Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a “look-up” table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity. PMID:23526976
Walters, D M; Stringer, S M
2010-07-01
A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
Able, Jessica A.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.
2010-01-01
Background ±3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that causes cognitive deficits in humans. A rat model for learning and memory deficits has not been established, although some cognitive deficits have been reported. Methods Male Sprague-Dawley rats were treated with MDMA (15 mg/kg × 4 doses) or saline (SAL) (n = 20/treatment group) and tested in different learning paradigms: 1) path integration in the Cincinnati water maze (CWM), 2) spatial learning in the Morris water maze (MWM), and 3) novel object recognition (NOR). One week after drug administration, testing began in the CWM, then four phases of MWM, and finally NOR. Following behavioral testing, monoamine levels were assessed. Results ±3,4-Methylenedioxymethamphetamine-treated rats committed more CWM errors than did SAL-treated rats. ±3,4-Methylenedioxymethamphetamine-treated animals were further from the former platform position during each 30-second MWM probe trial but showed no differences during learning trials with the platform present. There were no group differences in NOR. ± 3,4-Methylenedioxymethamphetamine depleted serotonin in all brain regions and dopamine in the striatum. Conclusions ±3,4-Methylenedioxymethamphetamine produced MWM reference memory deficits even after complex learning in the CWM, where deficits in path integration learning occurred. Assessment of path integration may provide a sensitive index of MDMA-induced learning deficits. PMID:16324685
Path integral learning of multidimensional movement trajectories
NASA Astrophysics Data System (ADS)
André, João; Santos, Cristina; Costa, Lino
2013-10-01
This paper explores the use of Path Integral Methods, particularly several variants of the recent Path Integral Policy Improvement (PI2) algorithm in multidimensional movement parametrized policy learning. We rely on Dynamic Movement Primitives (DMPs) to codify discrete and rhythmic trajectories, and apply the PI2-CMA and PIBB methods in the learning of optimal policy parameters, according to different cost functions that inherently encode movement objectives. Additionally we merge both of these variants and propose the PIBB-CMA algorithm, comparing all of them with the vanilla version of PI2. From the obtained results we conclude that PIBB-CMA surpasses all other methods in terms of convergence speed and iterative final cost, which leads to an increased interest in its application to more complex robotic problems.
Stringer, Simon M; Rolls, Edmund T
2006-12-01
A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.
Understanding of Relation Structures of Graphical Models by Lower Secondary Students
ERIC Educational Resources Information Center
van Buuren, Onne; Heck, André; Ellermeijer, Ton
2016-01-01
A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…
M-Learning--On Path to Integration with Organisation Systems
ERIC Educational Resources Information Center
Srivastava, Shilpa; Gulati, Ved Prakash
2014-01-01
Learning is essential in organizations for them to survive. However, given the changing environment owing to global inter-connectedness, mobile workforce, global unpredictability and complexities, the learning approach must also change. Today the Learning and Development unit must be able to facilitate collaborative work, develop learning…
A Strategic Planning Approach to Technology Integration: Critical Success Factors.
ERIC Educational Resources Information Center
Shaw, Sam; Zabudsky, Jeff
Within most institutions of higher learning, the typical approach to the integration of new information and communications technologies into the teaching and learning process has involved a heavy reliance on early adopters. This path of least resistance approach has provided organizations with the opportunity to quickly claim a presence in the…
Samanez-Larkin, Gregory R; Levens, Sara M; Perry, Lee M; Dougherty, Robert F; Knutson, Brian
2012-04-11
Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
ERIC Educational Resources Information Center
Daniel, Ryan; Daniel, Leah
2015-01-01
This article reflects on ongoing research-led teaching in the area of creative industries in higher education. Specifically it reports on key work-integrated learning strategies designed to better prepare graduates for the employment sector. The creative industries sector is complex and competitive, characterized by non-linear career paths driven…
Integration of an Intelligent Tutoring System in a Course of Computer Network Design
ERIC Educational Resources Information Center
Verdú, Elena; Regueras, Luisa M.; Gal, Eran; de Castro, Juan P.; Verdú, María J.; Kohen-Vacs, Dan
2017-01-01
INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning path is for them according to their profile, learning progress, context and environmental influences. INTUITEL combines…
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Enriching Group Counseling through Integrating Yoga Concepts and Practices
ERIC Educational Resources Information Center
Rybak, Christopher; Deuskar, Megha
2010-01-01
Integrating practices from yoga with group counseling offers many creative paths of therapeutic learning. While yoga emphasizes the increased sense of connection with the self, group counseling emphasizes the increased sense of authenticity in relationship with oneself and with others. Common aims of both yoga and counseling are liberation from…
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills…
Using Cooperative Education and Work-Integrated Education to Provide Career Clarification
ERIC Educational Resources Information Center
Zegwaard, Karsten E.; Coll, Richard K.
2011-01-01
When students commence university studies they typically choose subjects that are of interest to them, and hold only vague notions of intended career paths. However, some universities offer work-integrated learning degrees (WIL), programs that require students to undertake relevant practical work experience by way of work placements, internships…
ERIC Educational Resources Information Center
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2017-01-01
In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…
The Geomagnetic Field Is a Compass Cue in Cataglyphis Ant Navigation.
Fleischmann, Pauline Nikola; Grob, Robin; Müller, Valentin Leander; Wehner, Rüdiger; Rössler, Wolfgang
2018-05-07
Desert ants (Cataglyphis) are famous insect navigators. During their foraging lives, the ants leave their underground colonies for long distances and return to their starting point with fair accuracy [1, 2]. Their incessantly running path integrator provides them with a continually updated home vector [3-5]. Directional input to their path integrator is provided by a visual compass based on celestial cues [6, 7]. However, as path integration is prone to cumulative errors, the ants additionally employ landmark guidance routines [8-11]. At the start of their foraging lives, they acquire the necessary landmark information by performing well-structured learning walks [12, 13], including turns about their vertical body axes [14]. When Cataglyphis noda performs these pirouettes, it always gazes at the nest entrance during the longest of several short stopping phases [14]. As the small nest entrance is not visible, the ants can adjust their gaze direction only by reading out their path integrator. However, recent experiments have shown that, for adjusting the goal-centered gaze directions during learning walks, skylight cues are not required [15]. A most promising remaining compass cue is the geomagnetic field, which is used for orientation in one way or the other by a variety of animal species [16-25]. Here, we show that the gaze directions during the look-back-to-the-nest behavior change in a predictable way to alterations of the horizontal component of the magnetic field. This is the first demonstration that, in insects, a geomagnetic compass cue is both necessary and sufficient for accomplishing a well-defined navigational task. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nia, Sara Farshad; Davey, Ronnie
2014-01-01
In line with the needs of the 21st century learners and dramatic improvements in schools' technological infrastructures, it is expected that the integration of digital tools into language learning courses would take a quicker pace and a smoother path. However, current research indicates that although this might be the case for foreign language…
Bao, Wan-Ning; Haas, Ain; Xie, Yunping
2016-09-01
Very few studies have examined the pathways to delinquency and causal factors for demographic subgroups of adolescents in a different culture. This article explores the effects of gender, age, and family socioeconomic status (SES) in an integrated model of strain, social control, social learning, and delinquency among a sample of Chinese adolescents. ANOVA is used to check for significant differences between categories of demographic groups on the variables in the integrated model, and the differential effects of causal factors in the theoretical path models are examined. Further tests of interaction effects are conducted to compare path coefficients between "high-risk" youths (i.e., male, mid-teen, and low family SES adolescents) and other subgroups. The findings identified similar pathways to delinquency across subgroups and clarified the salience of causal factors for male, mid-teen, and low SES adolescents in a different cultural context. © The Author(s) 2015.
Herring, Nicole R.; Schaefer, Tori L.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.
2008-01-01
Rationale Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems, but few associated cognitive effects. Objectives Since, questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Methods Rats were treated with one of two regimens, one the typical neurotoxic regimen (4 × 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho et al. 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 ×1.67 mg/kg once every 15 min); matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. Results On markers of neurotoxicity, MA showed decreased DA and 5-HT, and increased glial fibrillary acidic protein and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple-T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. Conclusions MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity. PMID:18509623
Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T
2008-09-01
Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems but few associated cognitive effects. Since questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Rats were treated with one of the two regimens: one based on the typical neurotoxic regimen (4 x 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho AK, Melega WP, Kuczenski R, Segal DS Synapse 39:161-166, 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 x 1.67 mg/kg once every 15 min) matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. On markers of neurotoxicity, MA showed decreased dopamine (DA) and 5-HT, increased glial fibrillary acidic protein, and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity.
ERIC Educational Resources Information Center
San Pedro, Maria Ofelia Z.; Baker, Ryan S.; Heffernan, Neil T.
2017-01-01
Middle school is an important phase in the academic trajectory, which plays a major role in the path to successful post-secondary outcomes such as going to college. Despite this, research on factors leading to college-going choices do not yet utilize the extensive fine-grained data now becoming available on middle school learning and engagement.…
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
NASA Astrophysics Data System (ADS)
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.
Drosophila learn efficient paths to a food source.
Navawongse, Rapeechai; Choudhury, Deepak; Raczkowska, Marlena; Stewart, James Charles; Lim, Terrence; Rahman, Mashiur; Toh, Alicia Guek Geok; Wang, Zhiping; Claridge-Chang, Adam
2016-05-01
Elucidating the genetic, and neuronal bases for learned behavior is a central problem in neuroscience. A leading system for neurogenetic discovery is the vinegar fly Drosophila melanogaster; fly memory research has identified genes and circuits that mediate aversive and appetitive learning. However, methods to study adaptive food-seeking behavior in this animal have lagged decades behind rodent feeding analysis, largely due to the challenges presented by their small scale. There is currently no method to dynamically control flies' access to food. In rodents, protocols that use dynamic food delivery are a central element of experimental paradigms that date back to the influential work of Skinner. This method is still commonly used in the analysis of learning, memory, addiction, feeding, and many other subjects in experimental psychology. The difficulty of microscale food delivery means this is not a technique used in fly behavior. In the present manuscript we describe a microfluidic chip integrated with machine vision and automation to dynamically control defined liquid food presentations and sensory stimuli. Strikingly, repeated presentations of food at a fixed location produced improvements in path efficiency during food approach. This shows that improved path choice is a learned behavior. Active control of food availability using this microfluidic system is a valuable addition to the methods currently available for the analysis of learned feeding behavior in flies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Integrating student-focused career planning into undergraduate gerontology programs.
Manoogian, Margaret M; Cannon, Melissa L
2018-04-02
As our global older adult populations are increasing, university programs are well-positioned to produce an effective, gerontology-trained workforce (Morgan, 2012; Silverstein & Fitzgerald, 2017). A gerontology curriculum comprehensively can offer students an aligned career development track that encourages them to: (a) learn more about themselves as a foundation for negotiating career paths; (b) develop and refine career skills; (c) participate in experiential learning experiences; and (d) complete competency-focused opportunities. In this article, we discuss a programmatic effort to help undergraduate gerontology students integrate development-based career planning and decision-making into their academic programs and achieve postgraduation goals.
[Patient careers in the orthopedic pain treatment. Sociological studies on pain behavior].
Göckenjan, G; Dreßke, S; Pfankuch, O
2013-09-01
Based on case histories the following study raises the question why some pain patients remain permanently on the path of specialist pain treatment after initial treatment whereas other patients with similar pain reports do not. In this study 134 qualitative interviews were conducted in order to research patient career paths. The study population included patients with back pain recruited from different orthopedic care settings and included persons with back pain from a general population not involved in specialized pain treatment. Patient career paths within medical care settings are effective in socializing and transforming the subjects. In the course of medical treatment patients learn their rights and obligations and subsequently acquire habits of typical pain behavior both in medical and domestic arrangements. Patients learn to formulate and preserve their interests and learn to align the different expectations which results in increasing identification with the career path. Conceptions of pain and pain behavior are formed in the course of patient careers while this is not necessarily a conscious or reflected process. As an unintended consequence it evolves into pain acting within the patient that integrates patients into distinct care milieus and holds them tight in the respective pain care. In these cases pain patients and their doctors fall so to say into a pain trap.
Skelton, Matthew R; Schaefer, Tori L; Herring, Nicole R; Grace, Curtis E; Vorhees, Charles V; Williams, Michael T
2009-06-01
We have previously shown that (+/-)-3,4-methylenedioxymethamphetamine (MDMA) treatment from postnatal days (P)11 to P20 leads to learning and memory deficits when the animals are tested as adults. Recently, the club drug 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) has gained popularity. Due to the similarities between MDMA and 5-MeO-DIPT and the substitution of 5-MeO-DIPT for MDMA, the purpose of this study was to compare the developmental effects of these drugs. Within a litter, animals were treated from P11 to P20 with either MDMA, 5-MeO-DIPT, or saline. MDMA-treated animals showed increased anxiety in a measure of defensive marble burying, as well as deficits in spatial and path integration learning. 5-MeO-DIPT-treated animals showed spatial learning deficits; however, there were no deficits observed in spatial memory or path integration learning. 5-MeO-DIPT-treated animals also showed hyperactivity in response to a challenge dose of methamphetamine. The results show that treatment with either 5-MeO-DIPT or MDMA during development results in cognitive deficits and other behavioral changes but the pattern of effects is distinct for each drug.
Life-space foam: A medium for motivational and cognitive dynamics
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir; Aidman, Eugene
2007-08-01
General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.
The Achiever. Volume 6, Number 6
ERIC Educational Resources Information Center
Ashby, Nicole, Ed.
2007-01-01
"The Achiever" is a monthly publication for parents and community leaders from the Office of Communications and Outreach, U.S. Department of Education. This issue contains the following articles: (1) Spellings, Education Community Discuss President's Agenda; (2) Arts Integration at Oklahoma School Provides Multiple Paths for Learning;…
Factors Associated with Technology Integration to Improve Instructional Abilities: A Path Model
ERIC Educational Resources Information Center
Uslu, Öner
2018-01-01
Today, students are expected to access, analyse and synthesise information, and work cooperatively. Their learning environment, therefore, should be equipped with appropriate tools and materials, and teachers should have instructional abilities to use them effectively. This study aims to propose a model to improve teachers' instructional abilities…
Grob, Robin; Fleischmann, Pauline N.; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system. PMID:29184487
Grob, Robin; Fleischmann, Pauline N; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance-presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Homing by path integration when a locomotion trajectory crosses itself.
Yamamoto, Naohide; Meléndez, Jayleen A; Menzies, Derek T
2014-01-01
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Four-Dimensional Spatial Reasoning in Humans
ERIC Educational Resources Information Center
Aflalo, T. N.; Graziano, M. S. A.
2008-01-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…
Calculus Challenges: An Active Learning Approach
ERIC Educational Resources Information Center
Crawford, Pam; Moseley, Daniel; Nancarrow, Mike; Ward, Erika
2018-01-01
One of the greatest challenges facing students new to calculus is the ability to persevere in the face of failure. Whether the student is choosing an integration technique or a series test, calculus is often the first course in mathematics where the path to the solution is not prescribed in an algorithmic way. At Jacksonville University we…
Skelton, Matthew R; Able, Jessica A; Grace, Curtis E; Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T
2008-12-01
3,4-Methlylenedioxymethamphetamine (MDMA) administration (4 x 15 mg/kg) on a single day has been shown to cause path integration deficits in rats. While most animal experiments focus on single binge-type models of MDMA use, many MDMA users take the drug on a recurring basis. The purpose of this study was to compare the effects of repeated single-day treatments with MDMA (4 x 15 mg/kg) once weekly for 5 weeks to animals that only received MDMA on week 5 and saline on weeks 1-4. In animals treated with MDMA for 5 weeks, there was an increase in time spent in the open area of the elevated zero maze suggesting a decrease in anxiety or increase in impulsivity compared to the animals given MDMA for 1 week and saline treated controls. Regardless of dosing regimen, MDMA treatment produced path integration deficits as evidenced by an increase in latency to find the goal in the Cincinnati water maze. Animals treated with MDMA also showed a transient hypoactivity that was not present when the animals were re-tested at the end of cognitive testing. In addition, both MDMA-treated groups showed comparable hyperactive responses to a later methamphetamine challenge. No differences were observed in spatial learning in the Morris water maze during acquisition or reversal but MDMA-related deficits were seen on reduced platform-size trials. Taken together, the data show that a single-day regimen of MDMA induces deficits similar to that of multiple weekly treatments.
Learning and inference in a nonequilibrium Ising model with hidden nodes.
Dunn, Benjamin; Roudi, Yasser
2013-02-01
We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
Solving the Curriculum Sequencing Problem with DNA Computing Approach
ERIC Educational Resources Information Center
Debbah, Amina; Ben Ali, Yamina Mohamed
2014-01-01
In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…
An empirical typology of hospital nurses' individual learning paths.
Poell, Rob F; Van der Krogt, Ferd J
2014-03-01
A relatively new theoretical concept is proposed in this paper, namely, the individual learning path. Learning paths are created by individual employees and comprise a set of learning-relevant activities that are both coherent as a whole and meaningful to them. To explore the empirical basis of this theoretical concept. A qualitative study involving semi-structured interviews. Two academic medical centers (university hospitals) and two general hospitals in the Netherlands. A total of 89 nurses were involved in the study. Semi-structured interviews were analyzed qualitatively; cluster analysis was then performed on quantified data from the interviews. Four types of learning path emerged, namely, the formal-external, self-directed, social-emotional, and information-oriented learning paths. The relatively new theoretical concept of an individual learning path can be observed in practice and a number of different learning-path types can be distinguished. Nurses were found to create their own learning paths, that is, select a theme that is relevant primarily to themselves, conduct a variety of learning activities around this theme, participate in social contexts that might help them, and mobilize learning facilities provided by their organization. These activities go way beyond the notion of employees as self-directed learners merely in a didactic sense (establishing learning goals, choosing the right learning activities for these goals, evaluating to what extent their goals have been met as a result). The findings can be interpreted as evidence of employees acting strategically when it comes to their professional development. Providers of continuing professional education/development need to take this into account. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
An Exploratory [Silver] Path to Interagency Reconstruction
2011-05-31
problem is different, even if there are similarities with previous experiences , so planners use lessons learned from previous experiences at their...Department of State, especially the US Agency for International Development, has extensive development experience , while the Department of Defense...development experience , while the Department of Defense knows combat and security operations. Integration comes in the middle ground, where we
Dialog on a country path: the qualitative research journey.
Sorrell, Jeanne M; Cangelosi, Pamela R; Dinkins, Christine S
2014-03-01
There is little information in the literature describing how students learn qualitative research. This article describes an approach to learning that is based on the pedagogical approach of Dinkins' Socratic-Hermeneutic Shared Inquiry. This approach integrates shared dialog as an essential aspect of learning. The qualitative pedagogy described in this article focused on three questions: What is knowing in qualitative research? How do we come to know qualitative research? What can we do with qualitative research? Students learned the basics of qualitative research within a context that fostered interpretive inquiry. In this way, the course framework mirrored the combination of interviewing, storytelling, and journeying toward understanding that constitute qualitative research. © 2013.
Path integration: effect of curved path complexity and sensory system on blindfolded walking.
Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J; Stergiou, Nicholas
2013-02-01
Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance traveled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluation of the Learning Process of Students Reinventing the General Law of Energy Conservation
ERIC Educational Resources Information Center
Logman, Paul; Kaper, Wolter; Ellermeijer, Ton
2015-01-01
To investigate the relationship between context and concept we have constructed a conceptual learning path in which students reinvent the concept of energy conservation and embedded this path in two authentic practices. A comparison of the expected learning outcome with actual student output for the most important steps in the learning path gives…
Learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.
2003-10-01
Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A mathematical model of the creative control process is presented that illustrates the use for mobile robots. Examples from a variety of intelligent mobile robot applications are also presented. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to many applications.
Tracking the Footprints of Nature of Science in the Path of Learning How to Teach It
ERIC Educational Resources Information Center
Bilican, Kader; Ozdem-Yilmaz, Yasemin; Oztekin, Ceren
2014-01-01
The present article aimed at understanding those unvoiced biases pre-service teachers may have that conflicts with their integration of nature of science in their science lessons. Three senior pre-service science teachers' views on NOS with regard to their decision making on critical incidents and their reflections about how they…
Intelligent Web-Based Learning System with Personalized Learning Path Guidance
ERIC Educational Resources Information Center
Chen, C. M.
2008-01-01
Personalized curriculum sequencing is an important research issue for web-based learning systems because no fixed learning paths will be appropriate for all learners. Therefore, many researchers focused on developing e-learning systems with personalized learning mechanisms to assist on-line web-based learning and adaptively provide learning paths…
Testing a Conception of How School Leadership Influences Student Learning
ERIC Educational Resources Information Center
Leithwood, Kenneth; Patten, Sarah; Jantzi, Doris
2010-01-01
Purpose: This article describes and reports the results of testing a new conception of how leadership influences student learning ("The Four Paths"). Framework: Leadership influence is conceptualized as flowing along four paths (Rational, Emotions, Organizational, and Family) toward student learning. Each path is populated by multiple…
Path Integration on the Upper Half-Plane
NASA Astrophysics Data System (ADS)
Kubo, R.
1987-10-01
Feynman's path integral is considered on the Poincaré upper half-plane. It is shown that the fundermental solution to the heat equation partial f/partial t=Delta_{H}f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.
ERIC Educational Resources Information Center
George-Palilonis, Jennifer; Filak, Vincent
2010-01-01
As graphically driven, animated, interactive applications offer educators new opportunities for shaping course content, new avenues for research arise as well. Along with these developments comes a need to study the effectiveness of the individual tools at our disposal as well as various methods for integrating those tools in a classroom setting.…
Learning-dependent plasticity with and without training in the human brain.
Zhang, Jiaxiang; Kourtzi, Zoe
2010-07-27
Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.
George, Nathan R.; Göksun, Tilbe; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick
2014-01-01
Linguistics, psychology, and neuroscience all have rich histories in language research. Crosstalk among these disciplines, as realized in studies of phonology, is pivotal for understanding a fundamental challenge for first and second language learners (SLLs): learning verbs. Linguistic and behavioral research with monolinguals suggests that infants attend to foundational event components (e.g., path, manner). Language then heightens or dampens attention to these components as children map word to world in language-specific ways. Cross-linguistic differences in semantic organization also reveal sources of struggles for SLLs. We discuss how better integrating neuroscience into this literature can unlock additional mysteries of verb learning. PMID:24854772
George, Nathan R; Göksun, Tilbe; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick
2014-01-01
Linguistics, psychology, and neuroscience all have rich histories in language research. Crosstalk among these disciplines, as realized in studies of phonology, is pivotal for understanding a fundamental challenge for first and second language learners (SLLs): learning verbs. Linguistic and behavioral research with monolinguals suggests that infants attend to foundational event components (e.g., path, manner). Language then heightens or dampens attention to these components as children map word to world in language-specific ways. Cross-linguistic differences in semantic organization also reveal sources of struggles for SLLs. We discuss how better integrating neuroscience into this literature can unlock additional mysteries of verb learning.
Computational Psychiatry and the Challenge of Schizophrenia.
Krystal, John H; Murray, John D; Chekroud, Adam M; Corlett, Philip R; Yang, Genevieve; Wang, Xiao-Jing; Anticevic, Alan
2017-05-01
Schizophrenia research is plagued by enormous challenges in integrating and analyzing large datasets and difficulties developing formal theories related to the etiology, pathophysiology, and treatment of this disorder. Computational psychiatry provides a path to enhance analyses of these large and complex datasets and to promote the development and refinement of formal models for features of this disorder. This presentation introduces the reader to the notion of computational psychiatry and describes discovery-oriented and theory-driven applications to schizophrenia involving machine learning, reinforcement learning theory, and biophysically-informed neural circuit models. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2017.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Vorhees, Charles V.; Williams, Michael T.
2016-01-01
Advantageous maneuvering through the environment to find food and avoid or escape danger is central to survival of most animal species. The ability to do so depends on learning and remembering different locations, especially home-base. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues (proximal cues), for egocentric navigation. Whereas allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures, egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and when over-learned, becomes procedural memory. Allocentric assessment methods have been extensively reviewed elsewhere. The purpose of this paper is to review one specific method for assessing egocentric, route-based navigation in rats: the Cincinnati Water Maze (CWM). The test is an asymmetric multiple-T maze arranged in such a way that rats must learn to find path openings along walls rather at ends in order to reach the goal. Failing to do this leads to cul-de-sacs and repeated errors. The task may be learned in the light or dark, but in the dark, wherein distal cues are eliminated, provides the best assessment of egocentric navigation. When used in conjunction with tests of other types of learning, such as allocentric navigation, the CWM provides a balanced approach to assessing the two major forms of navigational learning and memory found in mammals. PMID:27545092
Geometry, Heat Equation and Path Integrals on the Poincaré Upper Half-Plane
NASA Astrophysics Data System (ADS)
Kubo, R.
1988-01-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincaré upper half-plane. The fundamental solution to the heat equation partial f/partial t = Delta_{H} f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrödinger equation is also valid for our case.
Propulsion Ground Testing with High Test Peroxide: Lessons Learned
NASA Technical Reports Server (NTRS)
Bruce, Robert; Taylor, Gary; Taliancich, Paula
2002-01-01
Propulsion Ground Testing with High Test Peroxide (85 to 98% concentration) began at the NASA John C. Stennis Space Center in calendar year 1998, when the E3 Test Facility was modified to accomodate hydrogen peroxide (H2O2) in order to suport the research and development testing of the USAF Upper Stage Flight Experiment rocket engine. Since that time, efforts have continued to provide actual and planned test services to various customers, both U.S. Government and Commercial, in the ground test of many test articles, ranging from gas generators, to catalyst beds, to turbomachinery, to main injectors, to combustion chambers, to integrated rocket engines, to integrated stages. Along this path, and over the past 4 years, there has been both the rediscovery of previously learned lessons, through literature search, archive review, and personal interviews, as well as the learning of many new lessons as new areas are explored and new endeavors are tried. This paper will summarize those lessons learned in an effort to broaden the knowledge base as High Test Peroxide is considered more widely for use in rocket propulsion applications.
Path integration on the hyperbolic plane with a magnetic field
NASA Astrophysics Data System (ADS)
Grosche, Christian
1990-08-01
In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.
Dissociable cognitive mechanisms underlying human path integration.
Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas
2011-01-01
Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
A Qualitative Study on Learning and Teaching with Learning Paths in a Learning Management System
ERIC Educational Resources Information Center
De Smet, Cindy; Valcke, Martin; Schellens, Tammy; De Wever, Bram; Vanderlinde, Ruben
2016-01-01
This article presents the findings of a qualitative study (carried out between 2011 and 2013) about the adoption and implementation of learning paths within a Learning Management System (LMS). Sixteen secondary school biology teachers of the GO! Network in Flanders (an urbanized region in Belgium) were involved in the study and questioned via…
A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.
Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E
2018-06-20
Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.
Experiential Learning: A New Research Path to the Study of Journalism Education.
ERIC Educational Resources Information Center
Brandon, Wanda
2002-01-01
Examines the learning environment of journalism education. Considers historical perspectives of journalism education before laying the groundwork for a new research area. Suggests that the experiential learning approach offers a way of assessing the quality of learning and of breaking new paths into the study of journalism education. (SG)
Which way and how far? Tracking of translation and rotation information for human path integration.
Chrastil, Elizabeth R; Sherrill, Katherine R; Hasselmo, Michael E; Stern, Chantal E
2016-10-01
Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia
2018-04-15
Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.
Service-Learning Partnerships: Paths of Engagement
ERIC Educational Resources Information Center
Dorado, Silvia; Giles, Dwight E., Jr.
2004-01-01
This article furthers research and theory on the initiation and development of service-learning partnerships. It identifies three paths of engagement between university and community agencies: tentative engagement, aligned engagement, and committed engagement. This conceptualization helps to understand how service-learning partnerships evolve over…
Perfect discretization of reparametrization invariant path integrals
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken
2014-12-01
Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.
Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.
Sapiurka, Maya; Squire, Larry R; Clark, Robert E
2016-12-01
In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stenling, Andreas; Tafvelin, Susanne
2016-10-01
Leadership development programs are common in sports, but seldom evaluated; hence, we have limited knowledge about what the participants actually learn and the impact these programs have on sports clubs' daily operations. The purpose of the current study was to integrate a transfer of training model with self-determination theory to understand predictors of learning and training transfer, following a leadership development program among organizational leaders in Swedish sports clubs. Bayesian multilevel path analysis showed that autonomous motivation and an autonomy-supportive implementation of the program positively predicted near transfer (i.e., immediately after the training program) and that perceiving an autonomy-supportive climate in the sports club positively predicted far transfer (i.e., 1 year after the training program). This study extends previous research by integrating a transfer of training model with self-determination theory and identified important motivational factors that predict near and far training transfer.
Medial temporal lobe roles in human path integration.
Yamamoto, Naohide; Philbeck, John W; Woods, Adam J; Gajewski, Daniel A; Arthur, Joeanna C; Potolicchio, Samuel J; Levy, Lucien; Caputy, Anthony J
2014-01-01
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
Medial Temporal Lobe Roles in Human Path Integration
Yamamoto, Naohide; Philbeck, John W.; Woods, Adam J.; Gajewski, Daniel A.; Arthur, Joeanna C.; Potolicchio, Samuel J.; Levy, Lucien; Caputy, Anthony J.
2014-01-01
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed. PMID:24802000
NASA Technical Reports Server (NTRS)
Solimani, Jason A.; Rosanova, Santino
2015-01-01
Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.
Path integrals and the WKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam
2010-12-01
We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2018-05-01
Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.
Perfect discretization of path integrals
NASA Astrophysics Data System (ADS)
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Ybarra, Michele L; Holtrop, Jodi Summers; Prescott, Tonya L; Strong, David
2014-11-01
Report lessons learned in an RCT of Stop My Smoking (SMS) USA, a mHealth smoking cessation program for young adult smokers. 164 18-24-year-olds were recruited nationally, online in 2011. Program evaluation data were provided at 12-week post-Quit Day. (1) Inviting participants to complete a brief text messaging survey and then asking them to complete a longer online survey resulted in the highest response rate (89%). (2) The positive tone of program messages was the most commonly noted program strength. (3) Suggested improvements included more social connectivity and additional assistance overcoming stressful situations. (4) Half of intervention participants moved through the program linearly and half went through various paths that reflected multiple relapses. Suggestions to use pharmacotherapy resulted in 22% of heavy smokers to utilize it. Participant feedback provided concrete ways in which this and other young adult-focused interventions can improve messaging and program features to be even more salient. Future young adult mHealth interventions could: Integrate models that are flexible to different "paths" of behavior change; address stressful life events directly and comprehensively; integrate proactive messaging that promotes pharmacotherapy options; and use text messaging as a gateway to longer online surveys. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise
2017-01-01
Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.
Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise
2017-01-01
Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information. PMID:28634444
Master equations and the theory of stochastic path integrals
NASA Astrophysics Data System (ADS)
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.
PathCase-SB architecture and database design
2011-01-01
Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889
Lopez, Ellen D S; Lichtenstein, Richard; Lewis, Alonzo; Banaszak-Holl, Jane; Lewis, Cheryl; Johnson, Penni; Riley, Scherry; Baum, Nancy M
2007-04-01
In 2001, virtually every child on Detroit's eastside was eligible for health coverage, yet approximately 3,000 children remained uninsured. The primary aim of the Eastside Access Partnership (EAP), a community-based participatory research collaboration, was to increase enrollment of uninsured children in state programs. To achieve this aim, one of the approaches that EAP is using is the innovative Learning Map titled Choosing the Healthy Path, which was developed in collaboration with Root Learning, Inc. Although Learning Maps were originally developed to assist corporations in implementing strategic change, their integration of visualization and interactive dialogue incorporates Freirian principles of empowerment education, making them a viable option for providing meaningful learning opportunities for community residents. This article presents the collaborative process involving the University of Michigan, local community-based organizations, community members, and Root Learning consultants to develop a visual map that enables community residents to understand and overcome the barriers that prevent them from obtaining health insurance for their children.
Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique
2010-06-30
The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France.
Diagnostic and Remedial Learning Strategy Based on Conceptual Graphs
ERIC Educational Resources Information Center
Jong, BinShyan; Lin, TsongWuu; Wu, YuLung; Chan, Teyi
2004-01-01
Numerous scholars have applied conceptual graphs for explanatory purposes. This study devised the Remedial-Instruction Decisive path (RID path) algorithm for diagnosing individual student learning situation. This study focuses on conceptual graphs. According to the concepts learned by students and the weight values of relations among these…
Homeostatic reinforcement learning for integrating reward collection and physiological stability.
Keramati, Mehdi; Gutkin, Boris
2014-12-02
Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system.
Dollé, Laurent; Droulez, Jacques; Bennequin, Daniel; Berthoz, Alain; Thibault, Guillaume
2015-01-01
Few studies have explored how humans memorize landmarks in complex multifloored buildings. They have observed that participants memorize an environment either by floors or by vertical columns, influenced by the learning path. However, the influence of the building’s actual structure is not yet known. In order to investigate this influence, we conducted an experiment using an object-in-place protocol in a cylindrical building to contrast with previous experiments which used rectilinear environments. Two groups of 15 participants were taken on a tour with a first person perspective through a virtual cylindrical three-floored building. They followed either a route discovering floors one at a time, or a route discovering columns (by simulated lifts across floors). They then underwent a series of trials, in which they viewed a camera movement reproducing either a segment of the learning path (familiar trials), or performing a shortcut relative to the learning trajectory (novel trials). We observed that regardless of the learning path, participants better memorized the building by floors, and only participants who had discovered the building by columns also memorized it by columns. This expands on previous results obtained in a rectilinear building, where the learning path favoured the memory of its horizontal and vertical layout. Taken together, these results suggest that both learning mode and an environment’s structure influence the spatial memory of complex multifloored buildings. PMID:26770288
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
The path integral on the pseudosphere
NASA Astrophysics Data System (ADS)
Grosche, C.; Steiner, F.
1988-02-01
A rigorous path integral treatment for the d-dimensional pseudosphere Λd-1 , a Riemannian manifold of constant negative curvature, is presented. The path integral formulation is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined on midpoints. The time-dependent and energy-dependent Feynman kernels obtain different expressions in the even- and odd-dimensional cases, respectively. The special case of the three-dimensional pseudosphere, which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc, and the hyperbolic strip, is discussed in detail including the energy spectrum and the normalised wave-functions.
Formulation of D-brane Dynamics
NASA Astrophysics Data System (ADS)
Evans, Thomas
2012-03-01
It is the purpose of this paper (within the context of STS rules & guidelines ``research report'') to formulate a statistical-mechanical form of D-brane dynamics. We consider first the path integral formulation of quantum mechanics, and extend this to a path-integral formulation of D-brane mechanics, summing over all the possible path integral sectors of R-R, NS charged states. We then investigate this generalization utilizing a path-integral formulation summing over all the possible path integral sectors of R-R charged states, calculated from the mean probability tree-level amplitude of type I, IIA, and IIB strings, serving as a generalization of all strings described by D-branes. We utilize this generalization to study black holes in regimes where the initial D-brane system is legitimate, and further this generalization to look at information loss near regions of nonlocality on a non-ordinary event horizon. We see here that in these specific regimes, we can calculate a path integral formulation, as describing D0-brane mechanics, tracing the dissipation of entropy throughout the event horizon. This is used to study the information paradox, and to propose a resolution between the phenomena and the correct and expected quantum mechanical description. This is done as our path integral throughout entropy entering the event horizon effectively and correctly encodes the initial state in subtle correlations in the Hawking radiation.
Content, pedagogy, results: A thrice-told tale of integrating work-based and school-based learning
NASA Astrophysics Data System (ADS)
Ryken, Amy Elizabeth
Work-based learning programs can challenge the grammar of schooling by connecting students to opportunities outside the school, creating learning communities of students, teachers and employers, and integrating academic and occupational education. Although designed to change how students perceive the relationship between high school and life afterwards---college and work---do these programs actually affect students' understanding of schoolwork relationships? To answer the question a case study approach was used to study the details of a particular site. This research focused on a biotechnology education and training program that includes two years of science coursework at the high school level, a year of science coursework at the community college level, as well as summer internships for high school students and year-round co-op jobs for college students. A particular point of view is presented---that of the students. Data collection and analysis took place in four phases; Phase 1 included longitudinal cohort analyses in which persistence and attrition rates were calculated, industry participation was also analyzed; in Phase 2, written statements of 61 focal students were analyzed; Phase 3 consisted of 32 participant interviews; and in Phase 4, chapters were conceptualized and organized. Student perspectives add to the school-to-career research by revealing what students define as important experiences and opportunities. By focusing on what students learn (content), how they learn it (pedagogy), and what it means to them and the program (results), this study provides student perspectives on the promises of new forms of vocationalism. This research concludes with implications for designing and implementing career-technical programs. The central image that informs this work is that of students progressing on a career pathway. Getting on a path leads to particular outcomes (e.g., entrance to college, and/or finding a job in biotechnology). The path broadens as students have opportunities to gain laboratory skills, and scientific knowledge, and learn about careers in biotechnology. Supporting the progression on the pathway are the students themselves, by taking active roles in their own education, and the community of peers, teachers, and employers that offer help and guidance.
ERIC Educational Resources Information Center
Blasco, Pablo Gonzalez; Moreto, Graziela; Blasco, Mariluz González; Levites, Marcelo Rozenfeld; Janaudis, Marco Aurelio
2015-01-01
Learning through aesthetics--in which cinema is included--stimulates learner reflection. As emotions play key roles in learning attitudes and changing behavior, teachers must impact learners affective domain. Since feelings exist before concepts, the affective path is a critical path to the rational process of learning. Cinema is the audiovisual…
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
ERIC Educational Resources Information Center
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System
NASA Astrophysics Data System (ADS)
Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro
2006-09-01
In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.
Green Revolution: Impacts, limits, and the path ahead
Pingali, Prabhu L.
2012-01-01
A detailed retrospective of the Green Revolution, its achievement and limits in terms of agricultural productivity improvement, and its broader impact at social, environmental, and economic levels is provided. Lessons learned and the strategic insights are reviewed as the world is preparing a “redux” version of the Green Revolution with more integrative environmental and social impact combined with agricultural and economic development. Core policy directions for Green Revolution 2.0 that enhance the spread and sustainable adoption of productivity enhancing technologies are specified. PMID:22826253
Green revolution: impacts, limits, and the path ahead.
Pingali, Prabhu L
2012-07-31
A detailed retrospective of the Green Revolution, its achievement and limits in terms of agricultural productivity improvement, and its broader impact at social, environmental, and economic levels is provided. Lessons learned and the strategic insights are reviewed as the world is preparing a "redux" version of the Green Revolution with more integrative environmental and social impact combined with agricultural and economic development. Core policy directions for Green Revolution 2.0 that enhance the spread and sustainable adoption of productivity enhancing technologies are specified.
Pérez, Alejandro; von Lilienfeld, O Anatole
2011-08-09
Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed.
NASA Astrophysics Data System (ADS)
Fine, Dana S.; Sawin, Stephen
2017-01-01
Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure that these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N = 1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.
The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential
NASA Astrophysics Data System (ADS)
Grosche, Christian
1988-10-01
Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.
Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique
2010-01-01
Background The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. Purpose PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. Methods A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Results Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Conclusion Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France. PMID:20689740
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
ERIC Educational Resources Information Center
Cavanaugh, Cathy; Sessums, Christopher; Drexler, Wendy
2015-01-01
This essay is a call for rethinking our approach to research in digital learning. It plots a path founded in social trends and advances in education. A brief review of these trends and advances is followed by discussion of what flattened research might look like at scale. Scaling research in digital learning is crucial to advancing understanding…
Bennett, Ilana J; Stark, Craig E L
2016-03-01
Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.
Charting a path for health sciences librarians in an integrated information environment.
Jones, C J
1993-10-01
Changes in the health information environment present a major challenge to health sciences librarians. To successfully meet this challenge, librarians must apply the concepts of informal, self-directed, lifelong learning to their own carers. The Joint Commission on Accreditation of Healthcare Organizations is creating an integrated information environment in health care organizations. The health sciences librarian brings unique knowledge and skills to this environment. The reference technique, a methodology that closely parallels other problem-solving approaches such as the physician's diagnostic technique, equips librarians with the conceptual skills to develop creative solutions to information management problems. Each health sciences librarian must assume responsibility for extending professional skills and abilities and demonstrating them in the workplace.
Feasibility Analysis of Improving On-Campus Learning Paths via a Depth Sensor
ERIC Educational Resources Information Center
Pan, Wen-Fu; Tu, Shih-Chun; Chien, Mei-Ying
2014-01-01
This research aims to apply a depth sensor to create a human-body-sensing context for outdoor learning paths; it is conducted by incorporating both quasi-experiment and survey to compare students' cognitive learning outcome within the context and understand students' attitudes toward the context created. The result of ANCOVA indicates that the…
Emotional states, attentional resources, and cognitive activity: a preliminary study.
Versace, R; Monteil, J M; Mailhot, L
1993-06-01
This study explored the link between emotional state and attentional resources. A neutral or negative emotional state was induced in 50 subjects, then they performed a path-learning task followed by a word-memorization task while reproducing the prelearned path. Memory performance was assessed on a free-recall test. Analysis indicated that a previous induction of a negative emotional state disrupted path learning. Recall was not significantly affected by the subjects' emotional states, but recall was higher for subjects who had automatized the path prior to memorizing the words.
Ste-Marie, Diane M; Carter, Michael J; Law, Barbi; Vertes, Kelly; Smith, Victoria
2016-09-01
Research has shown learning advantages for self-controlled practice contexts relative to yoked (i.e., experimenter-imposed) contexts; yet, explanations for this phenomenon remain relatively untested. We examined, via path analysis, whether self-efficacy and intrinsic motivation are important constructs for explaining self-controlled learning benefits. The path model was created using theory-based and empirically supported relationships to examine causal links between these psychological constructs and physical performance. We hypothesised that self-efficacy and intrinsic motivation would have greater predictive power for learning under self-controlled compared to yoked conditions. Participants learned double-mini trampoline progressions, and measures of physical performance, self-efficacy and intrinsic motivation were collected over two practice days and a delayed retention day. The self-controlled group (M = 2.04, SD = .98) completed significantly more skill progressions in retention than their yoked counterparts (M = 1.3, SD = .65). The path model displayed adequate fit, and similar significant path coefficients were found for both groups wherein each variable was predominantly predicted by its preceding time point (e.g., self-efficacy time 1 predicts self-efficacy time 2). Interestingly, the model was not moderated by group; thus, failing to support the hypothesis that self-efficacy and intrinsic motivation have greater predictive power for learning under self-controlled relative to yoked conditions.
Sensory feedback in a bump attractor model of path integration.
Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P
2016-04-01
Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.
A Note on Feynman Path Integral for Electromagnetic External Fields
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-08-01
We propose a Fresnel stochastic white noise framework to analyze the nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under an external electromagnetic time-independent potential.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rehmat, Abeera Parvaiz
As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.
Spin coherent-state path integrals and the instanton calculus
NASA Astrophysics Data System (ADS)
Garg, Anupam; Kochetov, Evgueny; Park, Kee-Su; Stone, Michael
2003-01-01
We use an instanton approximation to the continuous-time spin coherent-state path integral to obtain the tunnel splitting of classically degenerate ground states. We show that provided the fluctuation determinant is carefully evaluated, the path integral expression is accurate to order O(1/j). We apply the method to the LMG model and to the molecular magnet Fe8 in a transverse field.
Perception of and satisfaction with the clinical learning environment among nursing students.
D'Souza, Melba Sheila; Karkada, Subrahmanya Nairy; Parahoo, Kader; Venkatesaperumal, Ramesh
2015-06-01
Clinical nursing education provides baccalaureate nursing students an opportunity to combine cognitive, psychomotor, and affective skills in the Middle East. The aim of the paper is to assess the satisfaction with and effectiveness of the clinical learning environment among nursing students in Oman. A cross-sectional descriptive design was used. A convenience sample consisting of 310 undergraduate nursing students was selected in a public school of nursing in Oman. Ethical approval was obtained from the Research and Ethics Committee, College of Nursing in 2011. A standardized, structured, validated and reliable Clinical Learning Environment Supervision Teacher Evaluation instrument was used. Informed consent was obtained from all the students. Data was analyzed with ANOVA and structural equation modeling. Satisfaction with the clinical learning environment (CLE) sub-dimensions was highly significant and had a positive relationship with the total clinical learning environment. In the path model 35% of its total variance of satisfaction with CLE is accounted by leadership style, clinical nurse commitment (variance=28%), and patient relationships (R(2)=27%). Higher age, GPA and completion of a number of clinical courses were significant in the satisfaction with the CLE among these students. Nurse educators can improvise clinical learning placements focusing on leadership style, premises of learning and nursing care, nurse teacher, and supervision while integrating student, teacher and environmental factors. Hence the clinical learning environment is integral to students' learning and valuable in providing educational experiences. The CLE model provides information to nurse educators regarding best clinical practices for improving the CLE for BSN students. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy.
Paldino, M J; Golriz, F; Chapieski, M L; Zhang, W; Chu, Z D
2017-02-01
The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths ( P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain. © 2017 by American Journal of Neuroradiology.
Three layers multi-granularity OCDM switching system based on learning-stateful PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Liu, Yanfei; Sun, Hao
2017-10-01
In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.
ERIC Educational Resources Information Center
Crowley, Una; Mahon, Catherine
2012-01-01
Learning to learn has been identified as a key educational competence. Over the next two years, as part of the INSTALL project, NUI Maynooth is testing the effectiveness of an exploratory group technique, the Narrative Mediation Path (NMP), which has been developed to promote reflective thinking skills. To date, interviews have been conducted with…
Preverbal Infants' Attention to Manner and Path: Foundations for Learning Relational Terms
ERIC Educational Resources Information Center
Pulverman, Rachel; Song, Lulu; Hirsh-Pasek, Kathy; Pruden, Shannon M.; Golinkoff, Roberta M.
2013-01-01
In the world, the manners and paths of motion events take place together, but in language, these features are expressed separately. How do infants learn to process motion events in linguistically appropriate ways? Forty-six English-learning 7- to 9-month-olds were habituated to a motion event in which a character performed both a manner and a…
Variational nature, integration, and properties of Newton reaction path
NASA Astrophysics Data System (ADS)
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-01
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Variational nature, integration, and properties of Newton reaction path.
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-21
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.
2017-12-01
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
1999
This document contains four symposium papers on work force development. "Effects of Two Different Learning Paths on School-to-Work Transition" (Esther Van Der Schoot) discusses a Dutch study documenting that the following items make a difference in the school-to-work transition: learning path, curriculum characteristics, individual…
Page, Hector J I; Walters, Daniel; Stringer, Simon M
2015-01-01
Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration)In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors are identified: rise time, the time after stimulation it takes for a neuron to start firing, and the presence of symmetric non-offset within-layer recurrent collateral connectivity. On the basis of the latter, the important prediction is made that head direction cell regions directly involved in path integration will not contain this type of connectivity; giving a theoretical explanation for architectural observations. Increased neuronal rise time is found to slow path integration, and the slowing effect for a given rise time is found to be more severe in the context of short conduction delays. Further work is suggested on the basis of our findings, which represent a valuable contribution to understanding of the head direction cell system.
Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies
NASA Astrophysics Data System (ADS)
Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura
2018-05-01
Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.
Iterative deep convolutional encoder-decoder network for medical image segmentation.
Jung Uk Kim; Hak Gu Kim; Yong Man Ro
2017-07-01
In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.
NASA Astrophysics Data System (ADS)
Utama, Briandhika; Purqon, Acep
2016-08-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methodsmore » and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
A serious game for learning ultrasound-guided needle placement skills.
Chan, Wing-Yin; Qin, Jing; Chui, Yim-Pan; Heng, Pheng-Ann
2012-11-01
Ultrasound-guided needle placement is a key step in a lot of radiological intervention procedures such as biopsy, local anesthesia and fluid drainage. To help training future intervention radiologists, we develop a serious game to teach the skills involved. We introduce novel techniques for realistic simulation and integrate game elements for active and effective learning. This game is designed in the context of needle placement training based on the some essential characteristics of serious games. Training scenarios are interactively generated via a block-based construction scheme. A novel example-based texture synthesis technique is proposed to simulate corresponding ultrasound images. Game levels are defined based on the difficulties of the generated scenarios. Interactive recommendation of desirable insertion paths is provided during the training as an adaptation mechanism. We also develop a fast physics-based approach to reproduce the shadowing effect of needles in ultrasound images. Game elements such as time-attack tasks, hints and performance evaluation tools are also integrated in our system. Extensive experiments are performed to validate its feasibility for training.
Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen
2014-01-01
Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.
Quantization of Simple Parametrized Systems
NASA Astrophysics Data System (ADS)
Ruffini, Giulio
1995-01-01
I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-851] Certain Integrated Circuit Packages Provided with Multiple Heat- Conducting Paths and Products Containing Same; Commission Determination Not To... provided with multiple heat-conducting paths and products containing same by reason of infringement of...
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
NASA Astrophysics Data System (ADS)
Wong, Kin-Yiu; Gao, Jiali
2007-12-01
Based on Kleinert's variational perturbation (KP) theory [Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004)], we present an analytic path-integral approach for computing the effective centroid potential. The approach enables the KP theory to be applied to any realistic systems beyond the first-order perturbation (i.e., the original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational method). Accurate values are obtained for several systems in which exact quantum results are known. Furthermore, the computed kinetic isotope effects for a series of proton transfer reactions, in which the potential energy surfaces are evaluated by density-functional theory, are in good accordance with experiments. We hope that our method could be used by non-path-integral experts or experimentalists as a "black box" for any given system.
A mediation analysis of achievement motives, goals, learning strategies, and academic achievement.
Diseth, Age; Kobbeltvedt, Therese
2010-12-01
Previous research is inconclusive regarding antecedents and consequences of achievement goals, and there is a need for more research in order to examine the joint effects of different types of motives and learning strategies as predictors of academic achievement. To investigate the relationship between achievement motives, achievement goals, learning strategies (deep, surface, and strategic), and academic achievement in a hierarchical model. Participants were 229 undergraduate students (mean age: 21.2 years) of psychology and economics at the University of Bergen, Norway. Variables were measured by means of items from the Achievement Motives Scale (AMS), the Approaches and Study Skills Inventory for Students, and an achievement goal scale. Correlation analysis showed that academic achievement (examination grade) was positively correlated with performance-approach goal, mastery goal, and strategic learning strategies, and negatively correlated with performance-avoidance goal and surface learning strategy. A path analysis (structural equation model) showed that achievement goals were mediators between achievement motives and learning strategies, and that strategic learning strategies mediated the relationship between achievement goals and academic achievement. This study integrated previous findings from several studies and provided new evidence on the direct and indirect effects of different types of motives and learning strategies as predictors of academic achievement.
Homeostatic reinforcement learning for integrating reward collection and physiological stability
Keramati, Mehdi; Gutkin, Boris
2014-01-01
Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system. DOI: http://dx.doi.org/10.7554/eLife.04811.001 PMID:25457346
NASA Astrophysics Data System (ADS)
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2017-06-01
In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.
Predicting Pilot Behavior in Medium Scale Scenarios Using Game Theory and Reinforcement Learning
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Agogino, Adrian; Brat, Guillaume
2013-01-01
Effective automation is critical in achieving the capacity and safety goals of the Next Generation Air Traffic System. Unfortunately creating integration and validation tools for such automation is difficult as the interactions between automation and their human counterparts is complex and unpredictable. This validation becomes even more difficult as we integrate wide-reaching technologies that affect the behavior of different decision makers in the system such as pilots, controllers and airlines. While overt short-term behavior changes can be explicitly modeled with traditional agent modeling systems, subtle behavior changes caused by the integration of new technologies may snowball into larger problems and be very hard to detect. To overcome these obstacles, we show how integration of new technologies can be validated by learning behavior models based on goals. In this framework, human participants are not modeled explicitly. Instead, their goals are modeled and through reinforcement learning their actions are predicted. The main advantage to this approach is that modeling is done within the context of the entire system allowing for accurate modeling of all participants as they interact as a whole. In addition such an approach allows for efficient trade studies and feasibility testing on a wide range of automation scenarios. The goal of this paper is to test that such an approach is feasible. To do this we implement this approach using a simple discrete-state learning system on a scenario where 50 aircraft need to self-navigate using Automatic Dependent Surveillance-Broadcast (ADS-B) information. In this scenario, we show how the approach can be used to predict the ability of pilots to adequately balance aircraft separation and fly efficient paths. We present results with several levels of complexity and airspace congestion.
The paper describes a new approach to quantify emissions from area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) technique and computed tomography (CT) technique. In this study, an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inomata, A.; Junker, G.; Wilson, R.
1993-08-01
The unified treatment of the Dirac monopole, the Schwinger monopole, and the Aharonov-Bahn problem by Barut and Wilson is revisited via a path integral approach. The Kustaanheimo-Stiefel transformation of space and time is utilized to calculate the path integral for a charged particle in the singular vector potential. In the process of dimensional reduction, a topological charge quantization rule is derived, which contains Dirac's quantization condition as a special case. 32 refs.
Evaluation of the path integral for flow through random porous media
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.
2018-04-01
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
User's guide to Monte Carlo methods for evaluating path integrals
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de; Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de; Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru
2016-02-15
Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure ofmore » quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.« less
Sommer, Stefan; Wehner, Rüdiger
2005-10-01
Foraging desert ants navigate primarily by path integration. They continually update homing direction and distance by employing a celestial compass and an odometer. Here we address the question of whether information about travel distance is correctly used in the absence of directional information. By using linear channels that were partly covered to exclude celestial compass cues, we were able to test the distance component of the path-integration process while suppressing the directional information. Our results suggest that the path integrator cannot process the distance information accumulated by the odometer while ants are deprived of celestial compass information. Hence, during path integration directional cues are a prerequisite for the proper use of travel-distance information by ants.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Jiang, Yanxia; Akkus, Anna; Roperto, Renato; Akkus, Ozan; Li, Bo; Lang, Lisa; Teich, Sorin
2016-09-01
Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of othermore » quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
Career Paths of Former Apprentices. Making Work-Based Learning Work. Series 2
ERIC Educational Resources Information Center
Perez-del-Aguila, Rossana; Monteiro, Helen; Hughes, Maria
2006-01-01
This report investigates the career paths taken by apprentices after they complete their training, and the extent to which their apprenticeships has been influential in their future success. The project investigated what careers apprenticeship training secures access to; whether the method and quality of the learning experience in apprenticeships;…
Meneghetti, Chiara; Borella, Erika; Carbone, Elena; Martinelli, Massimiliano; De Beni, Rossana
2016-05-01
This study examined age-related differences between young and older adults in the involvement of verbal and visuo-spatial components of working memory (WM) when paths are learned from verbal and visuo-spatial inputs. A sample of 60 young adults (20-30 years old) and 58 older adults (60-75 years old) learned two paths from the person's point of view, one displayed in the form of a video showing the path, the other presenting the path in a verbal description. During the learning phase, participants concurrently performed a verbal task (articulatory suppression, AS group), or a visuo-spatial task (spatial tapping, ST group), or no secondary task (control, C group). After learning each path, participants completed tasks that involved the following: (1) recalling the sequential order and the location of landmarks; and (2) judging spatial sentences as true or false (verification test). The results showed that young adults outperformed older adults in all recall tasks. In both age groups performance in all types of task was worse in the AS and ST groups than in the C group, irrespective of the type of input. Overall, these findings suggest that verbal and visuo-spatial components of WM underpin the processing of environmental information in both young and older adults. The results are discussed in terms of age-related differences and according to the spatial cognition framework. © 2015 The British Psychological Society.
A review of path-independent integrals in elastic-plastic fracture mechanics
NASA Technical Reports Server (NTRS)
Kim, Kwang S.; Orange, Thomas W.
1988-01-01
The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
A review of path-independent integrals in elastic-plastic fracture mechanics, task 4
NASA Technical Reports Server (NTRS)
Kim, K. S.
1985-01-01
The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
The algorithm for duration acceleration of repetitive projects considering the learning effect
NASA Astrophysics Data System (ADS)
Chen, Hongtao; Wang, Keke; Du, Yang; Wang, Liwan
2018-03-01
Repetitive project optimization problem is common in project scheduling. Repetitive Scheduling Method (RSM) has many irreplaceable advantages in the field of repetitive projects. As the same or similar work is repeated, the proficiency of workers will be correspondingly low to high, and workers will gain experience and improve the efficiency of operations. This is learning effect. Learning effect is one of the important factors affecting the optimization results in repetitive project scheduling. This paper analyzes the influence of the learning effect on the controlling path in RSM from two aspects: one is that the learning effect changes the controlling path, the other is that the learning effect doesn't change the controlling path. This paper proposes corresponding methods to accelerate duration for different types of critical activities and proposes the algorithm for duration acceleration based on the learning effect in RSM. And the paper chooses graphical method to identity activities' types and considers the impacts of the learning effect on duration. The method meets the requirement of duration while ensuring the lowest acceleration cost. A concrete bridge construction project is given to verify the effectiveness of the method. The results of this study will help project managers understand the impacts of the learning effect on repetitive projects, and use the learning effect to optimize project scheduling.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... INTERNATIONAL TRADE COMMISSION [Docket No. 2899] Certain Integrated Circuit Packages Provided With... complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and..., telephone (202) 205-2000. The public version of the complaint can be accessed on the Commission's electronic...
Motion Based Target Acquisition and Evaluation in an Adaptive Machine Vision System
1995-05-01
paths in facial recognition and learning. Annals of Neurology, 22, 41-45. Tolman, E.C. (1932) Purposive behavior in Animals and Men. New York: Appleton...Learned scan paths are the active processes of perception. Rizzo et al. (1987) studied the fixation patterns of two patients with impaired facial ... recognition and learning and found an increase in the randomness of the scan patterns compared to controls, indicating that the cortex was failing to direct
Importance sampling studies of helium using the Feynman-Kac path integral method
NASA Astrophysics Data System (ADS)
Datta, S.; Rejcek, J. M.
2018-05-01
In the Feynman-Kac path integral approach the eigenvalues of a quantum system can be computed using Wiener measure which uses Brownian particle motion. In our previous work on such systems we have observed that the Wiener process numerically converges slowly for dimensions greater than two because almost all trajectories will escape to infinity. One can speed up this process by using a generalized Feynman-Kac (GFK) method, in which the new measure associated with the trial function is stationary, so that the convergence rate becomes much faster. We thus achieve an example of "importance sampling" and, in the present work, we apply it to the Feynman-Kac (FK) path integrals for the ground and first few excited-state energies for He to speed up the convergence rate. We calculate the path integrals using space averaging rather than the time averaging as done in the past. The best previous calculations from variational computations report precisions of 10-16 Hartrees, whereas in most cases our path integral results obtained for the ground and first excited states of He are lower than these results by about 10-6 Hartrees or more.
Task path planning, scheduling and learning for free-ranging robot systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1987-01-01
The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp
Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less
ERIC Educational Resources Information Center
Chang, Hsiu-Ju
2016-01-01
This research focus on the temporal path analysis of learning stress, test anxiety, peer stress (classmate relatedness), teacher relatedness, autonomy, and self-regulative performance in junior high school. Owing to the processes of self-determination always combines several negotiations with the interactive perceptions of personal experiences and…
The "Body Pedagogics" of an Elite Footballer's Career Path--Analysing Zlatan Ibrahimovic's Biography
ERIC Educational Resources Information Center
Andersson, Joacim; Maivorsdotter, Ninitha
2017-01-01
Background: Pedagogical research on career is encouraged to not limit sport learning to athletic skills, coaching effectiveness and coach-athlete relationships, but to also focus on learning in a multidimensional sense in the context of an athlete's individual and social biography. This article examines an elite athlete's career path as a body…
NASA Astrophysics Data System (ADS)
Zima, V. G.; Fedoruk, S. O.
1999-11-01
The transition amplitude is obtained for a free massive particle of arbitrary spin by calculating the path integral in the index-spinor formulation within the BFV-BRST approach. No renormalizations of the path integral measure were applied. The calculation has given the Weinberg propagator written in the index-free form by the use of an index spinor. The choice of boundary conditions on the index spinor determines the holomorphic or antiholomorphic representation for the canonical description of particle/antiparticle spin.
Prediction and Validation of Disease Genes Using HeteSim Scores.
Zeng, Xiangxiang; Liao, Yuanlu; Liu, Yuansheng; Zou, Quan
2017-01-01
Deciphering the gene disease association is an important goal in biomedical research. In this paper, we use a novel relevance measure, called HeteSim, to prioritize candidate disease genes. Two methods based on heterogeneous networks constructed using protein-protein interaction, gene-phenotype associations, and phenotype-phenotype similarity, are presented. In HeteSim_MultiPath (HSMP), HeteSim scores of different paths are combined with a constant that dampens the contributions of longer paths. In HeteSim_SVM (HSSVM), HeteSim scores are combined with a machine learning method. The 3-fold experiments show that our non-machine learning method HSMP performs better than the existing non-machine learning methods, our machine learning method HSSVM obtains similar accuracy with the best existing machine learning method CATAPULT. From the analysis of the top 10 predicted genes for different diseases, we found that HSSVM avoid the disadvantage of the existing machine learning based methods, which always predict similar genes for different diseases. The data sets and Matlab code for the two methods are freely available for download at http://lab.malab.cn/data/HeteSim/index.jsp.
Crossing Boundaries: Nativity, Ethnicity, and Mate Selection
Qian, Zhenchao; Glick, Jennifer E.; Baston, Christie
2016-01-01
The influx of immigrants has increased diversity among ethnic minorities and indicates that they may take multiple integration paths in American society. Previous research on ethnic integration often focuses on panethnic differences and few have explored ethnic diversity within a racial or panethnic context. Using 2000 U.S. census data for Puerto Rican, Mexican, Chinese, and Filipino origin individuals, we examine differences in marriage and cohabitation with whites, with other minorities, within a panethnic group, and within an ethnic group by nativity status. Ethnic endogamy is strong and, to a less extent, so is panethnic endogamy. Yet, marital or cohabiting unions with whites remain an important path of integration but differ significantly by ethnicity, nativity, age at arrival, and educational attainment. Meanwhile, ethnic differences in marriage and cohabitation with other racial or ethnic minorities are strong. Our analysis supports that unions with whites remain a major path of integration, but other paths of integration also become viable options for all ethnic groups. PMID:22350840
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
Grossberg, Stephen; Pilly, Praveen K
2014-02-05
A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.
Which coordinate system for modelling path integration?
Vickerstaff, Robert J; Cheung, Allen
2010-03-21
Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd. All rights reserved.
Leaky Waves in Metamaterials for Antenna Applications
2011-07-01
excitation problems, electromagnetic fields are often represented as Sommerfeld integrals [31,32]. A detailed discussion about Sommerfeld integral is...source removed. In the rest of this section, a de- tailed discussion about Sommerfeld Integral Path is presented. 4.1 Spectral Domain Approach 4.1.1... Sommerfeld integral path for evaluating fields accurately and efficiently, the radiation intensity and directivity of electric/magnetic dipoles over a grounded
Koopman-von Neumann formulation of classical Yang-Mills theories: I
NASA Astrophysics Data System (ADS)
Carta, P.; Gozzi, E.; Mauro, D.
2006-03-01
In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.
Option pricing, stochastic volatility, singular dynamics and constrained path integrals
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Hojman, Sergio A.
2014-01-01
Stochastic volatility models have been widely studied and used in the financial world. The Heston model (Heston, 1993) [7] is one of the best known models to deal with this issue. These stochastic volatility models are characterized by the fact that they explicitly depend on a correlation parameter ρ which relates the two Brownian motions that drive the stochastic dynamics associated to the volatility and the underlying asset. Solutions to the Heston model in the context of option pricing, using a path integral approach, are found in Lemmens et al. (2008) [21] while in Baaquie (2007,1997) [12,13] propagators for different stochastic volatility models are constructed. In all previous cases, the propagator is not defined for extreme cases ρ=±1. It is therefore necessary to obtain a solution for these extreme cases and also to understand the origin of the divergence of the propagator. In this paper we study in detail a general class of stochastic volatility models for extreme values ρ=±1 and show that in these two cases, the associated classical dynamics corresponds to a system with second class constraints, which must be dealt with using Dirac’s method for constrained systems (Dirac, 1958,1967) [22,23] in order to properly obtain the propagator in the form of a Euclidean Hamiltonian path integral (Henneaux and Teitelboim, 1992) [25]. After integrating over momenta, one gets an Euclidean Lagrangian path integral without constraints, which in the case of the Heston model corresponds to a path integral of a repulsive radial harmonic oscillator. In all the cases studied, the price of the underlying asset is completely determined by one of the second class constraints in terms of volatility and plays no active role in the path integral.
Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.
2015-01-01
This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568
path integral approach to closed form pricing formulas in the Heston framework.
NASA Astrophysics Data System (ADS)
Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven
2008-03-01
We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.
Kassab, Salah Eldin; Al-Shafei, Ahmad I; Salem, Abdel Halim; Otoom, Sameer
2015-01-01
This study examined the relationships between the different aspects of students' course experience, self-regulated learning, and academic achievement of medical students in a blended learning curriculum. Perceptions of medical students (n=171) from the Royal College of Surgeons in Ireland, Medical University of Bahrain (RCSI Bahrain), on the blended learning experience were measured using the Student Course Experience Questionnaire (SCEQ), with an added e-Learning scale. In addition, self-regulated learning was measured using the Motivated Strategies for Learning Questionnaire (MSLQ). Academic achievement was measured by the scores of the students at the end of the course. A path analysis was created to test the relationships between the different study variables. Path analysis indicated that the perceived quality of the face-to-face component of the blended experience directly affected the motivation of students. The SCEQ scale "quality of teaching" directly affected two aspects of motivation: control of learning and intrinsic goal orientation. Furthermore, appropriate course workload directly affected the self-efficacy of students. Moreover, the e-Learning scale directly affected students' peer learning and critical thinking but indirectly affected metacognitive regulation. The resource management regulation strategies, time and study environment, and effort regulation directly affected students' examination scores (17% of the variance explained). However, there were no significant direct relationships between the SCEQ scales and cognitive learning strategies or examination scores. The results of this study will have important implications for designing blended learning courses in medical schools.
ERIC Educational Resources Information Center
Tomassini, Massimo; Zanazzi, Silvia
2014-01-01
The article is aimed at analysing the qualitative interviews (in the form of short life stories) carried out within the Learning and Career Paths (LCP) project in Italy. Theories, such as those of reflexivity, agency, self-construction, competencies, and transformation put forward by relevant authors in the sociological and educational field, are…
Make a Path for Evaluation: 10 Stepping Stones Help Leaders Build Solid Practices
ERIC Educational Resources Information Center
Champion, Robby
2015-01-01
If professional learning leaders are looking for a clear path lined with models of best program evaluation practices, they will become tangled in the weeds. After working for several decades to help professional learning leaders and their teams improve programs and evaluations, the author has observed several habits of mind and work that can make…
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.
Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W
2014-04-01
In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.
Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?
Aggleton, John P.; Nelson, Andrew J.D.
2015-01-01
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
Precompetitive Data Sharing as a Catalyst to Address Unmet Needs in Parkinson’s Disease 1
Stephenson, Diane; Hu, Michele T.; Romero, Klaus; Breen, Kieran; Burn, David; Ben-Shlomo, Yoav; Bhattaram, Atul; Isaac, Maria; Venuto, Charles; Kubota, Ken; Little, Max A.; Friend, Stephen; Lovestone, Simon; Morris, Huw R.; Grosset, Donald; Sutherland, Margaret; Gallacher, John; Williams-Gray, Caroline; Bain, Lisa J.; Avilés, Enrique; Marek, Ken; Toga, Arthur W.; Stark, Yafit; Forrest Gordon, Mark; Ford, Steve
2015-01-01
Abstract Parkinson’s disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson’s UK and co-organized by Critical Path Institute’s (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson’s disease. PMID:26406139
Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang
2013-08-01
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Covariant path integrals on hyperbolic surfaces
NASA Astrophysics Data System (ADS)
Schaefer, Joe
1997-11-01
DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).
Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang
2015-11-01
Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O-transphosphorylation. For all these applications, we used our recently-developed path-integral method based on the KP theory, called automated integration-free path-integral (AIF-PI) method, to perform ab initio path-integral calculations of isotope effects. As opposed to the conventional path-integral molecular dynamics (PIMD) and Monte Carlo (PIMC) simulations, values calculated from our AIF-PI path-integral method can be as precise as (not as accurate as) the numerical precision of the computing machine. Lastly, comments are made on the general challenges in theoretical modeling of candidates matching the experimental "fingerprints" of RLTS. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Furstenau, Sara
2005-01-01
In this contribution, the results of an empirical study on young immigrants' learning paths and school to job transition are presented. The study focused on the strategies of successful students from the Portuguese immigrant minority in Hamburg. One aim was to find out whether the young people could profit by their migration experiences and…
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-01-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219
Deep Learning in Label-free Cell Classification
NASA Astrophysics Data System (ADS)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-03-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.
A Machine Learning Approach to Student Modeling.
1984-05-01
machine learning , and describe ACN, a student modeling system that incorporates this approach. This system begins with a set of overly general rules, which it uses to search a problem space until it arrives at the same answer as the student. The ACM computer program then uses the solution path it has discovered to determine positive and negative instances of its initial rules, and employs a discrimination learning mechanism to place additional conditions on these rules. The revised rules will reproduce the solution path without search, and constitute a cognitive model of
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
Shrager, Yael; Kirwan, C Brock; Squire, Larry R
2008-08-19
The hippocampus and entorhinal cortex have been linked to both memory functions and to spatial cognition, but it has been unclear how these ideas relate to each other. An important part of spatial cognition is the ability to keep track of a reference location using self-motion cues (sometimes referred to as path integration), and it has been suggested that the hippocampus or entorhinal cortex is essential for this ability. Patients with hippocampal lesions or larger lesions that also included entorhinal cortex were led on paths while blindfolded (up to 15 m in length) and were asked to actively maintain the path in mind. Patients pointed to and estimated their distance from the start location as accurately as controls. A rotation condition confirmed that performance was based on self-motion cues. When demands on long-term memory were increased, patients were impaired. Thus, in humans, the hippocampus and entorhinal cortex are not essential for path integration.
Kassab, Salah Eldin; Al-Shafei, Ahmad I; Salem, Abdel Halim; Otoom, Sameer
2015-01-01
Purpose This study examined the relationships between the different aspects of students’ course experience, self-regulated learning, and academic achievement of medical students in a blended learning curriculum. Methods Perceptions of medical students (n=171) from the Royal College of Surgeons in Ireland, Medical University of Bahrain (RCSI Bahrain), on the blended learning experience were measured using the Student Course Experience Questionnaire (SCEQ), with an added e-Learning scale. In addition, self-regulated learning was measured using the Motivated Strategies for Learning Questionnaire (MSLQ). Academic achievement was measured by the scores of the students at the end of the course. A path analysis was created to test the relationships between the different study variables. Results Path analysis indicated that the perceived quality of the face-to-face component of the blended experience directly affected the motivation of students. The SCEQ scale “quality of teaching” directly affected two aspects of motivation: control of learning and intrinsic goal orientation. Furthermore, appropriate course workload directly affected the self-efficacy of students. Moreover, the e-Learning scale directly affected students’ peer learning and critical thinking but indirectly affected metacognitive regulation. The resource management regulation strategies, time and study environment, and effort regulation directly affected students’ examination scores (17% of the variance explained). However, there were no significant direct relationships between the SCEQ scales and cognitive learning strategies or examination scores. Conclusion The results of this study will have important implications for designing blended learning courses in medical schools. PMID:25610011
Addendum to "Free energies from integral equation theories: enforcing path independence".
Kast, Stefan M
2006-01-01
The variational formalism developed for the analysis of the path dependence of free energies from integral equation theories [S. M. Kast, Phys. Rev. E 67, 041203 (2003)] is extended in order to allow for the three-dimensional treatment of arbitrarily shaped solutes.
A theory for the radiation of magnetohydrodynamic surface waves and body waves into the solar corona
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1988-01-01
The Green's function for the slab coronal hole is obtained explicitly. The Fourier integral representation for the radiated field inside and outside the coronal hole waveguide is obtained. The radiated field outside the coronal hole is calculated using the method of steepest descents. It is shown that the radiated field can be written as the sum of two contributions: (1) a contribution from the integral along the steepest descent path and (2) a contribution from all the poles of the integrand between the path of the original integral and the steepest descent path. The free oscillations of the waveguide can be associated with the pole contributions in the steepest descent representation for the Green's function. These pole contributions are essentially generalized surface waves with a maximum amplitude near the interface which separates the plasma inside the coronal hole from the surrounding background corona. The path contribution to the integral is essentially the power radiated in body waves.
NASA Astrophysics Data System (ADS)
Jacak, Janusz E.
2018-01-01
We demonstrate an original development of path-integral quantization in the case of a multiply connected configuration space of indistinguishable charged particles on a 2D manifold and exposed to a strong perpendicular magnetic field. The system occurs to be exceptionally homotopy-rich and the structure of the homotopy essentially depends on the magnetic field strength resulting in multiloop trajectories at specific conditions. We have proved, by a generalization of the Bohr-Sommerfeld quantization rule, that the size of a magnetic field flux quantum grows for multiloop orbits like (2 k +1 ) h/c with the number of loops k . Utilizing this property for electrons on the 2D substrate jellium, we have derived upon the path integration a complete FQHE hierarchy in excellent consistence with experiments. The path integral has been next developed to a sum over configurations, displaying various patterns of trajectory homotopies (topological configurations), which in the nonstationary case of quantum kinetics, reproduces some unclear formerly details in the longitudinal resistivity observed in experiments.
Walking patterns induced by learned odors in the honeybee, Apis mellifera L.
Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki
2016-01-01
The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.
PathJam: a new service for integrating biological pathway information.
Glez-Peña, Daniel; Reboiro-Jato, Miguel; Domínguez, Rubén; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino
2010-10-28
Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i) being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii) giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.
Neural Substrates of Processing Path and Manner Information of a Moving Event
ERIC Educational Resources Information Center
Wu, Denise H.; Morganti, Anne; Chatterjee, Anjan
2008-01-01
Languages consistently distinguish the path and the manner of a moving event in different constituents, even if the specific constituents themselves vary across languages. Children also learn to categorize moving events according to their path and manner at different ages. Motivated by these linguistic and developmental observations, we employed…
Promoting Alternative Thinking Strategies (PATHS): Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Humphrey, Neil; Barlow, Alexandra; Wigelsworth, Michael; Lendrum, Ann; Pert, Kirsty; Joyce, Craig; Stephens, Emma; Wo, Lawrence; Squires, Garry; Woods, Kevin; Calam, Rachel; Harrison, Mark; Turner, Alex; Humphrey, Neil
2015-01-01
Promoting Alternative Thinking Strategies (PATHS) is a school-based social and emotional learning (SEL) curriculum that aims to help children in primary school manage their behaviour, understand their emotions, and work well with others. PATHS consists of a series of lessons that cover topics such as identifying and labelling feelings, controlling…
ERIC Educational Resources Information Center
Fraser, J. Scott; Solovey, Andrew D.; Grove, David; Lee, Mo Yee; Greene, Gilbert J.
2012-01-01
A moderate common factors approach is proposed as a synthesis or middle path to integrate common and specific factors in evidence-based approaches to high-risk youth and families. The debate in family therapy between common and specific factors camps is reviewed and followed by suggestions from the literature for synthesis and creative flexibility…
A User-Centric Adaptive Learning System for E-Learning 2.0
ERIC Educational Resources Information Center
Huang, Shiu-Li; Shiu, Jung-Hung
2012-01-01
The success of Web 2.0 inspires e-learning to evolve into e-learning 2.0, which exploits collective intelligence to achieve user-centric learning. However, searching for suitable learning paths and content for achieving a learning goal is time consuming and troublesome on e-learning 2.0 platforms. Therefore, introducing formal learning in these…
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Effect of Cognitive Style on Learning and Retrieval of Navigational Environments.
Boccia, Maddalena; Vecchione, Francesca; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
Field independence (FI) has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called "cognitive maps," and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT) for assessing their Cognitive Style (CS) and to the Perspective Taking/Spatial Orientation Test (PTSOT) and the Santa Barbara Sense of Direction Scale (SBSOD) for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL), to recognize landmarks of this path among distracters (landmark recognition, LR), to order them (landmark ordering, LO) and to draw the learned path on a map (map drawing, MD). Retrieval tasks were performed both immediately after learning (immediate-retrieval) and the day after (24 h-retrieval). Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals), results on LR (in 24-retrieval) and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning) and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI individuals in restructuring environmental cues in a global and flexible long-term representation of the environment.
Active sensing associated with spatial learning reveals memory-based attention in an electric fish
Longtin, André; Maler, Leonard
2016-01-01
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp., a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark “maze” and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. PMID:26961107
Active sensing associated with spatial learning reveals memory-based attention in an electric fish.
Jun, James J; Longtin, André; Maler, Leonard
2016-05-01
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments
NASA Astrophysics Data System (ADS)
Makri, Nancy
2017-04-01
The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.
Taking on the gender challenge in organisations: what does it take?
Henry, Sarah K; Sandler, Joanne; Passerini, Luca; Darmstadt, Gary L
2017-07-01
Clear patterns emerged and are summarised on conditions for success in integrating a gender equality perspective across organisational programmes and culture. In short, organisations should consider five key 'ingredients' when designing their approach to integrating a gender equality perspective: (1) have a clear vision of success with measurable indicators; (2) have high-level, consistent, visible support; (3) take an intentional approach deeply rooted in the organisational culture and competencies; (4) ensure accountability at all levels and (5) invest both financial and technical resources. A vibrant community exists in virtually every region of the world of highly experienced gender equality experts that can support organisations on this path. Late adopters of integrating a gender equality perspective can benefit from decades of practice and a robust evidence base which has shifted focus among development organisations from asking 'why' addressing gender inequalities is important to learning 'how' to most effectively do this in programmes, policies, research and organisational culture while building a strong results framework.
Calculation of precise firing statistics in a neural network model
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
Path-integral method for the source apportionment of photochemical pollutants
NASA Astrophysics Data System (ADS)
Dunker, A. M.
2015-06-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the three paths but also differences due to the different chemical regimes resulting from the emission-control strategies.
Path-integral method for the source apportionment of photochemical pollutants
NASA Astrophysics Data System (ADS)
Dunker, A. M.
2014-12-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOC's) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using 3 or 4 points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the three paths but also differences due to the different chemical regimes resulting from the emission-control strategies.
Integration and Exploitation of Advanced Visualization and Data Technologies to Teach STEM Subjects
NASA Astrophysics Data System (ADS)
Brandon, M. A.; Garrow, K. H.
2014-12-01
We live in an age where the volume of content available online to the general public is staggering. Integration of data from new technologies gives us amazing educational opportunities when appropriate narratives are provided. We prepared a distance learning credit bearing module that showcased many currently available data sets and state of the art technologies. It has been completed by many thousands of students with good feedback. Module highlights were the wide ranging and varied online activities which taught a wide range of STEM content. For example: it is well known that on Captain Scott's Terra Nova Expedition 1910-13, three researchers completed the "the worst journey in the world" to study emperor penguins. Using their primary records and clips from location filmed television documentaries we can tell their story and the reasons why it was important. However using state of the art content we can go much further. Using satellite data students can trace the path the researchers took and observe the penguin colony that they studied. Linking to modern Open Access literature students learn how they can estimate the numbers of animals in this and similar locations. Then by linking to freely available data from Antarctic Automatic Weather Stations students can learn quantitatively about the climatic conditions the animals are enduring in real time. They can then download and compare this with the regional climatic record to see if their observations are what could be expected. By considering the environment the penguins live in students can be taught about the evolutionary and behavioural adaptations the animals have undergone to survive. In this one activity we can teach a wide range of key learning points in an engaging and coherent way. It opened some students' eyes to the range of possibilities available to learn about our, and other planets. The addition and integration of new state of the art techniques and data sets only increases the opportunities to teach STEM in ways that truly grab attention.
The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...
Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method
ERIC Educational Resources Information Center
Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo
2012-01-01
This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)
Piloting Systems Reset Path Integration Systems during Position Estimation
ERIC Educational Resources Information Center
Zhang, Lei; Mou, Weimin
2017-01-01
During locomotion, individuals can determine their positions with either idiothetic cues from movement (path integration systems) or visual landmarks (piloting systems). This project investigated how these 2 systems interact in determining humans' positions. In 2 experiments, participants studied the locations of 5 target objects and 1 single…
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
Path-integral invariants in abelian Chern-Simons theory
NASA Astrophysics Data System (ADS)
Guadagnini, E.; Thuillier, F.
2014-05-01
We consider the U(1) Chern-Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
A new navigational mechanism mediated by ant ocelli.
Schwarz, Sebastian; Wystrach, Antoine; Cheng, Ken
2011-12-23
Many animals rely on path integration for navigation and desert ants are the champions. On leaving the nest, ants continuously integrate their distance and direction of travel so that they always know their current distance and direction from the nest and can take a direct path to home. Distance information originates from a step-counter and directional information is based on a celestial compass. So far, it has been assumed that the directional information obtained from ocelli contribute to a single global path integrator, together with directional information from the dorsal rim area (DRA) of the compound eyes and distance information from the step-counter. Here, we show that ocelli mediate a distinct compass from that mediated by the compound eyes. After travelling a two-leg outbound route, untreated foragers headed towards the nest direction, showing that both legs of the route had been integrated. In contrast, foragers with covered compound eyes but uncovered ocelli steered in the direction opposite to the last leg of the outbound route. Our findings suggest that, unlike the DRA, ocelli cannot by themselves mediate path integration. Instead, ocelli mediate a distinct directional system, which buffers the most recent leg of a journey.
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
On the Path Integral in Non-Commutative (nc) Qft
NASA Astrophysics Data System (ADS)
Dehne, Christoph
2008-09-01
As is generally known, different quantization schemes applied to field theory on NC spacetime lead to Feynman rules with different physical properties, if time does not commute with space. In particular, the Feynman rules that are derived from the path integral corresponding to the T*-product (the so-called naïve Feynman rules) violate the causal time ordering property. Within the Hamiltonian approach to quantum field theory, we show that we can (formally) modify the time ordering encoded in the above path integral. The resulting Feynman rules are identical to those obtained in the canonical approach via the Gell-Mann-Low formula (with T-ordering). They preserve thus unitarity and causal time ordering.
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaxas, Dimitrios
2009-12-15
For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite boundmore » on the graviton mass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn
An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.
Ontology-Based Concept Map for Planning a Personalised Learning Path
ERIC Educational Resources Information Center
Chen, Chih-Ming
2009-01-01
Developing personalised web-based learning systems has been an important research issue in e-learning because no fixed learning pathway will be appropriate for all learners. However, most current web-based learning platforms with personalised curriculum sequencing tend to emphasise the learner preferences and interests in relation to personalised…
Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics
ERIC Educational Resources Information Center
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.
2016-01-01
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…
An Ecological Approach to Learning Dynamics
ERIC Educational Resources Information Center
Normak, Peeter; Pata, Kai; Kaipainen, Mauri
2012-01-01
New approaches to emergent learner-directed learning design can be strengthened with a theoretical framework that considers learning as a dynamic process. We propose an approach that models a learning process using a set of spatial concepts: learning space, position of a learner, niche, perspective, step, path, direction of a step and step…
Learning Path Recommendation Based on Modified Variable Length Genetic Algorithm
ERIC Educational Resources Information Center
Dwivedi, Pragya; Kant, Vibhor; Bharadwaj, Kamal K.
2018-01-01
With the rapid advancement of information and communication technologies, e-learning has gained a considerable attention in recent years. Many researchers have attempted to develop various e-learning systems with personalized learning mechanisms for assisting learners so that they can learn more efficiently. In this context, curriculum sequencing…
Makri, Nancy
2014-10-07
The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the "fully incoherent limit" zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.
A Note on the Stochastic Nature of Feynman Quantum Paths
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2016-11-01
We propose a Fresnel stochastic white noise framework to analyze the stochastic nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under a time-independent potential.
Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...
Path integral Monte Carlo ground state approach: formalism, implementation, and applications
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2017-11-01
Monte Carlo techniques have played an important role in understanding strongly correlated systems across many areas of physics, covering a wide range of energy and length scales. Among the many Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo approach with its variants has been employed widely. Since semi-classical or classical approaches will not be discussed in this review, path integral based approaches can for our purposes be divided into two categories: approaches applicable to quantum mechanical systems at zero temperature and approaches applicable to quantum mechanical systems at finite temperature. While these two approaches are related to each other, the underlying formulation and aspects of the algorithm differ. This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination of expectation values with respect to eigen states of the few- or many-body Schrödinger equation provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm, implementation details, and sample applications for fermionic systems are presented.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support
NASA Astrophysics Data System (ADS)
Pedrazzoli, Attilio
2010-06-01
AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.
Tackling higher derivative ghosts with the Euclidean path integral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanini, Michele; Department of Physics, Syracuse University, Syracuse, New York 13244; Trodden, Mark
2011-05-15
An alternative to the effective field theory approach to treat ghosts in higher derivative theories is to attempt to integrate them out via the Euclidean path integral formalism. It has been suggested that this method could provide a consistent framework within which we might tolerate the ghost degrees of freedom that plague, among other theories, the higher derivative gravity models that have been proposed to explain cosmic acceleration. We consider the extension of this idea to treating a class of terms with order six derivatives, and find that for a general term the Euclidean path integral approach works in themore » most trivial background, Minkowski. Moreover we see that even in de Sitter background, despite some difficulties, it is possible to define a probability distribution for tensorial perturbations of the metric.« less
Utilization of Multimedia Laboratory: An Acceptance Analysis using TAM
NASA Astrophysics Data System (ADS)
Modeong, M.; Palilingan, V. R.
2018-02-01
Multimedia is often utilized by teachers to present a learning materials. Learning that delivered by multimedia enables people to understand the information of up to 60% of the learning in general. To applying the creative learning to the classroom, multimedia presentation needs a laboratory as a space that provides multimedia needs. This study aims to reveal the level of student acceptance on the multimedia laboratories, by explaining the direct and indirect effect of internal support and technology infrastructure. Technology Acceptance Model (TAM) is used as the basis of measurement on this research, through the perception of usefulness, ease of use, and the intention, it’s recognized capable of predicting user acceptance about technology. This study used the quantitative method. The data analysis using path analysis that focuses on trimming models, it’s performed to improve the model of path analysis structure by removing exogenous variables that have insignificant path coefficients. The result stated that Internal Support and Technology Infrastructure are well mediated by TAM variables to measure the level of technology acceptance. The implications suggest that TAM can measure the success of multimedia laboratory utilization in Faculty of Engineering UNIMA.
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
Daugherty, Ana M.; Bender, Andrew R.; Yuan, Peng; Raz, Naftali
2016-01-01
Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19–75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1–2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1–2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. PMID:25838036
Path integral pricing of Wasabi option in the Black-Scholes model
NASA Astrophysics Data System (ADS)
Cassagnes, Aurelien; Chen, Yu; Ohashi, Hirotada
2014-11-01
In this paper, using path integral techniques, we derive a formula for a propagator arising in the study of occupation time derivatives. Using this result we derive a fair price for the case of the cumulative Parisian option. After confirming the validity of the derived result using Monte Carlo simulation, a new type of heavily path dependent derivative product is investigated. We derive an approximation for our so-called Wasabi option fair price and check the accuracy of our result with a Monte Carlo simulation.
User/Tutor Optimal Learning Path in E-Learning Using Comprehensive Neuro-Fuzzy Approach
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed; Mahdavi, Iraj
2009-01-01
Internet evolution has affected all industrial, commercial, and especially learning activities in the new context of e-learning. Due to cost, time, or flexibility e-learning has been adopted by participators as an alternative training method. By development of computer-based devices and new methods of teaching, e-learning has emerged. The…
ERIC Educational Resources Information Center
Santally, Mohammad Issack; Senteni, Alain
2013-01-01
Personalisation of e-learning environments is an interesting research area in which the learning experience of learners is generally believed to be improved when his or her personal learning preferences are taken into account. One such learning preference is the V-A-K instrument that classifies learners as visual, auditory or kinaesthetic. In this…
Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon
2012-01-01
Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath.
The Role of Emotional Landmarks on Topographical Memory.
Palmiero, Massimiliano; Piccardi, Laura
2017-01-01
The investigation of the role of emotional landmarks on human navigation has been almost totally neglected in psychological research. Therefore, the extent to which positive and negative emotional landmarks affect topographical memory as compared to neutral emotional landmark was explored. Positive, negative and neutral affect-laden images were selected as landmarks from the International Affective Picture System (IAPS) Inventory. The Walking Corsi test (WalCT) was used in order to test the landmark-based topographical memory. Participants were instructed to learn and retain an eight-square path encompassing positive, negative or neutral emotional landmarks. Both egocentric and allocentric frames of references were considered. Egocentric representation encompasses the object's relation to the self and it is generated from sensory data. Allocentric representation expresses a location with respect to an external frame regardless of the self and it is the basis for long-term storage of complex layouts. In particular, three measures of egocentric and allocentric topographical memory were taken into account: (1) the ability to learn the path; (2) the ability to recall by walking the path five minutes later; (3) the ability to reproduce the path on the outline of the WalCT. Results showed that both positive and negative emotional landmarks equally enhanced the learning of the path as compared to neutral emotional landmarks. In addition, positive emotional landmarks improved the reproduction of the path on the map as compared to negative and neutral emotional landmarks. These results generally show that emotional landmarks enhance egocentric-based topographical memory, whereas positive emotional landmarks seem to be more effective for allocentric-based topographical memory.
The Role of Emotional Landmarks on Topographical Memory
Palmiero, Massimiliano; Piccardi, Laura
2017-01-01
The investigation of the role of emotional landmarks on human navigation has been almost totally neglected in psychological research. Therefore, the extent to which positive and negative emotional landmarks affect topographical memory as compared to neutral emotional landmark was explored. Positive, negative and neutral affect-laden images were selected as landmarks from the International Affective Picture System (IAPS) Inventory. The Walking Corsi test (WalCT) was used in order to test the landmark-based topographical memory. Participants were instructed to learn and retain an eight-square path encompassing positive, negative or neutral emotional landmarks. Both egocentric and allocentric frames of references were considered. Egocentric representation encompasses the object’s relation to the self and it is generated from sensory data. Allocentric representation expresses a location with respect to an external frame regardless of the self and it is the basis for long-term storage of complex layouts. In particular, three measures of egocentric and allocentric topographical memory were taken into account: (1) the ability to learn the path; (2) the ability to recall by walking the path five minutes later; (3) the ability to reproduce the path on the outline of the WalCT. Results showed that both positive and negative emotional landmarks equally enhanced the learning of the path as compared to neutral emotional landmarks. In addition, positive emotional landmarks improved the reproduction of the path on the map as compared to negative and neutral emotional landmarks. These results generally show that emotional landmarks enhance egocentric-based topographical memory, whereas positive emotional landmarks seem to be more effective for allocentric-based topographical memory. PMID:28539910
A Path Model of Effective Technology-Intensive Inquiry-Based Learning
ERIC Educational Resources Information Center
Avsec, Stanislav; Kocijancic, Slavko
2016-01-01
Individual aptitude, attitudes, and behavior in inquiry-based learning (IBL) settings may affect work and learning performance outcomes during activities using different technologies. To encourage multifaceted learning, factors in IBL settings must be statistically significant and effective, and not cognitively or psychomotor intensive. We…
ERIC Educational Resources Information Center
Su, Chung-Ho
2017-01-01
The advancement of mobile game-based learning has encouraged many related studies, which has enabled students to learn more and faster. To enhance the clinical path of cardiac catheterization learning, this paper has developed a mobile 3D-CCGBLS (3D Cardiac Catheterization Game-Based Learning System) with a learning assessment for cardiac…
Deep Learning in Label-free Cell Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...
2016-03-15
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
NASA Astrophysics Data System (ADS)
Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan
2018-07-01
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
The Missing Curriculum in Physics Problem-Solving Education
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2018-05-01
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
Low-coherence interferometric sensor system utilizing an integrated optics configuration
NASA Astrophysics Data System (ADS)
Plissi, M. V.; Rogers, A. J.; Brassington, D. J.; Wilson, M. G. F.
1995-08-01
The implementation of a twin Mach-Zehnder reference interferometer in an integrated optics substrate is described. From measurements of the fringe visibilities, an identification of the fringe order is attempted as a way to provide an absolute sensor for any parameter capable of modifying the difference in path length between two interfering optical paths.
Explaining Technology Integration in K-12 Classrooms: A Multilevel Path Analysis Model
ERIC Educational Resources Information Center
Liu, Feng; Ritzhaupt, Albert D.; Dawson, Kara; Barron, Ann E.
2017-01-01
The purpose of this research was to design and test a model of classroom technology integration in the context of K-12 schools. The proposed multilevel path analysis model includes teacher, contextual, and school related variables on a teacher's use of technology and confidence and comfort using technology as mediators of classroom technology…
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesé, Luis M., E-mail: msese@ccia.uned.es
2016-03-07
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) thatmore » can be useful to characterize freezing.« less
Spin Path Integrals and Generations
NASA Astrophysics Data System (ADS)
Brannen, Carl
2010-11-01
The spin of a free electron is stable but its position is not. Recent quantum information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown that the Feynman position path integral can be mathematically defined as a product of incompatible states; that is, as a product of mutually unbiased bases (MUBs). Since the more common use of MUBs is in finite dimensional Hilbert spaces, this raises the question “what happens when spin path integrals are computed over products of MUBs?” Such an assumption makes spin no longer stable. We show that the usual spin-1/2 is obtained in the long-time limit in three orthogonal solutions that we associate with the three elementary particle generations. We give applications to the masses of the elementary leptons.
Data assimilation using a GPU accelerated path integral Monte Carlo approach
NASA Astrophysics Data System (ADS)
Quinn, John C.; Abarbanel, Henry D. I.
2011-09-01
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
Actively learning human gaze shifting paths for semantics-aware photo cropping.
Zhang, Luming; Gao, Yue; Ji, Rongrong; Xia, Yingjie; Dai, Qionghai; Li, Xuelong
2014-05-01
Photo cropping is a widely used tool in printing industry, photography, and cinematography. Conventional cropping models suffer from the following three challenges. First, the deemphasized role of semantic contents that are many times more important than low-level features in photo aesthetics. Second, the absence of a sequential ordering in the existing models. In contrast, humans look at semantically important regions sequentially when viewing a photo. Third, the difficulty of leveraging inputs from multiple users. Experience from multiple users is particularly critical in cropping as photo assessment is quite a subjective task. To address these challenges, this paper proposes semantics-aware photo cropping, which crops a photo by simulating the process of humans sequentially perceiving semantically important regions of a photo. We first project the local features (graphlets in this paper) onto the semantic space, which is constructed based on the category information of the training photos. An efficient learning algorithm is then derived to sequentially select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path, which simulates humans actively perceiving semantics in a photo. Furthermore, we learn a prior distribution of such active graphlet paths from training photos that are marked as aesthetically pleasing by multiple users. The learned priors enforce the corresponding active graphlet path of a test photo to be maximally similar to those from the training photos. Experimental results show that: 1) the active graphlet path accurately predicts human gaze shifting, and thus is more indicative for photo aesthetics than conventional saliency maps and 2) the cropped photos produced by our approach outperform its competitors in both qualitative and quantitative comparisons.
Golkhou, V; Parnianpour, M; Lucas, C
2004-01-01
In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.
The role of spatial memory and frames of reference in the precision of angular path integration.
Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David
2012-09-01
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.
Accelerated path integral methods for atomistic simulations at ultra-low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, Felix, E-mail: felix.uhl@rub.de; Marx, Dominik; Ceriotti, Michele
2016-08-07
Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated pathmore » integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH{sub 5}{sup +}. We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH{sub 4} to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.« less
NASA Astrophysics Data System (ADS)
Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu
2018-04-01
A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.
A taxonomy of integral reaction path analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examplesmore » illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.« less
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
Canada's Composite Learning Index: A Path Towards Learning Communities
ERIC Educational Resources Information Center
Cappon, Paul; Laughlin, Jarrett
2013-01-01
In the development of learning cities/communities, benchmarking progress is a key element. Not only does it permit cities/communities to assess their current strengths and weaknesses, it also engenders a dialogue within and between cities/communities on the means of enhancing learning conditions. Benchmarking thereby is a potentially motivational…
Zamora-López, Gorka; Zhou, Changsong; Kurths, Jürgen
2009-01-01
Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated) from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration). The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i) modular organisation (facilitating the segregation), (ii) abundant alternative processing paths and (iii) the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information. PMID:20428515
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...
Shek, Daniel T L; Chak, Yammy L Y
2010-01-01
To facilitate the implementation of the Secondary 1 to Secondary 3 program of the Project P.A.T.H.S. in Hong Kong, systematic training programs are designed for the potential program implementers. The rationales, objectives and design of the Secondary 1 to Secondary 3 training programs are outlined in this paper. The training programs cover theories of adolescent development, positive youth development, background and curricula of the Project P.A.T.H.S., factors affecting program implementation quality and evaluation of the project. Besides introducing the curriculum units, the training programs also focus on nature of learning and related theories (particularly experiential learning), teaching methods and instructional techniques, motivating students, and classroom management.
ERIC Educational Resources Information Center
Williamson, Amy; Dillon, Robert; Immings, Natalie; Jensen, Crystal
2014-01-01
Additional career paths are an element of improvement on the traditional career ladder concept in education. A culture of growth offers teachers opportunities that can greatly expand their careers while substantially enhancing student learning. The career paths summarised in this article, describe some additional opportunities for education…
From conformal blocks to path integrals in the Vaidya geometry
NASA Astrophysics Data System (ADS)
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian
2017-09-01
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order to correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.
Reductionism, Paradigm Shifts, and Learning Disabilities.
ERIC Educational Resources Information Center
Forness, Steven R.
1988-01-01
In response to two papers decrying reductionism and advocating holistic constructivism in models of learning disabilities, the article applauds trends toward a shifting paradigm in the field but warns against advocating any single approach as the only valid path to effective learning. (DB)
An Alternative to Anesthetic Learning Climates
ERIC Educational Resources Information Center
Epperson, David C.
1975-01-01
On the premise that the college classroom should heighten, not cool, a zeal for learning, the author proposes that colleges extend the range of alternative paths to personal growth through a program of voluntary temporary learning communities using diverse modes of inquiry. (JT)
Traces d'apprentissage (Path of Learning).
ERIC Educational Resources Information Center
Allouche, Victor
1996-01-01
A French professor teaching in Australia, and learning to cope with the distinctive features of Australian English, reflects on second-language learning processes and their implications for language teaching. Topics discussed include verbal versus nonverbal communication, authentic language situations, cultural context, developing…
Organisational Learning: A New Perspective.
ERIC Educational Resources Information Center
O'Keefe, Ted
2002-01-01
A study of Irish multinational companies identified antecedents to organizational learning: nature of global business, anthropomorphism, dissatisfaction with traditional paradigms, customer-responsive culture, and intellectual capital. The path to the learning organization builds on these antecedents in an environment of innovation focused on…
Teaching advanced science concepts through Freshman Research Immersion
NASA Astrophysics Data System (ADS)
Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.
2017-03-01
We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.
Developing a UAS Program for Electric Utilities
NASA Astrophysics Data System (ADS)
Keltgen, James
New innovations and technologies using unmanned aerial systems (UAS), or drones, have created unique opportunities for commercial applications. Electric utilities, likewise, realize the benefits of using UAS as a tool in electric utility operations. Although the opportunities exist, establishing a UAS program for electric utilities is largely an endeavor of trial and error or research and development with no clear path defined on how to establish a UAS program. By reviewing UAS use case examples and integrating lessons learned with Federal Aviation Administration (FAA) regulations, UAS best practices, unique electric utility values, legal and insurance perspectives, equipment selection, and thoughtful planning and preparation; a solution model is developed to establish a UAS program for electric utilities.
Desert ants learn vibration and magnetic landmarks.
Buehlmann, Cornelia; Hansson, Bill S; Knaden, Markus
2012-01-01
The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.
Deterministic quantum annealing expectation-maximization algorithm
NASA Astrophysics Data System (ADS)
Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki
2017-11-01
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
NASA Astrophysics Data System (ADS)
Richter, Martin; Fingerhut, Benjamin P.
2017-06-01
The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.
Payne, Velma L; Medvedeva, Olga; Legowski, Elizabeth; Castine, Melissa; Tseytlin, Eugene; Jukic, Drazen; Crowley, Rebecca S
2009-11-01
Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement. Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined. Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path. Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path.
Concept Based Approach for Adaptive Personalized Course Learning System
ERIC Educational Resources Information Center
Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali
2013-01-01
One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…
A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Kuo, Fan-Ray; Yin, Peng-Yeng; Chuang, Kuo-Hsien
2010-01-01
In a context-aware ubiquitous learning environment, learning systems can detect students' learning behaviors in the real-world with the help of context-aware (sensor) technology; that is, students can be guided to observe or operate real-world objects with personalized support from the digital world. In this study, an optimization problem that…
ERIC Educational Resources Information Center
Su, Chung-Ho
2017-01-01
Since recommendation systems possess the advantage of adaptive recommendation, they have gradually been applied to e-learning systems to recommend subsequent learning content for learners. However, problems exist in current learning recommender systems available to students in that they are often general learning content and unable to offer…
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser
During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; ...
2017-02-20
The brain is capable of massively parallel information processing while consuming only ~1- 100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low energymore » (<10 pJ for 10 3 μm 2 devices) and voltage, displays >500 distinct, non-volatile conductance states within a ~1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODEs are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with 3D architectures, opening a path towards extreme interconnectivity comparable to the human brain.« less
NASA Astrophysics Data System (ADS)
van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto
2017-04-01
The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a ~1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.
van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J; Keene, Scott T; Faria, Grégorio C; Agarwal, Sapan; Marinella, Matthew J; Alec Talin, A; Salleo, Alberto
2017-04-01
The brain is capable of massively parallel information processing while consuming only ∼1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 10 3 μm 2 devices), displays >500 distinct, non-volatile conductance states within a ∼1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.
ERIC Educational Resources Information Center
Miller, Melvin E., Ed.; Cook-Greuter, Susanne R., Ed.
This book contains 11 papers on creativity, spirituality, and transcendence as paths to integrity and wisdom in the mature self. The book begins with the paper "Introduction--Creativity in Adulthood: Personal Maturity and Openness to Extraordinary Sources of Inspiration" (Susanne R. Cook-Greuter, Melvin E. Miller). The next four papers,…
ERIC Educational Resources Information Center
Field, J. H.
2011-01-01
It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…
Finding the way with a noisy brain.
Cheung, Allen; Vickerstaff, Robert
2010-11-11
Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Dalbotten, D. M.; Hooper, R. P.; Pollak, J.; Geosling, E.
2014-12-01
"All water is local." For geoscientist researchers and educators, this simple statement underlies potentially powerful ways to engage students around hydrologic and engineering concepts. Education research has given us strong insight into how students learn. Place-based education gives students a personal and geographical context to connect concepts and processes to their everyday lives. Data-driven exercises build inquiry and critical thinking skills. With the ubiquity of water, the critical roles it plays in earth systems, and its influence on ecosystems, climate, geologic processes, economies, and human health, integrating water data and place-based exercises into the classroom is an excellent opportunity to enhance student learning and stimulate interest in the geosciences. THE CUAHSI Water Data Center (WDC), established in 2013, is the culmination of a decade of work to adapt modern web services technology to work on time-series data (such as a gage record or water-quality series), the most common water data type. It provides unprecedented consolidated access to water quantity and quality data across the US (and increasingly across the world). This allows educators to craft learning exercises around key concepts and locations, from rote problem sets to more exploratory investigations. The web services technology used address key limitations - such as difficulty in discovering data, co-locating data, and download options and access- that have been identified as barriers to integrating real data in classroom exercises. This presentation discusses key aspects of the system, provides example exercises, and discusses how we seek to engage the community to effectively chart a path forward for further development of both the technological and education resources.
Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani
2003-04-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.
Path integration of the time-dependent forced oscillator with a two-time quadratic action
NASA Astrophysics Data System (ADS)
Zhang, Tian Rong; Cheng, Bin Kang
1986-03-01
Using the prodistribution theory proposed by DeWitt-Morette [C. DeWitt-Morette, Commun. Math. Phys. 28, 47 (1972); C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep. 50, 257 (1979)], the path integration of a time-dependent forced harmonic oscillator with a two-time quadratic action has been given in terms of the solutions of some integrodifferential equations. We then evaluate explicitly both the classical path and the propagator for the specific kernel introduced by Feynman in the polaron problem. Our results include the previous known results as special cases.
Rao, Y; Xiao, P; Xu, S
2001-02-09
Effects of intrahippocampal treatment of aniracetam, a selective agonist for DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproionic acid (AMPA) receptors, on Y-maze avoidance learning task and behavioral long-term potentiation (LTP) in perforant path-dentate gyrus were studied in freely moving rats by using in vivo electrophysiology combined with behavioral tests. The results were as follows: (1) intrahippocampal treatment of aniracetam reversibly enhanced basal synaptic transmission in perforant path to dentate gyrus in a dosage dependent manner; (2) aniracetam produced improvement in Y-maze learning performance when administration occurred 5 min prior to maze learning; (3) aniracetam administration significantly facilitated behavioral LTP in dentate gyrus, while the maximal amplitude of LTP has no significant difference when compared to saline group. The present results indicate that hippocampal AMPA receptors are involved in learning and memory.
Making the Most of Education and Training: An Employer Perspective.
ERIC Educational Resources Information Center
Pollitt, David, Ed.
2002-01-01
Eleven articles focus on issues surrounding employer investment in training in Britain. Topics include employee induction, flexible lifelong learning, workplace learning partnerships, retention through training, management development, cooperation with competitors, technician career paths to management, online learning in small businesses, and…
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
Daugherty, Ana M; Bender, Andrew R; Yuan, Peng; Raz, Naftali
2016-06-01
Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19-75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1-2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1-2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2012-01-01
Background Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. Results In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. Conclusions We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath. PMID:23282057
Examining the Interrelations among Knowledge, Interests, and Learning Strategies
ERIC Educational Resources Information Center
Shen, Bo; Chen, Ang
2006-01-01
Guided by the Model of Domain Learning (MDL), the study was designed to explore the extent of interrelations among prior knowledge, learning strategies, interests, physical engagement, and learning outcomes in a sixth-grade (N = 91) volleyball unit. Pearson product-moment correlations and a path analysis were conducted for the research purpose.…
Beyond the Factory Model: Oakland Teachers Learn How to Blend
ERIC Educational Resources Information Center
Jacobs, Joanne
2014-01-01
This article describes an Oakland Unified schools program of "blended learning" that is designed to reach students who are academically all over the map. Blended learning combines brick-and-mortar schooling with online education "with some element of student control over time, place, path, and/or pace" of learning. The program…
Self-Organising Navigational Support in Lifelong Learning: How Predecessors Can Lead the Way
ERIC Educational Resources Information Center
Janssen, Jose; Tattersall, Colin; Waterink, Wim; van den Berg, Bert; van Es, Rene; Bolman, Catherine; Koper, Rob
2007-01-01
Increased flexibility and modularisation in higher education complicates the process of learners finding their way through the offerings of higher education institutions. In lifelong learning, where learning opportunities are diverse and reach beyond institutional boundaries, it becomes even more complex to decide on a learning path. However,…
ERIC Educational Resources Information Center
Moss, Leah; Brown, Andy
2014-01-01
Recognition of Acquired Competencies (RAC) as it is known in Quebec, Canada, or Prior Learning Assessment (PLA), requires a learner to engage in retrospective thought about their learning path, their learning style and their experiential knowledge. This process of critical self-reflection and rigorous analysis by the learner of their prior…
ERIC Educational Resources Information Center
Wink, Rüdiger; Kirchner, Laura; Koch, Florian; Speda, Daniel
2015-01-01
This paper links two strands of literature (collective learning and resilience) by looking at experiences with collective learning as precondition of regional economic resilience. Based on a qualitative empirical study, the emergence of collective learning structures in the Stuttgart region after a macroeconomic and structural crisis at the…
Neural Measures Reveal Implicit Learning during Language Processing.
Batterink, Laura J; Cheng, Larry Y; Paller, Ken A
2016-10-01
Language input is highly variable; phonological, lexical, and syntactic features vary systematically across different speakers, geographic regions, and social contexts. Previous evidence shows that language users are sensitive to these contextual changes and that they can rapidly adapt to local regularities. For example, listeners quickly adjust to accented speech, facilitating comprehension. It has been proposed that this type of adaptation is a form of implicit learning. This study examined a similar type of adaptation, syntactic adaptation, to address two issues: (1) whether language comprehenders are sensitive to a subtle probabilistic contingency between an extraneous feature (font color) and syntactic structure and (2) whether this sensitivity should be attributed to implicit learning. Participants read a large set of sentences, 40% of which were garden-path sentences containing temporary syntactic ambiguities. Critically, but unbeknownst to participants, font color probabilistically predicted the presence of a garden-path structure, with 75% of garden-path sentences (and 25% of normative sentences) appearing in a given font color. ERPs were recorded during sentence processing. Almost all participants indicated no conscious awareness of the relationship between font color and sentence structure. Nonetheless, after sufficient time to learn this relationship, ERPs time-locked to the point of syntactic ambiguity resolution in garden-path sentences differed significantly as a function of font color. End-of-sentence grammaticality judgments were also influenced by font color, suggesting that a match between font color and sentence structure increased processing fluency. Overall, these findings indicate that participants can implicitly detect subtle co-occurrences between physical features of sentences and abstract, syntactic properties, supporting the notion that implicit learning mechanisms are generally operative during online language processing.
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
Bressloff, Paul C
2015-01-01
We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.
Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H
2012-05-10
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.
Integrated System Health Management (ISHM) Technology Demonstration Project Final Report
NASA Technical Reports Server (NTRS)
Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken
2006-01-01
Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.
Adaptivity in Game-Based Learning: A New Perspective on Story
NASA Astrophysics Data System (ADS)
Berger, Florian; Müller, Wolfgang
Game-based learning as a novel form of e-learning still has issues in fundamental questions, the lack of a general model for adaptivity being one of them. Since adaptive techniques in traditional e-learning applications bear close similarity to certain interactive storytelling approaches, we propose a new notion of story as the joining element of arbitraty learning paths.
A global solution to the Schrödinger equation: From Henstock to Feynman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanson, Ekaterina S., E-mail: enathanson@ggc.edu; Jørgensen, Palle E. T., E-mail: palle-jorgensen@uiowa.edu
2015-09-15
One of the key elements of Feynman’s formulation of non-relativistic quantum mechanics is a so-called Feynman path integral. It plays an important role in the theory, but it appears as a postulate based on intuition, rather than a well-defined object. All previous attempts to supply Feynman’s theory with rigorous mathematics underpinning, based on the physical requirements, have not been satisfactory. The difficulty comes from the need to define a measure on the infinite dimensional space of paths and to create an integral that would possess all of the properties requested by Feynman. In the present paper, we consider a newmore » approach to defining the Feynman path integral, based on the theory developed by Muldowney [A Modern Theory of Random Variable: With Applications in Stochastic Calcolus, Financial Mathematics, and Feynman Integration (John Wiley & Sons, Inc., New Jersey, 2012)]. Muldowney uses the Henstock integration technique and deals with non-absolute integrability of the Fresnel integrals, in order to obtain a representation of the Feynman path integral as a functional. This approach offers a mathematically rigorous definition supporting Feynman’s intuitive derivations. But in his work, Muldowney gives only local in space-time solutions. A physical solution to the non-relativistic Schrödinger equation must be global, and it must be given in the form of a unitary one-parameter group in L{sup 2}(ℝ{sup n}). The purpose of this paper is to show that a system of one-dimensional local Muldowney’s solutions may be extended to yield a global solution. Moreover, the global extension can be represented by a unitary one-parameter group acting in L{sup 2}(ℝ{sup n})« less
Processor Would Find Best Paths On Map
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P.
1990-01-01
Proposed very-large-scale integrated (VLSI) circuit image-data processor finds path of least cost from specified origin to any destination on map. Cost of traversal assigned to each picture element of map. Path of least cost from originating picture element to every other picture element computed as path that preserves as much as possible of signal transmitted by originating picture element. Dedicated microprocessor at each picture element stores cost of traversal and performs its share of computations of paths of least cost. Least-cost-path problem occurs in research, military maneuvers, and in planning routes of vehicles.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
Path integral analysis of Jarzynski's equality: Analytical results
NASA Astrophysics Data System (ADS)
Minh, David D. L.; Adib, Artur B.
2009-02-01
We apply path integrals to study nonequilibrium work theorems in the context of Brownian dynamics, deriving in particular the equations of motion governing the most typical and most dominant trajectories. For the analytically soluble cases of a moving harmonic potential and a harmonic oscillator with a time-dependent natural frequency, we find such trajectories, evaluate the work-weighted propagators, and validate Jarzynski’s equality.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
NASA Astrophysics Data System (ADS)
Louko, Jorma
2007-04-01
Bastianelli and van Nieuwenhuizen's monograph `Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaumé and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a heightened appreciation of the central role of regularization as a defining ingredient of a quantum field theory and will be impressed by the agreement of results arising from different regularization schemes. The readers may in particular enjoy the authors' `brief history of anomalies' in quantum field theory, as well as a similar historical discussion of path integrals in quantum mechanics.
Acetylcholine contributes to the integration of self-movement cues in head direction cells.
Yoder, Ryan M; Chan, Jeremy H M; Taube, Jeffrey S
2017-08-01
Acetylcholine contributes to accurate performance on some navigational tasks, but details of its contribution to the underlying brain signals are not fully understood. The medial septal area provides widespread cholinergic input to various brain regions, but selective damage to medial septal cholinergic neurons generally has little effect on landmark-based navigation, or the underlying neural representations of location and directional heading in visual environments. In contrast, the loss of medial septal cholinergic neurons disrupts navigation based on path integration, but no studies have tested whether these path integration deficits are associated with disrupted head direction (HD) cell activity. Therefore, we evaluated HD cell responses to visual cue rotations in a familiar arena, and during navigation between familiar and novel arenas, after muscarinic receptor blockade with systemic atropine. Atropine treatment reduced the peak firing rate of HD cells, but failed to significantly affect other HD cell firing properties. Atropine also failed to significantly disrupt the dominant landmark control of the HD signal, even though we used a procedure that challenged this landmark control. In contrast, atropine disrupted HD cell stability during navigation between familiar and novel arenas, where path integration normally maintains a consistent HD cell signal across arenas. These results suggest that acetylcholine contributes to path integration, in part, by facilitating the use of idiothetic cues to maintain a consistent representation of directional heading. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Stark, Michael; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
My assertion is that not only are product lines a relevant research topic, but that the tools used by empirical software engineering researchers can address observed practical problems. Our experience at NASA has been there are often externally proposed solutions available, but that we have had difficulties applying them in our particular context. We have also focused on return on investment issues when evaluating product lines, and while these are important, one can not attain objective data on success or failure until several applications from a product family have been deployed. The use of the Quality Improvement Paradigm (QIP) can address these issues: (1) Planning an adoption path from an organization's current state to a product line approach; (2) Constructing a development process to fit the organization's adoption path; (3) Evaluation of product line development processes as the project is being developed. The QIP consists of the following six steps: (1) Characterize the project and its environment; (2) Set quantifiable goals for successful project performance; (3) Choose the appropriate process models, supporting methods, and tools for the project; (4) Execute the process, analyze interim results, and provide real-time feedback for corrective action; (5) Analyze the results of completed projects and recommend improvements; and (6) Package the lessons learned as updated and refined process models. A figure shows the QIP in detail. The iterative nature of the QIP supports an incremental development approach to product lines, and the project learning and feedback provide the necessary early evaluations.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
NASA Astrophysics Data System (ADS)
Allen, David
Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.
Integrating language models into classifiers for BCI communication: a review
NASA Astrophysics Data System (ADS)
Speier, W.; Arnold, C.; Pouratian, N.
2016-06-01
Objective. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. Approach. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Main results. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Significance. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
Integrating language models into classifiers for BCI communication: a review.
Speier, W; Arnold, C; Pouratian, N
2016-06-01
The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
System and method for interfacing large-area electronics with integrated circuit devices
Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd
2016-07-12
A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.
Path-integral representation for the relativistic particle propagators and BFV quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, E.S.; Gitman, D.M.
1991-11-15
The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.
NASA Astrophysics Data System (ADS)
Poon, Chew-Leng; Lee, Yew-Jin; Tan, Aik-Ling; Lim, Shirley S. L.
2012-04-01
In this paper, we characterize the inquiry practices of four elementary school teachers by means of a pedagogical framework. Our study revealed core components of inquiry found in theoretically-driven models as well as practices that were regarded as integral to the success of day-to-day science teaching in Singapore. This approach towards describing actual science inquiry practices—a surprisingly neglected area—uncovered nuances in teacher instructions that can impact inquiry-based lessons as well as contribute to a practice-oriented perspective of science teaching. In particular, we found that these teachers attached importance to (a) preparing students for investigations, both cognitively and procedurally; (b) iterating pedagogical components where helping students understand and construct concepts did not follow a planned linear path but involved continuous monitoring of learning; and (c) synthesizing concepts in a consolidation phase. Our findings underscore the dialectical relationship between practice-oriented knowledge and theoretical conceptions of teaching/learning thereby helping educators better appreciate how teachers adapt inquiry science for different contexts.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic coordinates from the Python interface, and to return the forces and energy that are used to integrate the equations of motion. Restrictions: This code only deals with distinguishable particles. It does not include fermonic or bosonic exchanges between equivalent nuclei, which can become important at very low temperatures. Running time: Depends dramatically on the nature of the simulation being performed. A few minutes for short tests with empirical force fields, up to several weeks for production calculations with ab initio forces. The examples provided with the code run in less than an hour.
ERIC Educational Resources Information Center
Komlenov, Zivana; Budimac, Zoran; Ivanovic, Mirjana
2010-01-01
In order to improve the learning process for students with different pre-knowledge, personal characteristics and preferred learning styles, a certain degree of adaptability must be introduced to online courses. In learning environments that support such kind of functionalities students can explicitly choose different paths through course contents…
Preparing Students to Learn without Us
ERIC Educational Resources Information Center
Richardson, Will
2012-01-01
In this era of access, personalizing learning means allowing students to choose their own paths through the curriculum. However, the ability to learn what we want, when we want it, and with whomever we want creates a huge push against a system of education steeped in time-and-place learning. Fundamental changes need to happen in schools to provide…
Path-integral theory of an axially confined worm-like chain
NASA Astrophysics Data System (ADS)
Smith, D. A.
2001-06-01
A path-integral formulation is developed for the thermodynamic properties of a worm-like chain moving on a surface and laterally confined by a harmonic potential. The free energy of the chain is calculated as a function of its length and boundary conditions at each end. Distribution functions for chain displacements can be constructed by utilizing the Markov property as a function of displacement φ(s) and its derivative dφ(s)/ds along the path. These quantities are also calculated in the presence of pinning sites which impose fixed positive or negative displacements, foreshadowing their application to a model for the regulation of striated muscle.
Critique of Coleman's Theory of the Vanishing Cosmological Constant
NASA Astrophysics Data System (ADS)
Susskind, Leonard
In these lectures I would like to review some of the criticisms to the Coleman worm-hole theory of the vanishing cosmological constant. In particular, I would like to focus on the most fundamental assumption that the path integral over topologies defines a probability for the cosmological constant which has the form EXP(A) with A being the Baum-Hawking-Coleman saddle point. Coleman argues that the euclideam path integral over all geometries may be dominated by special configurations which consist of large smooth "spheres" connected by any number of narrow wormholes. Formally summing up such configurations gives a very divergent expression for the path integral…
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong
2015-01-01
The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.
EuPathDB: the eukaryotic pathogen genomics database resource
Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie
2017-01-01
The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Short-Path Statistics and the Diffusion Approximation
NASA Astrophysics Data System (ADS)
Blanco, Stéphane; Fournier, Richard
2006-12-01
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
Bahrami, Mohammad Amin; Kiani, Mohammad Mehdi; Montazeralfaraj, Raziye; Zadeh, Hossein Fallah; Zadeh, Morteza Mohammad
2016-06-01
Organizational learning is defined as creating, absorbing, retaining, transferring, and application of knowledge within an organization. This article aims to examine the mediating role of organizational learning in the relationship of organizational intelligence and organizational agility. This analytical and cross-sectional study was conducted in 2015 at four teaching hospitals of Yazd city, Iran. A total of 370 administrative and medical staff contributed to the study. We used stratified-random method for sampling. Required data were gathered using three valid questionnaires including Alberkht (2003) organizational intelligence, Neefe (2001) organizational learning, and Sharifi and Zhang (1999) organizational agility questionnaires. Data analysis was done through R and SPSS 18 statistical software. The results showed that organizational learning acts as a mediator in the relationship of organizational intelligence and organizational agility (path coefficient = 0.943). Also, organizational learning has a statistical relationship with organizational agility (path coefficient = 0.382). Our findings suggest that the improvement of organizational learning abilities can affect an organization's agility which is crucial for its survival.
From conformal blocks to path integrals in the Vaidya geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anous, Tarek; Hartman, Thomas; Rovai, Antonin
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less
Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui
2017-02-06
Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.
From conformal blocks to path integrals in the Vaidya geometry
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; ...
2017-09-04
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less
ERIC Educational Resources Information Center
Leonard, H. Skipton
2015-01-01
Clients and practitioners alike are often confused about the ultimate purpose of action learning (AL). Because of the title of the method, many believe the primary goal of AL is to generate learning. This article clarifies the relationship between action, learning, and solutions. It also provides historical evidence to support the conclusion that…
Integration of Hierarchical Goal Network Planning and Autonomous Path Planning
2016-03-01
Conference on Robotics and Automation (ICRA); 2010 May 3– 7; Anchorage, AK. p. 2902–2908. 4. Ayan NF, Kuter U, Yaman F, Goldman RP. Hotride...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Automated planning has...world robotic systems. This report documents work to integrate a hierarchical goal network planning algorithm with low-level path planning. The system
Batalin-Vilkovisky quantization and generalizations
NASA Astrophysics Data System (ADS)
Bering, Klaus
Gauge theories play an important role in modern physics. Whenever a gauge symmetry is present, one should provide for a manifestly gauge independent formalism. It turns out that the BRST symmetry plays a prominent part in providing the gauge independence. The importance of gauge independence in the Hamiltonian Batalin-Fradkin-Fradkina- Vilkovisky formalism and in the Lagrangian Batalin- Vilkovisky formalism is stressed. Parallels are drawn between the various theories. A Hamiltonian path integral that takes into account quantum ordering effects arising in the operator formalism, should be written with the help of the star- multiplication or the Moyal bracket. It is generally believed, that this leads to higher order quantum corrections in the corresponding Lagrangian path integral. A higher order Lagrangian path integral based on a nilpotent higher order odd Laplacian is proposed. A new gauge independence mechanism that adapts to the higher order formalism, and that by-passes the problem of constructing a BRST transformation of the path integral in the higher order case, is developed. The new gauge mechanism is closely related to the cohomology of the odd Laplacian operator. Various cohomology aspects of the odd Laplacian are investigated. Whereas for instance the role of the ghost-cohomology properties of the BFV-BRST charge has been emphasized by several authors, the cohomology of the odd Laplacian are in general not well known.
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
NASA Astrophysics Data System (ADS)
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
Intellectual Estuaries: Connecting Learning and Creativity in Programs of Advanced Academics
ERIC Educational Resources Information Center
Beghetto, Ronald A.; Kaufman, James C.
2009-01-01
Academic learning and creativity should be overlapping goals that can be simultaneously pursued in programs of advanced academics. However, efforts aimed at nurturing creativity and academic learning sometimes are represented as two related but separate paths; this separation is unnecessary and can undermine the development of creative and…
A Path to the Future: Creating Accountability for Personalized Learning
ERIC Educational Resources Information Center
Hyslop, Anne; Mead, Sara
2015-01-01
A small but growing number of schools and districts across the country are experimenting with personalized learning, an innovation that customizes students' experiences to their individual needs and strengths. Through new kinds of environments, technologies, and ways to demonstrate their knowledge, personalized learning aims to meet students where…
Women and Men of the Engineering Path: A Model for Analyses of Undergraduate Careers.
ERIC Educational Resources Information Center
Adelman, Clifford
This monograph provides college academic administrators, institutional researchers, professional and learned societies, and academic advisors with information to improve understanding of the paths students take through engineering programs in higher education. The evidence used in this study comes principally from the 11-year college transcript…
2016-11-01
personnel, career paths for program managers, plans to strengthen program management, and use of special hiring authorities) Monitor and report...agencies with direct hiring authority for program managers and directed OPM to create a specialized career path. OMB also tasked agencies with...guidance for developing career paths for IT program managers.14 OPM’s career path guide was to build upon its IT Program Management Competency Model
Exploration of optical classroom teaching by network platform
NASA Astrophysics Data System (ADS)
Jiao, Zheng; Ma, Kun
2017-08-01
The investigation shows that the difficulties students encounter in the course of optics are mainly due to the abstraction of the content of the optical course, and the problem that the description of the physical phenomenon and process is difficult to show in the classroom teaching. We consider to integrate information technology with classroom teaching. Teachers can set up course websites and create more teaching resources, such as videos of experimental processes, design of simulated optical paths, mock demonstration of optical phenomena, and so on. Teachers can use the courseware to link the resources of the website platform, and display the related resources to the students. After class, students are also able to learn through the website, which is helpful to their study.
Supervision--growing and building a sustainable general practice supervisor system.
Thomson, Jennifer S; Anderson, Katrina J; Mara, Paul R; Stevenson, Alexander D
2011-06-06
This article explores various models and ideas for future sustainable general practice vocational training supervision in Australia. The general practitioner supervisor in the clinical practice setting is currently central to training the future general practice workforce. Finding ways to recruit, retain and motivate both new and experienced GP teachers is discussed, as is the creation of career paths for such teachers. Some of the newer methods of practice-based teaching are considered for further development, including vertically integrated teaching, e-learning, wave consulting and teaching on the run, teaching teams and remote teaching. Approaches to supporting and resourcing teaching and the required infrastructure are also considered. Further research into sustaining the practice-based general practice supervision model will be required.
Origin of the spike-timing-dependent plasticity rule
NASA Astrophysics Data System (ADS)
Cho, Myoung Won; Choi, M. Y.
2016-08-01
A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.
A Petri-net coordination model for an intelligent mobile robot
NASA Technical Reports Server (NTRS)
Wang, F.-Y.; Kyriakopoulos, K. J.; Tsolkas, A.; Saridis, G. N.
1990-01-01
The authors present a Petri net model of the coordination level of an intelligent mobile robot system (IMRS). The purpose of this model is to specify the integration of the individual efforts on path planning, supervisory motion control, and vision systems that are necessary for the autonomous operation of the mobile robot in a structured dynamic environment. This is achieved by analytically modeling the various units of the system as Petri net transducers and explicitly representing the task precedence and information dependence among them. The model can also be used to simulate the task processing and to evaluate the efficiency of operations and the responsibility of decisions in the coordination level of the IMRS. Some simulation results on the task processing and learning are presented.
A Path Less Chosen: An Assessment of the School of Advanced Military Studies
2014-05-22
the theory learned in course one.40 This course used theory , history, doctrine (both US and Soviet), and practical exercises to study the basic...relationships between learning domains, levels of learning and learning objectives, and the experiential learning model.96 In short, there is a major emphasis...discussion. There are multiple theories of education related to the use of discussion in learning . The most frequently cited or referred to amongst
Song, Lulu; Pulverman, Rachel; Pepe, Christina; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy
2016-01-01
Learning a language is more than learning its vocabulary and grammar. For example, compared to English, Spanish uses many more path verbs such as ascender (‘to move upward’) and salir (‘to go out’), and expresses manner of motion optionally. English, in contrast, has many manner verbs (e.g., run, jog) and expresses path in prepositional phrases (e.g., out of the barn). The way in which a language encodes an event is known as its lexicalization pattern or bias. Using a written sentence elicitation task, we asked whether adult Spanish learners whose L1 was English adopted Spanish lexicalization biases, and what types of L2 exposure facilitated the learning of lexicalization biases. Results showed that advanced, but not intermediate, adult Spanish learners showed a path bias comparable to that found in native speakers of Spanish. Furthermore, study abroad experience is associated with better acquisition of L2 lexicalization biases when describing certain types of events. PMID:27103880
ERIC Educational Resources Information Center
Karagiannopoulou, Evangelia; Milienos, Fotios S.
2015-01-01
The study explores the relationships between students' experiences of the teaching-learning environment and their approaches to learning, and the effects of these variables on academic achievement. Two three-stage models were tested with structural equation modelling techniques. The "Approaches and Study Skills Inventory for Students"…
Increase Student Engagement through Project-Based Learning. Best Practices Newsletter
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2015
2015-01-01
We learn by doing. This simple philosophy is at the heart of project-based learning in the 21st-century classroom. It is grounded in the belief that the stand and lecture approach to teaching, worksheets and rote memorization are not enough to move students down a path to the deep learning necessary for success in college and careers. Essential…
ERIC Educational Resources Information Center
Fuson, Karen C.
2009-01-01
This article provides an overview of some perspectives about special issues in classroom mathematical teaching and learning that have stemmed from the huge explosion of research in children's mathematical thinking stimulated by Piaget. It concentrates on issues that are particularly important for less-advanced learners and for those who might be…
ERIC Educational Resources Information Center
Chen, Baiyun; Sivo, Stephen; Seilhamer, Ryan; Sugar, Amy; Mao, Jin
2013-01-01
Mobile learning is a fast growing trend in higher education. This study examined how an extended technology acceptance model (TAM) could evaluate and predict the use of a mobile application in learning. A path analysis design was used to measure the mediating effects on the use of Blackboard's Mobile™ Learn application in coursework (N = 77). The…
Learning cellular sorting pathways using protein interactions and sequence motifs.
Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F
2011-11-01
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.
Perceptually Guided Photo Retargeting.
Xia, Yingjie; Zhang, Luming; Hong, Richang; Nie, Liqiang; Yan, Yan; Shao, Ling
2016-04-22
We propose perceptually guided photo retargeting, which shrinks a photo by simulating a human's process of sequentially perceiving visually/semantically important regions in a photo. In particular, we first project the local features (graphlets in this paper) onto a semantic space, wherein visual cues such as global spatial layout and rough geometric context are exploited. Thereafter, a sparsity-constrained learning algorithm is derived to select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path which simulates how a human actively perceives semantics in a photo. Furthermore, we learn the prior distribution of such active graphlet paths (AGPs) from training photos that are marked as esthetically pleasing by multiple users. The learned priors enforce the corresponding AGP of a retargeted photo to be maximally similar to those from the training photos. On top of the retargeting model, we further design an online learning scheme to incrementally update the model with new photos that are esthetically pleasing. The online update module makes the algorithm less dependent on the number and contents of the initial training data. Experimental results show that: 1) the proposed AGP is over 90% consistent with human gaze shifting path, as verified by the eye-tracking data, and 2) the retargeting algorithm outperforms its competitors significantly, as AGP is more indicative of photo esthetics than conventional saliency maps.
General Path-Integral Successive-Collision Solution of the Bounded Dynamic Multi-Swarm Problem.
1983-09-23
coefficients (i.e., moments of the distribution functions), and/or (il) fnding the distribution functions themselves. The present work is concerned with the...collisions since their first appearance in the system. By definition, a swarm particle sufers a *generalized collision" either when it collides with a...studies6-rand the present work have contributed to- wards making the path-integral successive-collision method a practicable tool of transport theory
Spin foam models for quantum gravity from lattice path integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonzom, Valentin
2009-09-15
Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case,more » the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.« less
Shek, Daniel T. L.; Sun, Rachel C. F.
2012-01-01
An integration of the qualitative evaluation findings collected in different cohorts of students who participated in Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) (n = 252 students in 29 focus groups) was carried out. With specific focus on how the informants described the program, results showed that the descriptions were mainly positive in nature, suggesting that the program was well received by the program participants. When the informants were invited to name three metaphors that could stand for the program, positive metaphors were commonly used. Beneficial effects of the program in different psychosocial domains were also voiced by the program participants. The qualitative findings integrated in this paper provide further support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in promoting holistic development in Chinese adolescents in Hong Kong. PMID:22666134
Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment
NASA Astrophysics Data System (ADS)
Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice
2011-09-01
The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.
NASA Astrophysics Data System (ADS)
Ma, Chao; Ma, Qinghua; Yao, Haixiang; Hou, Tiancheng
2018-03-01
In this paper, we propose to use the Fractional Stable Process (FSP) for option pricing. The FSP is one of the few candidates to directly model a number of desired empirical properties of asset price risk neutral dynamics. However, pricing the vanilla European option under FSP is difficult and problematic. In the paper, built upon the developed Feynman Path Integral inspired techniques, we present a novel computational model for option pricing, i.e. the Fractional Stable Process Path Integral (FSPPI) model under a general fractional stable distribution that tackles this problem. Numerical and empirical experiments show that the proposed pricing model provides a correction of the Black-Scholes pricing error - overpricing long term options, underpricing short term options; overpricing out-of-the-money options, underpricing in-the-money options without any additional structures such as stochastic volatility and a jump process.
High-density amorphous ice: A path-integral simulation
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2012-09-01
Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.
ER = EPR and non-perturbative action integrals for quantum gravity
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa; Alasfar, Lina
In this paper, we construct and calculate non-perturbative path integrals in a multiply-connected spacetime. This is done by summing over homotopy classes of paths. The topology of the spacetime is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of quantum foam described by virtual black holes. As these “bubbles” are entangled, they are connected by Planckian ERBs because of the ER = EPR conjecture. Hence, the spacetime will possess a large first Betti number B1. For any compact 2-surface in the spacetime, the topology (in particular the homotopy) of that surface is non-trivial due to the large number of Planckian ERBs that define homotopy through this surface. The quantization of spacetime with this topology — along with the proper choice of the 2-surfaces — is conjectured to allow non-perturbative path integrals of quantum gravity theory over the spacetime manifold.
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
Stereo Image Dense Matching by Integrating Sift and Sgm Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Y.; Song, Y.; Lu, J.
2018-05-01
Semi-global matching(SGM) performs the dynamic programming by treating the different path directions equally. It does not consider the impact of different path directions on cost aggregation, and with the expansion of the disparity search range, the accuracy and efficiency of the algorithm drastically decrease. This paper presents a dense matching algorithm by integrating SIFT and SGM. It takes the successful matching pairs matched by SIFT as control points to direct the path in dynamic programming with truncating error propagation. Besides, matching accuracy can be improved by using the gradient direction of the detected feature points to modify the weights of the paths in different directions. The experimental results based on Middlebury stereo data sets and CE-3 lunar data sets demonstrate that the proposed algorithm can effectively cut off the error propagation, reduce disparity search range and improve matching accuracy.
Czaczkes, Tomer J.; Weichselgartner, Tobias; Bernadou, Abel; Heinze, Jürgen
2016-01-01
Route learning is key to the survival of many central place foragers, such as bees and many ants. For ants which lay pheromone trails, the presence of a trail may act as an important source of information about whether an error has been made. The presence of trail pheromone has been demonstrated to support route learning, and the effect of pheromones on route choice have been reported to persist even after the pheromones have been removed. This could be explained in two ways: the pheromone may constrain the ants onto the correct route, thus preventing errors and aiding learning. Alternatively, the pheromones may act as a ‘reassurance’, signalling that the learner is on the right path and that learning the path is worthwhile. Here, we disentangle pheromone presence from route confinement in order to test these hypotheses, using the ant Lasius niger as a model. Unexpectedly, we did not find any evidence that pheromones support route learning. Indeed, there was no evidence that ants confined to the correct route learned at all. Thus, while we cannot support the ‘reassurance’ hypothesis, we can rule out the ‘confinement’ hypothesis. Other findings, such as a reduction in pheromone deposition in the presence of trail pheromones, are remarkably consistent with previous experiments. As previously reported, ants which make errors on their outward journey upregulate pheromone deposition on their return. Surprisingly, ants which would go on to make an error down-regulate pheromone deposition on their outward journey, hinting at a capacity for ants to gauge the quality of their own memories. PMID:26959996
The Effect of Absorptive Capacity Perceptions on the Context Aware Ubiquitous Learning Acceptance
ERIC Educational Resources Information Center
Lin, Hsiu-Fen
2013-01-01
Purpose: The purpose of this study is to examine the impact of absorptive capacity (understanding, assimilating and applying u-learning) perceptions on behavioral intention to use u-learning through path analysis and applies the technology acceptance model (TAM) as a theoretical foundation, simultaneously improving the model by adopting prior…
Doctoral Studies: What Has Radical Adult Education Got to Do with It?
ERIC Educational Resources Information Center
Choudry, Aziz; Rochat, Désirée
2015-01-01
Working and writing together as supervisor and graduate student in a Canadian university, the authors bring their community/activist/adult education learning backgrounds into dialogue--and tension--with doctoral studies by reflecting on their personal learning paths and thinking about what this means for teaching and learning in academic contexts.…
The Effect of SDLR and Self-efficacy in Preschool Teachers by Using WS Learning
ERIC Educational Resources Information Center
Kao, C-P.
2016-01-01
This study examined whether self-directed learning readiness (SDLR) moderates the association between Internet self-efficacy and approaches to learning by web searching (ALWS). A total of 329 valid questionnaires were used for the correlation and path analysis. The results revealed that preschool teachers' SDLR significantly moderated the…
ERIC Educational Resources Information Center
Sebastian, James; Allensworth, Elaine
2012-01-01
Purpose: This study examines the influence of principal leadership in high schools on classroom instruction and student achievement through key organizational factors, including professional capacity, parent-community ties, and the school's learning climate. It identifies paths through which leadership explains differences in achievement and…
Implementing eLearning Programmes for Higher Education: A Review of the Literature
ERIC Educational Resources Information Center
O'Neill, Kayte; Singh, Gurmak; O'Donoghue, John
2004-01-01
This paper is a consideration of the issues associated with the infrastructural aspects, pedagogic considerations and the need to associate the usefulness of technology to enhance the learning experience. This technological path will potentially enhance the learning process, not replace the lecturer or tutor. For lecturers and students, the…
Discovering Euler Circuits and Paths through a Culturally Relevant Lesson
ERIC Educational Resources Information Center
Robichaux, Rebecca R.; Rodrigue, Paulette R.
2006-01-01
This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…
Oregon Research Institute's Smoking Prevention Program: Helping Students Resist Peer Pressure.
ERIC Educational Resources Information Center
Severson, Herbert; And Others
1981-01-01
In 1980, Oregon Research Institute implemented Programs to Advance Teen Health (PATH), a smoking prevention program that helps seventh and ninth graders learn to resist social pressures to smoke. This report describes PATH and discusses the reasons behind its smoking prevention strategy. The report first notes the importance of preventing…
Paths to Learning: Teaching for Engagement in College
ERIC Educational Resources Information Center
Tobolowsky, Barbara F., Ed.
2014-01-01
Higher education institutions are more diverse than ever before, as are the students they serve. Because of this great diversity, there is no silver bullet--one approach--that will work for teaching all students in all circumstances. This book offers a succinct description of several pedagogical paths available to faculty that can actively engage…
ERIC Educational Resources Information Center
Finn, Christine
2015-01-01
The purpose of this research was to examine the accomplishments and obstacles of central office administrators who have followed traditional educational career paths with those who have followed non-traditional paths. The demographic markers, educational backgrounds, administrative responsibilities and tasks, and significant positive and negative…
Continuous quantum measurements and the action uncertainty principle
NASA Astrophysics Data System (ADS)
Mensky, Michael B.
1992-09-01
The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
Quantization of simple parametrized systems
NASA Astrophysics Data System (ADS)
Ruffini, G.
2005-11-01
I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.
A path integral approach to the Hodgkin-Huxley model
NASA Astrophysics Data System (ADS)
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
2016-10-12
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Dupin, Cécile Marie; Larsson, Maria; Dariel, Odessa; Debout, Christophe; Rothan-Tondeur, Monique
2015-01-01
The development of nursing research capacity and interactions with cultural and structural issues is at various stages throughout Europe. This process appears to be remarkably similar irrespective of the country. Sweden has developed this capacity since the 1990s, whereas France is experiencing a transition. Nevertheless, knowledge about how nurses conceive their learning about nursing research and transitioning toward being researchers is scarce. The aim of this study was to explore French and Swedish RNs' conceptions of research education and educational passage toward research and to describe how learning research contributes to the understanding of their norms and practices. A phenomenographic approach was used to understand and describe the qualitatively different ways in which French and Swedish RNs conceive research and its apprenticeship. A purposive maximum variation sampling of five French and five Swedish Nurse Researchers with PhDs. Individual in-depth interviews conducted in France and Sweden between November 2012 and March 2013 were analysed using phenomenography. The analysis revealed one main category, "Organisational factors to sustain individual apprenticeship". Three descriptive categories have emerged from the data and its variations amongst French and Swedish nurses: (1) entrance into research--modes of commitment; (2) nurses' engagement--the need for dedicated support; and (3) research as the means to resolve nursing situations. This study demonstrates how registered nurses have integrated nursing and researcher roles following different efficient paths. Education in nursing research is part of the strategy needed for the development of nursing research and is supported by the integration of research and practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neural dynamics for landmark orientation and angular path integration
Seelig, Johannes D.; Jayaraman, Vivek
2015-01-01
Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509
Selective influence of prior allocentric knowledge on the kinesthetic learning of a path.
Lafon, Matthieu; Vidal, Manuel; Berthoz, Alain
2009-04-01
Spatial cognition studies have described two main cognitive strategies involved in the memorization of traveled paths in human navigation. One of these strategies uses the action-based memory (egocentric) of the traveled route or paths, which involves kinesthetic memory, optic flow, and episodic memory, whereas the other strategy privileges a survey memory of cartographic type (allocentric). Most studies have dealt with these two strategies separately, but none has tried to show the interaction between them in spite of the fact that we commonly use a map to imagine our journey and then proceed using egocentric navigation. An interesting question is therefore: how does prior allocentric knowledge of the environment affect the egocentric, purely kinesthetic navigation processes involved in human navigation? We designed an experiment in which blindfolded subjects had first to walk and memorize a path with kinesthetic cues only. They had previously been shown a map of the path, which was either correct or distorted (consistent shrinking or growing). The latter transformations were studied in order to observe what influence a distorted prior knowledge could have on spatial mechanisms. After having completed the first learning travel along the path, they had to perform several spatial tasks during the testing phase: (1) pointing towards the origin and (2) to specific points encountered along the path, (3) a free locomotor reproduction, and (4) a drawing of the memorized path. The results showed that prior cartographic knowledge influences the paths drawn and the spatial inference capacity, whereas neither locomotor reproduction nor spatial updating was disturbed. Our results strongly support the notion that (1) there are two independent neural bases underlying these mechanisms: a map-like representation allowing allocentric spatial inferences, and a kinesthetic memory of self-motion in space; and (2) a common use of, or a switching between, these two strategies is possible. Nevertheless, allocentric representations can emerge from the experience of kinesthetic cues alone.
Differential equations driven by rough paths with jumps
NASA Astrophysics Data System (ADS)
Friz, Peter K.; Zhang, Huilin
2018-05-01
We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.
Individual Differences: Implications for Web-Based Learning Design
ERIC Educational Resources Information Center
Alomyan, Hesham
2004-01-01
In the past ten years the Web has attracted many educators for purposes of teaching and learning. The main advantage of the Web lies in its non-linear interaction. That is, students can have more control over their learning paths. However, this freedom of control may cause problems for some students, such as disorientation, cognitive overload and…
Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization
ERIC Educational Resources Information Center
Rastegarmoghadam, Mahin; Ziarati, Koorush
2017-01-01
Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…
ERIC Educational Resources Information Center
Baird, Derek E.; Fisher, Mercedes
2006-01-01
Raised in the "always on" world of interactive media, the Internet, and digital messaging technologies, today's student has different expectations and learning styles than previous generations. This net-centric generation values their ability to use the Web to create a self-paced, customized, on-demand learning path that includes multiple forms of…
ERIC Educational Resources Information Center
Trammell, Jack
2016-01-01
Foreign language (FL) requirements at postsecondary institutions remain a major hurdle for many students with learning disabilities (LD) as well as a significant portion of students without diagnosed LD. Many institutions have developed foreign language substitution (FLS) policies that allow students with LD to take alternate paths to meet the…
ERIC Educational Resources Information Center
Kicken, Wendy; Brand-Gruwel, Saskia; van Merrienboer, Jeroen J. G.
2008-01-01
An intuitively appealing approach to increasing the flexibility of vocational education and training is to delegate choices on instruction, such as the selection of learning tasks, to students. However, empirical evidence shows that students often do not have sufficiently developed self-directed learning skills to select suitable tasks. This…
The Role of Emotion in Informal Science Learning: Testing an Exploratory Model
ERIC Educational Resources Information Center
Staus, Nancy L.; Falk, John H.
2017-01-01
Although there is substantial research on the effect of emotions on educational outcomes in the classroom, relatively little is known about how emotion affects learning in informal science contexts. We examined the role of emotion in the context of an informal science learning experience by utilizing a path model to investigate the relationships…
ERIC Educational Resources Information Center
Ferla, Johan; Valcke, Martin; Schuyten, Gilberte
2010-01-01
Using path analysis, the present study focuses on the development of a model describing the impact of four judgments of self-perceived academic competence on higher education students' achievement goals, learning approach, and academic performance. Results demonstrate that academic self-efficacy, self-efficacy for self-regulated learning, academic…
ERIC Educational Resources Information Center
Boylan, Mark; Coldwell, Mike; Maxwell, Bronwen; Jordan, Julie
2018-01-01
One approach to designing, researching or evaluating professional learning experiences is to use models of learning processes. Here we analyse and critique five significant contemporary analytical models: three variations on path models, proposed by Guskey, by Desimone and by Clarke and Hollingsworth; a model using a systemic conceptualisation of…
A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed
2008-01-01
E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success…
ERIC Educational Resources Information Center
Mauk, Scott F.
2010-01-01
Many educators believe that developing a sense of community in their schools is necessary for having a vibrant and effective learning environment. Sense of community is a complex social construct with many proponents. Socioemotional learning programs purport to help young students develop emotional skills in order to develop intellectually and…
ERIC Educational Resources Information Center
Rinke, Carol R.; Mawhinney, Lynnette; Park, Gloria
2014-01-01
This article extends the literature on teachers' career paths by attending to the experiences of educators when they were students in secondary classrooms. Grounded in the perspective that biography is central to teaching, we investigate undergraduate pre-service teachers' educational experiences, views on teaching and learning, and professional…
The Good Path: Ojibwe Learning and Activity Book for Kids.
ERIC Educational Resources Information Center
Peacock, Thomas; Wisuri, Marlene
This book presents the story of the Ojibwe, also called the Anishinaabe, Chippewa, or Ojibway people, who live in southern Canada and the north-central United States. Written for young people, the Ojibwe story combines history with cultural stories and an introduction to the Good Path--the values that form Ojibwe philosophy. Each chapter covers…
ERIC Educational Resources Information Center
Poitras, Eric G.; Doleck, Tenzin; Lajoie, Susanne P.
2018-01-01
Ill-structured problems, by definition, have multiple paths to a solution and are multifaceted making automated assessment and feedback a difficult challenge. Diagnostic reasoning about medical cases meet the criteria of ill-structured problem solving since there are multiple solution paths. The goal of this study was to develop an adaptive…
ERIC Educational Resources Information Center
Safford-Ramus, Katherine
2008-01-01
The paths of mathematics education reform for children and adults resemble two highways that join together for a distance then diverge, remaining parallel but distinct. The differences reflect the intrinsic distinction between pedagogy and andragogy. School mathematics must prepare children for all the possible paths that their educational journey…
Effect of the bitterness of food on muscular activity and masticatory movement.
Okada, Yamato; Shiga, Hiroshi
2017-10-01
The purpose of this study was to clarify the effect of the bitterness of food on muscular activity and masticatory movement. Twenty healthy subjects were asked to chew a non-bitter gummy jelly and a bitter gummy jelly on their habitual chewing side. The masseter muscular activity and the movement of mandibular incisal point were recorded simultaneously. For all cycles excluding the first cycle, parameters representing the muscular activity (total integral value and integral value per cycle) and masticatory movement (path, rhythm, and stability) were calculated and compared between the two types of gummy jellies. The total integral value of masseter muscular activity during the chewing of bitter gummy jelly was significantly smaller than during the chewing of non-bitter gummy jelly, however, no definite trends in the integral value per cycle and the stability of movement were observed. The parameters representing the movement path tended to be small during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. The masticatory width was significantly smaller during the chewing of bitter gummy jelly. The parameters representing the rhythm of movement were significantly longer during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. From these results it was suggested that the bitterness of food does not affect the integral value per cycle or the stability of the masticatory movement, but it does affect the movement path and rhythm, with narrowing of the path and slowing of the rhythm. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.
1992-01-01
The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.
Stationary properties of maximum-entropy random walks.
Dixit, Purushottam D
2015-10-01
Maximum-entropy (ME) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic systems, how state space topology and path-dependent constraints affect ME-inferred state probabilities remains unknown. To that end, we derive the transition probabilities and the stationary distribution of a maximum path entropy Markov process subject to state- and path-dependent constraints. A main finding is that the stationary distribution over states differs significantly from the Boltzmann distribution and reflects a competition between path multiplicity and imposed constraints. We illustrate our results with particle diffusion on a two-dimensional landscape. Connections with the path integral approach to diffusion are discussed.
Breidahl, Karen N
2017-01-01
Since the late 1990s, a wide range of so-called new civic integration policies aimed at civilizing or disciplining newcomers have been introduced. Consequently, migration scholars have discussed whether a converging restrictive 'civic turn' has taken place in Western Europe or whether national models have been resilient: Based on an in-depth historical and comparative analysis of labour market activation policies targeting newly arrived immigrants in Sweden, Norway, and Denmark since the early 1990s, the article contributes to the overall question: To what extent do the institutional pathways of the Scandinavian welfare states prevail when confronted with newcomers? Activation policies targeting newly arrived immigrants exemplifies how the ambition of states to promote functional, individual autonomy is also an important, ongoing process in diverse policy areas of the welfare state and not restricted to early integration instruments. While the Scandinavian welfare states differ on a number of counts with respect to immigration control, national integration philosophies and citizenship policies, the article outlines how activation policies aimed at newly arrived immigrants share several features. One of the key factors in this turn involves path dependency from, among others, a lengthy tradition for strong state involvement and norms about employment. Another factor in this turn involves transnational policy learning. On some points, national versions of these policies are also found due to country-specific citizenship traditions, integration philosophies and party political constellations.
UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
2016-01-01
Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.
Raudszus, Henriette; Segers, Eliane; Verhoeven, Ludo
2018-01-01
This study compared how lexical quality (vocabulary and decoding) and executive control (working memory and inhibition) predict reading comprehension directly as well as indirectly, via syntactic integration, in monolingual and bilingual fourth grade children. The participants were 76 monolingual and 102 bilingual children (mean age 10 years, SD = 5 months) learning to read Dutch in the Netherlands. Bilingual children showed lower Dutch vocabulary, syntactic integration and reading comprehension skills, but better decoding skills than their monolingual peers. There were no differences in working memory or inhibition. Multigroup path analysis showed relatively invariant connections between predictors and reading comprehension for monolingual and bilingual readers. For both groups, there was a direct effect of lexical quality on reading comprehension. In addition, lexical quality and executive control indirectly influenced reading comprehension via syntactic integration. The groups differed in that inhibition more strongly predicted syntactic integration for bilingual than for monolingual children. For a subgroup of bilingual children, for whom home language vocabulary data were available ( n = 56), there was an additional positive effect of home language vocabulary on second language reading comprehension. Together, the results suggest that similar processes underlie reading comprehension in first and second language readers, but that syntactic integration requires more executive control in second language reading. Moreover, bilingual readers additionally benefit from first language vocabulary to arrive at second language reading comprehension.
Terrain classification in navigation of an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Dodds, David R.
1991-03-01
In this paper we describe a method of path planning that integrates terrain classification (by means of fractals) the certainty grid method of spatial representation Kehtarnavaz Griswold collision-zones Dubois Prade fuzzy temporal and spatial knowledge and non-point sized qualitative navigational planning. An initially planned (" end-to-end" ) path is piece-wise modified to accommodate known and inferred moving obstacles and includes attention to time-varying multiple subgoals which may influence a section of path at a time after the robot has begun traversing that planned path.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2002-08-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2005-11-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Weinberg propagator of a massive particle with an arbitrary spin (in Ukrainian)
NASA Astrophysics Data System (ADS)
Zima, V. G.; Fedoruk, S. O.
The transition amplitude is obtained for a free massive particle of an arbitrary spin by calculating the path integral in the index--spinor formulation within the BFV--BRST approach. None renormalizations of the path integral measure were applied. The calculation has given the Weinberg propagator written in the index--free form with the use of an index spinor. The choice of boundary conditions on the index spinor determines holomorphic or antiholomorphic representation for the canonical description of particle/antiparticle spin.
A path to integration in an academic health science center.
Panko, W. B.; Wilson, W.
1992-01-01
This article describes a networking and integration strategy in use at the University of Michigan Medical Center. This strategy builds upon the existing technology base and is designed to provide a roadmap that will direct short-term development along a productive, long-term path. It offers a way to permit the short-term development of incremental solutions to current problems while at the same time maximizing the likelihood that these incremental efforts can be recycled into a more comprehensive approach. PMID:1336413
A path-integral approach to the problem of time
NASA Astrophysics Data System (ADS)
Amaral, M. M.; Bojowald, Martin
2018-01-01
Quantum transition amplitudes are formulated for model systems with local internal time, using intuition from path integrals. The amplitudes are shown to be more regular near a turning point of internal time than could be expected based on existing canonical treatments. In particular, a successful transition through a turning point is provided in the model systems, together with a new definition of such a transition in general terms. Some of the results rely on a fruitful relation between the problem of time and general Gribov problems.
A Tomographic Method for the Reconstruction of Local Probability Density Functions
NASA Technical Reports Server (NTRS)
Sivathanu, Y. R.; Gore, J. P.
1993-01-01
A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.
Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation
NASA Astrophysics Data System (ADS)
Sleesongsom, S.; Bureerat, S.
2018-03-01
This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.
Preparing Students for the Future: Making Career Development a Priority.
ERIC Educational Resources Information Center
Hughey, Kenneth F.; Hughey, Judith K.
1999-01-01
Presents information relevant to school counseling about the implications of work changes. Outlines foundational guides for student success: improving decision making, learning about career paths, acquiring employability skills, and developing lifelong learning attitudes. Describes activities to facilitate career development. (SK)
Fletcher, Bonnie R; Calhoun, Michael E; Rapp, Peter R; Shapiro, Matthew L
2006-02-01
The immediate-early gene (IEG) Arc is transcribed after behavioral and physiological treatments that induce synaptic plasticity and is implicated in memory consolidation. The relative contributions of neuronal activity and learning-related plasticity to the behavioral induction of Arc remain to be defined. To differentiate the contributions of each, we assessed the induction of Arc transcription in rats with fornix lesions that impair hippocampal learning yet leave cortical connectivity and neuronal firing essentially intact. Arc expression was assessed after exploration of novel environments and performance of a novel water maze task during which normal rats learned the spatial location of an escape platform. During the same task, rats with fornix lesions learned to approach a visible platform but did not learn its spatial location. Rats with fornix lesions had normal baseline levels of hippocampal Arc mRNA, but unlike normal rats, expression was not increased in response to water maze training. The integrity of signaling pathways controlling Arc expression was demonstrated by stimulation of the medial perforant path, which induced normal synaptic potentiation and Arc in rats with fornix lesions. Together, the results demonstrate that Arc induction can be decoupled from behavior and is more likely to indicate the engagement of synaptic plasticity mechanisms than synaptic or neuronal activity per se. The results further imply that fornix lesions may impair memory in part by decoupling neuronal activity from signaling pathways required for long-lasting hippocampal synaptic plasticity.
Qualitative and quantitative revaluation of specific learning disabilities: a multicentric study.
Operto, Francesca F; Mazza, Roberta; Buttiglione, Maura; Craig, Francesco; Frolli, Alessandro; Pisano, Simone; Margari, Lucia; Coppola, Giangennaro
2018-04-12
Specific learning disabilities are disorders that affect the instrumental skills of academic learning, leaving intact the general intellectual functioning. It is possible to distinguish: dyslexia, dysorthography, dysgraphia, and dyscalculia. The diagnosis is made according to DSMV. The aim of this study is to evaluate the implementation of Law N° 170 following a diagnosis of specific learning disabilities in children and their evolution over time. The sample under examination consists of 75 children, 56 males and 18 females aged 7,8 to 16 years, with a diagnosis of specific learning disabilities; a revaluation was carried outthrough the use of standardized instruments according to age and school attended. A twopart questionnaire was proposed: the first part turned to the parents/carers of the child and the second part turned to the boy himself. The improvement parameter has been linked, through a statistical analysis of univarianza with intelligence quotient, age, application of the law 10 October 2010 n 170, rehabilitative paths and attending afterschool program. Most of the guys are followed at school by the application of the law 170 and, outside school, by attending speech and neuropsychological therapy and after school. Going to investigate the actual use of the measures put in place by the school, it is evident a partial and incomplete application of Law 170. The most suitable measures for these children are pedagogical measures in order to make them integrate with the group class and strengthen their capacities through specific measures provided by a specific legislative decree.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong
2016-01-01
For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.
Towards a framework of nuclear competencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghitescu, P.
For the countries considering the introduction of a nuclear energy program, the management of human resources should be a part of the wider integrated management system in order to ensure long term safe and reliable operation. Nuclear energy strategy and approaches to human resources development should take into consideration such fundamental aspects as: development and implementation of a workforce plan, required competencies and qualifications, prerequisites for staffing a nuclear energy program, needed training programs and training facilities, qualification and training requirements. Development of common instruments that respond to the above needs and vision has lead to a new concept ofmore » European Credit System for Vocational Education and Training. The European Credit System for Vocational Education and Training (ECVET) is based on definition of 'learning outcomes ' in terms of knowledge, skills and competence, and on identification of portfolios of learning outcomes that allow an individual to prove competencies in a coherent manner. ECVET proposes a common understanding of basic definitions of education and training as well as of the new proposed concepts and it should be recognized by all employers in the EU. In this context, a number of 'Euratom Fission Training Schemes' (EFTS) have been launched in specific areas where a shortage of skilled professionals has been identified. In these schemes the competence building is the result of traditional education plus life-long learning, non-traditional learning, and other forms of educational experiences, relying, in particular, on border-less mobility to get acquainted with various sectors. Each particular Training Scheme should follow a similar path for the achievement of the designed learning outcomes (knowledge, skills, and attitudes). This path to the Training Scheme consists of different activities regarding: definition of training scheme learning outcomes and modules, assessment of prerequisites and student selection, student interview for development of individual training plan, start of the training activities under a specific training scheme. The introduction and recognition of ECVET will lead to a common taxonomy of competencies, and will provide also information about qualifications and units in numerical form, enabling mutual recognition of a training scheme. The description of the learning outcomes to be achieved for qualifying to a specific job profile may follow the analysis phase of the systematic approach to training (SAT). This would ensure a common tool, already used by all trainers. All these steps contribute to establishing of a framework of nuclear competencies recognized and accepted throughout member states. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, P.F.; Wang, J.S.; Chao, Y.J.
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning.
Li, Yiding; Xu, Jiamin; Liu, Yafeng; Zhu, Jia; Liu, Nan; Zeng, Wenbo; Huang, Ning; Rasch, Malte J; Jiang, Haifei; Gu, Xiang; Li, Xiang; Luo, Minhua; Li, Chengyu; Teng, Junlin; Chen, Jianguo; Zeng, Shaoqun; Lin, Longnian; Zhang, Xiaohui
2017-04-01
Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
NASA Astrophysics Data System (ADS)
Khodja, A.; Kadja, A.; Benamira, F.; Guechi, L.
2017-12-01
The problem of a Klein-Gordon particle moving in equal vector and scalar Rosen-Morse-type potentials is solved in the framework of Feynman's path integral approach. Explicit path integration leads to a closed form for the radial Green's function associated with different shapes of the potentials. For q≤-1, and 1/2α ln | q|
Going the distance: spatial scale of athletic experience affects the accuracy of path integration.
Smith, Alastair D; Howard, Christina J; Alcock, Niall; Cater, Kirsten
2010-09-01
Evidence suggests that athletically trained individuals are more accurate than untrained individuals in updating their spatial position through idiothetic cues. We assessed whether training at different spatial scales affects the accuracy of path integration. Groups of rugby players (large-scale training) and martial artists (small-scale training) participated in a triangle-completion task: they were led (blindfolded) along two sides of a right-angled triangle and were required to complete the hypotenuse by returning to the origin. The groups did not differ in their assessment of the distance to the origin, but rugby players were more accurate than martial artists in assessing the correct angle to turn (heading), and landed significantly closer to the origin. These data support evidence that distance and heading components can be dissociated. Furthermore, they suggest that the spatial scale at which an individual is trained may affect the accuracy of one component of path integration but not the other.
NASA Astrophysics Data System (ADS)
Miura, Shinichi
2018-03-01
In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-09
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.
Miura, Shinichi
2018-03-14
In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.
The product form for path integrals on curved manifolds
NASA Astrophysics Data System (ADS)
Grosche, C.
1988-03-01
A general and simple framework for treating path integrals on curved manifolds is presented. The crucial point will be a product ansatz for the metric tensor and the quantum hamiltonian, i.e. we shall write g αβ = h αγh βγ and H = (1/2m)h αγp αp βh βγ + V + ΔV , respectively, a prescription which we shall call “product form” definition. The p α are hermitian momenta and Δ V is a well-defined quantum correction. We shall show that this ansatz, which looks quite special, is in fact - under reasonable assumptions in quantum mechanics - a very general one. We shall derive the lagrangian path integral in the “product form” definition and shall also prove that the Schro¨dinger equation can be derived from the corresponding short-time kernel. We shall discuss briefly an application of this prescription to the problem of free quantum motion on the Poincare´upper half-plane.
Moran, B.; Kulkarni, S.S.; Reeves, H.W.
2007-01-01
A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.
NASA Astrophysics Data System (ADS)
Kamibayashi, Yuki; Miura, Shinichi
2016-08-01
In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.
Many Paths to Learning Software.
ERIC Educational Resources Information Center
Harp, Candice; And Others
1997-01-01
Respondents drawn from a sample of licensed software users rated experimenting and asking coworkers as the most useful ways to learn new software. Clerical workers preferred interaction with trainers; knowledge workers/managers relied on experience and coworkers. Dependent learners (n=49) preferred an instructor-directed approach; self-directed…
Domitrovich, Celene E; Bradshaw, Catherine P; Berg, Juliette K; Pas, Elise T; Becker, Kimberly D; Musci, Rashelle; Embry, Dennis D; Ialongo, Nicholas
2016-04-01
A number of classroom-based interventions have been developed to improve social and behavioral outcomes for students, yet few studies have examined how these programs impact the teachers who are implementing them. Impacts on teachers may affect students and therefore also serve as an important proximal outcome to examine. The current study draws upon data from a school-based randomized controlled trial testing the impact of two prevention programs. In one intervention condition, teachers were trained in the classroom behavior management program, PAX Good Behavior Game (PAX GBG). In a second intervention condition, teachers were trained to use an integrated program, referred to as PATHS to PAX, of the PAX GBG and a social and emotional learning curriculum called Promoting Alternative Thinking Strategies (PATHS©). This study aimed to determine whether both interventions positively impacted teachers, with a particular interest in the teachers' own beliefs and perceptions regarding self-efficacy, burnout, and social-emotional competence. The sample included 350 K-5 teachers across 27 schools (18 schools randomized to intervention, 9 to control). Multilevel latent growth curve analyses indicated that the PATHS to PAX condition generally demonstrated the most benefits to teachers, relative to both the control and PAX GBG conditions. These findings suggest that school-based preventive interventions can have a positive impact on teachers' beliefs and perceptions, particularly when the program includes a social-emotional component. Several possible mechanisms might account for the added benefit to teachers. Additional research is needed to better understand how these programs impact teachers, as well as students.
ERIC Educational Resources Information Center
Platow, Michael J.; Mavor, Kenneth I.; Grace, Diana M.
2013-01-01
The current research examined the role that students' discipline-related self-concepts may play in their deep and surface approaches to learning, their overall learning outcomes, and continued engagement in the discipline itself. Using a cross-lagged panel design of first-year university psychology students, a causal path was observed in which…
ERIC Educational Resources Information Center
Ojokheta, K. O.
2010-01-01
This study examined the influence of some predictors in the enhancement of persistence and students success in distance education in the two most recognised and respected distance learning institutions in Nigeria--the Distance Learning Institute (DLI) of University of Lagos and Distance Learning Centre of University of Ibadan. The need for this…
ERIC Educational Resources Information Center
Warmington, Meesha; Hulme, Charles
2012-01-01
This study examines the concurrent relationships between phoneme awareness, visual-verbal paired-associate learning, rapid automatized naming (RAN), and reading skills in 7- to 11-year-old children. Path analyses showed that visual-verbal paired-associate learning and RAN, but not phoneme awareness, were unique predictors of word recognition,…
Blended Learning: A Mixed-Methods Study on Successful Schools and Effective Practices
ERIC Educational Resources Information Center
Mathews, Anne
2017-01-01
Blended learning is a teaching technique that utilizes face-to-face teaching and online or technology-based practice in which the learner has the ability to exert some level of control over the pace, place, path, or time of learning. Schools that employ this method of teaching often demonstrate larger gains than traditional face-to-face programs…
ERIC Educational Resources Information Center
Cano, Francisco; García, Ángela; Berbén, A. B. G.; Justicia, Fernando
2014-01-01
The purpose of this research was to build and test a conceptual model of the complex interrelationships between students' learning in science (learning approaches and self-regulation), their reading comprehension, question-asking in class and science achievement. These variables were measured by means of a test and a series of questionnaires…
A Quantitative Analysis of the Role of Social Networks in Educational Contexts
ERIC Educational Resources Information Center
Shokri, Azam; Dafoulas, Georgios
2016-01-01
Recent advances in Information Technology (IT) and the advent of Web 2.0 created the path for education to ascertain its potential from this phenomenon. The role of e-learning has transformed completely as Web 2.0 technologies enabled the creation of learning content that is no longer based on textbooks and learning guides, but on manageable,…
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva
2016-01-01
Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2006-11-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2010-06-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
Neighboring extremals of dynamic optimization problems with path equality constraints
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1988-01-01
Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Montoya-Castillo, Andrés; Reichman, David R
2017-01-14
We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Blended Learning Innovations: Leadership and Change in One Australian Institution
ERIC Educational Resources Information Center
Mirriahi, Negin; Alonzo, Dennis; McIntyre, Simon; Kligyte, Giedre; Fox, Bob
2015-01-01
This paper reports on the current experience of one higher education institution in Australia embarking on the path towards mainstreaming online learning opportunities by providing three complementary academic development initiatives that can inform strategies undertaken by other institutions internationally. First, an academic development program…
Employer Resource Manual. Project Path.
ERIC Educational Resources Information Center
Kane, Karen R.; Del George, Eve
Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…
NASA Astrophysics Data System (ADS)
Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra
2013-11-01
Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing their lessons. For the creation of such a learning environment, teachers can design open-ended inquiry activities in which students have opportunities to take responsibility, reflect on their views, and accomplish challenging tasks.
Reagor, James A; Holt, David W
2016-03-01
Advances in technology, the desire to minimize blood product transfusions, and concerns relating to inflammatory mediators have lead many practitioners and manufacturers to minimize cardiopulmonary bypass (CBP) circuit designs. The oxygenator and arterial line filter (ALF) have been integrated into one device as a method of attaining a reduction in prime volume and surface area. The instructions for use of a currently available oxygenator with integrated ALF recommends incorporating a recirculation line distal to the oxygenator. However, according to an unscientific survey, 70% of respondents utilize CPB circuits incorporating integrated ALFs without a path of recirculation distal to the oxygenator outlet. Considering this circuit design, the ability to quickly remove a gross air bolus in the blood path distal to the oxygenator may be compromised. This in vitro study was designed to determine if the time required to remove a gross air bolus from a CPB circuit without a path of recirculation distal to the oxygenator will be significantly longer than that of a circuit with a path of recirculation distal to the oxygenator. A significant difference was found in the mean time required to remove a gross air bolus between the circuit designs (p = .0003). Additionally, There was found to be a statistically significant difference in the mean time required to remove a gross air bolus between Trial 1 and Trials 4 (p = .015) and 5 (p =.014) irrespective of the circuit design. Under the parameters of this study, a recirculation line distal to an oxygenator with an integrated ALF significantly decreases the time it takes to remove an air bolus from the CPB circuit and may be safer for clinical use than the same circuit without a recirculation line.
Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs
Lin, Tien-Ho; Bar-Joseph, Ziv
2011-01-01
Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284
NASA Astrophysics Data System (ADS)
Kortenkamp, David; Huber, Marcus J.; Congdon, Clare B.; Huffman, Scott B.; Bidlack, Clint R.; Cohen, Charles J.; Koss, Frank V.; Raschke, Ulrich; Weymouth, Terry E.
1993-05-01
This paper describes the design and implementation of an integrated system for combining obstacle avoidance, path planning, landmark detection and position triangulation. Such an integrated system allows the robot to move from place to place in an environment, avoiding obstacles and planning its way out of traps, while maintaining its position and orientation using distinctive landmarks. The task the robot performs is to search a 22 m X 22 m arena for 10 distinctive objects, visiting each object in turn. This same task was recently performed by a dozen different robots at a competition in which the robot described in this paper finished first.
Resonance fluorescence trajectories in superconducting qubit
NASA Astrophysics Data System (ADS)
Naghiloo, Mahdi; Tan, Dian; Harrington, Patrick; Lewalle, Philippe; Jordan, Andrew; Murch, Kater
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter. We analyze the ensemble properties of these trajectories by considering paths that connect specific initial and final states. By applying a stochastic path integral formalism, we calculate equations of motion for the most likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories-situations where multiple extrema in the stochastic action occur. We observe such multiple most likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations. Supported by the John Templeton Foundation.
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian, E-mail: jianliupku@pku.edu.cn; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871; Zhang, Zhijun
Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems.
Gauge fixing and BFV quantization
NASA Astrophysics Data System (ADS)
Rogers, Alice
2000-01-01
Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Takahashi, Kenta; Kakizaki, Akira; Shiga, Motoyuki; Tachikawa, Masanori
2009-04-01
Path-integral molecular dynamics simulations for the HCl(H 2O) 4 cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H 2O) 4 cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.
NASA Astrophysics Data System (ADS)
Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.
2008-07-01
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.
Off-line robot programming and graphical verification of path planning
NASA Technical Reports Server (NTRS)
Tonkay, Gregory L.
1989-01-01
The objective of this project was to develop or specify an integrated environment for off-line programming, graphical path verification, and debugging for robotic systems. Two alternatives were compared. The first was the integration of the ASEA Off-line Programming package with ROBSIM, a robotic simulation program. The second alternative was the purchase of the commercial product IGRIP. The needs of the RADL (Robotics Applications Development Laboratory) were explored and the alternatives were evaluated based on these needs. As a result, IGRIP was proposed as the best solution to the problem.
Finding the Return Path: Landmark Position Effects and the Influence of Perspective
Karimpur, Harun; Röser, Florian; Hamburger, Kai
2016-01-01
Much research has been done on how people find their way from one place to another. Compared to that, there is less research available on how people find back from the destination to their origin. We first present theoretical approaches to perceptual and cognitive processes involved in finding a return path, including concepts, such as visibility, structural salience, and allocentric versus egocentric perspective, followed by a series of three experiments. In these experiments, we presented subjects intersections that contained landmark information on different positions. In order to investigate the processes involved, we used different measures, such as route-continuation (in learning direction and in opposite direction) and free-recall of route information. In summary, the results demonstrate the importance of landmark positions at intersections (structural salience in combination with perspective) and that finding the return path is more difficult than reproducing the same route from the learning condition. All findings will be discussed with respect to the current research literature on landmark-based wayfinding. PMID:28066283
ERIC Educational Resources Information Center
Taylor, Matthew J.
2009-01-01
In this article I explain how I combined service learning, public-good work, and research in Guatemala. This path has not been easy. Indeed, it has been risky because the time invested in public-good work and teaching field classes could have detracted from research productivity. Taking a risk under the current and traditional academic model at…
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
The Integrated Curriculum of "Planned Approach to Healthier Schools"
ERIC Educational Resources Information Center
Lounsbery, Monica; Gast, Julie; Smith, Nicole
2005-01-01
Planned Approach to Healthier Schools (PATHS) is a multicomponent school program that aims to establish and sustain a social norm consistent with physical activity and healthy nutrition in the school community. The PATHS components include: (1) a professional development and wellness program for faculty and staff; (2) ongoing social-marketing…
Promoting Social Competence and Inclusion: Taking Alternative Paths
ERIC Educational Resources Information Center
Sarmento, Patricia; Almeida, Katia; Rauktis, Mary Elizabeth; Bernardo, Susana
2008-01-01
Trilhos Alternativos (Alternative Paths) is a community-based program that aims to integrate African-Portuguese urban youth from low-income families into Portuguese society. This article describes the first year of the program and presents formative data about effectiveness of the program. The motivation system seems to be an indirect variable…
Social Cognitive Model of College Satisfaction: A Test of Measurement and Path Models
ERIC Educational Resources Information Center
Feldt, Ronald C.
2012-01-01
The study examined a model that integrates social-cognitive and trait-personality constructs to examine two domains of college satisfaction. Direct and indirect effects were observed for conscientiousness, perception of institutional resources, self-efficacy, and goal progress. Paths differed for personal and institutional satisfaction. Most…
ERIC Educational Resources Information Center
National Association of State Boards of Education, Alexandria, VA.
Having examined the emerging evidence and considered the doubts and cautions, the National Association of State Boards of Education (NASBE) Study Group on e-Learning concludes that e-learning will improve American education in valuable ways and should be universally implemented as soon as possible. The primary goal of this report is to provide a…
CPM (Critical Path Method) as a Curriculum Tool.
ERIC Educational Resources Information Center
Mongerson, M. Duane
This document discusses and illustrates the use of the Critical Path Method (CPM) as a tool for developing curriculum. In so doing a brief review of the evolution of CPM as a management tool developed by E. I. duPont de Nemours Company is presented. It is also noted that CPM is only a method of sequencing learning activities and not an end unto…
The REAL Path to Homegrown Enterprise.
ERIC Educational Resources Information Center
Casto, James E.
1996-01-01
REAL Enterprises, Inc. (Rural Entrepreneurship through Action Learning) is an academic program that helps students learn the basics of starting and nurturing a new business. West Virginia is 1 of 17 states offering the program with the goal of preparing youth to take advantage of economic opportunities in their own communities. (LP)
Argumentation for Learning: Well-Trodden Paths and Unexplored Territories
ERIC Educational Resources Information Center
Asterhan, Christa S. C.; Schwarz, Baruch B.
2016-01-01
There is increasing consensus among psycho-educational scholars about argumentation as a means to improve student knowledge and understanding of subject matter. In this article, we argue that, notwithstanding a strong theoretical rationale, causal evidence is not abundant, definitions of the objects of study (argumentation, learning) are often not…
Some Psychometric and Design Implications of Game-Based Learning Analytics
ERIC Educational Resources Information Center
Gibson, David; Clarke-Midura, Jody
2013-01-01
The rise of digital game and simulation-based learning applications has led to new approaches in educational measurement that take account of patterns in time, high resolution paths of action, and clusters of virtual performance artifacts. The new approaches, which depart from traditional statistical analyses, include data mining, machine…
ERIC Educational Resources Information Center
Smutny, Joan Franklin
2011-01-01
While resources for the gifted are not abundant, many schools do offer classes, programs, services, and/or clubs that broaden student learning beyond the curriculum. What can educators do to expand the horizons of gifted children--to open their minds to new worlds of knowledge and understanding? Programs for gifted students, particularly those…
ERIC Educational Resources Information Center
Froyen, Laura C.; Skibbe, Lori E.; Bowles, Ryan P.; Blow, Adrian J.; Gerde, Hope K.
2013-01-01
The current study investigates associations among marital satisfaction, family emotional expressiveness, the home learning environment, and preschool-aged children's emergent literacy skills among 385 Midwestern mothers and their children. Path analyses examined how marital satisfaction related to emotional expressiveness in the home and whether…
A Lens on Learning: Early Vision Screening Can Set Children on the Path to Achievement.
ERIC Educational Resources Information Center
Black, Susan
2002-01-01
Discusses student learning difficulties linked to visual disorders such as dyslexia and amblyopia, problems associated with current school vision-screening procedures, and recommendations to improve preschool and in-school vision-screening practices with an emphasis on early, regular, and comprehensive eye examinations. (PKP)
ERIC Educational Resources Information Center
Weinstein, Margery
2012-01-01
For flooring manufacturer Mohawk Industries, it is not enough to teach employees how to be great. The long-time Training Top 125 contender focused last year on helping employees to blaze their own learning paths while meeting organization imperatives. That meant improving the technology that supports employee performance, as well as creating new…
A Model of Factors Contributing to STEM Learning and Career Orientation
ERIC Educational Resources Information Center
Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl
2015-01-01
The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive…