NASA Technical Reports Server (NTRS)
Grimm, K. R.; Hodge, D. B.
1971-01-01
The performance of a path diversity satellite-to-ground millimeter wave link with two ground terminals separated by 4 km is discussed. At this separation distance the duration of fades below 6 dB was decreased by at least a factor of 10 when using path diversity and the cumulative crosscorrelation between the attenuations observed at the two terminals during rain events was approximately 0.45. Narrow beam radiometers directed along the propagation paths were also utilized to relate the path radiometric temperature to the path attenuation. An analysis of downlink propagation data for generating diversity link performance statistics is included.
A Shifting Baseline: Higher Degrees and Career Options for Ocean Scientists
NASA Astrophysics Data System (ADS)
Yoder, J. A.; Briscoe, M. G.; Glickson, D.; Roberts, S.; Spinrad, R. W.
2016-02-01
As for other fields of science, a Ph.D. degree in the ocean sciences no longer guarantees an academic position. In fact, recent studies show that while most earning a Ph.D. in the ocean sciences today may start in academia as a postdoc, an undetermined number of postdocs may not move into university faculty positions or comparable positions at basic research institutions. Although the data are few, some believe that most of those now earning Ph.D. degrees in ocean science are eventually employed outside of academia. Changes to the career path for those entering ocean science graduate programs today is both a challenge and an opportunity for graduate programs. Some graduates of course do continue in academia. For those students who are determined to follow that path, graduate programs need to prepare them for that choice. On the other hand, graduate programs also have an obligation to provide students with the information they need to make educated career decisions - there are interesting career choices other than academia for those earning a Ph.D. or finishing with a terminal M.S. degree. Furthermore, graduate programs need to encourage students to think hard about their career expectations early in their graduate program to ensure they acquire the skills needed to keep career options open. This talk will briefly review some of the recent studies related to the career paths of those who recently acquired a Ph.D. in ocean sciences and other fields; describe possible career options for those who enter ocean science graduate programs; encourage more attention on the career possibilities of a terminal ocean science M.S. degree perhaps combined with another higher degree in a different field; and discuss the skills a graduate student can acquire that increase the breadth of career path opportunities.
Extensive air showers, lightning, and thunderstorm ground enhancements
NASA Astrophysics Data System (ADS)
Chilingarian, A.; Hovsepyan, G.; Kozliner, L.
2016-09-01
For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1984-01-01
Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.
Sunrise effects on VLF signals propagating over a long north-south path
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.
1999-07-01
We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.
An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1976-01-01
Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.
Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations
DOT National Transportation Integrated Search
1995-04-01
A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1992-01-01
This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.
NASA Technical Reports Server (NTRS)
Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.
2016-01-01
National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.
Studies of Interstellar Pickup Ions in the Solar Wind
NASA Technical Reports Server (NTRS)
Isenberg, Philip A.; Lee, Martin A.; Mobius, Eberhard
1996-01-01
The work under this grant involves studies of the interaction of interstellar pickup ions with the solar wind, with the goal of a comprehensive model of the particle distributions and wave intensities to be expected throughout the heliosphere, as well as the interactions of those distributions with the solar wind termination shock. In the past year, we have completed a number of projects, including observations and modeling of the effects of a large scattering mean free path on the pickup He(+) seen at AMPTE, an analytical model of anisotropic pickup tons in a steady radial magnetic field, and a derivation of a reduced solar wind Mach number due to increased estimates on the inflowing hydrogen density allowing for a weak termination shock. In the next year, we plan to investigate in more detail the correspondence between our models of anisotropic pickup ions and the data on spectra, variations, and proton-He(+) correlation provided by AMPTE, Ulysses, and our instrument on SOHO. We will model the time-dependent pickup ion density resulting from finite periods of radial magnetic field. We will also incorporate the effects of a large mean free path into our analysis of the He(+) focusing cone, leading to more accurate parameter values for the interstellar helium gas. This progress report also includes a discussion of our Space Physics Educational Outreach activities in the past year and plans for the next year.
Generalized gradient algorithm for trajectory optimization
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.; Slattery, R.
1990-01-01
The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.
Recent field experiments with commercial satellite imagery direct downlink.
Gonzalez, Anthony R; Amber, Samuel H
US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal-a mobile satellite downlink ground station-has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.
NASA Astrophysics Data System (ADS)
Chand, Atishnal Elvin; Kumar, Sushil
2017-08-01
Very low frequency (VLF) signals from navigational transmitters propagate through the Earth-ionosphere waveguide formed by the Earth and the lower conducting ionosphere and show the pronounced minima during solar terminator transition between transmitter and receiver. Pronounced amplitude minima observed on 19.8 kHz (NWC transmitter) and 24.8 kHz (NLK transmitter) signals recorded at Suva (18.149°S, 178.446°E), Fiji, during 2013-2014, have been used to estimate the VLF modal interference distance (DMS) and nighttime D region VLF reflection height (hN). The NWC transmitter signal propagates mostly in west-east direction, and the NLK transmitter follows a transequatorial path propagating significantly in the east-west direction. The values of DMS calculated using midpath terminator speed are 2103 ± 172 km and 2507 ± 373 km for these paths having west-east and east-west components of VLF subionospheric propagation, respectively, which agree with previously published results and within 10% with theoretical values. We have also compared the DMS estimated using a terminator time method with that calculated using terminator speed for a particular day and found both the values to be consistent. The hN values were found to be maximum during winter of Southern Hemisphere for NWC signal and winter of Northern Hemisphere for NLK signal VLF propagation paths to Suva. The hN also shows significant day-to-day and seasonal variabilities with a maximum of about 10 km and 23 km for NWC and NLK signal propagation paths, respectively, which could be due to the atmospheric gravity waves associated with solar terminator transition, as well as meteorological factors such as strong lightnings.
Monolithic mm-wave phase shifter using optically activated superconducting switches
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)
1992-01-01
A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
Rankin, R.A.; Kotter, D.K.
1997-05-13
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.
Rankin, Richard A.; Kotter, Dale K.
1997-01-01
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.
Highly Efficient Spin-Current Operation in a Cu Nano-Ring
NASA Astrophysics Data System (ADS)
Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi
2016-11-01
An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2007-01-01
This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
A Terminal Area Icing Remote Sensing System
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Serke, David J.
2014-01-01
NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.
Multi-access laser communications terminal
NASA Technical Reports Server (NTRS)
1992-01-01
The Optical Multi-Access (OMA) Terminal is capable of establishing up to six simultaneous high-data-rate communication links between low-Earth-orbit satellites and a host satellite at synchronous orbit with only one 16-inch-diameter antenna on the synchronous satellite. The advantage over equivalent RF systems in space weight, power, and swept volume is great when applied to NASA satellite communications networks. A photograph of the 3-channel prototype constructed under the present contract to demonstrate the feasibility of the concept is presented. The telescope has a 10-inch clear aperture and a 22 deg full field of view. It consists of 4 refractive elements to achieve a telecentric focus, i.e., the focused beam is normal to the focal plane at all field angles. This feature permits image pick-up optics in the focal plane to track satellite images without tilting their optic axes to accommodate field angle. The geometry of the imager-pick-up concept and the coordinate system of the swinging arm and disk mechanism for image pick-up are shown. Optics in the arm relay the telescope focus to a communications and tracking receiver and introduce the transmitted beacon beam on a path collinear with the receive path. The electronic circuits for the communications and tracking receivers are contained on the arm and disk assemblies and relay signals to an associated PC-based operator's console for control of the arm and disk motor drive through a flexible cable which permits +/- 240 deg travel for each arm and disk assembly. Power supplies and laser transmitters are mounted in the cradle for the telescope. A single-mode fiber in the cable is used to carry the laser transmitter signal to the arm optics. The promise of the optical multi-access terminal towards which the prototype effort worked is shown. The emphasis in the prototype development was the demonstration of the unique aspect of the concept, and where possible, cost avoidance compromises were implemented in areas already proven on other programs. The design details are described in section 2, the prototype test results in section 3, additional development required in section 4, and conclusions in section 5.
An improved empirical model for diversity gain on Earth-space propagation paths
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1981-01-01
An empirical model was generated to estimate diversity gain on Earth-space propagation paths as a function of Earth terminal separation distance, link frequency, elevation angle, and angle between the baseline and the path azimuth. The resulting model reproduces the entire experimental data set with an RMS error of 0.73 dB.
Randomized path optimization for thevMitigated counter detection of UAVS
2017-06-01
using Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the...Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the true terminal...algorithm’s success. A recursive Bayesian filtering scheme is used to assimilate noisy measurements of the UAVs position to predict its terminal location. We
A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2010-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Path changing methods applied to the 4-D guidance of STOL aircraft.
DOT National Transportation Integrated Search
1971-11-01
Prior to the advent of large-scale commercial STOL service, some challenging navigation and guidance problems must be solved. Proposed terminal area operations may require that these aircraft be capable of accurately flying complex flight paths, and ...
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwarz, Ray P.
1992-01-01
Measurements were taken of the path of a simulated typical tissue segment or 'particle' within a rotating fluid as a function of gravitational strength, fluid rotation rate, particle sedimentation rate, and particle initial position. Parameters were examined within the useful range for tissue culture in the NASA rotating wall culture vessels. The particle moves along a nearly circular path through the fluid (as observed from the rotating reference frame of the fluid) at the same speed as its linear terminal sedimentation speed for the external gravitational field. This gravitationally induced motion causes an increasing deviation of the particle from its original position within the fluid for a decreased rotational rate, for a more rapidly sedimenting particle, and for an increased gravitational strength. Under low gravity conditions (less than 0.1 G), the particle's motion through the fluid and its deviation from its original position become negligible. Under unit gravity conditions, large distortions (greater than 0.25 inch) occur even for particles of slow sedimentation rate (less than 1.0 cm/sec). The particle's motion is nearly independent of the particle's initial position. Comparison with mathematically predicted particle paths show that a significant error in the mathematically predicted path occurs for large particle deviations. This results from a geometric approximation and numerically accumulating error in the mathematical technique.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.
1998-01-01
We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.
ERIC Educational Resources Information Center
Bucher, Manfred; And Others
1991-01-01
Described is a baton that consists of an unbreakable transparent tube with three inserted light-emitting diodes (LED) and terminal impact buffers that hold batteries and counterweights. The concepts of projectile motion and parabolic paths can be shown by analyzing the path of a thrown baton. (KR)
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun
2017-07-19
A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.
On the upstream boundary of electron foreshocks in the solar wind
NASA Technical Reports Server (NTRS)
Zimbardo, G.; Veltri, P.
1995-01-01
The upstream boundary of electron foreshocks is defined as the path of the fastest electrons reflected by collisionless shocks and moving along the magnetic field in the solar wind. Considerable levels of magnetic fluctuations are found in these regions of the solar wind, and their effect is to create both a broadening and a fine structure of the electron foreshock boundary. The magnetic structure is studied by means of a 3-D numerical simulation of a turbulent magnetic field. Enhanced, anomalous diffusion is found, (Delta x(exp 2)) varies as s(sup alpha), where alpha is greater than 1 for typical values of the parameters (here, Delta x(exp 2) is the mean square width of the tangent magnetic surface and s is the field line length). This corresponds to a Levy flight regime for the magnetic field line random walk, and allows very efficient electron propagation perpendicular to the magnetic field. Implications on the observations of planetary foreshocks and of the termination shock foreshock are considered.
Lasztóczi, Bálint; Tukker, John J.; Somogyi, Peter; Klausberger, Thomas
2015-01-01
Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats and compared them with firing of CA3 pyramidal cells. The position of the terminals of individual visualized interneurons was highly diverse, selective, and often spatially coaligned with either the entorhinal or the associational inputs to area CA3. The spike timing in relation to theta and gamma oscillations and sharp waves was correlated with the innervated pyramidal cell domain. Basket and dendritic-layer-innervating interneurons receive entorhinal and associational inputs and preferentially fire on the ascending theta phase, when pyramidal cell assemblies emerge. Perforant-path-associated cells, driven by recurrent collaterals of pyramidal cells fire on theta troughs, when established pyramidal cell assemblies are most active. In the CA3 area, slow and fast gamma oscillations occurred on opposite theta oscillation phases. Perforant-path-associated and some COUP-TFII-positive interneurons are strongly coupled to both fast and slow gamma oscillations, but basket and dendritic-layer-innervating cells are weakly coupled to fast gamma oscillations only. During sharp waves, different interneuron types are activated, inhibited, or remain unaffected. We suggest that specialization in pyramidal cell domain and glutamatergic input-specific operations, reflected in the position of GABAergic terminals, is the evolutionary drive underlying the diversity of cholecystokinin-expressing interneurons. PMID:22159120
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts: Third Revision
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2012-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates constant radius turns and cruise altitude waypoints with calibrated airspeed, versus Mach, constraints. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint. Wind data at each of these waypoints are also used for the calculation of ground speed and turn radius.
Optical overview and qualification of the LLCD space terminal
NASA Astrophysics Data System (ADS)
DeVoe, C. E.; Pillsbury, A. D.; Khatri, F.; Burnside, J. M.; Raudenbush, A. C.; Petrilli, L. J.; Williams, T.
2017-11-01
In October 2013 the Lunar Laser Communications Demonstration (LLCD) made communications history by successfully demonstrating 622 megabits per second laser communication from the moon's orbit to earth. The LLCD consisted of the Lunar Laser Communication Space Terminal (LLST), developed by MIT Lincoln Laboratory, mounted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and a primary ground terminal located in New Mexico, the Lunar Laser Communications Ground Terminal (LLGT), and two alternate ground terminals. This paper presents the optical layout of the LLST, the approach for testing the optical subsystems, and the results of the optical qualification of the LLST. Also described is the optical test set used to qualify the LLST. The architecture philosophy for the optics was to keep a small, simple optical backend that provided excellent boresighting and high isolation between the optical paths, high quality wavefront on axis, with minimal throughput losses on all paths. The front end large optics consisted of a Cassegrain 107mm telescope with an f/0.7 parabolic primary mirror and a solar window to reduce the thermal load on the telescope and to minimize background light received at the sensors.
Windshear certification data base for forward-look detection systems
NASA Technical Reports Server (NTRS)
Switzer, George F.; Hinton, David A.; Proctor, Fred H.
1994-01-01
Described is an introduction to a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-looking windshear detection equipment. The database contains high-resolution three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies that are generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases contained in the certification documentation represent a wide spectrum of windshear events. The database will be used with vendor-developed sensor simulation software and vendor-collected ground-clutter data to demonstrate detection performance in a variety of meteorological conditions using NASA/FAA pre-defined path scenarios for each of the certification cases. A brief outline of the contents and sample plots from the database documentation are included. These plots show fields of hazard factor, or F-factor (Bowles 1990), radar reflectivity, and velocity vectors on a horizontal plane overlayed with the applicable certification paths. For the plot of the F-factor field the region of 0.105 and above signify an area of hazardous, performance decreasing windshear, while negative values indicate regions of performance increasing windshear. The values of F-factor are based on 1-Km averaged segments along horizontal flight paths, assuming an air speed of 150 knots (approx. 75 m/s). The database has been released to vendors participating in the certification process. The database and associated document have been transferred to the FAA for archival storage and distribution.
Minimum-fuel, 3-dimensional flightpath guidance of transfer jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1984-01-01
Minimum fuel, three dimensional flightpaths for commercial jet aircraft are discussed. The theoretical development is divided into two sections. In both sections, the necessary conditions of optimal control, including singular arcs and state constraints, are used. One section treats the initial and final portions (below 10,000 ft) of long optimal flightpaths. Here all possible paths can be derived by generating fields of extremals. Another section treats the complete intermediate length, three dimensional terminal area flightpaths. Here only representative sample flightpaths can be computed. Sufficient detail is provided to give the student of optimal control a complex example of a useful application of optimal control theory.
Overload protection circuit for output driver
Stewart, Roger G.
1982-05-11
A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.
Structural properties and diffusion processes of the Cu 3Au (0 0 1) surface
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhang, Jian-Min; Zhang, Yan; Ji, Vincent
2010-09-01
The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu 3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu 3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.
A method for measuring aircraft height and velocity using dual television cameras
NASA Technical Reports Server (NTRS)
Young, W. R.
1977-01-01
A unique electronic optical technique, consisting of two closed circuit television cameras and timing electronics, was devised to measure an aircraft's horizontal velocity and height above ground without the need for airborne cooperative devices. The system is intended to be used where the aircraft has a predictable flight path and a height of less than 660 meters (2,000 feet) at or near the end of an air terminal runway, but is suitable for greater aircraft altitudes whenever the aircraft remains visible. Two television cameras, pointed at zenith, are placed in line with the expected path of travel of the aircraft. Velocity is determined by measuring the time it takes the aircraft to travel the measured distance between cameras. Height is determined by correlating this speed with the time required to cross the field of view of either camera. Preliminary tests with a breadboard version of the system and a small model aircraft indicate the technique is feasible.
Superconducting cable connections and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, Daniel Cornelis
2017-09-05
Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less
VLF Signal Anomalies during the Earthquacke preparation phase
NASA Astrophysics Data System (ADS)
NAIT Amor, S.; Omari, T.
2016-12-01
In this contribution we will present a new results on the VLF signal anomalies related to the earthquacke. The technic of the Sun Rise Terminator (SRT) effect is adopted. The importance of this study is that the earthquack center was at 50 km from the receiver allowing the analysis of many Transmitters to receiver paths. Our resullts show that the SRT moved toward nightimte a days before the earthquacke. We also examined the time difference between two successive SRT observed on NAA-Algiers path where one correspond to the terminator passage through the receiver region and the second far from it which can be used as a reference. The SRT time difference results confirmed the SRT displacement.
NASA Astrophysics Data System (ADS)
Majeed, Hassaan; Lee, Young J.; Best-Popescu, Catherine; Popescu, Gabriel; Jang, Sung-Soo; Chung, Hee Jung
2017-02-01
Traditionally the measurement of electrical activity in neurons has been carried out using microelectrode arrays that require the conducting elements to be in contact with the neuronal network. This method, also referred to as "electrophysiology", while being excellent in terms of temporal resolution is limited in spatial resolution and is invasive. An optical microscopy method for measuring electrical activity is thus highly desired. Common-path quantitative phase imaging (QPI) systems are good candidates for such investigations as they provide high sensitivity (on the order of nanometers) to the plasma membrane fluctuations that can be linked to electrical activity in a neuronal circuit. In this work we measured electrical activity in a culture of rat cortical neurons using MISS microscopy, a high-speed common-path QPI technique having an axial resolution of around 1 nm in optical path-length, which we introduced at PW BIOS 2016. Specifically, we measured the vesicular cycling (endocytosis and exocytosis) occurring at axon terminals of the neurons due to electrical activity caused by adding a high K+ solution to the cell culture. The axon terminals were localized using a micro-fluidic device that separated them from the rest of the culture. Stacks of images of these terminals were acquired at 826 fps both before and after K+ excitation and the temporal standard deviation maps for the two cases were compared to measure the membrane fluctuations. Concurrently, the existence of vesicular cycling was confirmed through fluorescent tagging and imaging of the vesicles at and around the axon terminals.
The 5th Meeting of the Ad Hoc Panel on Terminal Configured Vehicles
NASA Technical Reports Server (NTRS)
1977-01-01
A report of the fifth meeting of the NASA Research and Technology Advisory Council, Ad Hoc panel on Terminal Configured Vehicles is presented. Some of the following topics were discussed; (1) microwave landing systems; (2) whole word computer system status; (3) flight path angle control: (4) VTOL approaches and landing technology; and (5) simulation study in wind shear.
Bano, Amreen; Gaur, N K
2018-01-15
A variety of theoretical and experimental works have reported several potential applications of MoS 2 monolayer based heterostructures (HSs) such as light emitting diodes, photodetectors and field effect transistors etc. In the present work, we have theoretically performed as a model case study, MoS 2 monolayer deposited over insulating SrTiO 3 (001) to study the band alignment at TiO 2 termination. The interfacial characteristics are found to be highly dependent on the interface termination. With an insulating oxide material, a significant band gap (0.85eV) is found in MoS 2 /TiO 2 interface heterostructure (HS). A unique electronic band profile with an indirect band gap (0.67eV) is observed in MoS 2 monolayer when confined in a cubic environment of SrTiO 3 (STO). Adsorption analysis showed the chemisorption of MoS 2 on the surface of STO substrate with TiO 2 termination which is justified by the charge density calculations that shows the existence of covalent bonding at the interface. The fabrication of HS of such materials paves the path for developing the unprecedented 2D materials with exciting properties such as semiconducting devices, thermoelectric and optoelectronic applications.
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-01-01
The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-07-01
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
NASA Astrophysics Data System (ADS)
Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.
2010-11-01
Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.
Channel characterisation for future Ka-band Mobile Satellite Systems and preliminary results
NASA Technical Reports Server (NTRS)
Sforza, Mario; Buonomo, Sergio; Arbesser-Rastburg, Bertram
1994-01-01
Mobile satellite systems (MSS) are presently designed or planned to operate, with the exception of OMNITRACKS, in the lower part of the frequency spectrum (UHF to S-bands). The decisions taken at the last World Administrative Radio Conference in 1992 to increase the allocated L- and S-bands for MSS services will only partly alleviate the problem of system capacity. In addition the use of L-and S-band frequencies generally requires large antenna apertures on board the satellite terminal side. The idea of exploiting the large spectrum resources available at higher frequencies (20-30 GHz) and the perspective of reducing user terminal size (and possibly price too) have spurred the interest of systems designers and planners. On the other hand, Ka-band frequencies suffer from increased slant path losses due to atmospheric attenuation phenomena. The European Space Agency (ESA) has recently embarked on a number of activities aimed at studying the effect of the typical mobile propagation impairments at Ka-band. This paper briefly summarizes ESA efforts in this field of research and presents preliminary experimental results.
Ebbesson, S O
1981-01-01
Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.
Survey of compressions in the SW (1 AU), and after termination shock at Voyager (in sheath & LISM)
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.
2017-12-01
Examples of the plasma compression as it is observed in the solar wind at 1 AU with the suite of instruments in the SC Wind, and after the termination shock with both Voyager SC, as well as with Voyager 1 in the local interstellar medium (LISM) are presented. The work will focus on similarities and differences in the observations at the different locations. At priory is fair to mention that the 4 regions differ in several aspects. At 1 AU the solar wind (SW) flow is mostly alfvenic. In the sheath after the termination shock the possibly subsonic solar wind is mostly compressional but fluctuation modes in scales of one hour are much less observed at Voyager 1 than at Voyager 2 path. Finally Burlaga and Ness1 documented the nature of the compressional flow in the `depletion' layer at the start of the LISM as well later in this medium, showing the low plasma-beta character of this LISM region in Voyager 1 path. 1Burlaga L.F., and N. Ness, ApJ, 784, 146 (14pp), 2014.
The Future of Air Traffic Management
NASA Technical Reports Server (NTRS)
Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)
1998-01-01
A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.
The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.
2003-01-01
In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Path Planning for Robot based on Chaotic Artificial Potential Field Method
NASA Astrophysics Data System (ADS)
Zhang, Cheng
2018-03-01
Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.
NASA Technical Reports Server (NTRS)
Athans, M.
1974-01-01
A design concept of the dynamic control of aircraft in the near terminal area is discussed. An arbitrary set of nominal air routes, with possible multiple merging points, all leading to a single runway, is considered. The system allows for the automated determination of acceleration/deceleration of aircraft along the nominal air routes, as well as for the automated determination of path-stretching delay maneuvers. In addition to normal operating conditions, the system accommodates: (1) variable commanded separations over the outer marker to allow for takeoffs and between successive landings and (2) emergency conditions under which aircraft in distress have priority. The system design is based on a combination of three distinct optimal control problems involving a standard linear-quadratic problem, a parameter optimization problem, and a minimum-time rendezvous problem.
A Trusted Path Design and Implementation for Security Enhanced Linux
2004-09-01
functionality by a member of the team? Witten, et al., [21] provides an excellent discussion of some aspects of the subject. Ultimately, open vs ...terminal window is a program like gnome - terminal that provides a TTY-like environment as a window inside an X Windows session. The phrase computer...Editors selected No sound or video No graphics Check all development boxes except KDE Administrative tools System tools No printing support
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
An avionics sensitivity study. Volume 1: Operational considerations
NASA Technical Reports Server (NTRS)
Scott, R. W.; Mcconkey, E. D.
1976-01-01
Equipment and operational concepts affecting aircraft in the terminal area are reported. Curved approach applications and modified climb and descent procedures for minimum fuel consumption are considered. The curved approach study involves the application of MLS guidance to enable execution of the current visual approach to Washington National Airport under instrument flight conditions. The operational significance and the flight path control requirements involved in the application of curved approach paths to this situation are considered. Alternative flight path control regimes are considered to achieve minimum fuel consumption subject to constraints related to air traffic control requirements, flight crew and passenger reactions, and airframe and powerplant limitations.
Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight
Chen, Wanchun
2014-01-01
This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821
Flight experiments to improve terminal area operations
NASA Technical Reports Server (NTRS)
Salmirs, S.; Morello, S. A.
1978-01-01
A brief description is given of the objectives and activities of the terminal configured vehicle (TCV) program and of some of the airborne facilities. A short analysis of some particular problems in CTOL operations in the terminal area is also presented to show how the program's technical objectives are related to the defined problems. The test aircraft was flown both manually and automatically with manual monitoring over paths including 130 deg intercepts and 2.0 km and 0.8 km finals. Some statistical data are presented from these and other flight profiles designed to address specific terminal area problems. An overview is presented of research studies receiving emphasis in the next biennium and their application to the terminal area. A description of work undertaken to study the addition of adjacent traffic information to present map displays is also given.
Flight experiments to improve terminal area operations
NASA Technical Reports Server (NTRS)
Salmirs, S.; Morello, S. A.
1978-01-01
A brief description is given of the objectives and activities of the terminal configured vehicle (TCV) program and of some of the airborne facilities. A short analysis of some particular problems of CTOL operations in the terminal area is also presented to show how the program's technical objectives are related to the defined problems. The test aircraft was flown both manually and automatically with manual monitoring over paths including 130 deg intercepts and 2.0 km (1.1. n. mi.) and 0.8 km (0.44 n. mi.) finals. Some statistical data are presented from these and other flight profiles designed to address specific terminal in the next biennium and their application to the terminal area. A description of work being undertaken to study the addition of adjacent traffic information to present map displays is also given.
Pan, Hsueh-Hsing; Shih, Hsiu-Ling; Wu, Li-Fen; Hung, Yu-Chun; Chu, Chi-Ming; Wang, Kwua-Yun
2017-08-17
The Taiwanese government has promoted palliative care consultation services (PCCS) to support terminally ill patients in acute ward settings to receive palliative care since 2005. Such an intervention can enhance the quality of life and dignity of terminally ill patients. However, research focusing on the relationship between the knowledge, attitude and practice of a PCCS using path modelling in nursing staff is limited. Therefore, the aim of this study was to elucidate the effect of path modeling on the knowledge, attitude and practice toward PCCS in Taiwanese nursing staff. This was a cross-sectional, descriptive study design using convenience sampling. Data collected included demographics, knowledge, attitude and practice as measured by the PCCS inventory (KAP-PCCSI). Two hundred and eighty-four nursing staff from a medical center in northern Taiwan participated in the study in 2013. We performed descriptive statistics, regression analysis, and path modeling using SPSS 19.0 and set p < 0.05 as the statistical significance threshold. The results showed that the identical factor significantly associated with knowledge, attitude, and practice toward PCCS among nurses was the frequency of contact with PCCS. In addition, higher level of knowledge toward PCCS was associated with working in haematology and oncology wards, and participation in education related to palliative care. A more positive attitude toward PCCS was associated with working in a haematology and oncology ward, and experience of friends or relatives dying. Higher level of practice toward PCCS was associated with nurses who participated in education related to palliative care. In the path modeling, we found that holders of a master's degree indirectly positive affected practice toward PCCS. Possession of a bachelor degree or above, being single, working within a haematology and oncology ward, and frequency of contact with PCCS positively affected practice toward PCCS. Based on this study, it is proposed that consultation with PCCS has a positive impact on the care of terminally ill patients. Encouragement of staff to undertake further education can improve the practice of ward staff providing palliative care.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.
1988-01-01
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Three-terminal quantum-dot thermal management devices
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan
2017-04-01
We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.
1988-05-10
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.
Reconfigurable electronics using conducting metal-organic frameworks
Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie
2017-07-18
A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.
NASA Technical Reports Server (NTRS)
Becher, J.; Cohen, N.; Rublee, J.
1981-01-01
The feasibility of classifying an airport terminal area for multipath effects, i.e., fadeout potentials or limits of video resolution, is examined. Established transmission links in terminal areas were modeled for landing approaches and overflight patterns. A computer program to obtain signal strength based on a described flight path was written. The application of this model to evaluate the signal transmission obtained in an actual flight equipped with additional signal strength monitoring equipment is described. The actual and computed received signal are compared, and the feasibility of the computer simulation for predicting signal amplitude fluctuation is evaluated.
Path correction of free flight projectiles by cross firing of subsidiary projectiles
NASA Astrophysics Data System (ADS)
Stroem, L.
1982-10-01
Terminal guidance of gun-fired shells is described. The path is corrected by shooting out throw-bodies from the shell casing. The drawbacks of the method, e.g., casing deformation, were eliminated. Using deflagrating substances instead of explosives, higher impulses were obtained, and at lower pressure levels. At acceleration distances of only 10 to 15 mm throw-body speeds of 400 to 500 m/sec were noted, allowing this method to be applied to rotation-stabilized shells.
Flight evaluation of the terminal guidance system
NASA Technical Reports Server (NTRS)
Sandlin, D. R.
1981-01-01
The terminal guidance system (TGS) is avionic equipment which gives guidance along a curved descending flight path to a landing. A Cessna 182 was used as the test aircraft and the TGS was installed and connected to the altimeter, DME, RMI, and gyro compass. Approaches were flown by three different pilots. When the aircraft arrives at the termination point, it is set up on final approach for a landing. The TGS provides guidance for curved descending approaches with guideslopes of 6 deg which required, for experienced pilots, workloads that are approximately the same as for an ILS. The glideslope is difficult to track within 1/2 n.m. of the VOR/DME station. The system permits, for experienced pilots, satisfactory approaches with a turn radius as low as 1/2 n.m. and a glideslope of 6 deg. Turn angles have little relation to pilot workload for curved approaches. Pilot experience is a factor for curved approaches. Pilots with low instrument time have difficulty flying steep approaches with small turn radius. Turbulence increases the pilot workload for curved approaches. The TGS does not correct to a given flight path over the ground nor does it adequately compensate for wind drift.
New model for distributed multimedia databases and its application to networking of museums
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1998-02-01
This paper proposes a new distributed multimedia data base system where the databases storing MPEG-2 videos and/or super high definition images are connected together through the B-ISDN's, and also refers to an example of the networking of museums on the basis of the proposed database system. The proposed database system introduces a new concept of the 'retrieval manager' which functions an intelligent controller so that the user can recognize a set of image databases as one logical database. A user terminal issues a request to retrieve contents to the retrieval manager which is located in the nearest place to the user terminal on the network. Then, the retrieved contents are directly sent through the B-ISDN's to the user terminal from the server which stores the designated contents. In this case, the designated logical data base dynamically generates the best combination of such a retrieving parameter as a data transfer path referring to directly or data on the basis of the environment of the system. The generated retrieving parameter is then executed to select the most suitable data transfer path on the network. Therefore, the best combination of these parameters fits to the distributed multimedia database system.
Life-space foam: A medium for motivational and cognitive dynamics
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir; Aidman, Eugene
2007-08-01
General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Acoustic concentration of particles in fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Michael W.; Kaduchak, Gregory
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential
NASA Astrophysics Data System (ADS)
Grosche, Christian
1988-10-01
Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.
Redman, R.S.; Roossinck, M.J.; Maher, S.; Rodriguez, R.J.
2002-01-01
Path-1 is a UV-induced non-pathogenic mutant of a virulent Colletotrichum magna isolate that establishes mutualistic symbioses with cucurbit and tomato species. Under laboratory conditions, this mutualism results in plant growth enhancement, drought tolerance, and disease protection against fungal pathogens. This study focuses on the efficacy of this symbiosis and the symbiotic lifestyle expressed by path-1 under field conditions in the absence of disease stress. The effects of colonization by path-1 on fruit yields and growth was measured in field plots with four cucurbit species including four watermelon cultivars, and two tomato cultivars, over four growing seasons. The persistence of the symbiosis, extent of colonization, and path-1 transmission were also assessed. Yields from path-1 infected plants were equivalent to or greater than yields from non-inoculated control plants and path-1 systemically colonized plants throughout each growing season. Path-1 also increased the growth rates of tomato plants and was not transmitted to uncolonized plants. The results indicate that there are no metabolic costs of this symbiosis and the symbiosis is maintained under field conditions.
NASA Technical Reports Server (NTRS)
King, Michael; Reehorst, Andrew; Serke, Dave
2015-01-01
NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.
Army Communicator. Volume 33, Number 4, Fall 2008
2008-01-01
and Army LOS data pa.chgo’ (’imilar to tho MR C 142) woro ,ot up at tho,o locations. Tho WPPL, and MRC- 142’, ""’" tonninatod at oilhortho north or...bandwidth antonnao, allowing two 8 MB lino of ’ight path, to Al A"ad and Fallujah, which ""camo tho primary path out. Lo ..on. L.anI.d Tho mi"ion of Bravo...Multiband Satellite Terminal LOS - Iine-of-sight LSWAN - Logistics Support Wide Area Network NIPR - Non-secure Internet Routing Protocol OSPF - open
Path integration on the hyperbolic plane with a magnetic field
NASA Astrophysics Data System (ADS)
Grosche, Christian
1990-08-01
In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.
An evaluation of head-up displays in civil transport operations
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Bray, R. S.; Scott, B. C.
1981-01-01
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.
NASA Astrophysics Data System (ADS)
Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki
2017-01-01
In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.
Path planning on satellite images for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Yang, Joe-Ming; Tseng, Chien-Ming; Tseng, P. S.
2015-01-01
In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A* algorithm (FAA*), an advanced A* algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth...
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, Edward G.
1994-01-01
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.
Terminal altitude maximization for Mars entry considering uncertainties
NASA Astrophysics Data System (ADS)
Cui, Pingyuan; Zhao, Zeduan; Yu, Zhengshi; Dai, Juan
2018-04-01
Uncertainties present in the Mars atmospheric entry process may cause state deviations from the nominal designed values, which will lead to unexpected performance degradation if the trajectory is designed merely based on the deterministic dynamic model. In this paper, a linear covariance based entry trajectory optimization method is proposed considering the uncertainties presenting in the initial states and parameters. By extending the elements of the state covariance matrix as augmented states, the statistical behavior of the trajectory is captured to reformulate the performance metrics and path constraints. The optimization problem is solved by the GPOPS-II toolbox in MATLAB environment. Monte Carlo simulations are also conducted to demonstrate the capability of the proposed method. Primary trading performances between the nominal deployment altitude and its dispersion can be observed by modulating the weights on the dispersion penalty, and a compromised result referring to maximizing the 3σ lower bound of the terminal altitude is achieved. The resulting path constraints also show better satisfaction in a disturbed environment compared with the nominal situation.
NASA Astrophysics Data System (ADS)
Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.
2015-03-01
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH2OO and anti/syn-CH3C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH2OO and anti-CH3C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH3C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C-H bonds. For syn-CH3C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH3 group by the terminal O atom producing CH2C(H)O-OH. At 298 K, the intramolecular insertion process in CH2OO was found to be 600 times faster than the commonly assumed ring-closing reaction.
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
Annular and Total Solar Eclipses of 2003
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2002-01-01
On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.
Routing optimization in networks based on traffic gravitational field model
NASA Astrophysics Data System (ADS)
Liu, Longgeng; Luo, Guangchun
2017-04-01
For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
ACTS Ka-band Propagation Research in a Spatially Diversified Network with Two USAT Ground Stations
NASA Technical Reports Server (NTRS)
Kalu, Alex; Acousta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.
1999-01-01
Congestion in the radio spectrum below 18 GHz is stimulating greater interest in the Ka (20/30 GHz) frequency band. Transmission at these shorter wavelengths is greatly influenced by rain resulting in signal attenuation and decreased link availability. The size and projected cost of Ultra Small Aperture Terminals (USATS) make site diversity methodology attractive for rain fade compensation. Separation distances between terminals must be small to be of interest commercially. This study measures diversity gain at a separation distance <5 km and investigates utilization of S-band weather radar reflectivity in predicting diversity gain. Two USAT ground stations, separated by 2.43 km for spatial diversity, received a continuous Ka-band tone sent from NASA Glenn Research Center via the Advanced Communications Technology Satellite (ACTS) steerable antenna beam. Received signal power and rainfall were measured, and Weather Surveillance Radar-1998 Doppler (WSR-88D) data were obtained as a measure of precipitation along the USAT-to-ACTS slant path. Signal attenuation was compared for the two sites, and diversity gain was calculated for fades measured on eleven days. Correlation of WSR-88D S-band reflectivity with measured Ka-band attenuation consisted of locating radar volume elements along each slant path, converting reflectivity to Ka-band attenuation with rain rate calculation as an intermediate step. Specific attenuation for each associated path segment was summed, resulting in total attenuation along the slant path. Derived Ka-band attenuation did not correlate closely with empirical data (r = 0.239), but a measured signal fade could be matched with an increase in radar reflectivity in all fade events. Applying a low pass filter to radar reflectivity prior to deriving Ka-band attenuation improved the correlation between measured and derived signal attenuation (r = 0.733). Results indicate that site diversity at small separation distances is a viable means of rain fade compensation, and that existing models underestimate diversity gain for a subtropical climate such as Florida. Also, filtered WSR-88D reflectivity can be used for optimizing diversity terminal placement by comparing derived Ka- band attenuation between the diversity sites.
Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.
NASA Astrophysics Data System (ADS)
Hur, Sun Hae
The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
77 FR 5294 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... automatic train supervision controls. This work initially includes certain tracks within PATH's Harrison... tracks, other yard tracks, and terminals as the Automatic Train Control (ATC, which is a type of PTC... the requirements of 49 CFR 235.5 to expedite successful installation of Positive Train Control (PTC...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
Dual stage potential field method for robotic path planning
NASA Astrophysics Data System (ADS)
Singh, Pradyumna Kumar; Parida, Pramod Kumar
2018-04-01
Path planning for autonomous mobile robots are the root for all autonomous mobile systems. Various methods are used for optimization of path to be followed by the autonomous mobile robots. Artificial potential field based path planning method is one of the most used methods for the researchers. Various algorithms have been proposed using the potential field approach. But in most of the common problems are encounters while heading towards the goal or target. i.e. local minima problem, zero potential regions problem, complex shaped obstacles problem, target near obstacle problem. In this paper we provide a new algorithm in which two types of potential functions are used one after another. The former one is to use to get the probable points and later one for getting the optimum path. In this algorithm we consider only the static obstacle and goal.
Trinh, Lan Anh; Ekström, Mikael; Cürüklü, Baran
2018-01-01
Recent industrial developments in autonomous systems, or agents, which assume that humans and the agents share the same space or even work in close proximity, open for new challenges in robotics, especially in motion planning and control. In these settings, the control system should be able to provide these agents a reliable path following control when they are working in a group or in collaboration with one or several humans in complex and dynamic environments. In such scenarios, these agents are not only moving to reach their goals, i.e., locations, they are also aware of the movements of other entities to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable and effective, path planning algorithm for a group of agents that share their working space with humans. Firstly, the method employs the Theta * algorithm to initialize the paths from a starting point to a goal for a set of agents. As Theta * algorithm is computationally heavy, it only reruns when there is a significant change of the environment. To deal with the movements of the agents, a static flow field along the configured path is defined. This field is used by the agents to navigate and reach their goals even if the planned trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of agents with other agents and human subjects. In this approach, each agent is assumed to be a source of a magnetic dipole field in which the magnetic moment is aligned with the moving direction of the agent. The magnetic dipole-dipole interactions between these agents generate repulsive forces to help them to avoid collision. The effectiveness of the proposed approach has been evaluated with extensive simulations. The results show that the static flow field is able to drive agents to the goals with a small number of requirements to update the path of agents. Meanwhile, the dipole flow field plays an important role to prevent collisions. The combination of these two fields results in a safe path planning algorithm, with a deterministic outcome, to navigate agents to their desired goals.
NASA Astrophysics Data System (ADS)
Chakraborty, Suman; Sasmal, Sudipta; Basak, Tamal; Ghosh, Soujan; Palit, Sourav; Chakrabarti, Sandip K.; Ray, Suman
2017-10-01
We present perturbations due to seismo-ionospheric coupling processes in propagation characteristics of sub-ionospheric Very Low Frequency (VLF) signals received at Ionospheric & Earthquake Research Centre (IERC) (Lat. 22.50°N, Long. 87.48°E), India. The study is done during and prior to an earthquake of Richter scale magnitude M = 7.3 occurring at a depth of 18 km at southeast of Kodari, Nepal on 12 May 2015 at 12:35:19 IST (07:05:19 UT). The recorded VLF signal of Japanese transmitter JJI at frequency 22.2 kHz (Lat. 32.08°N, Long. 130.83°E) suffers from strong shifts in sunrise and sunset terminator times towards nighttime starting from three to four days prior to the earthquake. The signal shows a similar variation in terminator times during a major aftershock of magnitude M = 6.7 on 16 May, 2015 at 17:04:10 IST (11:34:10 UT). These shifts in terminator times is numerically modeled using Long Wavelength Propagation Capability (LWPC) Programme. The unperturbed VLF signal is simulated by using the day and night variation of reflection height (h‧) and steepness parameter (β) fed in LWPC for the entire path. The perturbed signal is obtained by additional variation of these parameters inside the earthquake preparation zone. It is found that the shift of the terminator time towards nighttime happens only when the reflection height is increased. We also calculate electron density profile by using the Wait's exponential formula for specified location over the propagation path.
Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations
NASA Astrophysics Data System (ADS)
Xu, Shaosui; Mitchell, David; Liemohn, Michael; Fang, Xiaohua; Ma, Yingjuan; Luhmann, Janet; Brain, David; Steckiewicz, Morgane; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce
2017-02-01
The Mars Atmosphere and Volatile Evolution mission has obtained comprehensive particle and magnetic field measurements. The Solar Wind Electron Analyzer provides electron energy-pitch angle distributions along the spacecraft trajectory that can be used to infer magnetic topology. This study presents pitch angle-resolved electron energy shape parameters that can distinguish photoelectrons from solar wind electrons, which we use to deduce the Martian magnetic topology and connectivity to the dayside ionosphere. Magnetic topology in the Mars environment is mapped in three dimensions for the first time. At low altitudes (<400 km) in sunlight, the northern hemisphere is found to be dominated by closed field lines (both ends intersecting the collisional atmosphere), with more day-night connections through cross-terminator closed field lines than in the south. Although draped field lines with 100 km amplitude vertical fluctuations that intersect the electron exobase ( 160-220 km) in two locations could appear to be closed at the spacecraft, a more likely explanation is provided by crustal magnetic fields, which naturally have the required geometry. Around 30% of the time, we observe open field lines from 200 to 400 km, which implies three distinct topological layers over the northern hemisphere: closed field lines below 200 km, open field lines with foot points at lower latitudes that pass over the northern hemisphere from 200 to 400 km, and draped interplanetary magnetic field above 400 km. This study also identifies open field lines with one end attached to the dayside ionosphere and the other end connected with the solar wind, providing a path for ion outflow.
Fail-fixed servovalve with positive fluid feedback
NASA Technical Reports Server (NTRS)
Kast, Howard B. (Inventor)
1984-01-01
The servovalve includes a primary jet of fluid. A variable control signal is adapted to vary the angular position of the primary jet from its maximum recovery position. A first fluid path is adapted to supply fluid to a servopiston at a variable pressure determined at least in part by the control signal. A second fluid path is adapted to receive a predetermined portion of the primary jet fluid when the control signal reaches a predetermined value. The second fluid path terminates in the vicinity of the primary jet and is adapted to direct a secondary jet of fluid at the primary jet to deflect the primary jet toward the input orifice of the second fluid path. The resultant positive fluid feedback in the second fluid path causes the primary jet to latch in a first angular position relative to the maximum recovery position when the control signal reaches a predetermined value. The servovalve may further include a means to discharge the fluid and a means to block the first fluid path to the servopiston when the control signal falls below a second predetermined value. A method of operating a fail-fixed servovalve is also described.
NASA Technical Reports Server (NTRS)
Purcell, I. M.; Perachio, A. A.
1997-01-01
Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.
McGee, William M; McLuckey, Scott A
2013-11-15
The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N -hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H 2 O and NH 3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.
47 CFR 27.1180 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
... system with which it interferes is entitled to pro rata reimbursement based on the cost-sharing formula... system, and includes, but is not limited to, such items as: Radio terminal equipment (TX and/or RX...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC...
NASA Technical Reports Server (NTRS)
Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.
1993-01-01
A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.
In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes
Leonard, Francois; Dickerson, J. R.; King, M. P.; ...
2016-05-03
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less
Minimum-fuel turning climbout and descent guidance of transport jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
Sun, Chengsan
2017-01-01
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575
Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer
NASA Astrophysics Data System (ADS)
Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy
2018-05-01
mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.
Six paths for the future of social epidemiology.
Galea, Sandro; Link, Bruce G
2013-09-15
Social epidemiology is now an accepted part of the academic intellectual landscape. However, in many ways, social epidemiology also runs the risk of losing the identity that distinguished it as a field during its emergence. In the present article, we scan the strengths of social epidemiology to imagine paths forward that will make the field distinct and useful to the understanding of population health in future. We suggest 6 paths to such a future, each emerging from promising research trends in the field in which social epidemiologists can, and should, lead in coming years. Each of these paths contributes to the formation of distinct capacities that social epidemiologists can claim and use to elaborate or fill in gaps in the already strong history of social epidemiology. They present an opportunity for the field to build on its strengths and move forward while leading in new and critical areas in population health.
Six Paths for the Future of Social Epidemiology
Galea, Sandro; Link, Bruce G.
2013-01-01
Social epidemiology is now an accepted part of the academic intellectual landscape. However, in many ways, social epidemiology also runs the risk of losing the identity that distinguished it as a field during its emergence. In the present article, we scan the strengths of social epidemiology to imagine paths forward that will make the field distinct and useful to the understanding of population health in future. We suggest 6 paths to such a future, each emerging from promising research trends in the field in which social epidemiologists can, and should, lead in coming years. Each of these paths contributes to the formation of distinct capacities that social epidemiologists can claim and use to elaborate or fill in gaps in the already strong history of social epidemiology. They present an opportunity for the field to build on its strengths and move forward while leading in new and critical areas in population health. PMID:24008899
Visual environment recognition for robot path planning using template matched filters
NASA Astrophysics Data System (ADS)
Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto
2017-08-01
A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.
NASA Astrophysics Data System (ADS)
Hines, M. E.; Duddleston, K. N.; Chanton, J. P.
2006-12-01
Typical methanogenic decomposition pathways include near terminal carbon intermediates that turn over rapidly with small pool sizes. However, incubation and field experiments demonstrated that these organic intermediates accumulate in northern wetlands due to the lack of consumption by methanogenic bacteria. Acetate is the major organic end product of decomposition rather than CH4, and methanogenesis can be insignificant. The ratio of CO2:acetate:CH4 varied with vegetation type, and habitats dominated by non-vascular plants (Sphagnum) produced more acetate-C than CO2 or CH4. This ratio correlated well with stable C isotope alpha values used to delineate the path of CH4 formation. We suggest that methanogenesis in general is inhibited in oligotrophic wetlands, but that the conversion of acetate to CH4 is more sensitive, which increases the importance of the conversion of H2/CO2 to CH4. The relative importance of CH4 as an end product increased greatly in sites containing even small populations of Carex compared to sites inhabited only by Sphagnum, suggesting that subtle vegetation changes expected to occur during warming could lead to changes in the path of methanogenesis, increasing production. In addition, depth profiles revealed an active surficial (0-7 cm) C cycle that is sensitive to hydrology that may also greatly affect variability of CH4 formation. Acetate production represented a terminal process and was a sink for a large portion of metabolized C whose ultimate fate was aerobic oxidation to CO2. C destined for CH4 is thus bypassed to CO2 and does not contribute to atmospheric CH4. However, the connection and sensitivity of the pathway of methanogenesis to even small vegetation changes suggests that pathways can be mapped, they vary greatly over small distances, and they can change drastically with relatively small temperature increases.
NASA Astrophysics Data System (ADS)
Pierson, Kyle D.; Hochhalter, Jacob D.; Spear, Ashley D.
2018-05-01
Systematic correlation analysis was performed between simulated micromechanical fields in an uncracked polycrystal and the known path of an eventual fatigue-crack surface based on experimental observation. Concurrent multiscale finite-element simulation of cyclic loading was performed using a high-fidelity representation of grain structure obtained from near-field high-energy x-ray diffraction microscopy measurements. An algorithm was developed to parameterize and systematically correlate the three-dimensional (3D) micromechanical fields from simulation with the 3D fatigue-failure surface from experiment. For comparison, correlation coefficients were also computed between the micromechanical fields and hypothetical, alternative surfaces. The correlation of the fields with hypothetical surfaces was found to be consistently weaker than that with the known crack surface, suggesting that the micromechanical fields of the cyclically loaded, uncracked microstructure might provide some degree of predictiveness for microstructurally small fatigue-crack paths, although the extent of such predictiveness remains to be tested. In general, gradients of the field variables exhibit stronger correlations with crack path than the field variables themselves. Results from the data-driven approach implemented here can be leveraged in future model development for prediction of fatigue-failure surfaces (for example, to facilitate univariate feature selection required by convolution-based models).
Code of Federal Regulations, 2014 CFR
2014-01-01
... information, and is normally found on the terminal of a circuit and on the premises of the end user. Distance... telecommunications equipment at the end of a circuit or path of a signal, including but not limited to facilities..., the purpose of which is to accomplish the goal for which the circuit or signal was established...
Code of Federal Regulations, 2013 CFR
2013-01-01
... information, and is normally found on the terminal of a circuit and on the premises of the end user. Distance... telecommunications equipment at the end of a circuit or path of a signal, including but not limited to facilities..., the purpose of which is to accomplish the goal for which the circuit or signal was established...
Code of Federal Regulations, 2012 CFR
2012-01-01
... information, and is normally found on the terminal of a circuit and on the premises of the end user. Distance... telecommunications equipment at the end of a circuit or path of a signal, including but not limited to facilities..., the purpose of which is to accomplish the goal for which the circuit or signal was established...
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, E.G.
1994-05-10
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Trong-Nghia; Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi; Putikam, Raghunath
2015-03-28
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} groupmore » by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.« less
A wideband channel model for land mobile satellite systems
NASA Technical Reports Server (NTRS)
Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich
1995-01-01
A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.
Dusty plasma sheath-like structure in the region of lunar terminator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, S. I.; Zelenyi, L. M.; Atamaniuk, B.
2015-12-15
The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of 2–3 μm up to an altitude of about 30 cm over the lunar surfacemore » that explains the effect of “horizon glow” observed at the terminator by Surveyor lunar lander.« less
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
NASA Technical Reports Server (NTRS)
Pryor, Richard Lee (Inventor)
1977-01-01
A line driver including a pair of complementary transistors having their conduction paths serially connected between an operating and a reference potential and their bases connected through a first switch to a signal input terminal. A second switch is connected between the common base connection and the common connection of the conduction paths. With the second switch open and the first closed, an output voltage, responsive to the input signal, corresponding to first or second binary values is obtained. When the second switch is closed and the first opened, the transistor pair is turned off, disconnecting the line driver from its load, thereby providing tri-state logic operation.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
NASA Astrophysics Data System (ADS)
Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.
2016-09-01
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu
2016-09-15
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less
NASA Astrophysics Data System (ADS)
Moler, Kathryn
2014-03-01
Progress in the difficult task of growing oxide heterostructures has enabled the field of oxide interface engineering. The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001}interface of the band insulators LaAlO3 (LAO) and TiO2-terminated SrTiO3 (STO). The prevailing explanation of conduction at the interface is electronic reconstruction due to a `polar catastrophe' in which charge migrates from the top LAO layer to the interface. Transport and other measurements in this system display a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device (SQUID) microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed upon thermal cycling above the STO cubic to tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. In this talk, I will summarize these results and also report on measurements of conductivity and diamagnetism in related materials that firmly establish the influence of the STO tetragonal domains on electronic properties. Coauthors C. Bell, H.K. Sato, M. Hosoda, Y. Xie, Y. Hikita, & H.Y. Hwang (SIMES); R. Jany & C. Richter (Augsburg); C. Woltmann, G. Pfanzelt, & J. Mannhart (MP Stuttgart); B. Kalisky, E.M. Spanton, H. Noad, K.C. Nowack, A. Rosenberg, & J.R. Kirtley.
Semantic wireless localization of WiFi terminals in smart buildings
NASA Astrophysics Data System (ADS)
Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.
2016-06-01
The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle
NASA Astrophysics Data System (ADS)
Chen, Hongbin
2018-03-01
Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Boiler using combustible fluid
Baumgartner, H.; Meier, J.G.
1974-07-03
A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.
Skyberg, Rolf; Sun, Chengsan; Hill, David L
2017-08-09
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.
NASA Astrophysics Data System (ADS)
He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming
2017-03-01
A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2012-01-01
This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.
Design of a Ka-Band Propagation Terminal for Atmospheric Measurements in Polar Regions
NASA Technical Reports Server (NTRS)
Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.
2016-01-01
This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer [2] located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation [3] receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.
Design of a Ka-band Propagation Terminal for Atmospheric Measurements in Polar Regions
NASA Technical Reports Server (NTRS)
Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.
2016-01-01
This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.
Path description of coordinate-space amplitudes
NASA Astrophysics Data System (ADS)
Erdoǧan, Ozan; Sterman, George
2017-06-01
We develop a coordinate version of light-cone-ordered perturbation theory, for general time-ordered products of fields, by carrying out integrals over one light-cone coordinate for each interaction vertex. The resulting expressions depend on the lengths of paths, measured in the same light-cone coordinate. Each path is associated with a denominator equal to a "light-cone deficit," analogous to the "energy deficits" of momentum-space time- or light-cone-ordered perturbation theory. In effect, the role played by intermediate states in momentum space is played by paths between external fields in coordinate space. We derive a class of identities satisfied by coordinate diagrams, from which their imaginary parts can be derived. Using scalar QED as an example, we show how the eikonal approximation arises naturally when the external points in a Green function approach the light cone, and we give applications to products of Wilson lines. Although much of our discussion is directed at massless fields in four dimensions, we extend the formalism to massive fields and dimensional regularization.
NASA Astrophysics Data System (ADS)
Jacak, Janusz E.
2018-01-01
We demonstrate an original development of path-integral quantization in the case of a multiply connected configuration space of indistinguishable charged particles on a 2D manifold and exposed to a strong perpendicular magnetic field. The system occurs to be exceptionally homotopy-rich and the structure of the homotopy essentially depends on the magnetic field strength resulting in multiloop trajectories at specific conditions. We have proved, by a generalization of the Bohr-Sommerfeld quantization rule, that the size of a magnetic field flux quantum grows for multiloop orbits like (2 k +1 ) h/c with the number of loops k . Utilizing this property for electrons on the 2D substrate jellium, we have derived upon the path integration a complete FQHE hierarchy in excellent consistence with experiments. The path integral has been next developed to a sum over configurations, displaying various patterns of trajectory homotopies (topological configurations), which in the nonstationary case of quantum kinetics, reproduces some unclear formerly details in the longitudinal resistivity observed in experiments.
Sun, Cuihong; Xu, Baoen; Zhang, Shaowen
2014-05-22
Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol
2012-01-01
In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.
ERIC Educational Resources Information Center
Maguin, Eugene; And Others
1994-01-01
Examined the effectiveness of an intervention program to prevent conduct problems among the preschool sons of 104 alcoholic fathers. The 10-month intervention combined parent training and marital counseling and had significant positive effects on the children's negative, prosocial, and affective behavior at program termination. Only the prosocial…
USDA-ARS?s Scientific Manuscript database
Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...
Verhaert, Dominique V M; Bonnes, Judith L; Nas, Joris; Keuper, Wessel; van Grunsven, Pierre M; Smeets, Joep L R M; de Boer, Menko Jan; Brouwer, Marc A
2016-03-01
Of the proposed algorithms that provide guidance for in-field termination of resuscitation (TOR) decisions, the guidelines for cardiopulmonary resuscitation (CPR) refer to the basic and advanced life support (ALS)-TOR rules. To assess the potential consequences of implementation of the ALS-TOR rule, we performed a case-by-case evaluation of our in-field termination decisions and assessed the corresponding recommendations of the ALS-TOR rule. Cohort of non-traumatic out-of-hospital cardiac arrest (OHCA)-patients who were resuscitated by the ALS-practising emergency medical service (EMS) in the Nijmegen area (2008-2011). The ALS-TOR rule recommends termination in case all following criteria are met: unwitnessed arrest, no bystander CPR, no shock delivery, no return of spontaneous circulation (ROSC). Of the 598 cases reviewed, resuscitative efforts were terminated in the field in 46% and 15% survived to discharge. The ALS-TOR rule would have recommended in-field termination in only 6% of patients, due to high percentages of witnessed arrests (73%) and bystander CPR (54%). In current practice, absence of ROSC was the most important determinant of termination [aOR 35.6 (95% CI 18.3-69.3)]. Weaker associations were found for: unwitnessed and non-public arrests, non-shockable initial rhythms and longer EMS-response times. While designed to optimise hospital transportations, application of the ALS-TOR rule would almost double our hospital transportation rate to over 90% of OHCA-cases due to the favourable arrest circumstances in our region. Prior to implementation of the ALS-TOR rule, local evaluation of the potential consequences for the efficiency of triage is to be recommended and initiatives to improve field-triage for ALS-based EMS-systems are eagerly awaited. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Termination of atrial fibrillation using pulsed low-energy far-field stimulation
Fenton, Flavio H.; Luther, Stefan; Cherry, Elizabeth M.; Otani, Niels F.; Krinsky, Valentin; Pumir, Alain; Bodenschatz, Eberhard; Gilmour, Robert F.
2010-01-01
Background Electrically-based therapies for terminating atrial fibrillation (AF) currently fall into two categories: anti-tachycardia pacing (ATP) and cardioversion. ATP utilizes low-intensity pacing stimuli delivered via a single electrode and is effective for terminating slower tachycardias, but is less effective for treating AF. In contrast, cardioversion uses a single high-voltage shock to terminate AF reliably, but the voltages required produce undesirable side effects, including tissue damage and pain. We propose a new method to terminate AF called far-field anti-fibrillation pacing (FF-AFP), which delivers a short train of low-intensity electrical pulses at the frequency of ATP, but from field electrodes. Prior theoretical work has suggested that this approach can create a large number of activation sites (“virtual” electrodes) that emit propagating waves within the tissue without implanting physical electrodes and thereby may be more effective than point-source stimulation. Methods and Results Using optical mapping in isolated perfused canine atrial preparations, we show that a series of pulses at low field strength (0.9-1.4 V/cm) is sufficient to entrain and subsequently extinguish AF with a success rate of 93 percent (69/74 trials in 8 preparations). We further demonstrate that the mechanism behind FFAFP success is the generation of wave emission sites within the tissue by the applied electric field, which entrains the tissue as the field is pulsed. Conclusions AF in our model can be terminated by FF-AFP using only 13% of the energy required for cardioversion. Further studies are needed to determine whether this marked reduction in energy can increase the effectiveness and safety of terminating atrial tachyarrhythmias clinically. PMID:19635972
Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy
2013-01-01
NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.
Four-wavelength lidar evaluation of particle characteristics and aerosol densities
NASA Astrophysics Data System (ADS)
Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.
1985-06-01
The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.
Observations of lightning processes using VHF radio interferometry
NASA Technical Reports Server (NTRS)
Rhodes, C. T.; Shao, X. M.; Krehbiel, P. R.; Thomas, R.
1991-01-01
A single station, multiple baseline radio interferometer was used to locate the direction of VHF radiation from lightning discharges with microsec time resolution. Radiation source directions and electric field waveforms were analyzed for various types of breakdown events. These include initial breakdown and K type events of in-cloud activity, and the leaders of initial and subsequent strokes to ground and activity during and following return strokes. Radiation during the initial breakdown of a flash and in the early stages of initial leaders to ground is found to be similar. In both instances, the activity consists of localized bursts of radiation that are intense and slow moving. Motion within a given burst is unresolved by the interferometer. Radiation from in-cloud K type events is essentially the same as that from dart leaders; in both cases it is produced at the leading edge of a fast moving streamer that propagates along a well defined, often extensive path. K type events are sometimes terminated by fast field changes that are similar to the return stroke initiated by dart leaders; such K type events are the in-cloud analog of the dart leader return stroke process.
Surface and Interface Chemistry for Gate Stacks on Silicon
NASA Astrophysics Data System (ADS)
Frank, M. M.; Chabal, Y. J.
This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.
Use of a remote computer terminal during field checking of Landsat digital maps
Robinove, Charles J.; Hutchinson, C.F.
1978-01-01
Field checking of small-scale land classification maps made digitally from Landsat data is facilitated by use of a remote portable teletypewriter terminal linked by teleplume to the IDIMS (Interactive Digital Image Manipulation System) at the EDC (EROS Data Center), Sioux Falls, S. Dak. When field checking of maps 20 miles northeast of Baker, Calif., during the day showed that changes in classification were needed, the terminal was used at night to combine image statistical files, remap portions of images, and produce new alphanumeric maps for field checking during the next day. The alphanumeric maps can be used without serious difficulty in location in the field even though the scale is distorted, and statistical files created during the field check can be used for full image classification and map output at the EDC. This process makes field checking faster than normal, provides interaction with the statistical data while in the field, and reduces to a minimum the number of trips needed to work interactively with the IDIMS at the EDC, thus saving significant amounts of time and money. The only significant problem is using telephone lines which at times create spurious characters in the printout or prevent the line feed (paper advance) signal from reaching the terminal, thus overprinting lines which should be sequential. We recommend that maps for field checking be made with more spectral classes than are expected because in the field it is much easier to group classes than to reclassify or separate classes when only the remote terminal is available for display.
Evaluation of the Terminal Precision Scheduling and Spacing System for Near-Term NAS Application
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Martin, Lynne Hazel; Swenson, Harry N.; Lin, Paul; Nguyen, Jimmy
2012-01-01
NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to provide higher capacity and more efficiently manage arrivals during peak demand periods. This advanced technology is NASA's vision for the NextGen terminal metering capability. A set of human-in-the-loop experiments was conducted to evaluate the performance of the TAPSS system for near-term implementation. The experiments evaluated the TAPSS system under the current terminal routing infrastructure to validate operational feasibility. A second goal of the study was to measure the benefit of the Center and TRACON advisory tools to help prioritize the requirements for controller radar display enhancements. Simulation results indicate that using the TAPSS system provides benefits under current operations, supporting a 10% increase in airport throughput. Enhancements to Center decision support tools had limited impact on improving the efficiency of terminal operations, but did provide more fuel-efficient advisories to achieve scheduling conformance within 20 seconds. The TRACON controller decision support tools were found to provide the most benefit, by improving the precision in schedule conformance to within 20 seconds, reducing the number of arrivals having lateral path deviations by 50% and lowering subjective controller workload. Overall, the TAPSS system was found to successfully develop an achievable terminal arrival metering plan that was sustainable under heavy traffic demand levels and reduce the complexity of terminal operations when coupled with the use of the terminal controller advisory tools.
1979-11-01
oilhead to final terminals in Europe. North America. and Japan The oil wofis themselves provide a cluster of obvious targets, as do the collecting ...systems which bring the oil from the fields to the local terminal facilities The collecting system is made up of pumps and pipes The local terminal...but the most important targets are the oil terminals, since it is at these points that the oil from various fields is collected into one place for
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
A Note on Feynman Path Integral for Electromagnetic External Fields
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-08-01
We propose a Fresnel stochastic white noise framework to analyze the nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under an external electromagnetic time-independent potential.
HIGH ENERGY PARTICLE ACCELERATOR
Courant, E.D.; Livingston, M.S.; Snyder, H.S.
1959-04-14
An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.
Superconducting magnet and fabrication method
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1994-01-01
A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.
Fundamental limitations on V/STOL terminal guidance due to aircraft characteristics
NASA Technical Reports Server (NTRS)
Wolkovitch, J.; Lamont, C. W.; Lochtie, D. W.
1971-01-01
A review is given of limitations on approach flight paths of V/STOL aircraft, including limits on descent angle due to maximum drag/lift ratio. A method of calculating maximum drag/lift ratio of tilt-wing and deflected slipstream aircraft is presented. Derivatives and transfer functions for the CL-84 tilt-wing and X-22A tilt-duct aircraft are presented. For the unaugmented CL-84 in steep descents the transfer function relating descent angle to thrust contains a right-half plane zero. Using optimal control theory, it is shown that this zero causes a serious degradation in the accuracy with which steep flight paths can be followed in the presence of gusts.
Optimal symmetric flight with an intermediate vehicle model
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1983-01-01
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
2016-10-12
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
Influence of visual path information on human heading perception during rotation.
Li, Li; Chen, Jing; Peng, Xiaozhe
2009-03-31
How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.
Investigating seismoionospheric effects on a long subionospheric path
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.
We examine the possibility of earthquake precursors influencing the subionospheric propagation of VLF transmissions. We consider the long (12 Mm) path from northeastern United States to Faraday, Antarctica (65°S, 64°W), during 1990-1995 and investigate the subionospheric amplitude variation of signals from the NAA communication transmitter (24.0 kHz, 1 MW) in Cutler, Maine, with particular emphasis on possible changes induced by seismic events occurring in South America. We have analyzed the changes in timing of modal minima generated by the passage of the sunrise terminator over the Andes, i.e., the ``VLF terminator time'' (TT) method. The anomalous variations in timing throughout the year are of a size and occurrence frequency similar to those previously reported, i.e., +/-0.5-1 hour and 1-2 per month. However, we find that in these anomalous cases, the time of the sunrise modal minimum does not change significantly, but rather, the minimum becomes insufficiently deep to be detected, and the time of the next nearest minimum is logged. Our analysis indicates that the occurrence rate of successful earthquake predictions using the TT method cannot be distinguished from that of chance. Additionally, the level of false earthquake prediction using the TT method is high.
Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil
Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.
2012-01-01
Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110
Compensation of high order harmonic long quantum-path attosecond chirp
NASA Astrophysics Data System (ADS)
Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.
2017-12-01
We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.
Direct multiple path magnetospheric propagation - A fundamental property of nonducted VLF waves
NASA Technical Reports Server (NTRS)
Sonwalkar, V. S.; Bell, T. F.; Helliwell, R. A.; Inan, U. S.
1984-01-01
An elongation of 20-200 ms, attributed to closely spaced multiple propagation paths between the satellite and the ground, is noted in well defined pulses observed by the ISEE 1 satellite in nonducted whistler mode signals from the Siple Station VLF transmitter. Electric field measurements show a 2 to 10 dB amplitude variation in the observed amplitude fading pattern which is also consistent with direct multiple path propagation. The results obtained for two cases, one outside and one inside the plasmapause, establish that the direct signals transmitted from the ground arrive almost simultaneously at any point in the magnetosphere along two or more closely spaced direct ray paths. It is also shown that multiple paths can be explained by assuming field-aligned irregularities, and the implications of these results for nonducted wave-particle interaction in the magnetosphere are discussed. For reasonable parameters of nonducted, multiple path propagation, a cyclotron-resonant electron will experience a wave Doppler broadening of a few tens to a few hundreds of Hz.
An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment
2015-03-26
forces which could act as intermediate destinations or obstacles to movement through the network. This is similar to a traveling salesman problem ...118 Abstract The shortest path problem of finding the optimal path through a complex network is well-studied in the field of operations research. This...research presents an applica- tion of the shortest path problem to a customizable map with terrain features and enemy engagement risk. The PathFinder
Quiet Short-Haul Research Airplane (QSRA) model select panel functional description
NASA Technical Reports Server (NTRS)
Watson, D. M.
1982-01-01
The QSRA, when equipped with programmable color cathode ray tube displays, a head up display, a general purpose digital computer and a microwave landing system receiver, will provide a capability to do handling qualities studies and terminal area operating systems experiments as well as to enhance an experimenter's ability to obtain repeatable aircraft performance data. The operating systems experiments include the capability to generate minimum fuel approach and departure paths and to conduct precision approaches to a STOLport runway. The mode select panel is designed to provide both the flexibility needed for a variety of flight test experiments and the minimum workload operation required by pilots flying into congested terminal traffic areas.
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
Statistical Symbolic Execution with Informed Sampling
NASA Technical Reports Server (NTRS)
Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco
2014-01-01
Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.
2016-04-14
Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall
A possible mechanism of current termination in a reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, A.; Masamune, S.; Arimoto, H.
1989-10-01
A rapid growth of magnetic fluctuations resulting from the {ital m}=1 and {ital m}=2 modes and succeeding stop of rotation of these modes have been found as the precursor phenomena of current termination in the STP-3(M) (Trans. Inst. Elec. Eng. Jpn. {bold 107}-{bold B}, 469 (1987)) reversed field pinch. By deepening the field reversal at the wall, these precursors disappear and the current duration becomes much longer. It is found that sudden current termination is caused by a rapid growth of resistive tearing modes mainly because of nonlinear coupling of the {ital m}=1 mode.
Simulating Mission Command for Planning and Analysis
2015-06-01
mission plan. 14. SUBJECT TERMS Mission Planning, CPM , PERT, Simulation, DES, Simkit, Triangle Distribution, Critical Path 15. NUMBER OF...Battalion Task Force CO Company CPM Critical Path Method DES Discrete Event Simulation FA BAT Field Artillery Battalion FEL Future Event List FIST...management tools that can be utilized to find the critical path in military projects. These are the Critical Path Method ( CPM ) and the Program Evaluation and
Neutral beamline with improved ion energy recovery
Kim, Jinchoon
1984-01-01
A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.
Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir
NASA Astrophysics Data System (ADS)
Ma, Xinfang; Zou, Yushi; Li, Ning; Chen, Ming; Zhang, Yinuo; Liu, Zizhong
2017-04-01
Glutenite reservoirs are frequently significantly heterogeneous because of their unique depositional environment. The presence of gravel in this type of formation complicates the growth path of hydraulic fracture (HF). In this study, laboratory fracturing experiments were conducted on six large natural glutenite specimens (300 mm × 300 mm × 300 mm) using a true triaxial hydraulic fracturing system to investigate the growth law of HF in glutenite reservoirs. Before the experiments were performed, the rock properties of the gravel particles and matrix in the glutenite specimens were determined using various apparatuses. The effects of gravel size, horizontal differential stress, fracturing fluid type (or viscosity), and flow rate on the HF growth pattern, fracture width, and injection pressure were examined in detail. Similar to previous studies, four types of HF intersections with gravel particles, namely, termination, penetration, deflection, and attraction, were observed. The HF growth path in the glutenite specimens with large gravel (40 mm-100 mm) is likely branched and tortuous even under high horizontal differential stress. The HF growth path in the glutenite specimens with small gravel (less than 20 mm) is simple, but a process zone with multiple thin fractures may be created. Breakdown pressure may increase significantly when HF initiates from high-strength gravel particles, which are mainly composed of quartz. HF propagation is likely limited within high-strength gravel particles, thereby resulting in narrow fractures and even termination. The use of low-viscosity fluids, such as slickwater, and the low injection rate can further limit HF growth, particularly its width. As a response, high extension pressure builds up during fracturing.
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H
2014-02-01
We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.
Laser-Ranging Transponders for Science Investigations of the Moon and Mars
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Chen, Yijiang; Bimbaum, Kevin
2012-01-01
An active laser was developed ranging in real-time with two terminals, emulating interplanetary distances, and with submillimeter accuracy. In order to overcome the limitations to ranging accuracy from jitters and delay drifts within the transponders, architecture was proposed based on asynchronous paired one-way ranging with local references. A portion of the transmitted light is directed, via a reference path, to the local detector. This allows for compensation of any jitter in the timing of the emitted laser pulse. The same detector is used to measure the time of the received pulses emitted from the remote terminal. This approach removes any change in the delay caused by the detector or its electronics. Two separate terminals using commercial off-the-shelf hardware were built to emulate active laser ranging over interplanetary distances. The communication link for the command to start recording pulse arrival times and data transfer from one terminal to the other was achieved using a standard wireless link, emulating free space laser communication. The deviation is well below the goal of 1-mm precision. This leaves enough margin to achieve 1-mm precision when including the fluctuations due to atmospheric turbulence while ranging to Mars through the Earth s atmosphere. The two terminals are mounted on translation stages, which can be moved freely on rails to yield a wide range of distances with fine adjustment. The two terminals were separated by approximately 16 meters.
C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field
Chrisman, Steven D.; Waite, Christopher B.; Scoville, Alison G.; Carnell, Lucinda
2016-01-01
C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals’ tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals’ tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis behavior within a uniform fixed field. PMID:26998749
A theory for the radiation of magnetohydrodynamic surface waves and body waves into the solar corona
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1988-01-01
The Green's function for the slab coronal hole is obtained explicitly. The Fourier integral representation for the radiated field inside and outside the coronal hole waveguide is obtained. The radiated field outside the coronal hole is calculated using the method of steepest descents. It is shown that the radiated field can be written as the sum of two contributions: (1) a contribution from the integral along the steepest descent path and (2) a contribution from all the poles of the integrand between the path of the original integral and the steepest descent path. The free oscillations of the waveguide can be associated with the pole contributions in the steepest descent representation for the Green's function. These pole contributions are essentially generalized surface waves with a maximum amplitude near the interface which separates the plasma inside the coronal hole from the surrounding background corona. The path contribution to the integral is essentially the power radiated in body waves.
Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor A. (Inventor)
2000-01-01
A computer-implemented method and apparatus for determining position of a vehicle within 100 km autonomously from magnetic field measurements and attitude data without a priori knowledge of position. An inverted dipole solution of two possible position solutions for each measurement of magnetic field data are deterministically calculated by a program controlled processor solving the inverted first order spherical harmonic representation of the geomagnetic field for two unit position vectors 180 degrees apart and a vehicle distance from the center of the earth. Correction schemes such as a successive substitutions and a Newton-Raphson method are applied to each dipole. The two position solutions for each measurement are saved separately. Velocity vectors for the position solutions are calculated so that a total energy difference for each of the two resultant position paths is computed. The position path with the smaller absolute total energy difference is chosen as the true position path of the vehicle.
Validation of Interannual Differences of AIRS Monthly Mean Parameters
NASA Technical Reports Server (NTRS)
Susskind, Joel; Iredell, Lena; Keita, Fricky; Molnar, Gyula
2005-01-01
Monthly mean fields of select geophysical parameters derived from analysis of AIRS/AMSU data, and their interannual differences, are shown and compared with analogous fields derived from other sources. All AIRS fields are derived using the AIRS Science Team Version 4 algorithm. Monthly mean results are shown for January 2004, as are interannual differences between January 2004 and January 2003. AIRS temperature and water vapor profile fields are compared with monthly mean collocated ECMWF 3 hour forecast and monthly mean TOVS Pathfinder Path A data. AIRS Tropospheric and Stratospheric coarse climate indicators are compared with analogous MSU products derived by Spencer and christy and found in the TOVS Pathfinder Path A data set. Total ozone is compared with results produced by TOMS. OLR is compared with OLR derived using CERES data and found in the TOVS Pathfinder Path A data set. AIRS results agree well in all cases, especially in the interannual difference sense.
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
Sun, Chengsan; Dayal, Arjun
2015-01-01
Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132
Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani
2003-04-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.
Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.
Alldredge, L.R.; Benton, E.R.
1986-01-01
The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; White, W. F.
1989-01-01
A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.
NASA Technical Reports Server (NTRS)
Kitabatake, M.; Fons, P.; Greene, J. E.
1991-01-01
The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.
Modeling of the Temperature Field Recovery in the Oil Pool
NASA Astrophysics Data System (ADS)
Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.
2018-05-01
This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).
Aircraft Electromagnetic Compatibility.
1987-06-01
Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire
Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M.; Shalchi, A., E-mail: m_hussein@physics.umanitoba.ca, E-mail: andreasm4@yahoo.com
2014-04-10
A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit ofmore » the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.« less
Short-Path Statistics and the Diffusion Approximation
NASA Astrophysics Data System (ADS)
Blanco, Stéphane; Fournier, Richard
2006-12-01
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Discharging a DC bus capacitor of an electrical converter system
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2014-10-14
A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.
Field-driven ion migration against dead-stop collisional braking
NASA Astrophysics Data System (ADS)
Grzesik, J. A.
1988-02-01
The steady-state migration of ions, driven by a uniform electric field against full-stop collisions, is investigated in some detail. The required phase-space distribution is obtained very easily from Boltzmann's equation together with explicit recognition of energy conservation and population balance for the stagnant ion pool. We go on to decompose this aggregate solution into ion tiers classified by the number of background impacts previously endured. Such a decomposition permits us to detect the presence of Poisson statistics (as to collision number) lurking within the composite, thermalized Maxwellian, and likewise also a multiple-scattering hierarchy having the maiden, first-flight distribution for its natural kernel. Scattering-sequence accounting, in particular, allows a quantitative (even though unwieldy) distinction to be made between ions of varying residence times. A model of this sort is motivated by the technique of ion implantation through sample immersion within a plasma at higher electric potential. Numerical consequences of the solution obtained here reveal that both ion density and average kinetic energy relax to their terminal values within just a few mean free-path lengths. Such modest scaling of plasma-sheath extent evidently carries a beneficial implication for the technological ease with which surface properties (such as metal corrosion resistance and hardness) remain open to improvement via ion bombardment.
Leaky Waves in Metamaterials for Antenna Applications
2011-07-01
excitation problems, electromagnetic fields are often represented as Sommerfeld integrals [31,32]. A detailed discussion about Sommerfeld integral is...source removed. In the rest of this section, a de- tailed discussion about Sommerfeld Integral Path is presented. 4.1 Spectral Domain Approach 4.1.1... Sommerfeld integral path for evaluating fields accurately and efficiently, the radiation intensity and directivity of electric/magnetic dipoles over a grounded
NASA Technical Reports Server (NTRS)
Williams, D. H.
1983-01-01
A simulation study was undertaken to evaluate two time-based self-spacing techniques for in-trail following during terminal area approach. An electronic traffic display was provided in the weather radarscope location. The displayed self-spacing cues allowed the simulated aircraft to follow and to maintain spacing on another aircraft which was being vectored by air traffic control (ATC) for landing in a high-density terminal area. Separation performance data indicate the information provided on the traffic display was adequate for the test subjects to accurately follow the approach path of another aircraft without the assistance of ATC. The time-based technique with a constant-delay spacing criterion produced the most satisfactory spacing performance. Pilot comments indicate the workload associated with the self-separation task was very high and that additional spacing command information and/or aircraft autopilot functions would be desirable for operational implementational of the self-spacing task.
NASA Technical Reports Server (NTRS)
Stutzman, Warren L.; Safaai-Jazi, A.; Pratt, Timothy; Nelson, B.; Laster, J.; Ajaz, H.
1993-01-01
Virginia Tech has performed a comprehensive propagation experiment using the Olympus satellite beacons at 12.5, 19.77, and 29.66 GHz (which we refer to as 12, 20, and 30 GHz). Four receive terminals were designed and constructed, one terminal at each frequency plus a portable one with 20 and 30 GHz receivers for microscale and scintillation studies. Total power radiometers were included in each terminal in order to set the clear air reference level for each beacon and also to predict path attenuation. More details on the equipment and the experiment design are found elsewhere. Statistical results for one year of data collection were analyzed. In addition, the following studies were performed: a microdiversity experiment in which two closely spaced 20 GHz receivers were used; a comparison of total power and Dicke switched radiometer measurements, frequency scaling of scintillations, and adaptive power control algorithm development. Statistical results are reported.
NASA Astrophysics Data System (ADS)
Louko, Jorma
2007-04-01
Bastianelli and van Nieuwenhuizen's monograph `Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaumé and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a heightened appreciation of the central role of regularization as a defining ingredient of a quantum field theory and will be impressed by the agreement of results arising from different regularization schemes. The readers may in particular enjoy the authors' `brief history of anomalies' in quantum field theory, as well as a similar historical discussion of path integrals in quantum mechanics.
System and method for sub-sea cable termination
Chen, Qin; Yin, Weijun; Zhang, Lili
2016-04-05
An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.
Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya
2017-04-07
Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.
Rectangular Array Of Digital Processors For Planning Paths
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.
1993-01-01
Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
Electron path control of high-order harmonic generation by a spatially inhomogeneous field
NASA Astrophysics Data System (ADS)
Mohebbi, Masoud; Nazarpoor Malaei, Sakineh
2016-04-01
We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.
Sun, Chengsan; Hummler, Edith; Hill, David L
2017-01-18
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.
Sun, Chengsan; Hummler, Edith
2017-01-01
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747
An approximate, maximum terminal velocity descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1987-01-01
No closed form control solution exists for maximizing the terminal velocity of a hypersonic glider at an arbitrary point. As an alternative, this study uses neighboring extremal theory to provide a sampled data feedback law to guide the vehicle to a constrained ground range and altitude. The guidance algorithm is divided into two parts: 1) computation of a nominal, approximate, maximum terminal velocity trajectory to a constrained final altitude and computation of the resulting unconstrained groundrange, and 2) computation of the neighboring extremal control perturbation at the sample value of flight path angle to compensate for changes in the approximatemore » physical model and enable the vehicle to reach the on-board computed groundrange. The trajectories are characterized by glide and dive flight to the target to minimize the time spent in the denser parts of the atmosphere. The proposed on-line scheme successfully brings the final altitude and range constraints together, as well as compensates for differences in flight model, atmosphere, and aerodynamics at the expense of guidance update computation time. Comparison with an independent, parameter optimization solution for the terminal velocity is excellent. 6 refs., 3 figs.« less
Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher Michael
The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron and ion momentum equations along the field are combined in a generalized Ohm's law which predicts the axial electric field required to maintain a current-free termination. The pressure balance criteria for termination and the predicted electric field are confirmed over a scaling of plasma parameters. The experiment and the model are relevant for studying NBLs in other systems, such as the atmospheric termination of the aurora or detached gaseous divertors. A steady state modified ambipolar system is measured in the ETPD NBL. The drift speeds associated with these currents are a small fraction of the plasma flow speeds and the problem is treated as a perturbation to the termination model. The current-free condition on the model is relaxed to explain the presence of the divergence free current.
Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Gekelman, W.
2013-06-01
Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn˜1%) and collisional λn≪Lplasma. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.
Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes
Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.
2012-01-01
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858
Angle of Attack Modulation for Mars Entry Terminal State Optimization
NASA Technical Reports Server (NTRS)
Lafleur, Jarret M.; Cerimele, Christopher J.
2009-01-01
From the perspective of atmospheric entry, descent, and landing (EDL), one of the most foreboding destinations in the solar system is Mars due in part to its exceedingly thin atmosphere. To benchmark best possible scenarios for evaluation of potential Mars EDL system designs, a study is conducted to optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities and vehicle masses, focusing on the identification of potential benefits of enabling angle of attack modulation. The terminal state is envisioned as one appropriate for the initiation of terminal descent via parachute or other means. A particle swarm optimizer varies entry flight path angle, ten bank profile points, and ten angle of attack profile points to find maximum-final-altitude trajectories for a 10 30 m ellipsled at 180 different combinations of values for entry mass, entry velocity, terminal Mach number, and minimum allowable altitude. Parametric plots of maximum achievable altitude are shown, as are examples of optimized trajectories. It is shown that appreciable terminal state altitude gains (2.5-4.0 km) over pure bank angle control may be possible if angle of attack modulation is enabled for Mars entry vehicles. Gains of this magnitude could prove to be enabling for missions requiring high-altitude landing sites. Conclusions are also drawn regarding trends in the bank and angle of attack profiles that produce the optimal trajectories in this study, and directions for future work are identified.
Nicole: Suicide and Terminal Illness.
ERIC Educational Resources Information Center
Saunders, Judith M.; And Others
1993-01-01
Presents case summary of 58-year-old woman, terminally ill with cancer, who is contemplating suicide. Includes comments from Kjell Rudestam from the Fielding Institute and from Margaret Battin from the University of Utah who debate appropriate responses to people who contemplate suicide because of terminal illness. (NB)
Two way time transfer results at NRL and USNO
NASA Technical Reports Server (NTRS)
Galysh, Ivan J.; Landis, G. Paul
1993-01-01
The Naval Research Laboratory (NRL) has developed a two way time transfer modem system for the United States Naval Observatory (USNO). Two modems in conjunction with a pair of Very Small Aperture Terminal (VSAT) and a communication satellite can achieve sub nanosecond time transfer. This performance is demonstrated by the results of testing at and between NRL and USNO. The modems use Code Division Multiple Access (CDMA) methods to separate their signals through a single path in the satellite. Each modem transmitted a different Pseudo Random Noise (PRN) code and received the others PRN code. High precision time transfer is possible with two way methods because of reciprocity of many of the terms of the path and hardware delay between the two modems. The hardware description was given in a previous paper.
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
NASA Astrophysics Data System (ADS)
Heckmann, G.; Route, G.
2009-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD downlinks identifying differences between the direct broadcast downlinks including the variability of the LRD downlink and NPOESS management and distribution of decryption keys to approved field terminals using Public Key Infrastructure (PKI) AES standard with 256 bit encryption and elliptical curve cryptography.
Improved gaseous leak detector
Juravic, F.E. Jr.
1983-10-06
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
Juravic, Jr., Frank E.
1988-01-01
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
Coupling measurements on intelligent missiles at microwave frequencies
NASA Astrophysics Data System (ADS)
Braun, Ch.; Guidi, P.; Schmidt, H. U.
1995-03-01
This paper describes our low power microwave coupling measurements on terminally guided missiles in the frequency range between 100 and 8000 MHz. The plane wave excitation experiments have been carried out in our field coupling facility, which consists of an asymmetric triplate transmission line with maximum field levels of about 40 V/m in the working volume. As test objects we examined five (semi) autonomous guided missiles. Three of them, former experimental studies from the Diehl company (GE), are presented in this paper. The test objects were positioned in the simulator in three orthogonal orientation with respect to the external field and were not connected to a power supply (inactive condition). In order to be able to systematically analyze the interaction of the external electromagnetic fields with the avionics and its wiring, we had to divide the investigations into three independent phases, namely, external interaction with the fuselage, mode of penetration to the interior of the missile and excitation of the electrical systems and the cabling. The coupling paths depend very much on the design principles of the airframe. The main threat identified was back door coupling via those wings and fins, which are not attached galvanically to the outer surface of the hull. Because of flight guidance, these parts are fastened through slots to the bearings of the motor drives inside the missile. The dominant cable resonances sometimes can be traced back to the resonances of the wings and/or fins and the type of cabling. Another threat was coupling via the long slots required for the folding wings. These shafts penetrate the whole body and enable the external fields to couple into the interior. The peak amplitudes at the ends of the cables were found to be between 50 to 500 (micro A/(V/m)), depending on the test object.
2007-09-26
Molecular Electronics; Polymeric Films; Two-Terminal and Three-Terminal Devices Intended for the Development and/or Demonstration of Molecular Electronics Devices such as Field Effect Transistors, FETs
NASA Technical Reports Server (NTRS)
Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre
2017-01-01
Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.
Koopman-von Neumann formulation of classical Yang-Mills theories: I
NASA Astrophysics Data System (ADS)
Carta, P.; Gozzi, E.; Mauro, D.
2006-03-01
In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.
NASA Astrophysics Data System (ADS)
Anikin, A. S.
2018-06-01
Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.
NASA Astrophysics Data System (ADS)
Jaiswal, Neeraj K.; Kumar, Amit; Patel, Chandrabhan
2018-05-01
Tailoring the electronic band gap of graphene nanoribbons (GNR) through edge functionalization and understanding the adsorption of guest adatoms on GNR is crucial for realization of upcoming organic devices. In the present work, we have investigated the structural stability and electronic property of bromine (Br) termination at the edges of zigzag GNR (ZGNR). The migration pathways of Br adatom on ZGNR have also been discussed along four different diffusion paths. It is revealed that Br termination induces metallicity in ZGNR and caused upward shifting of Fermi level. Further, the migration is predicted to take place preferable along the ribbon edges whereas across the ribbon width, migration is least probable to take place due to sufficiently higher migration barrier of ˜160 meV.
In-Flight Observation of Gamma Ray Glows by ILDAS.
Kochkin, Pavlo; van Deursen, A P J; Marisaldi, M; Ursi, A; de Boer, A I; Bardet, M; Allasia, C; Boissin, J-F; Flourens, F; Østgaard, N
2017-12-16
An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.
Diameter-Constrained Steiner Tree
NASA Astrophysics Data System (ADS)
Ding, Wei; Lin, Guohui; Xue, Guoliang
Given an edge-weighted undirected graph G = (V,E,c,w), where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of terminals and a positive constant D 0, we seek a minimum cost Steiner tree where all terminals appear as leaves and its diameter is bounded by D 0. Note that the diameter of a tree represents the maximum weight of path connecting two different leaves in the tree. Such problem is called the minimum cost diameter-constrained Steiner tree problem. This problem is NP-hard even when the topology of Steiner tree is fixed. In present paper we focus on this restricted version and present a fully polynomial time approximation scheme (FPTAS) for computing a minimum cost diameter-constrained Steiner tree under a fixed topology.
In-Flight Observation of Gamma Ray Glows by ILDAS
NASA Astrophysics Data System (ADS)
Kochkin, Pavlo; van Deursen, A. P. J.; Marisaldi, M.; Ursi, A.; de Boer, A. I.; Bardet, M.; Allasia, C.; Boissin, J.-F.; Flourens, F.; Østgaard, N.
2017-12-01
An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2015-01-01
This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.
Cultural diversity: family path through terminal illness.
Baider, L
2012-04-01
In trying to comprehend a culture and its ways of structuring the world, much can be learned from addressing the manner in which intimate family relationships are ordered and family crises channeled toward care. A family's experience with illness cannot be considered in isolation from the cultural milieu in which it occurs. Family adaptation to cancer diagnosis is a continuous motion between many critical strata--a fragile oscillation between hope and desperation. Processes for optimal functioning and the well-being of members are seen to vary over time, as challenges unfold and families evolve across the life cycle and illness trajectory. The manner in which the healthcare system and family manage illness and terminal care is a particularly helpful window into the cultural, religious and traditional values of every family in a particular society.
Advanced symbology for general aviation approach to landing displays
NASA Technical Reports Server (NTRS)
Bryant, W. H.
1983-01-01
A set of flight tests designed to evaluate the relative utility of candidate displays with advanced symbology for general aviation terminal area instrument flight rules operations are discussed. The symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a cathode ray tube (CRT) display along with the roll attitude, pitch attitude, localizer deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading, and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an instrument landing system capture and tracking task.
Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher; Gekelman, Walter
2012-10-01
A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.
On the Path Integral in Non-Commutative (nc) Qft
NASA Astrophysics Data System (ADS)
Dehne, Christoph
2008-09-01
As is generally known, different quantization schemes applied to field theory on NC spacetime lead to Feynman rules with different physical properties, if time does not commute with space. In particular, the Feynman rules that are derived from the path integral corresponding to the T*-product (the so-called naïve Feynman rules) violate the causal time ordering property. Within the Hamiltonian approach to quantum field theory, we show that we can (formally) modify the time ordering encoded in the above path integral. The resulting Feynman rules are identical to those obtained in the canonical approach via the Gell-Mann-Low formula (with T-ordering). They preserve thus unitarity and causal time ordering.
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory; Ward, Michael D
2014-10-21
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM
2011-12-27
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
Cold-workability limits for carbon and alloy steels
NASA Astrophysics Data System (ADS)
El-Domiaty, A.
1999-04-01
In metalforming, the success in accomplishing the required deformation without failure of the forming tools or cracking of the work material represents the major concern for manufacture and design engineers. The degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition is defined as workability. In the present work, an experimental investigation was carried out to determine the cold-workability limits for five different types of steel: AISI 1018, 1045, 1078, 4140, and 4340. The upset (compression) test was used to determine the workability limit for each type. The upset dies and specimen geometries were designed to give different strain paths covering the range from homogeneous deformation (ɛz/ɛθ=-2.0) to close to plane-strain condition (ɛz/ɛθ=0.0). Grid pattern was printed on the specimen surface in order to measure the axial and hoop strain components during deformation. Specific elements were selected on the specimen surface, and their strain paths were determined. Each strain path was terminated once surface cracking had been observed. The ends of the strain paths, at which macrocracks were observed, were connected to obtain the workability limit on the forming-limit diagram. The workability limit of AISI 1018 is the highest among the other types of steel.
Distributed Method to Optimal Profile Descent
NASA Astrophysics Data System (ADS)
Kim, Geun I.
Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.
Spin coherent-state path integrals and the instanton calculus
NASA Astrophysics Data System (ADS)
Garg, Anupam; Kochetov, Evgueny; Park, Kee-Su; Stone, Michael
2003-01-01
We use an instanton approximation to the continuous-time spin coherent-state path integral to obtain the tunnel splitting of classically degenerate ground states. We show that provided the fluctuation determinant is carefully evaluated, the path integral expression is accurate to order O(1/j). We apply the method to the LMG model and to the molecular magnet Fe8 in a transverse field.
Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J.; Kawarada, Hiroshi
2017-01-01
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface. PMID:28753998
Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J; Kawarada, Hiroshi
2017-07-21
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current-drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current-drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.
Dusty plasma sheath-like structure in the lunar terminator region
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Atamaniuk, Barbara
2016-07-01
The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure [1] in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of a few micrometers up to an altitude of about 30 cm over the lunar surface that explains the effect of ``horizon glow" observed at the terminator by Surveyor lunar lander. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, ``Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a). [1] S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015); doi: 10.1063/1.4937368.
Vision-based obstacle avoidance
Galbraith, John [Los Alamos, NM
2006-07-18
A method for allowing a robot to avoid objects along a programmed path: first, a field of view for an electronic imager of the robot is established along a path where the electronic imager obtains the object location information within the field of view; second, a population coded control signal is then derived from the object location information and is transmitted to the robot; finally, the robot then responds to the control signal and avoids the detected object.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Effect of polarization field on mean free path of phonons in indium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Sushant Kumar
2016-05-06
The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by themore » application of electric field the transport properties of such materials can be controlled as and when desired.« less
Remote Measurement of Atmospheric Temperatures By Raman Lidar
NASA Technical Reports Server (NTRS)
Salzman, Jack A.; Coney, Thom A.
1973-01-01
The Raman shifted return of a lidar, or optical radar, system has been utilized to make atmospheric temperature measurements. These measurements were made along a horizontal path at temperatures between -20 C and +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the Raman spectrum which were simultaneously sampled from a preset range. The lidar unit employed in this testing consisted of a 4 joule-10ppm laser operating at 694.3 nm, a 10-inch Schmidt-Cassegrain telescope, and a system of time-gated detection and signal processing electronics. The detection system processed three return signal wavelength intervals - two intervals along the rotational Raman scattered spectrum and one interval centered at the Rayleigh-Mie scattered wavelength. The wavelength intervals were resolved by using a pellicle beam splitter and three optical interference filters. Raman return samples were taken from one discrete range segment during each test shot and the signal intensities were displayed in digital format. The Rayleigh-Mie techniques. The test site utilized to evaluate this measurement technique encompassed a total path length of 200 meters. Major components of the test site included a trailer-van housing the lidar unit, a controlled environment test zone, and a beam terminator. The control zone which was located about 100 meters from the trailer was 12 meters in length, 2.4 meters in diameter, and was equipped with hinged doors at each end. The temperature of the air inside the zone could be either raised or lowered with respect to ambient air through the use of infrared heaters or a liquid-nitrogen cooling system. Conditions inside the zone were continuously monitored with a thermocouple rake assembly. The test path length was terminated by a 1.2 meter square array of energy absorbing cones and a flat black screen. Tests were initially conducted at strictly ambient conditions utilizing the normal outside air temperatures as a test parameter. These tests provided a calibration of the Raman intensity ratio as a function of' temperature for the particular optical-filter arrangement used in this system while also providing a test of' the theoretical prediction formulated in the design of the system. Later tests utilized zone temperatures above and below ambient to provide temperature gradient data. These tests indicate that ten shots, or one minute of' data acquisition, from a 100 meter range can provide absolute temperature measurements with an accuracy of + 30 C and a range resolution of about 5 meters. Because this measurement accuracy compares well with that predicted for this particular unit, it is suggested that a field-application system could be built with signif'icant improvements in both absolute accuracy and range.
Windshear database for forward-looking systems certification
NASA Technical Reports Server (NTRS)
Switzer, G. F.; Proctor, F. H.; Hinton, D. A.; Aanstoos, J. V.
1993-01-01
This document contains a description of a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high resolution, three dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies which have been generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-factor, radar-reflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included.
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
Gantry for medical particle therapy facility
Trbojevic, Dejan
2013-04-23
A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of superconducting, variable field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of variable field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing variable field magnets.
Gantry for medical particle therapy facility
Trbojevic, Dejan [Wading River, NY
2012-05-08
A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of fixed field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of fixed field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing fixed field magnets.
An experimental evaluation of head-up display formats
NASA Technical Reports Server (NTRS)
Naish, J. M.; Miller, D. L.
1980-01-01
Three types of head-up display format are investigated. Type 1 is an unreferenced (conventional) flight director, type 2 is a ground referenced flight path display, and type 3 is a ground referenced director. Formats are generated by computer and presented by reflecting collimation against a simulated forward view in flight. Pilots, holding commercial licenses, fly approaches in the instrument flight mode and in a combined instrument and visual flight mode. The approaches are in wind shear with varied conditions of visibility, offset, and turbulence. The displays are equivalent in pure tracking but there is a slight advantage for the unreferenced director in poor conditions. Flight path displays are better for tracking in the combined flight mode, possibly because of poor director control laws and the division of attention between superimposed fields. Workloads is better for the type 2 displays. The flight path and referenced director displays are criticized for effects of symbol motion and field limiting. In the subjective judgment of pilots familiar with the director displays, they are rated clearly better than path displays, with a preference for the unreferenced director. There is a fair division of attention between superimposed fields.
Memory characteristics of ring-shaped ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Hasunuma, M.; Sakaiya, S.
1989-03-01
For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less
USDA-ARS?s Scientific Manuscript database
Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
MODIFIED PATH METHODOLOGY FOR OBTAINING INTERVAL-SCALED POSTURAL ASSESSMENTS OF FARMWORKERS.
Garrison, Emma B; Dropkin, Jonathan; Russell, Rebecca; Jenkins, Paul
2018-01-29
Agricultural workers perform tasks that frequently require awkward and extreme postures that are associated with musculoskeletal disorders (MSDs). The PATH (Posture, Activity, Tools, Handling) system currently provides a sound methodology for quantifying workers' exposure to these awkward postures on an ordinal scale of measurement, which places restrictions on the choice of analytic methods. This study reports a modification of the PATH methodology that instead captures these postures as degrees of flexion, an interval-scaled measurement. Rather than making live observations in the field, as in PATH, the postural assessments were performed on photographs using ImageJ photo analysis software. Capturing the postures in photographs permitted more careful measurement of the degrees of flexion. The current PATH methodology requires that the observer in the field be trained in the use of PATH, whereas the single photographer used in this modification requires only sufficient training to maintain the proper camera angle. Ultimately, these interval-scale measurements could be combined with other quantitative measures, such as those produced by electromyograms (EMGs), to provide more sophisticated estimates of future risk for MSDs. Further, these data can provide a baseline from which the effects of interventions designed to reduce hazardous postures can be calculated with greater precision. Copyright© by the American Society of Agricultural Engineers.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Person, L. H., Jr.
1981-01-01
The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.
Amaral, David G.; Kondo, Hideki; Lavenex, Pierre
2015-01-01
The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers 3H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory. PMID:24122645
Conjugate gradient optimization programs for shuttle reentry
NASA Technical Reports Server (NTRS)
Powers, W. F.; Jacobson, R. A.; Leonard, D. A.
1972-01-01
Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.
Amnesty, Reconciliation and Reintegration: Conflict Termination in Counterinsurgency
2010-04-15
study and examine the conditions that allowed elements of AR2 to prevail. Having identified these conditions conducive to AR2 it will examine how ...26 In the case of Sierra Leone, the process of DDR was the result of a peace agreement, not a precursor to it. In the next example, I will show how ...ideology and violence perpetrated by the Shining Path movement and how the oppressive and reactionary nature of the government’s response undermined
Semiautomated Management Of Arriving Air Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Nedell, William
1992-01-01
System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Beaver, John
1996-01-01
One of the first experimental communications satellites using Ka-band technology is the NASA Advanced Communications Technology Satellite (ACTS). In September 1993, ACTS was deployed into a geostationary orbit near 100 degrees W longitude by the space shuttle Discovery. The ACTS system supports both communication and propagation experiments at the 20/30 GHz frequency bands. The propagation experiment involves multi-year attenuation measurements along the satellite-Earth slant path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D.
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
Utilization of NASA Lewis mobile terminals for the Hermes satellite
NASA Technical Reports Server (NTRS)
Edelman, E. A.; Fiala, J. L.; Rizzolla, L.
1977-01-01
The high power of the Hermes satellite enables two-way television and voice communication with small ground terminals. The Portable Earth Terminal (PET) and the Transportable Earth Terminal (TET) were developed and built by NASA-Lewis to provide communications capability to short-term users. The NASA-Lewis mobile terminals are described in terms of vehicles and onboard equipment, as well as operation aspects, including use in the field. The section on demonstrations divides the uses into categories of medicine, education, technology and government. Applications of special interest within each category are briefly described.
NASA Astrophysics Data System (ADS)
Koh, Yang Wei
2018-03-01
In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Lattice Methods and the Nuclear Few- and Many-Body Problem
NASA Astrophysics Data System (ADS)
Lee, Dean
This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.
How do protozoa respond to intense magnetic fields?
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
2005-03-01
Most microorganisms such as Paramecium Caudatum, swim in helical paths in nature. In the absence of any external stimuli (e.g. obstacles, electric field, heat, etc.) the axes of these helical paths, which define the trajectories, are straight lines and are distributed in random directions. Our experiments reveal that these trajectories can be manipulated by applying intense DC magnetic fields of the order of several Tesla. Swimming paramecia, for example, align their trajectories with magnetic fields in excess of about 7 Tesla in fraction of a second. We will describe this phenomenon in fields up to 25 T. We will address whether this effect is an active or passive response to the magnetic torque exerted on the diamagnetically anisotropic structures in Paramecium. In addition we will present results for other species as they are obtained.
Greene, E.A.; Shapiro, A.M.
1998-01-01
The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.
Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes
Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; ...
2017-05-29
Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less
Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.
Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less
Cooperative path planning for multi-USV based on improved artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Qiwei
2018-03-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2015-01-01
This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Swieringa, Kurt S.
2017-01-01
This paper presents an overview of the eighth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval with another aircraft. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm supports the evolving industry standards relating to airborne self-spacing.
NASA Technical Reports Server (NTRS)
Credeur, L.; Davis, C. M.; Capron, W. R.
1981-01-01
Metering and spacing (M & S) system's algorithms described assume an aircraft two dimensional are navigation capability. The three navigation systems compared were: very high frequency omnidirectional range/distance measuring equipment (VOR/DME) and ILS, VOR/DME and + or - 40 MLS, and VOR/DME and + or - 60 MLS. Other factors studied were M & S tentative schedule point location, route geometry effects, and approach gate location effects. Summarized results are: the MLS offers some improvement over VOR/DME and ILS if all approach routes contain computer assisted turns; pilot reaction to moving the gate closer to the runway threshold may adversely affect M & S performance; and coupling en route metering to terminal scheduling transfers most of the terminal holding to more full efficient, higher altitude en route delay.
Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths
NASA Technical Reports Server (NTRS)
Rajan, N.; Ardema, M. D.
1984-01-01
A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.
NASA Technical Reports Server (NTRS)
Pines, S.
1982-01-01
The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
1982-09-30
system . Atmospheric aerosol extinction coefficients at DF laser wavelengths obtained from the long - path transmission data show a wide range of variation...described in this report, it is recommended that addi- tional long - path field measurements of laser extinction and high-resolution transmission spectra be...independent long path laser extinction measurement . Column 7 of Table 3 lists the lime of the laser
Effect of hurricane paths on storm surge response at Tianjin, China
NASA Astrophysics Data System (ADS)
Feng, Xingru; Yin, Baoshu; Yang, Dezhou
2012-06-01
A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.
Evaluation of Rutter Sigma S6 Ice Navigation Radar on USCGC Healy during Arctic Shield 2014
2015-03-01
useful in making decisions about the pressure ridges ahead of time instead of making an immediate decision. Figure 33. CG radar display of... use the radar to help chart an efficient path through an ice field to reduce transit time and fuel expenses. This includes a clear picture of the ice...a ship would be able to use the radar to help chart an efficient path through an ice field to reduce transit time and fuel expenses. This includes
2005-12-31
are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for
Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.
López-Nicolás, Gonzalo; Gans, Nicholas R; Bhattacharya, Sourabh; Sagüés, Carlos; Guerrero, Josechu J; Hutchinson, Seth
2010-08-01
In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.
From conformal blocks to path integrals in the Vaidya geometry
NASA Astrophysics Data System (ADS)
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian
2017-09-01
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order to correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.
Quantum correlation in degenerate optical parametric oscillators with mutual injections
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa
2015-10-01
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
MAY, OLIVIA L.; ERISIR, ALEV; HILL, DAVID L.
2008-01-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors. PMID:18366062
May, Olivia L; Erisir, Alev; Hill, David L
2008-06-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors.
Hi-G electronic gated camera for precision trajectory analysis
NASA Astrophysics Data System (ADS)
Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.
1997-12-01
It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for trajectory, timing, and advanced sensor development. This system will be used for ground tracking data reduction in support of small air vehicle and munition testing. It will provide a means of integrating the imagery and telemetry data from the item with ground based photographic support. The technique we have designed will exploit off-the-shelf software and analysis components. A differential GPS survey instrument will establish a photogrammetric calibration grid throughout the range and reference targets along the flight path. Images from the on-board sensor will be used to calibrate the ortho- rectification model in the analysis software. The projectile images will be transmitted and recorded on several tape recorders to insure complete capture of each video field. The images will be combined with a non-linear video editor into a time-correlated record. Each correlated video field will be written to video disk. The files will be converted to DMA compatible format and then analyzed for determination of the projectile altitude, attitude and position in space. The resulting data file will be used to create a photomosaic of the ground the projectile flew over and the targets it saw. The data will be then transformed to a trajectory file and used to generate a graphic overlay that will merge digital photo data of the range with actual images captured. The plan is to superimpose the flight path of the projectile, the path of the weapons aimpoint, and annotation of each internal sequence event. With tools used to produce state-of-the-art computer graphics, we now think it will be possible to reconstruct the test event from the viewpoint of the warhead, the target, and a 'God's-Eye' view looking over the shoulder of the projectile.
Defining conditions of garnet growth across the central and southern Menderes Massif, western Turkey
NASA Astrophysics Data System (ADS)
Etzel, T. M.; Catlos, E. J.; Kelly, E. D.; Cemen, I.; Ozerdem, C.; Atakturk, K. R.
2017-12-01
Here we apply thermodynamic modeling using Theriak-Domino to garnet-bearing rocks from the central and southern portions of the Menderes Massif to gain insight into the dynamics of western Turkey as the region experienced a transition from collisional to extensional tectonics. To this end, we report new pressure-temperature (P-T) paths from garnet-bearing rocks collected along the Alasehir detachment fault, a prominent exhumation structure in the central portion of the Menderes Massif in western Turkey, constituting the southern margin of the Alasehir Graben. These paths are compared to those from the Selimiye shear zone in the Southern (Cine) Massif. Two Alasehir garnets collected from the same outcrop record two P-T paths: 1) a prograde path beginning at 565oC and 6.4 kbar increasing to 592 oC and 7.5 kbar; and 2) near isobaric growth initiating at 531oC and 7.1 kbar and terminating at 571oC and 7.3 kbar. High-resolution P-T paths could not be modeled for the majority of Alasehir samples due to diffusional modification of garnet. However, conditions were estimated by garnet isopleth thermobarometry at the point of highest spessartine content for each crystal. Calculated P-T values for this subset of samples range between 566-651oC and 6.2-6.8 kbar. Despite this broad range, these P-T conditions are consistent with what is observed in the modeled paths. Th-Pb ages of matrix monazite range from 35.8±3.0 to 20.6±2.4 Ma, suggesting metamorphism in the central Menderes Massif occurred over a 15 m.y. period. Selimiye shear zone rocks show distinct N-shaped P-T paths, suggesting garnets in the central and southern portion of the Menderes Massif record distinctly different tectonic histories.
Effects of a Video Lottery Terminal (VLT) Banner on Gambling: A Field Study
ERIC Educational Resources Information Center
Gallagher, Timothy; Nicki, Richard; Otteson, Amy; Elliott, Heather
2011-01-01
The effects of a warning banner, informing patrons of the randomness of Video Lottery Terminal (VLT) outcomes, on gambling behaviour and beliefs were tested in a field setting using a mixed-model 2 x 3 design over a six-week period with 27 problem and 27 non-problem gamblers recruited from bars in a Canadian city with a population of 85,000.…
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
Electrostatic properties of graphene edges for electron emission under an external electric field
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2018-04-01
Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2017-05-01
Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Point-to-Point Multicast Communications Protocol
NASA Technical Reports Server (NTRS)
Byrd, Gregory T.; Nakano, Russell; Delagi, Bruce A.
1987-01-01
This paper describes a protocol to support point-to-point interprocessor communications with multicast. Dynamic, cut-through routing with local flow control is used to provide a high-throughput, low-latency communications path between processors. In addition multicast transmissions are available, in which copies of a packet are sent to multiple destinations using common resources as much as possible. Special packet terminators and selective buffering are introduced to avoid a deadlock during multicasts. A simulated implementation of the protocol is also described.
An introduction to testing techniques in the Intelsat TDMA/DSI system
NASA Astrophysics Data System (ADS)
Colby, R. J.; Parthasarathy, R.; Prouse, D. W.
1983-09-01
The testing methods developed for the Intelsat TDMA/DSI system (ITDS) are surveyed. The ITDS is briefly characterized, and the system features and the reference-station and traffic-terminal functions are listed in tables and illustrated with block diagrams. The primary differences between the ITDS testing and the testing of conventional satellite-communication systems are outlined. The ITDS tests for new systems, new services, and fault isolation and the ITDS test situations and test paths are explained.
NASA Technical Reports Server (NTRS)
Mcconnell, W. J., Jr.
1979-01-01
Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.
NASA Technical Reports Server (NTRS)
Scardina, John
2006-01-01
NGATS operational Improvements and benefits include: 1) Broad area and precision navigation to access and capacity; 2) Airspace access and management to capacity; 3) 4D trajectory based ATM to capacity and efficiency; 4) Reduced separation between aircraft to capacity; 5) Flight deck situational awareness and delegation to capacity and safety; 6) ATM decision support to capacity; 7) Improved weather data and dissemination to capacity and safety; 8) Reduced cost to deliver ATM services to cost; 9) Greatly expanded airport network and improved terminals to capacity.
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
NASA Astrophysics Data System (ADS)
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.
Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-03-16
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
Quantum transport in graphene in presence of strain-induced pseudo-Landau levels
NASA Astrophysics Data System (ADS)
Settnes, Mikkel; Leconte, Nicolas; Barrios-Vargas, Jose E.; Jauho, Antti-Pekka; Roche, Stephan
2016-09-01
We report on mesoscopic transport fingerprints in disordered graphene caused by strain-field induced pseudomagnetic Landau levels (pLLs). Efficient numerical real space calculations of the Kubo formula are performed for an ordered network of nanobubbles in graphene, creating pseudomagnetic fields up to several hundreds of Tesla, values inaccessible by real magnetic fields. Strain-induced pLLs yield enhanced scattering effects across the energy spectrum resulting in lower mean free path and enhanced localization effects. In the vicinity of the zeroth order pLL, we demonstrate an anomalous transport regime, where the mean free paths increases with disorder. We attribute this puzzling behavior to the low-energy sub-lattice polarization induced by the zeroth order pLL, which is unique to pseudomagnetic fields preserving time-reversal symmetry. These results, combined with the experimental feasibility of reversible deformation fields, open the way to tailor a metal-insulator transition driven by pseudomagnetic fields.
Filter line wiring designs in aircraft
NASA Astrophysics Data System (ADS)
Rowe, Richard M.
1990-10-01
The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.
J.D. Solomon
1999-01-01
A very heavy infestation of the aphid Chaitophorus populicola Thomas developed primarily on growing shoots in commercial cottonwood plantations and caused serious injury to terminals. Terminal mortality in heavily infested fields averaged 92.5 percent, and shoot dieback averaged 4.3 inches. Many of the surviving terminals were weakened to the...
Wide field of view common-path lateral-shearing digital holographic interference microscope
NASA Astrophysics Data System (ADS)
Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun
2017-12-01
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Wide field of view common-path lateral-shearing digital holographic interference microscope.
Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun
2017-12-01
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagli, Stefano, E-mail: stefano.bagli@gecosistema.i; Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.i; Center for International Development, Harvard University, 79 JFK Street, Cambridge, MA 02138
2011-04-15
Least-cost path analysis (LCPA) allows designers to find the 'cheapest' way to connect two locations within a cost surface, which can be computed by combining multiple criteria, and therefore by accounting for different issues (environmental impact, economic investment, etc.). This procedure can be easily implemented with modern Geographic Information System (GIS) technologies, and consequently it has been widely employed to support planning and design of different types of linear infrastructures, ranging from roads to pipelines. This paper presents an approach based on the integration of multicriteria evaluation (MCE) and LCPA to identify the most suitable route for a 132 kVmore » power line. Criteria such as cost, visibility, population density, and ecosystem naturalness were used for the analysis. Firstly, spatial MCE and LCPA were combined to generate cost surfaces, and to identify alternative paths. Subsequently, MCE was used to compare the alternatives, and rank them according to their overall suitability. Finally, a sensitivity analysis allowed the stability of the results to be tested and the most critical factors of the evaluation to be detected. The study found that small changes in the location of the power line start and end points can result in significantly different paths, and consequently impact levels. This suggested that planners should always consider alternative potential locations of terminals in order to identify the best path. Furthermore, it was shown that the use of different weight scenarios may help making the model adaptable to varying environmental and social contexts. The approach was tested on a real-world case study in north-eastern Italy.« less
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.
The Role of Datasets on Scientific Influence within Conflict Research
Van Holt, Tracy; Johnson, Jeffery C.; Moates, Shiloh; Carley, Kathleen M.
2016-01-01
We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving “conflict” in the Web of Science (WoS) over a 66-year period (1945–2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed—such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957–1971 where ideas didn’t persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped shape the operationalization of conflict. In fact, 94% of the works on the CP that analyzed data either relied on publically available datasets, or they generated a dataset and made it public. These datasets appear to be important in the development of conflict research, allowing for cross-case comparisons, and comparisons to previous works. PMID:27124569
The Role of Datasets on Scientific Influence within Conflict Research.
Van Holt, Tracy; Johnson, Jeffery C; Moates, Shiloh; Carley, Kathleen M
2016-01-01
We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving "conflict" in the Web of Science (WoS) over a 66-year period (1945-2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed-such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957-1971 where ideas didn't persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped shape the operationalization of conflict. In fact, 94% of the works on the CP that analyzed data either relied on publically available datasets, or they generated a dataset and made it public. These datasets appear to be important in the development of conflict research, allowing for cross-case comparisons, and comparisons to previous works.
Termination of DNA replication forks: "Breaking up is hard to do".
Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka
2015-01-01
To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.
NASA Technical Reports Server (NTRS)
Boughner, R.; Larsen, J. C.; Natarajan, M.
1980-01-01
Measurement of short-lived photochemically-produced species in the stratosphere by solar occultation is difficult because the rapid variation of such species near the terminator introduces ambiguities in interpreting the measured absorption in terms of meaningful atmospheric abundances. These variations produce tangent path concentrations that are asymmetric relative to the tangent point, as opposed to the symmetrical distribution usually assumed in most inversion algorithms. Neglect of this asymmetry may yield an inverted profile that deviates significantly from the true sunset/sunrise profile. In the present paper, the influence of this effect on solar occultation measurements of ClO and NO is examined. The results show that average inhomogeneity factors, which measure the concentration variation along the tangent path and which can be calculated from a photochemical model, can indicate which species require more careful data analysis.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
Path perception during rotation: influence of instructions, depth range, and dot density
NASA Technical Reports Server (NTRS)
Li, Li; Warren, William H Jr
2004-01-01
How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.
The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...
Directors, Deans, Doctors, Divergers: The Four Career Paths of SSAOs
ERIC Educational Resources Information Center
Biddix, J. Patrick
2013-01-01
Career paths in student affairs generally follow a conventional course: graduate degree to entry-level position, progressive responsibility until middle management, and then a decision to remain, work to advance, or change fields. Studies on factors influencing career advancement have enlightened qualitative considerations individuals face when…
Detection of a sudden change of the field time series based on the Lorenz system.
Da, ChaoJiu; Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series.
Standard Terminal Automation Replacement System Human Factors Review Volume 1
DOT National Transportation Integrated Search
1997-12-18
The Federal Aviation Administration formed a Standard Terminal Automation Replacement : System (STARS) Working Group to identify and resolve human factors concerns with the Early : Display Capability (EDC) system before it is introduced in the field....
String tightening as a self-organizing phenomenon.
Banerjee, Bonny
2007-09-01
The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.
Energy conversion system involving change in the density of an upwardly moving liquid
Petrick, Michael
1989-01-01
A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.
Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level
NASA Astrophysics Data System (ADS)
Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.
2017-02-01
Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.
Model of electron pairs in electron-doped cuprates
NASA Astrophysics Data System (ADS)
Singh, R. J.; Khan, Shakeel
2016-07-01
In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.
Speed and path control for conflict-free flight in high air traffic demand in terminal airspace
NASA Astrophysics Data System (ADS)
Rezaei, Ali
To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.
NASA Astrophysics Data System (ADS)
Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain
2017-06-01
We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.
Improved routing strategy based on gravitational field theory
NASA Astrophysics Data System (ADS)
Song, Hai-Quan; Guo, Jin
2015-10-01
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).
Kumar, Ranjeet R; Goswami, Suneha; Shamim, Mohammed; Mishra, Upama; Jain, Monika; Singh, Khushboo; Singh, Jyoti P; Dubey, Kavita; Singh, Shweta; Rai, Gyanendra K; Singh, Gyanendra P; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly
2017-01-01
Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis ( Rub and Rca ) and starch biosynthesis pathway ( AGPase, SSS and SBE ) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.
Structure and dynamics of Penetratin's association and translocation to a lipid bilayer
NASA Astrophysics Data System (ADS)
Ignacio J., General; Asciutto, Eliana K.
2017-03-01
Penetratin belongs to the important class of small and positively charged peptides, capable of entering cells. The determination of the optimal peptidic structure for translocation is challenging; results obtained so far are varied and dependent on several factors. In this work, we review the dynamics of association of Penetratin with a modeled dioleoyl-phosphatidylcholine (DOPC) lipid membrane using molecular dynamics simulations with last generation force fields. Penetratin's structural preferences are determined using a Markov state model. It is observed that the peptide retains a helical form in the membrane associated state, just as in water, with the exception of both termini which lose helicity, facilitating the interaction of terminal residues with the phosphate groups on the membrane's outer layer. The optimal orientation for insertion is found to be with the peptide's axis forming a small angle with the interface, and with R1 stretching toward the bilayer. The interaction between arginine side-chains and phosphate groups is found to be greater than the corresponding to lysine, mainly due to a higher number of hydrogen bonds between them. The free energy profile of translocation is qualitatively studied using Umbrella Sampling. It is found that there are different paths of penetration, that greatly differ in size of free energy barrier. The lowest path is compatible with residues R10 to K13 leading the way through the membrane and pulling the rest of the peptide. When the other side is reached, the C-terminus overtakes those residues, and finally breaks out of the membrane. The peptide's secondary structure during this traversal suffers some changes with respect to the association structure but, overall, conserves its helicity, with both termini in a more disordered state.
Path-integral representation for the relativistic particle propagators and BFV quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, E.S.; Gitman, D.M.
1991-11-15
The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.
Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field
Schaffer, Michael J.
1986-01-01
A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Quantum caustics in resonance-fluorescence trajectories
NASA Astrophysics Data System (ADS)
Naghiloo, M.; Tan, D.; Harrington, P. M.; Lewalle, P.; Jordan, A. N.; Murch, K. W.
2017-11-01
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements. We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations.
Dynamic path planning for mobile robot based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.
XV-15 Tiltrotor Low Noise Terminal Area Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Edwards, Bryan D.; Brieger, John T.
1998-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing a variety of terminal area operating procedures. This joint NASA/Bell/Army test program was conducted in two phases. During Phase 1 the XV-15 was flown over a linear array of microphones, deployed perpendicular to the flight path, at a number of fixed operating conditions. This documented the relative noise differences between the various conditions. During Phase 2 the microphone array was deployed over a large area to directly measure the noise footprint produced during realistic approach and departure procedures. The XV-15 flew approach profiles that culminated in IGE hover over a landing pad, then takeoffs from the hover condition back out over the microphone array. Results from Phase 1 identify noise differences between selected operating conditions, while those from Phase 2 identify differences in noise footprints between takeoff and approach conditions and changes in noise footprint due to variation in approach procedures.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2015-01-01
This paper presents an overview of the fifth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 12 (ASTAR12). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of- arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm includes a ground speed feedback term to compensate for slower than expected traffic aircraft speeds based on the accepted air traffic control tendency to slow aircraft below the nominal arrival speeds when they are farther from the airport.
Truth Telling as an Element of Culturally Competent Care at End of Life.
Rising, Margaret L
2017-01-01
Nondisclosure of terminal prognosis in the context of intercultural interactions can cause moral distress among health care providers guided exclusively by informed consent. However, cultural humility can show that revealing and withholding prognostic information are two equally valid paths to the goal of protecting the patient from harm. Assumptions and history giving rise to the preference for truth telling in the United States(US) are examined. Principles of biomedical ethics are described within the context of US, Chinese, and Latin American cultures. The process of cultural competence in the delivery of health care services is explained and introduces the concept of cultural humility. By focusing more on biases and assumptions brought forth from the dominant culture, health care providers may experience less moral distress and convey increased caring in the context of intercultural interactions and nondisclosure of prognosis of a terminal illness. © The Author(s) 2015.
Network-based simulation of aircraft at gates in airport terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.
1998-03-01
Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less
Standard Terminal Automation Replacement System Human Factors Review Supporting Documents Volume 2
DOT National Transportation Integrated Search
1997-12-18
The Federal Aviation Administration formed a Standard Terminal Automation Replacement : System (STARS) Working Group to identify and resolve human factors concerns with the Early : Display Capability (EDC) system before it is introduced in the field....
Magnetic field dissipation in pulsar winds
NASA Astrophysics Data System (ADS)
Kirk, John
Rotation-powered pulsars lose most of their in the form of a relativistic wind containing elec-trons, positrons and possibly ions together with electromagnetic fields. Close to the star, Poynting flux probably accounts for most of the energy flow, but after the termination shock that forms the inner boundary of the nebula, the energy flux is mostly carried by particles. The energy conversion may take place by gradual annihilation of the magnetic field as a "striped" wind accelerates, or suddenly, when the stripes hit the termination shock. I will discuss these processes and the limits that can be placed on them from observation.
NASA Technical Reports Server (NTRS)
Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.
Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J
2016-11-09
First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.
NASA Astrophysics Data System (ADS)
Jahanianl, Nahid; Aram, Majid; Morshedian, Nader; Mehramiz, Ahmad
2018-03-01
In this report, the distribution of and deviation in the electric field were investigated in the active medium of a TE CO2 laser. The variation in the electric field is due to injection of net electron and proton charges as a plasma generator. The charged-particles beam density is assumed to be Gaussian. The electric potential and electric field distribution were simulated by solving Poisson’s equation using the SOR numerical method. The minimum deviation of the electric field obtained was about 2.2% and 6% for the electrons and protons beams, respectively, for a charged-particles beam-density of 106 cm-3. This result was obtained for a system geometry ensuring a mean-free-path of the particles beam of 15 mm. It was also found that the field deviation increases for a the mean-free-path smaller than that or larger than 25 mm. Moreover, the electric field deviation decreases when the electrons beam density exceeds 106 cm-3.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Solar wind conditions in the outer heliosphere and the distance to the termination shock
NASA Technical Reports Server (NTRS)
Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.
1993-01-01
The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.
Research on the Calculation Method of Optical Path Difference of the Shanghai Tian Ma Telescope
NASA Astrophysics Data System (ADS)
Dong, J.; Fu, L.; Jiang, Y. B.; Liu, Q. H.; Gou, W.; Yan, F.
2016-03-01
Based on the Shanghai Tian Ma Telescope (TM), an optical path difference calculation method of the shaped Cassegrain antenna is presented in the paper. Firstly, the mathematical model of the TM optics is established based on the antenna reciprocity theorem. Secondly, the TM sub-reflector and main reflector are fitted by the Non-Uniform Rational B-Splines (NURBS). Finally, the method of optical path difference calculation is implemented, and the expanding application of the Ruze optical path difference formulas in the TM is researched. The method can be used to calculate the optical path difference distributions across the aperture field of the TM due to misalignment like the axial and lateral displacements of the feed and sub-reflector, or the tilt of the sub-reflector. When the misalignment quantity is small, the expanding Ruze optical path difference formulas can be used to calculate the optical path difference quickly. The paper supports the real-time measurement and adjustment of the TM structure. The research has universality, and can provide reference for the optical path difference calculation of other radio telescopes with shaped surfaces.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Weaver, James; Lehmberg, Robert; Obenschain, Stephen; Kehne, David; Wolford, Matthew
2017-11-01
Stimulated rotational Raman scattering (SRRS) in the ultraviolet region (λ=248 nm) has been observed at the Nike laser over extended propagation paths in air during high power operation. Although this phenomenon is not significant for standard operating configurations at Nike, broadening of the laser spectrum and far-field focal profiles has been observed once the intensity-path length product exceeds a threshold of approximately 1 TW/cm. This paper presents experimental results and a new theoretical evaluation of these effects. The observations suggest that significantly broader spectra can be achieved with modest degradation of the final focal distribution. These results point to a possible path for enhanced laser-target coupling with the reduction of laser-plasma instabilities due to broad laser bandwidth produced by the SRRS.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Caversaccio, Marco
2014-01-01
Objective. To compare hearing and speech understanding between a new, nonskin penetrating Baha system (Baha Attract) to the current Baha system using a skin-penetrating abutment. Methods. Hearing and speech understanding were measured in 16 experienced Baha users. The transmission path via the abutment was compared to a simulated Baha Attract transmission path by attaching the implantable magnet to the abutment and then by adding a sample of artificial skin and the external parts of the Baha Attract system. Four different measurements were performed: bone conduction thresholds directly through the sound processor (BC Direct), aided sound field thresholds, aided speech understanding in quiet, and aided speech understanding in noise. Results. The simulated Baha Attract transmission path introduced an attenuation starting from approximately 5 dB at 1000 Hz, increasing to 20–25 dB above 6000 Hz. However, aided sound field threshold shows smaller differences and aided speech understanding in quiet and in noise does not differ significantly between the two transmission paths. Conclusion. The Baha Attract system transmission path introduces predominately high frequency attenuation. This attenuation can be partially compensated by adequate fitting of the speech processor. No significant decrease in speech understanding in either quiet or in noise was found. PMID:25140314
Photon entanglement signatures in difference-frequency-generation
Roslyak, Oleksiy; Mukamel, Shaul
2010-01-01
In response to quantum optical fields, pairs of molecules generate coherent nonlinear spectroscopy signals. Homodyne signals are given by sums over terms each being a product of Liouville space pathways of the pair of molecules times the corresponding optical field correlation function. For classical fields all field correlation functions may be factorized and become identical products of field amplitudes. The signal is then given by the absolute square of a susceptibility which in turn is a sum over pathways of a single molecule. The molecular pathways of different molecules in the pair are uncorrelated in this case (each path of a given molecule can be accompanied by any path of the other). However, entangled photons create an entanglement between the molecular pathways. We use the superoperator nonequlibrium Green’s functions formalism to demonstrate the signatures of this pathway-entanglement in the difference frequency generation signal. Comparison is made with an analogous incoherent two-photon fluorescence signal. PMID:19158927
On the Possibility of the Existence of a Surface Electromagnetic Wave in the Permafrost Area
NASA Astrophysics Data System (ADS)
Balkhanov, V. K.; Bashkuev, Yu. B.; Advokatov, V. R.
2018-01-01
The results of measurements of the vertical component of electric field at a radio path with the permafrost at a frequency of 255 kHz have been interpreted. An analysis of the results has shown that the considered radio path exhibits the properties of a two-part impedance surface, i.e., it consists of two sections. At a distance of 70 km from a radiation source and at a frequency of 255 kHz of the electromagnetic wave, the field decreases with the distance R according to the power law as R -1.5 and a power index takes an intermediate value between the power indices for decreasing the field in free space R -2 and for the decrease in the field above an ideal conducting surface R -1. With further propagation at a distance of 70-220 km, the field shows the specific behavior of a surface electromagnetic wave.
Morphological evidence for parallel processing of information in rat macula.
Ross, M D
1988-01-01
Study of montages, tracings and reconstructions prepared from a series of 570 consecutive ultrathin sections shows that rat maculas are morphologically organized for parallel processing of linear acceleratory information. Type II cells of one terminal field distribute information to neighboring terminals as well. The findings are examined in light of physiological data which indicate that macular receptor fields have a preferred directional vector, and are interpreted by analogy to a computer technology known as an information network.
Grant T. Kirker; M. Lynn Prewitt; Tor P. Schultz; Susan V. Dieh
2012-01-01
The effects of chlorothalonil (CTN), butylated hydroxytoluene (BHT), and ammoniacal copper quat (ACQ-C) on the fungal community on southern yellow pine (SYP) were assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis over 15 months. Field stakes, treated with 0.25 and 0.37 % ACQ-C, 0.1 and 0.25 % CTN, 2 % BHT alone, 0.1 and 0.25 % CTN...
Voices from the Field: Central Office Administrators
ERIC Educational Resources Information Center
Dickson, Ken
2015-01-01
School systems' central office administrators sometimes take paths that seem easiest, even when it is clear the paths will not lead to sustained positive results that are needed--particularly in terms of twice-exceptional (2e) students. To appropriately address the needs of 2e learners, we must ensure that central office administrative services…
Orientation Guidance and Control for Marine Vehicles in the Horizontal Plane
1991-06-01
FIELD GROUP SUB-GROUP Autonomous vehicles , Guidance and control, Stability, Path keeping 19 ABSIRACT (Continue on reverse if necessary and identify by...following in 3-D space. 33 LIST OF REFERENCES 1. Kanayama, Y. and Hartman, B.I. (1989) " Smooth local path planning for autonomous vehicles , " Proceeding
Voices of Women in the Field: Lessons from the Land of Administrative Oz
ERIC Educational Resources Information Center
Renner, Carol
2005-01-01
The classic fairy tale, the "Wizard of Oz," may have some lessons for female teachers considering school administration. Just as Dorothy, female educators experience the same perplexing emotions, questioning the right career destiny, experiencing stormy situations that thrust them into career paths, exploring the unpredictable paths to their…
Hispanic Women's Perceptions of Their Career Paths in Educational Administration
ERIC Educational Resources Information Center
Rosario-Schoenfeld, Wanda I.
2010-01-01
This study sought to understand the perceptions of nine Latinas of Puerto Rican descent from an urban district in New York State about their career paths in the field of educational administration. Story narratives developed through semi-structured autobiographical interviews comprised the main data source. The findings indicated that interactions…
From conformal blocks to path integrals in the Vaidya geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anous, Tarek; Hartman, Thomas; Rovai, Antonin
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less
From conformal blocks to path integrals in the Vaidya geometry
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; ...
2017-09-04
Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, H.-Q.; Schlickeiser, R., E-mail: hqhe@mail.iggcas.ac.cn, E-mail: rsch@tp4.rub.de
The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standardmore » forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.« less
Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields
NASA Technical Reports Server (NTRS)
Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki
2011-01-01
Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide insights not accessible by deterministic methods; for example, one can evaluate variability and risk associated with different scenarios, rather than only viewing the expected outcome.
Extensive electron transport and energization via multiple, localized dipolarizing flux bundles
NASA Astrophysics Data System (ADS)
Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei
2017-05-01
Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.
Off-great-circle paths in transequatorial propagation: 2. Nonmagnetic-field-aligned reflections
NASA Astrophysics Data System (ADS)
Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi
2016-11-01
There is considerable evidence that plasma structure in nighttime equatorial F layer develops from large-scale wave structure (LSWS) in bottomside F layer. However, crucial details of how this process proceeds, from LSWS to equatorial plasma bubbles (EPBs), remain to be sorted out. A major obstacle to success is the paucity of measurements that provide a space-time description of the bottomside F layer over a broad geographical region. The transequatorial propagation (TEP) experiment is one of few methods that can do so. New findings using a TEP experiment, between Shepparton (SHP), Australia, and Oarai (ORI), Japan, are presented in two companion papers. In Paper 1 (P1), (1) off-great-circle (OGC) paths are described in terms of discrete and diffuse types, (2) descriptions of OGC paths are generalized from a single-reflection to a multiple-reflection process, and (3) discrete type is shown to be associated with an unstructured but distorted upwelling, whereas the diffuse type is shown to be associated with EPBs. In Paper 2 (P2), attention is placed on differences in east-west (EW) asymmetry, found between OGC paths from the SHP-ORI experiment and those from another near-identical TEP experiment. Differences are reconciled by allowing three distinct sources for the EW asymmetries: (1) reflection properties within an upwelling (see P1), (2) OGC paths that depend on magnetic declination of geomagnetic field (B), and (3) OGC paths supported by non-B-aligned reflectors at latitudes where inclination of B is finite.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
NASA Astrophysics Data System (ADS)
Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.
2017-12-01
Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].
The High Field Path to Practical Fusion Energy
NASA Astrophysics Data System (ADS)
Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.
2017-10-01
We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.
The static quark potential from the gauge independent Abelian decomposition
NASA Astrophysics Data System (ADS)
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for confinement.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
Particle Image Velocimetry Around Swimming Paramecia
NASA Astrophysics Data System (ADS)
Giarra, Matthew; Jana, Saikat; Jung, Sunghwan; Vlachos, Pavlos
2011-11-01
Microorganisms like paramecia propel themselves by synchronously beating thousands of cilia that cover their bodies. Using micro-particle image velocimetry (μPIV), we quantitatively measured velocity fields created by the movement of Paramecium multimicronucleatum through a thin (~100 μm) film of water. These velocity fields exhibited different features during different swimming maneuvers, which we qualitatively categorized as straight forward, turning, or backward motion. We present the velocity fields measured around organisms during each type of motion, as well as calculated path lines and fields of vorticity. For paramecia swimming along a straight path, we observed dipole-like flow structures that are characteristic of a prolate-spheroid translating axially in a quiescent fluid. Turning and backward-swimming organisms showed qualitatively different patterns of vortices around their bodies. Finally, we offer hypotheses about the roles of these different flow patterns in the organism's ability to maneuver.
Detection of a sudden change of the field time series based on the Lorenz system
Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series. PMID:28141832
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Watanabe, M.; Den, M.; Fujita, S.; Ebihara, Y.; Kikuchi, T.; Hashimoto, K. K.; Kataoka, R.
2016-09-01
In this paper, we try to elucidate the generation mechanism of the field-aligned current (FAC) and coexisting convection. From the comparison between the theoretical prediction and the state of numerical solution from the high-resolution global simulation, we obtain the following conclusions about the distribution of dynamo, the magnetic field structure along the flow path that diverges Poynting flux, and energy conversion promoting the generation of electromagnetic energy. The dynamo for the region 1 FAC, which is in the high-latitude-side cusp-mantle region, has a structure in which magnetic field is compressed along the convection path by the slow mode motion. The dynamo for the region 2 FAC is in the ring current region at the inner edge of the plasma sheet, and has a structure in which magnetic field is curved outward along the convection path. Under these structures, electromagnetic energy is generated from the work done by pressure gradient force, in both dynamos for the region 1 and region 2 FACs. In these generation processes of the FACs, the excitation of convection and the formation of pressure regimes occur as interdependent processes. This structure leads to a modification in the way of understanding the Dungey's convection. Generation of the FAC through the formation of pressure regimes is essential even for the case of substorm onset.
Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-01-01
Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618
Locations of termination shock and heliopause based on Voyager plasma and magnetic field data
NASA Technical Reports Server (NTRS)
Whang, Y. C.; Burlaga, L. F.; Ness, N. F.
1995-01-01
The locations of the termination shock and the heliopause are studied taking into account the effects of pickup protons. The study uses available plasma and magnetic field data from Voyagers over a 14-year period (1978-1991) and Voyager observation of the 1992-93 radio emission event. Outside 30 AU, pickup protons have a significant influence on dynamical structures of the outer heliosphere. The solar wind is treated as a mixture of electrons, solar wind protons, and interstellar pickup protons. If the magnitude of the interstellar magnetic field B(sub int) is given, one can quantitatively study the motion and location of the termination shock. The location is anti-correlated with the sun spot number and the shock has an average speed of approx. 24 km/s. Because B(sub int) is poorly known, additional information is needed in studying the termination shock. Cummings, et al. have used observations of anomalous cosmic rays to estimate the location of the shock. The observations of the 1991 GMIR and GMIR shock and the 1992-93 radio emission event provide another handle for the study of the termination shock and the heliopause. After its penetration through the termination shock, the GMIR shock continued to propagate in the subsonic region of the solar wind and eventually interacted with the heliopause. This interaction produces a transmitted shock propagating outward in the interstellar medium and a reflected shock propagating inward toward the sun in the subsonic solar wind. The plasma frequencies behind the reflected and the transmitted shock can be, respectively, responsible for the 2- and 3-kHz radio emissions. Taking into account the effects of pickup protons we found that the average locations of the termination shock and the heliopause in 1991-92 are at approximately 66 AU and 150 AU, respectively.
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1984-01-01
A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.
NASA Technical Reports Server (NTRS)
Sundstrom, J. L.
1980-01-01
The techniques required to produce and validate six detailed task timeline scenarios for crew workload studies are described. Specific emphasis is given to: general aviation single pilot instrument flight rules operations in a high density traffic area; fixed path metering and spacing operations; and comparative workload operation between the forward and aft-flight decks of the NASA terminal control vehicle. The validation efforts also provide a cursory examination of the resultant demand workload based on the operating procedures depicted in the detailed task scenarios.
Splice connector with internal heat transfer jacket
Silva, Frank A.; Mayer, Robert W.
1977-01-01
A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2011-01-01
This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations
Satellite diversity and its implications on the RAKE receiver architecture for CDMA-based S-PCN's
NASA Technical Reports Server (NTRS)
Taaghol, P.; Sammut, A.; Tafazolli, R.; Evans, B. G.
1995-01-01
In this paper we examine the applicability of RAKE receivers in a mobile LEO satellite channel and identify the potential problem areas. We then proceed to investigate the possibility of a coherent combining architecture (downlink) in the presence of satellite diversity. We closely examine the path delay difference statistics of a diversity channel and propose a delay compensation scheme for the downlink in order to reduce the complexity of the user terminal. Finally, the required modifications to the conventional RAKE receiver are proposed and discussed.
Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges
NASA Astrophysics Data System (ADS)
Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan
2012-04-01
Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.
Steiner trees and spanning trees in six-pin soap films
NASA Astrophysics Data System (ADS)
Dutta, Prasun; Khastgir, S. Pratik; Roy, Anushree
2010-02-01
The problem of finding minimum (local as well as absolute) path lengths joining given points (or terminals) on a plane is known as the Steiner problem. The Steiner problem arises in finding the minimum total road length joining several towns and cities. We study the Steiner tree problem using six-pin soap films. Experimentally, we observe spanning trees as well as Steiner trees partly by varying the pin diameter. We propose a possibly exact expression for the length of a spanning tree or a Steiner tree, which fails mysteriously in certain cases.
Path integral formulation of the Hodge duality on the brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai
In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.
Douglas, David R.; Neil, George R.
2005-04-26
A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Venus Ionosphere
NASA Astrophysics Data System (ADS)
Hart, Richard; Russell, Christopher T.; Zhang, Tielong
2016-10-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15 degrees of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft.Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compares this strength to that on Earth.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Ionosphere of Venus
NASA Astrophysics Data System (ADS)
Hart, R. A.; Russell, C. T.; Zhang, T.
2016-12-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15º of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft. Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compare it to that on Earth.
Wang, Li; Zhang, Xiaojie; Tian, Hongkun; Lu, Yunfeng; Geng, Yanhou; Wang, Fosong
2013-12-14
A cyano-terminated dimer of dithienyldiketopyrrolopyrrole (TDPP), DPP2-CN, is a solution processable ambipolar semiconductor with field-effect hole and electron mobilities of 0.066 and 0.033 cm(2) V(-1) s(-1), respectively, under ambient conditions.
Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms
NASA Astrophysics Data System (ADS)
David Froning, H.; Meholic, Gregory V.
2010-01-01
This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.
Afferent innervation of the utricular macula in pigeons
NASA Technical Reports Server (NTRS)
Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David
2003-01-01
Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were located in the extrastriola. The cellular organization and innervation patterns of the utricular maculae in birds appear to represent an organ in adaptive evolution, different from that observed for amphibians or mammals.
A novel communication mechanism based on node potential multi-path routing
NASA Astrophysics Data System (ADS)
Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen
2016-10-01
With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.
Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinos, Benjamin
1990-01-01
It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.
NASA Astrophysics Data System (ADS)
Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team
2018-01-01
Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for these cases. For the H-mode density limit sensors used so far react too late. Thus a plasma-state boundary is proposed, that can serve as an adequate early sensor for avoiding density limit disruptions in H-modes and for recovery to full performance.
Sugarman, Alan
2010-08-01
Criteria for beginning and conducting the termination phase of psychoanalysis have provoked debate and confusion from the early days of psychoanalysis. Gabbard (2009) has recently pointed to the field's tendency to cling to idealized versions of these criteria as a way to deal with disagreements. The situation becomes more complicated for child and adolescent psychoanalysts because their patients are in the midst of a developmental process at the very time they are engaged in a psychoanalytic process. The termination phase of an adolescent male suffering from father loss is presented in depth in order to provide clinical data toward further consideration of the vexing questions surrounding termination in psychoanalysis. His termination is used to examine the relative importance of losing the analyst as a transference object as against a developmental object; the meaning of action during termination; the complicating role of trauma vis-à-vis termination; and the importance of the post-termination phase of analysis. It is suggested that his termination phase demonstrates that a "good enough" termination involves the development of a self-analyzing capacity that continues to evolve and develop after termination.
Analyzing Single-Event Gate Ruptures In Power MOSFET's
NASA Technical Reports Server (NTRS)
Zoutendyk, John A.
1993-01-01
Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.
Bendersky, L. A.; Boettinger, W. J.
1993-01-01
Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
Measuring edge-of-field water quality: Where we have been and the path forward
USDA-ARS?s Scientific Manuscript database
Heightened pressure to demonstrate the resource benefits of conservation practices and continued high-profile water quality impairments and concerns are increasing the need to quantify edge-of-field water quality. With this in mind, this manuscript summarizes previous developments in edge-of-field ...
Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air
NASA Astrophysics Data System (ADS)
Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin
2017-09-01
During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.
Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City.
Sinclair, Laura C; Swann, William C; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R; Juarez, Juan C; Khader, Isaac; Petrillo, Keith G; Souza, Katherine T; Dennis, Michael L; Newbury, Nathan R
2016-10-15
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.
Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City
Sinclair, Laura C.; Swann, William C.; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R.; Juarez, Juan C.; Khader, Isaac; Petrillo, Keith G.; Souza, Katherine T.; Dennis, Michael L.; Newbury, Nathan R.
2018-01-01
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths. PMID:29348695
User guide for MODPATH version 6 - A particle-tracking model for MODFLOW
Pollock, David W.
2012-01-01
MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.
Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors
NASA Astrophysics Data System (ADS)
Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.
2017-05-01
We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.
Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized
NASA Technical Reports Server (NTRS)
Schwerman, Paul (Inventor)
2017-01-01
A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.
ERIC Educational Resources Information Center
Tomassini, Massimo; Zanazzi, Silvia
2014-01-01
The article is aimed at analysing the qualitative interviews (in the form of short life stories) carried out within the Learning and Career Paths (LCP) project in Italy. Theories, such as those of reflexivity, agency, self-construction, competencies, and transformation put forward by relevant authors in the sociological and educational field, are…
Sensors and Algorithms for an Unmanned Surf-Zone Robot
2015-12-01
71 3. Data Fusion and Filtering................................................ 74 C. VIRTUAL POTENTIAL FIELD (VPF) PATH PLANNING ...iron effects are clearly seen: Soft iron de - calibration (sphere distortion) was caused by proximity of circuit boards. Offset of the center of the...information to perform global tasks such as path- planning , sensors and actuators commands, external communications, etc. Python3 is used as the primary
Horton, J.A.
1994-05-03
Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Simulation of the fixed optical path difference of near infrared wind imaging interferometer
NASA Astrophysics Data System (ADS)
Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen
2017-02-01
As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.
ERIC Educational Resources Information Center
National Institutes of Health (DHEW), Bethesda, MD. Div. of Nursing.
One hundred and fifty-two terminated research grants are listed. Information includes grant number, investigator, institution, and title of research. Requests for reports or publication are to be made directly to the investigator. (JK)
Plant, soil and weather-based cues for irrigation termination timing in soybean.
USDA-ARS?s Scientific Manuscript database
Irrigation termination timing was evaluated on Mississippi County commercial farms in 2014 and 2015 in furrow-irrigated fields with Sharkey clay soils. A major objective was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of lo...
Potential Health Hazards of Video Display Terminals.
ERIC Educational Resources Information Center
Murray, William E.; And Others
In response to a request from three California unions to evaluate potential health hazards from the use of video display terminals (VDT's) in information processing applications, the National Institute for Occupational Safety and Health (NIOSH) conducted a limited field investigation of three companies in the San Francisco-Oakland Bay Area. A…
Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa
2017-09-01
Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum gravity in timeless configuration space
NASA Astrophysics Data System (ADS)
Gomes, Henrique
2017-12-01
On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and field-independent), and in general relativity (where they are field-dependent and dynamic). This paper aims to attenuate that friction, by encoding gravity in the timeless configuration space of spatial fields with dynamics given by a path integral. The framework demands that boundary conditions for this path integral be uniquely given, but unlike other approaches where they are prescribed—such as the no-boundary and the tunneling proposals—here I postulate basic principles to identify boundary conditions in a large class of theories. Uniqueness arises only if a reduced configuration space can be defined and if it has a profoundly asymmetric fundamental structure. These requirements place strong restrictions on the field and symmetry content of theories encompassed here; shape dynamics is one such theory. When these constraints are met, any emerging theory will have a Born rule given merely by a particular volume element built from the path integral in (reduced) configuration space. Also as in other boundary proposals, Time, including space-time, emerges as an effective concept; valid for certain curves in configuration space but not assumed from the start. When some such notion of time becomes available, conservation of (positive) probability currents ensues. I show that, in the appropriate limits, a Schrödinger equation dictates the evolution of weakly coupled source fields on a classical gravitational background. Due to the asymmetry of reduced configuration space, these probabilities and currents avoid a known difficulty of standard WKB approximations for Wheeler DeWitt in minisuperspace: the selection of a unique Hamilton–Jacobi solution to serve as background. I illustrate these constructions with a simple example of a full quantum gravitational theory (i.e. not in minisuperspace) for which the formalism is applicable, and give a formula for calculating gravitational semi-classical relative probabilities in it.
NASA Technical Reports Server (NTRS)
Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)
1982-01-01
Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-08-08
A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.
1993-01-01
This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.
NASA Astrophysics Data System (ADS)
Thibes, Ronaldo
2017-02-01
We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.
[End-of-life in specialized medical pediatrics department: A French national survey].
Ravanello, Alice; Desguerre, Isabelle; Frache, Sandra; Hubert, Philippe; Orbach, Daniel; Aubry, Régis
2017-03-01
In France, most of children die in the hospital. This national survey aimed to achieve better understanding of end-of life care in specialized medical pediatrics departments for children facing the end-of-life, identify the available resources, put forward the difficulties encountered by professionals and describe end-of-life paths of children who died in these departments. This study is based on a nationwide survey conducted among all existing specialized medical pediatrics departments (onco-haematology, neurology, reanimation) in France in 2015. Among 94 specialized medical pediatrics departments in France, 53 participated in our survey (response rate=56%). At the time of the survey, 13% of inpatients were facing the end-of-life. Regarding training, 13% of departments did not have personnel trained in palliative care and 21% did not set up any professional support. However, when taking care of a child's end of life in 2014, 77% of these departments solicited a regional resource team of pediatric palliative care. This survey helps describe 225 end-of-life paths of children decease of a terminal illness in the specialized pediatrics departments. Seventy-two percent suffered from refractory symptoms before their death, 64% were concerned by a terminal sedation and 75% by a limitation of life-sustaining treatment decision. End-of-life care is a reality for specialized pediatrics departments. The frequency of major and refractory symptoms often requires the completion of sedation. The resources of service are acceptable but some deficiencies have been noted especially concerning training and support for caregivers, adaptation of premises or family support. Copyright © 2017. Published by Elsevier SAS.
ELF propagation in the presence of nonstratified ionospheric disturbances
NASA Astrophysics Data System (ADS)
Field, E. C., Jr.; Gayer, S. J.; Dambrosio, B. P.
1980-06-01
This report analyzes the propagation of the TEM-ELF waveguide mode when the ionosphere is not stratified. It treats strong localized ionospheric disturbances by recasting the lateral wave equation as a two dimensional integral equation, and applies a specially developed algorithm to obtain numerical solutions. The quasi-full wave results show that a localized ionospheric disturbance behaves like a converging cylindrical lens filling a narrow aperture. Lateral diffraction and focusing, ignored in treatments that do not fully account for transverse ionospheric structure, cause the ELF signal to exhibit a pattern of maxima and minima on the line normal to the path passing through the center of the disturbance. As expected, the focusing/diffraction effects diminish when the transverse dimension of the disturbance exceeds the width of the first Fresnel zone - typically, several megameters. The analysis models widespread inhomogeneities, such as within the polar cap or at the day/night terminator, as semiinfinite regions separated by diffuse boundaries; it then derives full-wave analytic expressions for the reflection of the TEM mode. Mode reflection is found to significantly affect an ELF signal in two actual situations: first, when receivers are on great circle paths that are nearly tangential to the disturbed polar cap - in which case shadow zones and interference patterns can occur; and second, when signals are incident on the day/night terminator (from the day side) at angles exceeding about 75 deg - in which case the signals are affected by a phenomenon analogous to total internal reflection. Reflection is found to be unimportant if the boundary thickness exceeds about one-sixth of a wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, P.F.; Wang, J.S.; Chao, Y.J.
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less
Osuga, T; Obata, T; Ikehira, H
2004-04-01
A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.
Social support, stress, health, and academic success in Ghanaian adolescents: a path analysis.
Glozah, Franklin N; Pevalin, David J
2014-06-01
The aim of this study is to gain a better understanding of the role psychosocial factors play in promoting the health and academic success of adolescents. A total of 770 adolescent boys and girls in Senior High Schools were randomly selected to complete a self-report questionnaire. School reported latest terminal examination grades were used as the measure of academic success. Structural equation modelling indicated a relatively good fit to the posteriori model with four of the hypothesised paths fully supported and two partially supported. Perceived social support was negatively related to stress and predictive of health and wellbeing but not academic success. Stress was predictive of health but not academic success. Finally, health and wellbeing was able to predict academic success. These findings have policy implications regarding efforts aimed at promoting the health and wellbeing as well as the academic success of adolescents in Ghana. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Thirst for living of alcoholic patients: medical care's experience.
Augeraud, Emmanuel; Puertolas, Christian; Rouchon, Dominique
2004-01-01
The medical care lavished on terminal and on alcoholic patients leads us to observe an analogy between these two life paths. This raises a question: do links exist between these two conditions? We will present Mr. B's record with alcohol. Analysing alcohol withdrawal allows us to show that during withdrawal, after having experienced similar stages to those described by Kübler-Ross, the alcoholic patient is in a grieving process. When abstinent, Mr. B faces two possibilities: either the grief is incomplete and the drive towards alcohol leads him to die to life; or he remains abstinent, with the help sometimes of what we call 'support dyads'. All this presupposes that the initial stages of dying to alcohol, followed by a psychic work of dis-fusion, have been brought to a successful conclusion. Links do exist between these two life paths, in the sense that these stages enable them to face the major trauma of their lives, e.g. alcoholism and serious illness.
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Optical remote diagnostics of atmospheric propagating beams of ionizing radiation
Karl JR., Robert R.
1990-03-06
Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.
Optical remote diagnostics of atmospheric propagating beams of ionizing radiation
Karl, Jr., Robert R.
1990-01-01
Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.
A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael M. McCall; William M. Bishop; Marcus Krekel
2005-05-31
This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly whenmore » located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importation of LNG without disrupting coastal port operations by being offshore, out of sight of land.« less
NASA Astrophysics Data System (ADS)
Wang, Botao; Ünal, F. Nur; Eckardt, André
2018-06-01
The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.
Classical field configurations and infrared slavery
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
1987-09-01
The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.
Agricultural robot designed for seeding mechanism
NASA Astrophysics Data System (ADS)
Sunitha, K. A., Dr.; Suraj, G. S. G. S.; Sowrya, CH P. N.; Atchyut Sriram, G.; Shreyas, D.; Srinivas, T.
2017-05-01
In the field of agriculture, plantation begins with ploughing the land and sowing seeds. The old traditional method plough attached to an OX and tractors needs human involvement to carry the process. The driving force behind this work is to reduce the human interference in the field of agriculture and to make it cost effective. In this work, apart of the land is taken into consideration and the robot introduced localizes the path and can navigate itself without human action. For ploughing, this robot is provided with tentacles attached with saw blades. The sowing mechanism initiates with long toothed gears actuated with motors. The complete body is divided into two parts the tail part acts as a container for seeds. The successor holds on all the electronics used for automating and actuation. The locomotion is provided with wheels covered under conveyor belts. Gears at the back of the robot rotate in equal speed with respect to each other with the saw blades. For each rotation every tooth on gear will take seeds and will drop them on field. Camera at the front end tracks the path for every fixed distance and at the minimum distance it takes the path pre-programmed.
Structures and electronic states of halogen-terminated graphene nano-flakes
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto; Iyama, Tetsuji
2015-12-01
Halogen-functionalized graphenes are utilized as electronic devices and energy materials. In the present paper, the effects of halogen-termination of graphene edge on the structures and electronic states of graphene flakes have been investigated by means of density functional theory (DFT) method. It was found that the ionization potential (Ip) and electron affinity of graphene (EA) are blue-shifted by the halogen termination, while the excitation energy is red-shifted. The drastic change showed a possibility as electronic devices such as field-effect transistors. The change of electronic states caused by the halogen termination of graphene edge was discussed on the basis of the theoretical results.
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
Ruhl, J.F.
2002-01-01
A steady state single layer, two-dimensional ground-water flow model constructed with the computer program MODFLOW,combined with the particle-tracking computer program MODPATH, was used to track water particles (upgradient) from the two well fields. A withdrawal rate of 625 m3/d was simulated for each well field. The ground-water flow paths delineated areas of contributing recharge that are 0.38 and 0.65 km2 based on 10- and 50-year travel times, respectively. The flow paths that define these areas extend for maximum distances of about 350 and 450 m, respectively, from the wells. At well field A the area of contributing recharge was delineated for each well as separate withdrawal points. At well field B the area of contributing recharge was delineated for the two wells as a single withdrawal point. Delineation of areas of contributing recharge to the well fields from land surface would require construction of a multi-layer ground-water flow model.
Quantum erasure in the near-field
NASA Astrophysics Data System (ADS)
Walborn, S. P.
2018-05-01
The phenomenon of quantum erasure has shed light on the nature of wave-particle duality and quantum complementarity. A number of quantum erasers have been realized using the far-field diffraction of photons from a Young double-slit apparatus. By marking the path of a photon using an additional degree of freedom, the usual Young interference pattern is destroyed. An appropriate measurement of the system marking the photon’s path allows one to recover the interference pattern. Here quantum erasure is considered in the context of near-field diffraction. To observe interference in the near-field requires the use of two periodic wave functions, so that the usual ‘which way’ marker then becomes a ‘which-wave function’ marker. We determine the propagation distances for which quantum erasure, or more generally the observation of interference between the two periodic wave functions, can be observed. The meaning of wave and particle-like properties in this scenario is discussed. These results could lead to quantum eraser experiments with material particles, for which interference effects are more readily observed in the near-field rather than the far-field.
González-Ramírez, Laura R.; Ahmed, Omar J.; Cash, Sydney S.; Wayne, C. Eugene; Kramer, Mark A.
2015-01-01
Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination. PMID:25689136
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383
All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System
NASA Astrophysics Data System (ADS)
Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro
2006-09-01
In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Separation of heat and charge currents for boosted thermoelectric conversion
NASA Astrophysics Data System (ADS)
Mazza, Francesco; Valentini, Stefano; Bosisio, Riccardo; Benenti, Giuliano; Giovannetti, Vittorio; Fazio, Rosario; Taddei, Fabio
2015-06-01
In a multiterminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyze a class of multiterminal devices where this property is pushed to its extreme limits, with charge and heat currents flowing in different reservoirs. After introducing the main characteristics of this heat-charge current separation regime, we show how to realize it in a multiterminal device with normal and superconducting leads. We demonstrate that this regime allows us to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyze in detail a three-terminal setup involving a superconducting lead, a normal lead, and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit Z T are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.
Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Cao, Ting; Zhao, Fangzhou; Louie, Steven G.
2017-08-01
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.
Cao, Ting; Zhao, Fangzhou; Louie, Steven G
2017-08-18
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
An optical biosensor using MEMS-based V-grooves
NASA Astrophysics Data System (ADS)
Tian, Ye; Ma, Xiaodong; Zou, Xiaotian; Wu, Nan; Wang, Xingwei
2011-05-01
An optical fiber biosensor featuring miniaturization, electromagnetic interference (EMI)-immunity, and flexibility is presented. The sensor was fabricated by aligning two gold-deposited optical single-mode fiber facets inside V-grooves on a silicon chip to form a Fabry-Perot (FP) cavity. The mirrors on the fiber facets were made of deposited gold (Au) films, which provided a high finesse to produce a highly sensitivity. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and angle of the V-grooves on the silicon. The biotin-terminated thiol molecule was firstly immobilized on the gold surface. Subsequently, the molecules of Neutravidin were specifically bound to the biotin-terminated self-assembled monolayers (SAMs). The induced changes of cavity length and refractive index (RI) upon the gold surface lead to an optical path difference (OPD) of the FP cavity, which was detected by demodulating the transmission spectrum phase shift. By taking advantage of MEMS techniques, multiple biosensors can be integrated into one small silicon chip for detecting various biomolecule targets simultaneously.
Future trends in commercial and military systems
NASA Astrophysics Data System (ADS)
Bond, F. E.
Commercial and military satellite communication systems are addressed, with a review of current applications and typical communication characteristics of the space and earth segments. Drivers for the development of future commercial systems include: the pervasion of digital techniques and services, growing orbit and frequency congestion, demand for more entertainment, and the large potential market for commercial 'roof-top' service. For military systems, survivability, improved flexibility, and the need for service to small mobile terminals are the principal factors involved. Technical trends include the use of higher frequency bands, multibeam antennas and a significant increase in the application of onboard processing. Military systems will employ a variety of techniques to counter both physical and electronic threats. The use of redundant transmission paths is a particularly effective approach. Successful implementation requires transmission standards to achieve the required interoperability among the pertinent networks. For both the military and commercial sectors, the trend toward larger numbers of terminals and more complex spacecraft is still persisting.
Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection.
Steinrueck, Magdalena; Guet, Călin C
2017-07-25
How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
No-scale ripple inflation revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V., E-mail: tli@itp.ac.cn, E-mail: lizhijin@physics.tamu.edu, E-mail: dimitri@physics.tamu.edu
We revisit the no-scale ripple inflation model, where no-scale supergravity is modified by an additional term for the inflaton field in the Kähler potential. This term not only breaks one SU(N,1) symmetry explicitly, but also plays an important role for inflation. We generalize the superpotential in the no-scale ripple inflation model slightly. There exists a discrete Z{sub 2} symmetry/parity in the scalar potential in general, which can be preserved or violated by the non-canonical nomalized inflaton kinetic term. Thus, there are three inflation paths: one parity invariant path, and the left and right paths for parity violating scenario. We showmore » that the inflations along the parity invariant path and right path are consistent with the Planck results. However, the gavitino mass for the parity invariant path is so large that the inflation results will be invalid if we consider the inflaton supersymmetry breaking soft mass term. Thus, only the inflation along the right path gives the correct and consistent results. Notably, the tensor-to-scalar ratio in such case can be large, with a value around 0.05, which may be probed by the future Planck experiment.« less
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-01-01
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-09-03
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.
Obstacles and challenges following the partial decriminalisation of abortion in Colombia.
Amado, Eduardo Díaz; Calderón García, Maria Cristina; Cristancho, Katherine Romero; Salas, Elena Prada; Hauzeur, Eliane Barreto
2010-11-01
During a highly contested process, abortion was partially decriminalised in Colombia in 2006 by the Constitutional Court: when the pregnancy threatens a woman's life or health, in cases of severe fetal malformations incompatible with life, and in cases of rape, incest or unwanted insemination. However, Colombian women still face obstacles to accessing abortion services. This is illustrated by 36 cases of women who in 2006-08 were denied the right to a lawful termination of pregnancy, or had unjustified obstacles put in their path which delayed the termination, which are analysed in this article. We argue that the obstacles resulted from fundamental disagreements about abortion and misunderstandings regarding the ethical, legal and medical requirements arising from the Court's decision. In order to avoid obstacles such as demands for a judge's authorisation, institutional claims of conscientious objection, rejection of a claim of rape, or refusal of health insurance coverage for a legal termination, which constitute discrimination against women, three main strategies are suggested: public ownership of the Court's decision by all Colombian citizens, a professional approach by those involved in the provision of services in line with the law, and monitoring of its implementation by governmental and non-governmental organisations. Copyright © 2010 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Solid state safety jumper cables
Kronberg, James W.
1993-01-01
Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
Solid state safety jumper cables
Kronberg, J.W.
1993-02-23
Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
Net current control device. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, D.; Cooper, J.H.
1998-11-01
Net currents generally result in elevated magnetic fields because the alternate paths are distant from the circuit conductors. Investigations have shown that one of the primary sources of power frequency magnetic fields in residential buildings is currents that return to their source via paths other than the neutral conductors. As part of EPRI`s Magnetic Field Shielding Project, ferromagnetic devices, called net current control (NCC) devices, were developed and tested for use in reducing net currents on electric power cables and the resulting magnetic fields. Applied to a residential service drop, an NCC device reduces net current by forcing current offmore » local non-utility ground paths, and back onto the neutral conductor. Circuit models and basic design equations for the NCC concept were developed, and proof-of-principles tests were carried out on an actual residence with cooperation from the local utility. After proving the basic concepts, three prototype NCC devices were built and tested on a simulated neighborhood power system. Additional prototypes were built for testing by interested EPRI utility members. Results have shown that the NCC prototypes installed on residential service drops reduce net currents to milliampere levels with compromising the safety of the ground system. Although the focus was on application to residential service cables, the NCC concept is applicable to single-phase and three-phase distribution systems as well.« less
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
Career Path Suggestion using String Matching and Decision Trees
NASA Astrophysics Data System (ADS)
Nagpal, Akshay; P. Panda, Supriya
2015-05-01
High school and college graduates seemingly are often battling for the courses they should major in order to achieve their target career. In this paper, we worked on suggesting a career path to a graduate to reach his/her dream career given the current educational status. Firstly, we collected the career data of professionals and academicians from various career fields and compiled the data set by using the necessary information from the data. Further, this was used as the basis to suggest the most appropriate career path for the person given his/her current educational status. Decision trees and string matching algorithms were employed to suggest the appropriate career path for a person. Finally, an analysis of the result has been done directing to further improvements in the model.
Autonomous Path Planning for On-Orbit Servicing Vehicles
NASA Astrophysics Data System (ADS)
McInnes, C. R.
On-orbit servicing has long been considered as a means of reducing mission costs. While automated on-orbit servicing of satellites in LEO and GEO has yet to be realised, the International Space Station (ISS) will require servicing in a number of forms for re-supply, external visual inspection and maintenance. This paper will discuss a unified approach to path planning for such servicing vehicles using artificial potential field methods. In particular, path constrained rendezvous and docking of the ESA Automated Transfer Vehicle (ATV) at the ISS will be investigated as will mission and path planning tools for the Daimler-Chrysler Aerospace ISS Inspector free-flying camera. Future applications for free-flying microcameras and co-operative control between multiple free-flyers for on-orbit assembly will also be considered.
Rooting traits of peanut genotypes with different yield response to terminal drought
USDA-ARS?s Scientific Manuscript database
Drought at pod filling and maturity stages can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. The goal of this study was to investigate the responses to terminal drought of peanut genotypes for root dry weight and root length density. A field experiment was ...
Multiple rolling/crimping effects on termination of two summer cover crops in a conservation system
USDA-ARS?s Scientific Manuscript database
A field experiment was initiated in the 2015 growing season at the USDA-NSDL to determine the effectiveness of a prototype two-stage roller/crimper in mechanical termination of two summer cover crops intended for organic systems. The experiment was a randomized complete block design with four replic...
NASA Astrophysics Data System (ADS)
Beškovnik, Bojan; Twrdy, Elen
2011-12-01
The article describes actions and strategies to obtain higher productivity on maritime automobile terminals. The main focus is on elaboration of efficient and effective organizational structure to model and implement short-term, mid-term and long-term strategies. In addition, with an empiric approach we combined the analyses of current findings in important scientific papers and our acknowledgments in practical research of north Adriatic maritime automobile terminals. The main goal is to propose actions towards increasing system's productivity. Based on our research of the north Adriatic maritime automobile terminals and with Lambert's model an in-deep analysis of limiting factors, user's expectations and possibilities for productivity increase has been performed. Moreover, with our acknowledgments a three-level decision-support model is presented. With an adequate model implementation it is possible to efficiently develop and implement different strategies of productivity measurement and productivity increase, especially in the fields of internal transport productivity, entrance/exit truck gates operations and wagon manipulations. According to our observation a significant increase might be achieved in all three fields.
Use of (N-1)-D expansions for N-D phase unwrapping in MRI
NASA Astrophysics Data System (ADS)
Bones, Philip J.; King, Laura J.; Millane, Rick P.
2017-09-01
In MRI the presence of metal implants causes severe artifacts in images and interferes with the usual techniques used to separate fat signals from other tissues. In the Dixon method, three images are acquired at different echo times to enable the variation in the magnetic field to be estimated. However, the estimate is represented as the phase of a complex quantity and therefore suffers from wrapping. High field gradients near the metal mean that the phase estimate is undersampled and therefore challenging to unwrap. We have developed POP, phase estimation by onion peeling, an algorithm which unwraps the phase along 1-D paths for a 2-D image obtained with the Dixon method. The unwrapping is initially performed along a closed path enclosing the implant and well separated from it. The recovered phase is expanded using a smooth periodic basis along the path. Then, path-by-path, the estimate is applied to the next path and then the expansion coefficients are estimated to best fit the wrapped measurements. We have successfully tested POP on MRI images of specially constructed phantoms and on a group of patients with hip implants. In principle, POP can be extended to 3-D imaging. In that case, POP would entail representing phase with a suitably smooth basis over a series of surfaces enclosing the implant (the "onion skins"), again beginning the phase estimation well away from the implant. An approach for this is proposed. Results are presented for fat and water separation for 2-D images of phantoms and actual patients. The practicality of the method and its employment in clinical MRI are discussed.
NASA Astrophysics Data System (ADS)
Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.
2010-12-01
Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 fluxes and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface heating correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while heating effect does not pose a problem for CO2 flux in warm environments. Even in cold environments, the impact of heating on CO2 flux is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface heating effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated air temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path heating effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient air. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance flux measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during extremely cold conditions. Two regiments of the temperature control for internal electronics were examined across a wide range of temperatures: (i) the traditional control temperature of about 30oC, and (ii) new regiment controlling parts of internal electronics at 5oC. When new 5oC regiment was activated, the following changes were observed: heat dissipation from the surface reduced several folds, surface-to-air temperature gradients reduced 2-50 times; and the number of false uptake hours were reduced by 3.5 times, to the same level as a closed-path standard. Significant advantage of the new regiment was also observed in the magnitude of CO2 fluxes, especially in cold weather below -10oC. At such cold temperatures, CO2 fluxes from a 30oC controlled LI-7500 were 19% below those of the closed-path standard, while fluxes from a 5oC controlled LI-7500A were, on average, within 1% of the standard. These are strong experimental evidence that open-path instrument heating can be substantially reduced or eliminated via such simple hardware based solution. This allows continued and expanded use of this ultimately lowest-power remote solution for fast gas measurements.
Electric terminal performance and characterization of solid oxide fuel cells and systems
NASA Astrophysics Data System (ADS)
Lindahl, Peter Allan
Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.
Dynamic compression and volatile release of carbonates
NASA Technical Reports Server (NTRS)
Tyburczy, J. A.; Ahrens, T. J.
1984-01-01
Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.
Frequency dependence of trapped flux sensitivity in SRF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, M.; Martinello, M.; Grassellino, A.
In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less
Faraday Rotation: Effect of Magnetic Field Reversals
NASA Astrophysics Data System (ADS)
Melrose, D. B.
2010-12-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ2, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick & Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelzer, Gerald; Meinke, Rainer; Senti, Mark
A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface ofmore » second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.« less
Frequency dependence of trapped flux sensitivity in SRF cavities
Checchin, M.; Martinello, M.; Grassellino, A.; ...
2018-02-13
In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
NASA Technical Reports Server (NTRS)
Nerney, Steven; Suess, S. T.; Schmahl, E. J.
1995-01-01
The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.
A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners
Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.
2016-01-01
We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Boccia, E.; Luther, S.
2017-01-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234
NASA Astrophysics Data System (ADS)
Boccia, E.; Luther, S.; Parlitz, U.
2017-05-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Free-space laser communication system with rapid acquisition based on astronomical telescopes.
Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang
2015-08-10
The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2013-01-01
This paper presents an overview of the fourth major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. Revisions to this algorithm were based on a change to the expected operational environment.
NASA Astrophysics Data System (ADS)
Dindar, Cigdem; Kiran, Erdogan
2002-10-01
We present a new sensor configuration and data reduction process to improve the accuracy and reliability of determining the terminal velocity of a falling sinker in falling body type viscometers. This procedure is based on the use of multiple linear variable differential transformer sensors and precise mapping of the sensor signal and position along with the time of fall which is then converted to distance versus fall time along the complete fall path. The method and its use in determination of high-pressure viscosity of n-pentane and carbon dioxide are described.
Automation of On-Board Flightpath Management
NASA Technical Reports Server (NTRS)
Erzberger, H.
1981-01-01
The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.
The influence of electric field and confinement on cell motility.
Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C
2013-01-01
The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.
The Feynman-Vernon Influence Functional Approach in QED
NASA Astrophysics Data System (ADS)
Biryukov, Alexander; Shleenkov, Mark
2016-10-01
In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum.
Study Choice and Career Development in STEM Fields: An Overview and Integration of the Research
ERIC Educational Resources Information Center
van Tuijl, Cathy; van der Molen, Juliette H.
2016-01-01
Although science, technology, engineering and mathematics (STEM) study paths and STEM work fields may be relatively difficult and therefore not appropriate for everyone, too many children prematurely exclude STEM-related study and work options, based on negative images of the field or negative ability beliefs. In the present article, we provide an…
Perturbative Yang-Mills theory without Faddeev-Popov ghost fields
NASA Astrophysics Data System (ADS)
Huffel, Helmuth; Markovic, Danijel
2018-05-01
A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.
NASA Astrophysics Data System (ADS)
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.
2014-12-01
This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.
Comparison of Wave Energy Transport at the Comets p/Halley and p/Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Sding, A.; Glassmeir, K. H.; Fuselier, S. A.; Neubauer, Fritz M.; Tsurutani, B. T.
1995-01-01
Using magnetic field, plasma density and flow observations from spacecraft flybys of two comets, Eler variables are determined in order to study wave propogation directions. We investigate the inbound path of the Giotto spacecraft flyby of comet p/Halley outside the bow shock, and the inbound and outbound path of the ICE spacecraft flyby of comet p/Giacobini-Zinner outsinde of the bow wave.