment concentrating on the phenomenon of entanglement sudden death (ESD). Specifically, I ask whether the onset of ESD has an effect on the utilization of this cluster state as a means of implementing a single-qubit rotation in the measurement-based cluster state model of quantum computation. To do this, I compare the evolution of the entanglement to the fidelity, a measure of how accurately the desired state (after the measurement-based operations) is achieved. I find that ESD does not cause a change in behavior or discontinuity in the fidelity but may indicate for certain states when the fidelity goes to 0.5.
Local hidden variable models for entangled quantum States using finite shared randomness.
Bowles, Joseph; Hirsch, Flavien; Quintino, Marco Túlio; Brunner, Nicolas
2015-03-27
The statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log_{2}(12)≃3.58 bits of shared randomness. We also discuss the case of positive operator valued measures, and the simulation of nonlocal states with finite shared randomness and finite communication. Our work represents a first step towards quantifying the cost of LHV models for entangled quantum states.
Simplified Scheme for Teleportation of a Multipartite Quantum State Using a Single Entangled Pair
NASA Astrophysics Data System (ADS)
Yan, Li-Hua; Gao, Yun-Feng
2009-02-01
A simple scheme for teleporting an unknown M-qubit cat-like state is proposed. The steps of this scheme can be summarized simply: disentangle-teleport-reconstruct entanglement. If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation. In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state. The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.
Quantum random walk of two photons in separable and entangled states
Pathak, P. K.; Agarwal, G. S.
2007-03-15
We discuss quantum random walk of two photons using linear optical elements. We analyze the quantum random walk using photons in a variety of quantum states including entangled states. We find that for photons initially in separable Fock states, the final state is entangled. For polarization entangled photons produced by type-II downconverter, we calculate the joint probability of detecting two photons at a given site. We show the remarkable dependence of the two photon detection probability on the quantum nature of the state. In order to understand the quantum random walk, we present exact analytical results for small number of steps such as five. We present in detail numerical results for a number of cases and supplement the numerical results with asymptotic analytical results.
Tomography of the quantum state of photons entangled in high dimensions
Agnew, Megan; Leach, Jonathan; McLaren, Melanie; Roux, F. Stef; Boyd, Robert W.
2011-12-15
Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the number of data points required and therefore the length of time needed to complete the measurements. We find all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the entanglement, thus establishing the suitability of such states for applications in quantum information science.
Holographic entanglement entropy for a large class of states in 2D CFT
NASA Astrophysics Data System (ADS)
Chen, Bin; Wu, Jie-qiang
2016-09-01
In this paper, we study the entanglement entropy in a large class of states of two-dimensional conformal field theory in the the large central charge limit. This class of states includes the states created by the insertion of a finite number of local heavy operators. By using the monodromy analysis, we obtain the leading order entanglement entropy for the general state. We show that it is exactly captured by the Ryu-Takayanagi formula, by using the Wilsonian line prescription in the Chern-Simons formulation of the AdS3 gravity.
Generation of Cluster-Type Entangled Coherent States via Cavity QED
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Zhou, Ling
2010-01-01
In this paper, we present a scheme for generating cluster-type entangled coherent states via cavity QED. The scheme is based on the off-resonant interaction between one atom and N cavities, so the spontaneous emission of the atom can be ignored. The initial states of the N cavities are all prepared in vacuum states. We also discuss the experimental feasibility.
Tripartite entanglement in single-neutron interferometer experiments
Erdösi, Daniel; Hasegawa, Yuji; Huber, Marcus; Hiesmayr, Beatrix C.
2014-12-04
We present experimental evidence of the generation of distinct types of genuine multipartite entanglement between the spin, energy, and path degrees of freedom within single-neutron quantum systems. This is achieved via the development of new spin manipulation apparatuses for neutron interferometry and the entanglement is detected via appropriately designed and optimized non-linear witnesses. We demonstrate the extraordinarily high controllability and fidelity of the generated entangled states.
NASA Astrophysics Data System (ADS)
Wang, Zhang-yin; Wang, Dong; Han, Lian-fang
2016-10-01
We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of ( b 1 b 2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.
NASA Astrophysics Data System (ADS)
Wang, Zhang-yin; Wang, Dong; Han, Lian-fang
2016-06-01
We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of (b 1 b 2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.
Demonstration of entanglement-by-measurement of solid-state qubits
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Taminiau, Tim H.; Robledo, Lucio; Bernien, Hannes; Markham, Matthew; Twitchen, Daniel J.; Hanson, Ronald
2013-01-01
Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measuring a joint property such as qubit parity. These joint measurements do not require a direct interaction between qubits and therefore provide a unique resource for quantum information processing with well-isolated qubits. Numerous schemes for entanglement-by-measurement of solid-state qubits have been proposed, but the demanding experimental requirements have so far hindered implementations. Here we realize a two-qubit parity measurement on nuclear spins localized near a nitrogen-vacancy centre in diamond by exploiting an electron spin as a readout ancilla. The measurement enables us to project the initially uncorrelated nuclear spins into maximally entangled states. By combining this entanglement with single-shot readout we demonstrate the first violation of Bell's inequality with solid-state spins. These results introduce a new class of experiments in which projective measurements create, protect and manipulate entanglement between solid-state qubits.
Distinguishing maximally entangled states by one-way local operations and classical communication
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Feng, Ke-Qin; Gao, Fei; Wen, Qiao-Yan
2015-01-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal bipartite maximally entangled states. We construct sets of fewer than d orthogonal maximally entangled states which are not distinguished by one-way local operations and classical communication (LOCC) in the Hilbert space of d ⊗d . The proof, based on the Fourier transform of an additive group, is very simple but quite effective. Simultaneously, our results give a general unified upper bound for the minimum number of one-way LOCC indistinguishable maximally entangled states. This improves previous results which only showed sets of N ≥d -2 such states. Finally, our results also show that previous conjectures in Zhang et al. [Z.-C. Zhang, Q.-Y. Wen, F. Gao, G.-J. Tian, and T.-Q. Cao, Quant. Info. Proc. 13, 795 (2014), 10.1007/s11128-013-0691-9] are indeed correct.
Scalable preparation of multiple-particle entangled states via the cavity input-output process
NASA Astrophysics Data System (ADS)
Lin, Xiu-Min; Xue, Peng; Chen, Mei-Ying; Chen, Zhi-Hua; Li, Xing-Hua
2006-11-01
We propose schemes for generating multiple-atom entangled states and a multiple-photon Greenberger-Horne-Zeilinger state, respectively, based on the input-output relation of the cavity. The numerical simulations show that produced multiple-particle entangled states have high fidelity even if the atoms are not localized in the Lamb-Dicke regime. Some practical quantum noises, such as atomic spontaneous emission and output coupling inefficiency, only decrease the success probability but exert no influence on the fidelity of prepared multiple-particle entangled states. The successful probabilities of our protocols approach unity in the ideal case. In addition, no need for individually addressing keeps the schemes easy to implement from the experimental point of view.
Controllable preparation of two-mode entangled coherent states in circuit QED
NASA Astrophysics Data System (ADS)
Ji, Ying-Hua; Liu, Yong-Mei
2014-11-01
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (λ-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR decay on the prepared entangled states is analyzed.
Quantum Information Splitting of Arbitrary Three-Qubit State by Using Seven-Qubit Entangled State
NASA Astrophysics Data System (ADS)
Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Deng, Fu-hu
2015-06-01
In this paper, we propose a scheme of quantum information splitting arbitrary three-qubit state by using seven-qubit entangled as quantum channel. The sender Alice first performs Bell-state measurements (BSMs) on her qubits pairs respectively and tells her measurement outcome to authorizers Bob to reconstruct the original state, then Charlie should carries out single-qubit measurement (SQM) on his qubits. According to the results from Alice and Charlie, Bob can reconstruct the original state by applying an appropriate unitary operation. After analyzing, the method achieved the desired effect of quantum information splitting (QIS). We also realize the QIS of arbitrary three-qubit state in cavity quantum electrodynamics (QED).
Mikami, Hideharu; Li Yongmin; Kobayashi, Takayoshi
2004-11-01
We propose two interesting methods of generating the four-photon W state. These methods use parametric down-conversion processes, linear optical elements, and commercial photon detectors, which are readily feasible under current technology. They can also be used to generate the three-photon W state, the three-photon Greenberger-Horne-Zeilinger state, and the three-photon maximally entangled photon-number state (a typical photon-number entanglement state) by simply changing some experimental components or their parameters. Moreover, assuming we have photon number-resolving detectors, these methods can develop into methods that generate a general n-photon W state. They are expected to become powerful tools for experimental investigations of multipartite entanglement and its applications to quantum information processing.
Entangled state quantum cryptography: eavesdropping on the ekert protocol
Naik; Peterson; White; Berglund; Kwiat
2000-05-15
Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.
Deterministic LOCC transformation of three-qubit pure states and entanglement transfer
Tajima, Hiroyasu
2013-02-15
A necessary and sufficient condition of the possibility of a deterministic local operations and classical communication (LOCC) transformation of three-qubit pure states is given. The condition shows that the three-qubit pure states are a partially ordered set parametrized by five well-known entanglement parameters and a novel parameter; the five are the concurrences C{sub AB}, C{sub AC}, C{sub BC}, the tangle {tau}{sub ABC} and the fifth parameter J{sub 5} of Acin et al. (2000) Ref. [19], while the other new one is the entanglement charge Q{sub e}. The order of the partially ordered set is defined by the possibility of a deterministic LOCC transformation from a state to another state. In this sense, the present condition is an extension of Nielsen's work (Nielsen (1999) [14]) to three-qubit pure states. We also clarify the rules of transfer and dissipation of the entanglement which is caused by deterministic LOCC transformations. Moreover, the minimum number of times of measurements to reproduce an arbitrary deterministic LOCC transformation between three-qubit pure states is given. - Highlights: Black-Right-Pointing-Pointer We obtained a necessary and sufficient condition for deterministic LOCC of 3 qubits. Black-Right-Pointing-Pointer We clarified rules of entanglement flow caused by measurements. Black-Right-Pointing-Pointer We found a new parameter which is interpreted as 'Charge of Entanglement'. Black-Right-Pointing-Pointer We gave a set of entanglements which determines whether two states are LU-eq. or not. Black-Right-Pointing-Pointer Our approach to deterministic LOCC of 3 qubits may be applicable to N qubits.
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-11-15
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
NASA Astrophysics Data System (ADS)
Liu, Guang-Hua; Tian, Guang-Shan
2012-08-01
The matrix product state (MPS) is utilized to investigate the ground state properties and quantum phase transitions (QPTs) of the dimerized antiferromagnetic Heisenberg (DAH) model. The ground state MPS wavefunctions determined by the infinite time-evolving block decimation (iTEBD) algorithm are shown to be very efficient descriptions of DAH model. In the thermodynamic limit, the quantum entanglement, the bond energy, and the nearest-neighbor correlations are calculated. It is revealed that the singular behavior of the bipartite entanglement can detect the QPTs directly. The critical point Jc2 = 1.0 is determined evidently, and the quantum phase transition is argued to belong to the second-order category. At the critical point, logarithmic divergent character of the block entanglement is observed, and the system can be described by a free bosonic field theory.
On the entanglement of electronic states of impurity atoms in nanoparticles
Basharov, Askhat M; Znamenskiy, Nikolay V; Gorbachev, Valery N
2006-08-31
By using the derived master equations, it is shown that the decay of electronic impurities in a nanocrystal can be described as a collective relaxation of particles. A set of entangled states of impurity atoms is found, which have immunity to this relaxation. These states can be used for decoherence-free quantum processing. (quantum optics and information)
Scheme for Implementing Teleporting an Arbitrary Tripartite Entangled State in Cavity QED
NASA Astrophysics Data System (ADS)
Wang, Xue-Wen; Peng, Zhao-Hui
2009-10-01
We propose to teleport an arbitrary tripartite entangled state in cavity QED. In this scheme, the five-qubit Brown state is chosen as the quantum channel. It has been shown that the teleportation protocol can be completed perfectly with two different measurement methods. In the future, our scheme might be realizable based on present experimental technology.
Decay and storage of multiparticle entangled states of atoms in collective thermostat
Basharov, A. M.; Gorbachev, V. N.; Rodichkina, A. A.
2006-10-15
We derive a master equation describing the collective decay of two-level atoms inside a single mode cavity in the dispersive limit. By considering atomic decay in the collective thermostat, we found a decoherence-free subspace of the multiparticle entangled states of the W-like class. We present a scheme for writing and storing these states in collective thermostat.
Li Zhenni; Jin Jiasen; Yu Changshui
2011-01-15
We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.
The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes
Hayashi, Masahito; Markham, Damian; Owari, Masaki; Virmani, Shashank
2009-12-15
In this paper for a class of symmetric multiparty pure states, we consider a conjecture related to the geometric measure of entanglement: ''for a symmetric pure state, the closest product state in terms of the fidelity can be chosen as a symmetric product state.'' We show that this conjecture is true for symmetric pure states whose amplitudes are all non-negative in a computational basis. The more general conjecture is still open.
Relative entropy of entanglement of two-qubit Ux-invariant states
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Zhi-Xi
2015-01-01
It is strictly proved that a two-qubit Ux-invariant state reaches its relative entropy of entanglement (REE) by the separable state having the same matrix structure. We also formulate three quadratic equations for the corresponding closest separable state (CSS) of Ux-invariant states by their symmetric property. Thus, the CSS of Ux-invariant state can be provided. Furthermore, to illustrate our result we consider two concrete examples.
REPLY TO COMMENT: Reply to Comment on 'Generation of cluster-type entangled coherent states'
NASA Astrophysics Data System (ADS)
Tang, Li
2010-10-01
We respond to the criticism of our paper 'Generation of cluster-type entangled coherent states'. In the original paper, we remove the explicit time dependence from the interaction Hamiltonian by transforming to a rotating frame for the field operators, which is also done to quantum dots embedded in a microcavity (Djuric and Search 2007 Phys. Rev. B 75 155307). We thank Wei Haihong and Wang Faqiang for pointing out that cluster-type entangled coherent states (CTECS) cannot be obtained with the original time-dependent Hamiltonian under certain parameter condition λ Lt |χ|. For the original field operators, we present a new method to generate CTECS in the same system.
Generation of multiphoton entangled quantum states by means of integrated frequency combs.
Reimer, Christian; Kues, Michael; Roztocki, Piotr; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E; Chu, Sai T; Johnston, Tudor; Bromberg, Yaron; Caspani, Lucia; Moss, David J; Morandotti, Roberto
2016-03-11
Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies.
Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-05-01
In this paper, we introduce a controllable method for producing two and three-mode entangled coherent states (ECS's) using atom-field interaction in cavity QED and beam splitter. The generated states play central roles in linear optics, quantum computation and teleportation. We especially focus on qubit, qutrit and qufit like ECS's and investigate their entanglement by concurrence measure. Moreover, we illustrate decoherence properties of ECS's due to noisy channels, using negativity measure. At the end the effect of noise on monogamy inequality is discussed.
Demonstration of a programmable source of two-photon multiqubit entangled states
Cialdi, Simone; Brivio, Davide; Paris, Matteo G. A.
2010-04-15
We suggest and demonstrate a novel source of two-photon multipartite entangled states which exploits the transverse spatial structure of spontaneous parametric down-conversion together with a programmable spatial light modulator (SLM). The one-dimensional SLM is used to perform polarization entanglement purification and to realize arbitrary phase gates between polarization and momentum degrees of freedom of photons. We experimentally demonstrate our scheme by generating two-photon three-qubit linear cluster states with high fidelity using a diode laser pump with a limited coherence time and power on the crystal as low as {approx}2.5 mW.
Efficient quantum secret sharing scheme with two-particle entangled states
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Chao; Zhang, Yu-Qing; Fu, An-Min
2011-04-01
This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Compressively Characterizing High-Dimensional Entangled States with Complementary, Random Filtering
NASA Astrophysics Data System (ADS)
Howland, Gregory A.; Knarr, Samuel H.; Schneeloch, James; Lum, Daniel J.; Howell, John C.
2016-04-01
The resources needed to conventionally characterize a quantum system are overwhelmingly large for high-dimensional systems. This obstacle may be overcome by abandoning traditional cornerstones of quantum measurement, such as general quantum states, strong projective measurement, and assumption-free characterization. Following this reasoning, we demonstrate an efficient technique for characterizing high-dimensional, spatial entanglement with one set of measurements. We recover sharp distributions with local, random filtering of the same ensemble in momentum followed by position—something the uncertainty principle forbids for projective measurements. Exploiting the expectation that entangled signals are highly correlated, we use fewer than 5000 measurements to characterize a 65,536-dimensional state. Finally, we use entropic inequalities to witness entanglement without a density matrix. Our method represents the sea change unfolding in quantum measurement, where methods influenced by the information theory and signal-processing communities replace unscalable, brute-force techniques—a progression previously followed by classical sensing.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Atomic homodyne detection of continuous-variable entangled twin-atom states.
Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K
2011-12-01
Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles. PMID:22139418
Li, Hui; Haldane, F D M
2008-07-01
We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.
Arkhipov, Ievgen I.; Peřina Jr., Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria
2016-01-01
Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes. PMID:27658508
Quantum Entanglement and Chemical Reactivity.
Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S
2015-11-10
The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality.
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M H; Schoelkopf, R J
2015-01-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser-Horne-Shimony-Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators. PMID:26611724
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Lang, Mattihas; Caves, Carlton; CenterQuantum Information and Control Collaboration
2014-03-01
In quantum optics a pure state is considered classical, relative to the statistics of photodetection, if and only if it is a coherent state. A different and newer notion of nonclassicality is based on modal entanglement. One example that relates these two notions is the Hong-Ou-Mandel effect, where modal entanglement is generated by a beamsplitter from the nonclassical photon-number state | 1 > ⊗ | 1 > . This suggests the beamsplitter or, more generally, linear-optical networks as a mediator of the two notions of nonclassicality. We show the following: Given a nonclassical pure product state input to an N-port linear-optical network, the output is almost always mode entangled; the only exception is a product of squeezed states, all with the same squeezing strength, input to a network that does not mix the squeezed and anti-squeezed quadratures. Our work thus gives a necessary and sufficient condition for a linear network to generate modal entanglement from pure product inputs, a result that is of immediate relevance to the boson sampling problem.
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Lang, Matthias D.; Caves, Carlton M.
2013-10-01
In quantum optics a pure state is considered classical, relative to the statistics of photodetection, if and only if it is a coherent state. A different and newer notion of nonclassicality is based on modal entanglement. One example that relates these two notions is the Hong-Ou-Mandel effect, where modal entanglement is generated by a beamsplitter from the nonclassical photon-number state |1>⊗|1>. This suggests that beamsplitters or, more generally, linear-optical networks are mediators of the two notions of nonclassicality. In this Brief Report, we show the following: Given a nonclassical pure-product-state input to an N-port linear-optical network, the output is almost always mode entangled; the only exception is a product of squeezed states, all with the same squeezing strength, input to a network that does not mix the squeezed and antisqueezed quadratures. Our work thus gives a necessary and sufficient condition for a linear network to generate modal entanglement from pure-product inputs, a result that is of immediate relevance to the boson-sampling problem.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M. H.; Schoelkopf, R. J.
2015-01-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser–Horne–Shimony–Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators. PMID:26611724
Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh
2011-01-15
We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.
NASA Astrophysics Data System (ADS)
Akulin, V. M.; Kabatiansky, G. A.; Mandilara, A.
2015-10-01
Using geometric means, we first consider a density matrix decomposition of a multipartite quantum system of a finite dimension into two density matrices: a separable one, also known as the best separable approximation, and an essentially entangled one, which contains no product state components. We show that this convex decomposition can be achieved in practice with the help of a linear programming algorithm that scales in the general case polynomially with the system dimension. We illustrate the algorithm implementation with an example of a composite system of dimension 12 that undergoes a loss of coherence due to classical noise and we trace the time evolution of its essentially entangled component. We suggest a "geometric" description of entanglement dynamics and demonstrate how it explains the well-known phenomena of sudden death and revival of multipartite entanglements. For a statistical weight loss of the essentially entangled component with time, its average entanglement content is not affected by the coherence loss.
Orús, Román
2014-10-15
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.
Disentangling entanglement spectra of fractional quantum Hall states on torus geometries.
Läuchli, Andreas M; Bergholtz, Emil J; Suorsa, Juha; Haque, Masudul
2010-04-16
We analyze the entanglement spectrum of Laughlin states on the torus and show that it is arranged in towers, each of which is generated by modes of two spatially separated chiral edges. This structure is present for all torus circumferences, which allows for a microscopic identification of the prominent features of the spectrum by perturbing around the thin-torus limit.
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David
2005-09-15
We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.
A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State
NASA Astrophysics Data System (ADS)
Tian, Juan-Hong; Zhang, Jian-Zhong; Li, Yan-Ping
2016-02-01
In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.
New Maximally Entangled States and Pattern Classification in Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu Pratap; Rajput, B. S.
2014-09-01
Pattern classifications have been performed by employing the method of Grover's iteration on Bell's MES and Singh-Rajput MES in two-qubit system and it has been demonstrated that for any pattern classification in a two-qubit system the maximally entangled states of Singh-Rajput eigen basis provide the most suitable choice of search states while in no case any of Bell's states is suitable for such pattern classifications.
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED.
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
Preparation and Decoherence of Two-Atom Entangled States in a Dissipative Cavity
NASA Astrophysics Data System (ADS)
Xiang, Shao-Hua; Song, Ke-Hui
2006-04-01
We present a scheme for generating four pairs of two-atom Einstein-Podolsky-Rosen (EPR) states using the simultaneous interaction of the two atoms with a single-mode cavity field under a large detuning condition. The influence of cavity dissipation on the prepared EPR states is investigated by means of the superoperator method and the state fidelity. It is shown that some kinds of the prepared EPR states are robust against cavity dissipation and the intensity of the field, and maintain their entanglement invariance, and the others are fragile and completely destroyed by the action of cavity dissipation and the intensity of the field in the long-time limit. Decoherence time of the fragile entangled states is extremely small for a typical cavity-QED experimental data.
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED
NASA Astrophysics Data System (ADS)
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-08-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit.
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2016-10-01
We present two schemes for the joint remote state preparation (JRSP) of an arbitrary tripartite four-qubit entangled state with complex coefficients via four and two three-qubit GHZ states as the quantum channel, respectively. In these schemes, the two senders share the original state which they wish to help the receiver remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if the two senders collaborate with each other, and perform projective measurements under a suitable measuring basis on their own qubits respectively, can the receiver reconstruct the original state by means of some appropriate unitary operations. We demonstrate, in our both schemes, the total success probability of the JRSP can reach 1. Moreover, compared with the first scheme in this paper, the advantage of the second scheme is that the entanglement resource can be reduced.
NASA Astrophysics Data System (ADS)
Meng, Xiang-Guo; Wang, Ji-Suo; Liang, Bao-Long
2011-02-01
Using the technique of integration within an ordered product (IWOP) of operators, we find a new kind of bipartite coherent-entangled state (CES) that exhibits both coherent state and entangled state properties. The set of CESs makes up a complete and partly nonorthogonal representation. Using an asymmetric beamsplitter we propose a simple experimental scheme for producing the CES. Finally, we present some new quantum states related to the CES and some applications of the CES to quantum optics.
Hyperspherical Bloch Vectors with Applications to Entanglement and Quantum State Tomography
NASA Astrophysics Data System (ADS)
Hedemann, Samuel R.
Since the birth of quantum mechanics, it has become apparent that the density operator gives the most complete description of quantum states, both pure and mixed. However, Bloch vectors are also capable of describing all quantum states, with the added bonus that they are real-valued geometrical objects. While Bloch vectors are widely used in many fields such as quantum information and quantum measurement, they are often avoided and may be occasionally misused due to the lack of a complete, centralized theory describing Bloch vectors in depth. Therefore, the purpose of this work is to give a compact, complete introduction to a standard formalism of quantum mechanics for discrete systems in the language of Bloch vectors expressed using hyperspherical parameterizations. The subject matter covers representations of pure and mixed states, unipartite and multipartite systems, closed-form description of Bloch-vector physicality, reductions of state, new investigations of multipartite entanglement, rotations of state, quantum measurements, state and process tomography, quantum operations, and state dynamics in both closed and open quantum systems. A new multipartite entanglement monotone is also developed, with the benefit of being automatically normalized for all possible systems, and it is extended to mixed states with convex roof extension. Emphasis is placed on geometrical interpretations and parameterizations, and on applying the theory to common applications, particularly those related to entanglement and tomography.
NASA Astrophysics Data System (ADS)
Youn, Sun-Hyun
2016-08-01
Conditions to generate high-purity entangled vacuum-evacuated coherent states (| 0 > | α>0 - | - α>0 | 0 >) were studied for two cascade-placed beam splitters, with one squeezed state input and two coherent state inputs whenever a single photon is detected. Controlling the amplitudes and the phases of the beams allows for various amplitudes of the vacuum-evacuated coherent states (| α>0 = | α > -e - | α|2 | 0 >) up to α = 2.160 to be manipulated with high-purity.
Seevinck, Michael; Uffink, Jos
2007-10-15
By introducing a quantitative 'degree of commutativity' in terms of the angle between spin observables we present two tight quantitative trade-off relations in the case of two qubits. First, for entangled states, between the degree of commutativity of local observables and the maximal amount of violation of the Bell inequality: if both local angles increase from zero to {pi}/2 (i.e., the degree of local commutativity decreases), the maximum violation of the Bell inequality increases. Secondly, a converse trade-off relation holds for separable states: if both local angles approach {pi}/2 the maximal value obtainable for the correlations in the Bell inequality decreases and thus the non-violation increases. As expected, the extremes of these relations are found in the case of anticommuting local observables where, respectively, the bounds of 2{radical}(2) and {radical}(2) hold for the expectation value of the Bell operator. The trade-off relations show that noncommmutativity gives 'a more than classical result' for entangled states, whereas 'a less than classical result' is obtained for separable states. The experimental relevance of the trade-off relation for separable states is that it provides an experimental test for two qubit entanglement. Its advantages are twofold: in comparison to violations of Bell inequalities it is a stronger criterion and in comparison to entanglement witnesses it needs to make less strong assumptions about the observables implemented in the experiment.
Safe Maritime Autonomous Path Planning in a High Sea State
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.
2014-01-01
This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations.
Randomly distilling W-class states into general configurations of two-party entanglement
NASA Astrophysics Data System (ADS)
Cui, W.; Chitambar, E.; Lo, H. K.
2011-11-01
In this article we obtain results for the task of converting a single N-qubit W-class state (of the form x0|00...0>+x1|10...0>+⋯+xN|00...1>) into maximum entanglement shared between two random parties. Previous studies in random distillation have not considered how the particular choice of target pairs affects the transformation, and here we develop a strategy for distilling into general configurations of target pairs. We completely solve the problem of determining the optimal distillation probability for all three-qubit configurations and most four-qubit configurations when x0=0. Our proof involves deriving new entanglement monotones defined on the set of four-qubit W-class states. As an additional application of our results, we present new upper bounds for converting a generic W-class state into the standard W state |WN>=(1)/(N)(|10...0>+⋯+|00...1>).
Generation of tree-type three-dimensional entangled states via adiabatic passage
NASA Astrophysics Data System (ADS)
Song, Chong; Su, Shi-Lei; Wu, Jin-Lei; Wang, Dong-Yang; Ji, Xin; Zhang, Shou
2016-06-01
We propose a scheme for generating a type of novel tree-type three-dimensional entangled state. In the scheme, an atom and two Bose-Einstein condensates (BECs) are individually trapped in three spatially separated optical cavities which are connected by two optical fibers. Because the system evolves along the dark state via adiabatic passage, the populations of the intermediate excited states of the atom and BECs are so negligible that the influence of atomic spontaneous radiation on the fidelity is restrained. In addition, because of the certain limit condition used, the cavity decay and fiber loss are efficiently suppressed. This novel three-dimensional entangled state is likely to have applications for improving quantum communication security.
Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement
Rigolin, Gustavo
2005-03-01
We explicitly show a protocol in which an arbitrary two qubit state vertical bar {phi}>=a vertical bar 00>+b vertical bar 01>+c vertical bar 10>+d vertical bar 11> is faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means that a controlled-NOT gate is not necessary to complete the protocol. A generalization where N qubits are teleported is also shown. We define a generalized magic basis, which possesses interesting properties. These properties help us to suggest a generalized concurrence from which we construct a measure of entanglement that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine quantum teleportation channel.
Two-party quantum key agreement protocol with four-particle entangled states
NASA Astrophysics Data System (ADS)
He, Yefeng; Ma, Wenping
2016-09-01
Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.
NASA Astrophysics Data System (ADS)
Poddubny, Alexander N.; Sukhorukov, Andrey A.
2015-09-01
The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar
NASA Astrophysics Data System (ADS)
Xu, Xue-Fen
2008-10-01
In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operator and the three-mode number combination operator. It is shown that these operators are on the same footing in the entangled state representation as the one of Turski in the coherent state representation.
Generation and purification of maximally entangled atomic states in optical cavities
Lougovski, P.; Walther, H.; Solano, E.
2005-01-01
We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.
Entangled Bloch spheres: Bloch matrix and two-qubit state space
NASA Astrophysics Data System (ADS)
Gamel, Omar
2016-06-01
We represent a two-qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parametrize and visualize the two-qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single sign. The formalism is used to characterize maximally entangled states, and generalize two qubit isotropic and Werner states.
Continuum tensor network field states, path integral representations and spatial symmetries
NASA Astrophysics Data System (ADS)
Jennings, David; Brockt, Christoph; Haegeman, Jutho; Osborne, Tobias J.; Verstraete, Frank
2015-06-01
A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class’ definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.
NASA Astrophysics Data System (ADS)
Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun
2016-07-01
Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.
Self-healing of quantum entanglement after an obstruction.
McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew
2014-01-01
Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.
Li Dachuang; Yuan Chunhua; Zhang Weiping; Cao Zhuoliang
2011-08-15
We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between the atomic canonical operators. In this scheme, each of the four spatially separated pulses passes twice through the respective ensemble in order to map the polarization-entangled cluster state onto the long-lived atomic ensembles. The stored state can then be retrieved by another four read-out pulses, each crossing the respective ensemble twice. By calculating the variances, we analyzed the fidelities of the storage and retrieval, and our scheme is feasible under realistic experimental conditions.
NASA Astrophysics Data System (ADS)
Ma, Sheng-Li; Liao, Zeyang; Li, Fu-Li; Zubairy, M. Suhail
2015-05-01
We propose an efficient method for dissipative preparation of controllable steady-state entanglement of two superconducting qubits coupled to spatially separated transmission line resonators, which are linked by an additional superconducting qubit acting as a tunable coupler. The quantum-state production process is based on a form of reservoir engineering, i.e., the dissipation of the coupler is utilized to steer the system into the desired state at stationary state. The distinct feature of our scheme is that neither initial state preparation nor unitary dynamics are required. These make the present protocol more feasible in the experimental implementation.
Distributed wireless quantum communication networks with partially entangled pairs
NASA Astrophysics Data System (ADS)
Yu, Xu-Tao; Zhang, Zai-Chen; Xu, Jin
2014-01-01
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Renormalizing Entanglement Distillation
NASA Astrophysics Data System (ADS)
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Pirandola, Stefano; Mancini, Stefano; Vitali, David; Tombesi, Paolo
2003-12-01
We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.
Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences
Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin
2010-11-15
Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.
Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2016-02-01
In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.
Ng, H. T.; Chu, Shih-I
2011-08-15
We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single mode of the microwave field inside a superconducting resonator. We find that the system has different dark-state subspaces in the strong- and weak-tunneling regimes. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum-information processing with atom-chip devices.
Tian, Guojing; Wu, Xia; Cao, Ya; Gao, Fei; Wen, Qiaoyan
2016-01-01
It is known that there exist two locally operational settings, local operations with one-way and two-way classical communication. And recently, some sets of maximally entangled states have been built in specific dimensional quantum systems, which can be locally distinguished only with two-way classical communication. In this paper, we show the existence of such sets is general, through constructing such sets in all the remaining quantum systems. Specifically, such sets including p or n maximally entangled states will be built in the quantum system of (np - 1) ⊗ (np - 1) with n ≥ 3 and p being a prime number, which completes the picture that such sets do exist in every possible dimensional quantum system.
Tian, Guojing; Wu, Xia; Cao, Ya; Gao, Fei; Wen, Qiaoyan
2016-01-01
It is known that there exist two locally operational settings, local operations with one-way and two-way classical communication. And recently, some sets of maximally entangled states have been built in specific dimensional quantum systems, which can be locally distinguished only with two-way classical communication. In this paper, we show the existence of such sets is general, through constructing such sets in all the remaining quantum systems. Specifically, such sets including p or n maximally entangled states will be built in the quantum system of (np − 1) ⊗ (np − 1) with n ≥ 3 and p being a prime number, which completes the picture that such sets do exist in every possible dimensional quantum system. PMID:27440087
Entanglement classification of three fermions with up to nine single-particle states
NASA Astrophysics Data System (ADS)
Sárosi, Gábor; Lévay, Péter
2014-04-01
Based on results well known in the mathematics literature but not yet common knowledge in the physics literature, we conduct a study on three-fermionic systems with six, seven, eight, and nine single-particle states. Via introducing special polynomial invariants playing the role of entanglement measures the structure of the stochastic local operations and classical communication (SLOCC) entanglement classes is investigated. The SLOCC classes of the six- and seven-dimensional cases can elegantly be described by special subconfigurations of the Fano plane. Some special embedded systems containing distinguishable constituents are arising naturally in our formalism, namely, three-qubits and three-qutrits. In particular, the three fundamental invariants I6, I9, and I12 of the three-qutrits system are shown to arise as special cases of the four fundamental invariants of three-fermions with nine single-particle states.
Tian, Guojing; Wu, Xia; Cao, Ya; Gao, Fei; Wen, Qiaoyan
2016-01-01
It is known that there exist two locally operational settings, local operations with one-way and two-way classical communication. And recently, some sets of maximally entangled states have been built in specific dimensional quantum systems, which can be locally distinguished only with two-way classical communication. In this paper, we show the existence of such sets is general, through constructing such sets in all the remaining quantum systems. Specifically, such sets including p or n maximally entangled states will be built in the quantum system of (np - 1) ⊗ (np - 1) with n ≥ 3 and p being a prime number, which completes the picture that such sets do exist in every possible dimensional quantum system. PMID:27440087
NASA Astrophysics Data System (ADS)
Saha, P.; Sarkar, D.
2016-02-01
Quantum information processing is largely dependent on the robustness of non-classical correlations, such as entanglement and quantum discord. However, all the realistic quantum systems are thermodynamically open and lose their coherence with time through environmental interaction. The time evolution of quantum entanglement, discord, and the respective classical correlation for a single, spin-1/2 particle under spin and energy degrees of freedom, with an initial Werner state, has been investigated in the present study. The present intra-particle system is considered to be easier to produce than its inter-particle counterpart. Experimentally, this type of system may be realized in the well-known Penning trap. The most stable correlation was identified through maximization of a system-specific global objective function. Quantum discord was found to be the most stable, followed by the classical correlation. Moreover, all the correlations were observed to attain highest robustness under initial Bell state, with minimum possible dephasing and decoherence parameters.
Driver state examination--Treading new paths.
Wascher, Edmund; Getzmann, Stephan; Karthaus, Melanie
2016-06-01
A large proportion of crashes in road driving can be attributed to driver fatigue. Several types of fatigue are discussed, comprising sleep-related fatigue, active task-related fatigue (as a consequence of workload in demanding driving situations) as well as passive task-related fatigue (as related to monotonous driving situations). The present study investigated actual states of fatigue in a monotonous driving situation, using EEG measures and a long-lasting driving simulation experiment, in which drivers had to keep the vehicle on track by compensating crosswind of different strength. Performance data and electrophysiological correlates of mental fatigue (EEG Alpha and Theta power, Inter Trial Coherence (ITC), and auditory event-related potentials to short sound stimuli) were analyzed. Driving errors and driving lane variability increased with time on task and with increasing crosswind. The posterior Alpha and Theta power also increased with time on task, but decreased with stronger crosswind. The P3a to sound stimuli decreased with time on task when the crosswind was weak, but remained stable when the crosswind was strong. The analysis of ITC revealed less frontal Alpha and Theta band synchronization with time on task, but no effect of crosswind. The results suggest that Alpha power in monotonous driving situations reflects boredom or attentional withdrawal due to monotony rather than the decline of processing abilities as a consequence of high mental effort. A more valid indicator of declining mental resources with increasing time on task seems to be provided by brain oscillatory synchronization measures and event-related activity. PMID:26986022
Lorentz transformations that entangle spins and entangle momenta
Jordan, Thomas F.; Shaji, Anil; Sudarshan, E.C.G.
2007-02-15
Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entanglement from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins produced together with entanglement of momenta. From the entanglements considered, no sum of entanglements is found to be unchanged.
Preparation of free-travelling three-mode W-type entangled squeezed vacuum states
NASA Astrophysics Data System (ADS)
Wen, Jing-Ji; Yeon, Kyu-Hwang; Wang, Hong-Fu; Zhang, Shou
2016-02-01
A scheme is proposed to prepare W-type entangled squeezed vacuum states (ESVSs) via free-travelling optical fields with simple linear optical devices, photo detectors and cross-Kerr medium. We investigate the influence of an inexact nonlinear phase factor between two modes on the fidelity of the prepared three-mode W-type ESVSs. By adjusting the appropriate reflectivity, the scheme can be extended to create 2n+1-mode W-type ESVSs.
A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You
2016-02-01
In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.
Nonlocality without inequalities for almost all entangled states of any quantum system
Ghirardi, GianCarlo; Marinatto, Luca
2005-07-15
It is shown that it is possible to rule out all local and stochastic hidden variable models accounting for the quantum mechanical predictions implied by almost any entangled quantum state vector of any number of particles whose Hilbert spaces have arbitrary dimensions, without resorting to Bell-type inequalities. The present proof makes use of the mathematically precise notion of Bell locality and it involves only simple set theoretic arguments.
Quantum dialogue protocols over collective noise using entanglement of GHZ state
NASA Astrophysics Data System (ADS)
Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung
2016-07-01
In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.
Entanglement entropy of excited states in conformal perturbation theory and the Einstein equation
NASA Astrophysics Data System (ADS)
Speranza, Antony J.
2016-04-01
For a conformal field theory (CFT) deformed by a relevant operator, the entanglement entropy of a ball-shaped region may be computed as a perturbative expansion in the coupling. A similar perturbative expansion exists for excited states near the vacuum. Using these expansions, this work investigates the behavior of excited state entanglement entropies of small, ball-shaped regions. The motivation for these calculations is Jacobson's recent work on the equivalence of the Einstein equation and the hypothesis of maximal vacuum entropy [arXiv:1505.04753], which relies on a conjecture stating that the behavior of these entropies is sufficiently similar to a CFT. In addition to the expected type of terms which scale with the ball radius as R d , the entanglement entropy calculation gives rise to terms scaling as R 2Δ, where Δ is the dimension of the deforming operator. When \\varDelta ≤ d/2 , the latter terms dominate the former, and suggest that a modification to the conjecture is needed.
Fortes, Raphael; Rigolin, Gustavo
2013-09-15
We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The three techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: •Optimal direct teleportation protocols using directly partially entangled states. •We put in a single formalism all strategies of direct teleportation. •We extend these techniques for multipartite partially entangle states. •We give upper bounds for the optimal efficiency of these protocols.
NASA Astrophysics Data System (ADS)
Coto, Raul; Orszag, Miguel; Eremeev, Vitalie
2016-06-01
We present a three-cavity network model with two modes in each cavity and a nonlinear medium that generates a Kerr-type interaction via both self-phase and cross-phase modulation processes. We have two main goals. The first one is to generate a multipartite maximally entangled state (MES), starting from the ground state of the system. We address the problem both without and with dissipation. Second, we want to protect the MES from decoherence. While studying the MES, we analyze different bipartite and multipartite entanglement measures. We also study the effect of an avoided level crossing identified by the critical behavior of the entanglement measures, thus showing that the quantum correlations act as a witness for such phenomena. Our findings provide the quantum tools to perform the operation of generation and protection of a maximally entangled state in a cavity QED environment.
Deterministic Joint Assisted Cloning of Unknown Two-Qubit Entangled States
NASA Astrophysics Data System (ADS)
Zhan, You-Bang
2012-06-01
We present two schemes for perfect cloning unknown two-qubit and general two-qubit entangled states with assistance from two state preparers, respectively. In the schemes, the sender wish to teleport an unknown two-qubit (or general two-qubit) entangled state which from two state preparers to a remote receiver, and then create a perfect copy of the unknown state at her place. The schemes include two stages. The first stage of the schemes requires usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform two-qubit projective measurements on their own qubits which from the sender, then the sender can acquire a perfect copy of the unknown state. To complete the assisted cloning schemes, several novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two state preparers collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubit respectively, the sender can create a copy of the unknown state by means of some appropriate unitary operations. The advantage of the present schemes is that the total success probability for assisted cloning a perfect copy of the unknown state can reach 1.
NASA Astrophysics Data System (ADS)
Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An
2016-06-01
We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137
NASA Astrophysics Data System (ADS)
Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.
2013-11-01
Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.
NASA Astrophysics Data System (ADS)
Hua, Congyi; Chen, Yi-Xin
2016-08-01
We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP scheme that fits into this category. One other RSP scheme proposed by Berry shares close features, but can only be used to prepare an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit per prepared qubit under equal conditions. When using a maximally entangled state, the classical communication for our scheme is 2 bits, which agrees with Lo's conjecture on the resource cost. Furthermore Alice can switch between our RSP scheme and a standard teleportation scheme without letting Bob know, which makes the quantum channel multipurpose.
Liu Zhao; Guo Hongli; Fan Heng; Vedral, Vlatko
2011-01-15
We use entanglement to investigate the transition from vortex-liquid phase to vortex-lattice phase in a weakly interacting rotating Bose-Einstein condensate. For the torus geometry, the ground-state entanglement spectrum is analyzed to distinguish these two phases. The low-lying part of the ground-state entanglement spectrum, as well as the behavior of its lowest level, changes clearly when the transition occurs. For the sphere geometry, the entanglement gap in the conformal limit is also studied. We also show that the decrease in entanglement between particles can be regarded as a signal of the transition.
Miyaji, Masamichi; Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-10-23
We present how the surface-state correspondence, conjectured by Miyaji and Takayanagi, works in the setup of AdS(3)/CFT(2) by generalizing the formulation of a continuous multiscale entanglement renormalization group ansatz. The boundary states in conformal field theories play a crucial role in our formulation and the bulk diffeomorphism is naturally taken into account. We give an identification of bulk local operators which reproduces correct scalar field solutions on AdS(3) and bulk scalar propagators. We also calculate the information metric for a locally excited state and show that it reproduces the time slice of AdS(3). PMID:26551098
Deterministic remote preparation of an asymmetric five-party three-qubit entangled state
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2016-11-01
We propose a novel scheme for remotely preparing an asymmetric five-party three-qubit entangled state by using three-qubit GHZ state as the quantum channel. In this scheme, the sender should employ two novel three-qubit projective measurements on her qubits, respectively. In accord with the sender’s outcomes of measurement, the receiver should carry out local unitary operations on his qubits, the sender’s original state can be recovered. It is shown that, in our scheme, the total success probability of the RSP can reach 1.
Dong, Li; Xiu, Xiao-Ming; Ren, Yuan-Peng; Gao, Ya-Jun; Yi, X. X.
2013-01-15
We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.
Comment on “Controlled DSQC using five-qubit entangled states and two-step security test”
NASA Astrophysics Data System (ADS)
Qin, Su-Juan; Wen, Qiao-Yan; Meng, Luo-Ming; Zhu, Fu-Chen
2009-07-01
A controlled deterministic secure quantum communication protocol [X.M. Xiu, L. Dong, Y.J. Cao, F. Chi, Opt. Commun. 282 (2009) 333] with five-qubit entangled states was proposed recently. The aim of Xiu et al. was that the successful realization of communication between Alice and Bob needed the cooperation of a controller, Charlie. However, we show that the controller Charlie's role could be excluded unknowingly. Moreover, an eavesdropper can entangle an ancilla without introducing any error in the first security test and then she can distill a quarter of the secret messages from her entangled ancilla.
Gaussian entanglement of formation
Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.
2004-05-01
We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.
Entangling many-body bound states with propagative modes in Bose-Hubbard systems
NASA Astrophysics Data System (ADS)
Collura, Mario; Aufderheide, Helge; Roux, Guillaume; Karevski, Dragi
2012-07-01
The quantum evolution of a cloud of bosons initially localized on part of a one-dimensional optical lattice and suddenly subjected to a linear ramp is studied, realizing a quantum analog of the “Galileo ramp” experiment. The main remarkable effects of this realistic setup are revealed using analytical and numerical methods. Only part of the particles are ejected for a high enough ramp, while the others remain self-trapped. Then, the trapped density profile displays rich dynamics with Josephson-type oscillations around a plateau. This setup, by coupling bound states to propagative modes, creates two diverging condensates for which the entanglement is computed and related to the equilibrium one. Further, we address the role of integrability on the entanglement and on the damping and thermalization of simple observables.
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.; Motrunich, Olexei I.
2016-08-01
Quantum phases characterized by surfaces of gapless excitations are known to violate the otherwise ubiquitous boundary law of entanglement entropy in the form of a multiplicative log correction: S ˜Ld -1logL . Using variational Monte Carlo, we calculate the second Rényi entropy for a model wave function of the ν =1 /2 composite Fermi liquid (CFL) state defined on the two-dimensional triangular lattice. By carefully studying the scaling of the total Rényi entropy and, crucially, its contributions from the modulus and sign of the wave function on various finite-size geometries, we argue that the prefactor of the leading L logL term is equivalent to that in the analogous free fermion wave function. In contrast to the recent results of Shao et al. [Phys. Rev. Lett. 114, 206402 (2015), 10.1103/PhysRevLett.114.206402], we thus conclude that the "Widom formula" holds even in this non-Fermi liquid CFL state. More generally, our results further elucidate—and place on a more quantitative footing—the relationship between nontrivial wave function sign structure and S ˜L logL entanglement scaling in such highly entangled gapless phases.
Theory of entanglement and entanglement-assisted communication
NASA Astrophysics Data System (ADS)
Bennett, Charles H.
2011-03-01
Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.
Almost Perfect Teleportation Using 4-PARTITE Entangled States
NASA Astrophysics Data System (ADS)
Prakash, H.; Chandra, N.; Prakash, R.; Shivani
In a recent paper N. Ba An (Phys. Rev. A 68, 022321 (2003)) proposed a scheme to teleport a single particle state, which is superposition of coherent states |α> and |-α> using a 4-partite state, a beam splitter, and phase shifters and concluded that the probability for successful teleportation is only 1/4 in the limit |α| → 0 and 1/2 in the limit |α| → ∞. In this paper, we modify this scheme and find that an almost perfect success can be achieved if |α|2 is appreciable. For example, for |α|2 = 5, the minimum of average fidelity for teleportation, which is the minimum of sum of the product of probability for occurrence of any case and the corresponding fidelity evaluated for an arbitrary chosen information state, is 0.9999.
Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state
Bourdon, P. S.; Gerjuoy, E.
2010-02-15
Under two-party deterministic dense coding, Alice communicates (perfectly distinguishable) messages to Bob via a qudit from a pair of entangled qudits in pure state |{Psi}>. If |{Psi}> represents a maximally entangled state (i.e., each of its Schmidt coefficients is {radical}(1/d)), then Alice can convey to Bob one of d{sup 2} distinct messages. If |{Psi}> is not maximally entangled, then Ji et al. [Phys. Rev. A 73, 034307 (2006)] have shown that under the original deterministic dense-coding protocol, in which messages are encoded by unitary operations performed on Alice's qudit, it is impossible to encode d{sup 2}-1 messages. Encoding d{sup 2}-2 messages is possible; see, for example, the numerical studies by Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. Answering a question raised by Wu et al. [Phys. Rev. A 73, 042311 (2006)], we show that when |{Psi}> is not maximally entangled, the communications limit of d{sup 2}-2 messages persists even when the requirement that Alice encode by unitary operations on her qudit is weakened to allow encoding by more general quantum operators. We then describe a dense-coding protocol that can overcome this limitation with high probability, assuming the largest Schmidt coefficient of |{Psi}> is sufficiently close to {radical}(1/d). In this protocol, d{sup 2}-2 of the messages are encoded via unitary operations on Alice's qudit, and the final (d{sup 2}-1)-th message is encoded via a non-trace-preserving quantum operation.
NASA Astrophysics Data System (ADS)
Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Ding, Qing-Yan; Zhang, Shu-Hui
2016-06-01
In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. Supported by the National Natural Science Foundation of China under Grant Nos. 61572297, 61303199, 61272514, and 61373131, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2013FM025, ZR2013FQ001, ZR2014FM003, and ZY2015YL018, the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China under Grant Nos. BS2015DX006 and BS2014DX007, the National Development Foundation for Cryptological Research, China under Grant No. MMJJ201401012, the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology Funds, and the Shandong Academy of Sciences Youth Fund Project, China under Grant Nos. 2015QN003 and 2013QN007
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong
Direct measurement of the concurrence of two-photon polarization-entangled states
NASA Astrophysics Data System (ADS)
Zhang, Li-Hua; Yang, Qing; Yang, Ming; Song, Wei; Cao, Zhuo-Liang
2013-12-01
We present three protocols for directly measuring the concurrence of two-photon polarization-entangled states, including pure states and mixed states. Two signal photon pairs in the same polarization-entangled states are needed in each detection round, and the signal photons will pass through polarization-independent beam splitters simultaneously. The concurrence of the photon pairs will be encoded in the total probability of picking up the balanced states in the two output modes of the beam splitter, which can be directly measured by single-photon detectors. The photon detection efficiency can be further enhanced with the help of the weak cross-Kerr nonlinearity, and the signal photons will not be absorbed. The third scheme using the bilateral nondemolition measurements can measure the concurrence of both pure and mixed states with high efficiency and high fidelity and is robust against the copy error of the state to be measured. The sophisticated controlled-not operation of the previous schemes is not required here, so our protocols are more feasible within the current experimental technology.
Deng Fuguo
2005-09-15
The multipartite state in the Rigolin's protocol [Phys. Rev. A 71, 032303 (2005)] for teleporting an arbitrary two-qubit state is just a product state of N Einstein-Podolsky-Rosen pairs in essence, not a genuine multipartite entangled state, and this protocol in principle is equivalent to the Yang-Guo protocol [Chin. Phys. Lett. 17, 162 (2000)].
Quantum cryptography using entangled photons in energy-time bell states
Tittel; Brendel; Zbinden; Gisin
2000-05-15
We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.
NASA Astrophysics Data System (ADS)
Liu, Wen; Wang, Yong-Bin; Wang, Xiao-Mei
2014-04-01
We present a new multi-party quantum private comparison protocol based on d-dimensional basis states. Different from previous protocols, our protocol have some advantages. n parties can determine wether their private information are equal or not in one time execution of our protocol. Without using the entangled character of d-dimensional basis states, we only need to perform the local unitary operation on particles to encode the information and to get the comparison result. We also discuss that our protocol can withstand various kinds of outside attacks and participant attacks.
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-04-15
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities
NASA Astrophysics Data System (ADS)
Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng
2016-05-01
We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.
Pure valley- and spin-entangled states in a MoS2-based bipolar transistor
NASA Astrophysics Data System (ADS)
Bai, Chunxu; Zou, Yonglian; Lou, Wen-Kai; Chang, Kai
2014-11-01
In this study, we show that the local Andreev reflection not only can be tuned largely by the type of the normal metal electrode, it also is related to the electrostatic potential in the superconductor region in a MoS2-based n (p ) -type metal/superconductor junction. In a MoS2-based n -type metal/n (p ) -type superconductor/p -type metal (n Sp ) transistor, nonlocal pure valley- and spin-entangled current can be tuned by the length and local gate voltage of a superconductor region. In particular, switching the quasiparticle type in both structures results in a series of intriguing features. Such an effect is not attainable in a graphene-based junction where the electron-hole symmetry enables the symmetry results to be observed. Besides, we have shown that the crossed Andreev reflection exhibits a maximum around ξ /2 instead of the exponential decay behavior in conventional superconductors and a maximum around ξ in the graphene material. The proposed straightforward experimental design and pure valley- and spin-entangled state can pave the way for a wider use in the entanglement based on material group-VI dichalcogenides.
Stability of flip and exchange symmetric entangled state classes under invertible local operations
NASA Astrophysics Data System (ADS)
Gedik, Z.
2011-01-01
Flip and exchange symmetric (FES) many-qubit states, which can be obtained from a state with the same symmetries by means of invertible local operations (ILO), constitute a set of curves in the Hilbert space. Eigenstates of FES ILOs correspond to vectors that cannot be transformed to other FES states. This means equivalence classes of states under ILO can be determined in a systematic way for an arbitrary number of qubits. More important, for entangled states, at the boundaries of neighboring equivalence classes, one can show that when the fidelity between the final state after an ILO and a state of the neighboring class approaches unity, the probability of success decreases to zero. Therefore, the classes are stable under ILOs.
NASA Astrophysics Data System (ADS)
Chen, Chang-Yong
2008-05-01
We propose an efficient scheme for generating the macroscopic superpositions and the entanglement between the high-order squeezed vacuum states by considering the multi-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. Through specific choices of the cavity detuning, a number of multi-party entangled states between the atoms and the high-order squeezed vacuum states and among the high-order squeezed vacuum states of the cavities can be prepared, including also the macroscopic "Schrödinger cats" of the high-order squeezed vacuum states, the entangled states of the macroscopic "Schrödinger cats", and so on. Possible extension and application of our scheme are discussed. Our scheme is reachable within the current techniques in the cavity QED.
Boche, H. Janßen, G.
2014-08-01
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-15
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.
Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando
2015-04-17
We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.
Is There Really AN Entangled State for Far Away Twin Photons?
NASA Astrophysics Data System (ADS)
Valqui, Holger G.
2006-04-01
A certain school of physicists based on the following assumptions: (i) Photons acquire a polarization state only after they have passed through a polarizer (which some claim to be a stipulation of one of the postulates of the Copenhagen Interpretation of Quantum Mechanics), (ii) The states of twin photons are correctly represented by \\chi(1,2) = √ {2}(u ⊗ v + v ⊗ u), where u is an arbitrary state (of polarization) and v is orthogonal to u, and (iii) Numerous experiments directly or indirectly confirm the theoretical predictions., concludes that there exists an extraordinary entangled state of both photons, which permits that each of the photons somehow be sensible to the interaction which affects the other one, notwithstanding the great distance which might exist between them. In the present exposition I show that: (i) There are experimental reasons to maintain that photons have a definite polarization state before and after having passed through a polarizer, (ii) According to the principles of Quantum Mechanics the "official" representation \\chi(1,2) = √ {2}(u ⊗ v + v ⊗ u) can not be right., and (iii)Significant doubts exist concerning the accuracy of the critical measurements and their interpretation. At the last I conclude that the alleged extraordinary entanglement of well separated photons might be a delusion. Finally, to settle the matter, I propose a crucial experiment.
Long-distance entanglement of spin qubits via quantum Hall edge states
NASA Astrophysics Data System (ADS)
Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel
2016-02-01
The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising type or XY type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.
Long-distance entanglement of spin qubits via quantum Hall edge states
NASA Astrophysics Data System (ADS)
Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel
The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising-type or XY-type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron-spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.
Hikami, Kazuhiro
2008-07-15
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2){sub K} Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.
Direct measurement of the Concurrence of spin-entangled states in a cavity-quantum dot system
NASA Astrophysics Data System (ADS)
Dong, Ping; Liu, Jun; Zhang, Li-Hua; Cao, Zhuo-Liang
2016-08-01
A scheme for implementing the direct measurement of Concurrence is given in a cavity-quantum dot system. The scenario not only can directly measure the Concurrence of two-spin pure entangled state, but also suitable for the case of mixed state. More importantly, all of the operations are of geometric nature, which depend on the cavity-state-free evolution and can be robust against random operation errors. Our scheme provided an alternative method for directly measuring the degree of entanglement in solid-state system.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Evolution equation for entanglement of assistance
Li Zongguo; Liu, W. M.; Zhao Mingjing; Fei Shaoming
2010-04-15
We investigate the time evolution of the entanglement of assistance when one subsystem undergoes the action of local noisy channels. A general factorization law is presented for the evolution equation of entanglement of assistance. Our results demonstrate that the dynamics of the entanglement of assistance is determined by the action of a noisy channel on the pure maximally entangled state, in which the entanglement reduction turns out to be universal for all quantum states entering the channel. This single quantity will make it easy to characterize the entanglement dynamics of entanglement of assistance under unknown channels in the experimental process of producing entangled states by assisted entanglement.
Proposal for preparing entangled coherent states using atom-cavity-mode Raman interaction
NASA Astrophysics Data System (ADS)
Song, K.-H.; Zang, W.-J.; Guo, G.-C.
2002-08-01
Eur. Phys. J. D 19, 267 269 (2002) We have proposed a scheme for preparing entangled coherent states using atom-cavity-mode Raman interaction. In our proposal, the relation between the cavities lifetime and the atomic state lifetime was discussed in detail. Besides, we also discussed the conditions on preparing the states. It is also pointed out that there is sufficient time to achieve our generation of the states by using Rydberg atom of long lifetime and by choosing superconducting microwave cavities with an enough high-Q factor. However, after this paper published we become aware that a paper by Zheng [1] has presented the scheme for the generation of multi-mode Schrödinger cat states essentially using the same method. We must apologize for not being able to see the Zheng's article published in Quantum Semiclassical Optics B. [1] S.B. Zheng, Quant. Semiclass. Opt. B 10, 691 (1998).
Randomly distilling W-class states into general configurations of two-party entanglement
Cui, W.; Chitambar, E.; Lo, H. K.
2011-11-15
In this article we obtain results for the task of converting a single N-qubit W-class state (of the form {radical}(x{sub 0})|00...0>+{radical}(x{sub 1})|10...0>+{center_dot}{center_dot}{center_dot}+{radical}(x{sub N})|00...1>) into maximum entanglement shared between two random parties. Previous studies in random distillation have not considered how the particular choice of target pairs affects the transformation, and here we develop a strategy for distilling into general configurations of target pairs. We completely solve the problem of determining the optimal distillation probability for all three-qubit configurations and most four-qubit configurations when x{sub 0}=0. Our proof involves deriving new entanglement monotones defined on the set of four-qubit W-class states. As an additional application of our results, we present new upper bounds for converting a generic W-class state into the standard W state |W{sub N}>={radical}((1/N))(|10...0>+{center_dot}{center_dot}{center_dot}+|00...1>).
Paths and partitions: Combinatorial descriptions of the parafermionic states
NASA Astrophysics Data System (ADS)
Mathieu, Pierre
2009-09-01
The Zk parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k -1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k -1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Zk parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained, and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Zk parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.
Complete Distributed Hyper-Entangled-Bell-State Analysis and Quantum Super Dense Coding
NASA Astrophysics Data System (ADS)
Zheng, Chunhong; Gu, Yongjian; Li, Wendong; Wang, Zhaoming; Zhang, Jiying
2016-02-01
We propose a protocol to implement the distributed hyper-entangled-Bell-state analysis (HBSA) for photonic qubits with weak cross-Kerr nonlinearities, QND photon-number-resolving detection, and some linear optical elements. The distinct feature of our scheme is that the BSA for two different degrees of freedom can be implemented deterministically and nondestructively. Based on the present HBSA, we achieve quantum super dense coding with double information capacity, which makes our scheme more significant for long-distance quantum communication.
Steady-state atom-light entanglement with engineered spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Meng; Meystre, Pierre; Zhang, Wei; He, Qiongyi
2016-04-01
By driving a Bose-Einstein condensate trapped in a single-mode high-Q optical resonator and coupled to a classical transverse running-wave field above a Dicke-like superradiant phase transition, the resulting cavity field-induced spin-orbit coupling leads to a band structure with doubly degenerate ground states. We show theoretically that the effective bosonic mode defined by interstate hopping can be entangled with the cavity field via the combined effect of spin-orbit coupling and dissipation.
A revised controlled deterministic secure quantum communication with five-photon entangled state
NASA Astrophysics Data System (ADS)
Xiu, Xiao-Ming; Dong, Li; Gao, Ya-Jun; Chi, Feng; Ren, Yuan-Peng; Liu, Hui-Wei
2010-01-01
A revised controlled deterministic secure quantum communication protocol using five-photon entangled state is proposed. It amends the security loopholes pointed by Qin et al. in [S.J. Qin, Q.Y. Wen, L.M. Meng, F.C. Zhu, Opt. Commun. 282 (2009) 2656] in the original protocol proposed by Xiu et al. in [X.M. Xiu, L. Dong, Y.J. Gao, F. Chi, Opt. Commun. 282 (2009) 333]. The security loopholes are solved by using order rearrangement of transmission photons and two-step security test.
Steady-state simulations using weighted ensemble path sampling.
Bhatt, Divesh; Zhang, Bin W; Zuckerman, Daniel M
2010-07-01
We extend the weighted ensemble (WE) path sampling method to perform rigorous statistical sampling for systems at steady state. A straightforward steady-state implementation of WE is directly practical for simple landscapes, but not when significant metastable intermediates states are present. We therefore develop an enhanced WE scheme, building on existing ideas, which accelerates attainment of steady state in complex systems. We apply both WE approaches to several model systems, confirming their correctness and efficiency by comparison with brute-force results. The enhanced version is significantly faster than the brute force and straightforward WE for systems with WE bins that accurately reflect the reaction coordinate(s). The new WE methods can also be applied to equilibrium sampling, since equilibrium is a steady state.
NASA Astrophysics Data System (ADS)
Hebenstreit, M.; Spee, C.; Kraus, B.
2016-01-01
Entanglement is the resource to overcome the restriction of operations to local operations assisted by classical communication (LOCC). The maximally entangled set (MES) of states is the minimal set of n -partite pure states with the property that any truly n -partite entangled pure state can be obtained deterministically via LOCC from some state in this set. Hence, this set contains the most useful states for applications. In this work, we characterize the MES for generic three-qutrit states. Moreover, we analyze which generic three-qutrit states are reachable (and convertible) under LOCC transformations. To this end, we study reachability via separable operations (SEP), a class of operations that is strictly larger than LOCC. Interestingly, we identify a family of pure states that can be obtained deterministically via SEP but not via LOCC. This gives an affirmative answer to the question of whether there is a difference between SEP and LOCC for transformations among pure states.
A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
NASA Astrophysics Data System (ADS)
Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Niu, Xin-Xin; Yang, Yi-Xian
2015-05-01
Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security. Project supported by the National Natural Science Foundation of China (Grant Nos. 61303199, 61272514, 61170272, 61121061, and 61411146001), the Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2013FM025, ZR2013FQ001, and ZR2014FM003), the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China (Grant Nos. BS2013DX010 and BS2014DX007), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research, China (Grant No. MMJJ201401012), the Fok Ying Tong Education Foundation, China (Grant No. 131067), and the Shandong Academy of Sciences Youth Fund Project, China (Grant No. 2013QN007).
Twisted injectivity in projected entangled pair states and the classification of quantum phases
Buerschaper, Oliver
2014-12-15
We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems by showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as DIJKGRAAF–WITTEN topological quantum field theory (TQFT). - Highlights: • We introduce a new standard form for projected entangled pair states via a twisted group symmetry which is given by nontrivial matrix product operators. • We construct a large family of gapped, frustration-free Hamiltonians in two dimensions from this new standard form. • We rigorously show how this new standard form for low energy states determines the emergent topological order.
Zhao, Yan-Jun; Wang, Changqing; Zhu, Xiaobo; Liu, Yu-xi
2016-01-01
It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime. PMID:27033558
NASA Astrophysics Data System (ADS)
Zhao, Yan-Jun; Wang, Changqing; Zhu, Xiaobo; Liu, Yu-Xi
2016-04-01
It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime.
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
NASA Astrophysics Data System (ADS)
Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele; Cirac, J. Ignacio
2016-11-01
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Jin, Xian-min
2016-02-01
A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits A_1 and A_2 to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits B_1 and B_2 to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate.
Evolution of entanglements in crazing of glassy polymers
NASA Astrophysics Data System (ADS)
Hoy, Robert S.
2005-03-01
Highly entangled polymer glasses often fail via crazing [1]. The polymer expands by a large factor λ from an initial dense state to a craze network of fibrils and voids. The value of λ is found to correlate with the chemical distance between entanglements in both experiments [1] and simulations [2], indicating that the entanglements act like chemical bonds in limiting the expansion. We have applied the primitive path analysis method developed by Everaers et. al. [3] to follow the real space structure of entanglements in model polymer glasses during crazing. A wide range of initial states corresponding to melts with different Kuhn lengths and entanglement lengths was studied. In each case the primitive paths deform affinely and the number of entanglements remains constant during craze formation. Straining the craze past λ leads to a gradual reduction in the number of entanglements, and ultimately to craze fracture.1. E. Kramer and L. L. Berger, Adv. Polym. Sci. 91/92, 1 (1990).2. J. Rottler and M. O. Robbins, Phys. Rev. E 68, 011801 (2003).3. R. Everaers, et al., Science 203, 823 (2004).
Long distance entanglement distribution
NASA Astrophysics Data System (ADS)
Broadfoot, Stuart Graham
Developments in the interdisciplinary field of quantum information open up previously impossible abilities in the realms of information processing and communication. Quantum entanglement has emerged as one property of quantum systems that acts as a resource for quantum information processing and, in particular, enables teleportation and secure cryptography. Therefore, the creation of entangled resources is of key importance for the application of these technologies. Despite a great deal of research the efficient creation of entanglement over long distances is limited by inevitable noise. This problem can be overcome by creating entanglement between nodes in a network and then performing operations to distribute the entanglement over a long distance. This thesis contributes to the field of entanglement distribution within such quantum networks. Entanglement distribution has been extensively studied for one-dimensional networks resulting in "quantum repeater" protocols. However, little work has been done on higher dimensional networks. In these networks a fundamentally different scaling, called "long distance entanglement distribution", can appear between the resources and the distance separating the systems to be entangled. I reveal protocols that enable long distance entanglement distribution for quantum networks composed of mixed state and give a few limitations to the capabilities of entanglement distribution. To aid in the implementation of all entanglement distribution protocols I finish by introducing a new system, composed of an optical nanofibre coupled to a carbon nanotube, that may enable new forms of photo-detectors and quantum memories.
Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble
NASA Astrophysics Data System (ADS)
Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can
2015-02-01
Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3 % ±0.8 % and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41 ±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.
Quantum dual signature scheme based on coherent states with entanglement swapping
NASA Astrophysics Data System (ADS)
Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying
2016-08-01
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).
Quantum phase estimation for nonlinear phase shifts with entangled spin coherent states of two modes
NASA Astrophysics Data System (ADS)
Berrada, K.; Abdel Khalek, S.
2013-10-01
Recently, we presented (Berrada K, Abdel-Khalek S and Raymond Ooi C H 2012 Phys. Rev. A 86 033823) an improved phase estimation scheme employing entangled spin coherent states (ESCSs) using the Holstein-Primakoff realization of angular momentum algebra. Here, we study the nonlinear phase enhancement from a generalized nonlinearity on ESCSs under perfect and lossy conditions with the same mean photon number and nonlinearity order. The results show that an increase in the spin number gives the smallest variance in the phase parameter in comparison to N00N states for different orders of nonlinearity. Finally, we study the physical properties of the input optical field and explore a connection between this quantity and the output state phase uncertainty. In particular, we show that the Mandel parameter may be used as an indicator of the phase estimation behavior in this interferometric setting.
Teleportation of a two-mode entangled coherent state encoded with two-qubit information
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Prakash, Hari
2010-09-01
We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | ± αrang, minimum average fidelity in our case is >=0.99 for |α| >= 1.6 (i.e. |α|2 >= 2.6), while previously proposed schemes referred above report the same for |α| >= 5 (i.e. |α|2 >= 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|α|), our teleportation scheme is at the reach of modern technology.
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Fei; Su, Qi-Ping; Yang, Chui-Ping
2013-08-01
We propose a way to prepare Greenberger--Horne--Zeilinger (GHZ) entangled photon Fock states of three cavities, by using a superconducting flux qutrit coupled to the cavities. This proposal does not require the use of classical microwave pulses and measurement during the entire operation. Thus, the operation is greatly simplified and the circuit engineering complexity and cost is much reduced. The proposal is quite general and can be applied to generate three-cavity GHZ entangled photon Fock states when the three cavities are coupled by a different three-level physical system such as a superconducting charge qutrit, a transmon qutrit, or a quantum dot.
Multiphoton communication in lossy channels with photon-number entangled states
NASA Astrophysics Data System (ADS)
Usenko, Vladyslav C.; Paris, Matteo G. A.
2007-04-01
We address binary and quaternary communication channels based on correlated multiphoton two-mode states of radiation in the presence of losses. The protocol are based on photon number correlations and realized upon choosing a shared set of thresholds to convert the outcome of a joint photon number measurement into a symbol from a discrete alphabet. In particular, we focus on channels built using feasible photon-number entangled states (PNES) as two-mode coherently-correlated (TMC) or twin-beam (TWB) states and compare their performances with that of channels built using feasible classically correlated (separable) states. We found that PNES provide larger channel capacity in the presence of loss, and that TWB-based channels may transmit a larger amount of information than TMC-based ones at fixed energy and overall loss. Optimized bit discrimination thresholds, as well as the corresponding maximized mutual information, are explicitly evaluated as a function of the beam intensity and the loss parameter. The propagation of TMC and TWB in lossy channels is analyzed and the joint photon number distribution is evaluated, showing that the beam statistics, either sub-Poissonian for TMC or super-Poissonian for TWB, is not altered by losses. Although entanglement is not strictly needed to establish the channels, which are based on photon-number correlations owned also by separable mixed states, purity of the support state is relevant to increase security. The joint requirement of correlation and purity individuates PNES as a suitable choice to build effective channels. The effects of losses on channel security are briefly discussed.
Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies
NASA Astrophysics Data System (ADS)
Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio
2016-03-01
We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m - k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m + 1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-08-24
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-01-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881
NASA Astrophysics Data System (ADS)
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-08-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-01-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881
Detecting multipartite entanglement
Doherty, Andrew C.; Parrilo, Pablo A.; Spedalieri, Federico M.
2005-03-01
We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.
Kuang Leman; Zhou Lan
2003-10-01
In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level {lambda}-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.
NASA Astrophysics Data System (ADS)
Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan
2016-10-01
Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.
Experimental activation of bound entanglement.
Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi
2012-07-27
Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.
Entanglement negativity in the multiverse
Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro
2015-03-10
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Entanglement negativity in the multiverse
Kanno, Sugumi; Soda, Jiro E-mail: jonathan.shock@uct.ac.za
2015-03-01
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.