Sample records for pathfinder flight system

  1. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  2. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  3. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  4. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  5. Operations and Autonomy of the Mars Pathfinder Microrover

    NASA Technical Reports Server (NTRS)

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.

    1998-01-01

    The Microrover Flight Experiment (MFEX) is a NSAS OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997.

  6. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  7. Pathfinder-Plus takes off on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  8. Pathfinder-Plus on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  9. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  10. Pathfinder-Plus on flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  11. Pathfinder-Plus on flight near Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  12. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  13. Pathfinder-Plus on a flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  14. Pathfinder-Plus on flight over Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  15. Pathfinder ground preparations prior to altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians make final adjustments on the solar-powered Pathfinder remotely piloted research aircraft prior to the craft's taking off on a flight which established a new unofficial world's altitude record for both propellor-driven and solar-powered aircraft. The new record of more than 71,500 feet was set during a 14 1/2-hour flight July 7, 1997, from the U.S. Navy's Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, Hawaii. The new altitude record is subject to verification by the National Aeronautics Association. The Pathfinder took off at 8:34 a.m. HDT, passed its previous record altitude of 67,350 feet about 2:45 p.m., and then reached its new mark at about 4 p.m. Controllers on the ground then initiated a slow decent, and Pathfinder landed seven hours later at 11:05 p.m. HDT. The experimental Boeing Condor remotely-piloted aircraft had held the previous record for propellor-driven craft of 67,028 feet. The Pathfinder had exceeded that height on a previous flight on June 9, 1997, but not by a large enough margin to be considered a new record. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  16. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  17. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus flying over the Hawaiian Islands in 1998 with Ni'ihau Island in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  18. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    NASA Technical Reports Server (NTRS)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  19. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.

  20. NASA's Webb "Pathfinder Telescope" Successfully Completes First Super-Cold Optical Test

    NASA Image and Video Library

    2017-12-08

    Testing is crucial part of NASA's success on Earth and in space. So, as the actual flight components of NASA's James Webb Space Telescope come together, engineers are testing the non-flight equipment to ensure that tests on the real Webb telescope later goes safely and according to plan. Recently, the "pathfinder telescope," or just “Pathfinder,” completed its first super-cold optical test that resulted in many first-of-a-kind demonstrations. "This test is the first dry-run of the equipment and procedures we will use to conduct an end-to-end optical test of the flight telescope and instruments," said Mark Clampin, Webb telescope Observatory Project Scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It provides confidence that once the flight telescope is ready, we are fully prepared for a successful test of the flight hardware." The Pathfinder is a non-flight replica of the Webb telescope’s center section backplane, or “backbone,” that includes mirrors. The flight backplane comes in three segments, a center section and two wing-like parts, all of which will support large hexagonal mirrors on the Webb telescope. The pathfinder only consists of the center part of the backplane. However, during the test, it held two full size spare primary mirror segments and a full size spare secondary mirror to demonstrate the ability to optically test and align the telescope at the planned operating temperatures of -400 degrees Fahrenheit (-240 Celsius). Read more: www.nasa.gov/feature/goddard/nasas-webb-pathfinder-telesc... Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Pathfinder in flight over Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high spectral resolution Digital Array Scanned Interferometer (DASI) and a high spatial resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  2. Free-Flight Experiments in LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  3. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors.

  4. Pathfinder-Plus flight in Hawaii

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pathfinder-Plus flight in Hawaii June 2002 AeroVironment's Pathfinder-Plus solar-powered flying wing recently flew a three-flight demonstration of its ability to relay third-generation cell phone and video signals as well as provide Internet linkage. The two pods underneath the center section of the wing carried the advanced two-way telecom package, developed by Japanese telecommunications interests.

  5. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  6. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996.

  7. Genesis Sample Return Capsule Overview

    NASA Technical Reports Server (NTRS)

    Willcockson, Bill

    2005-01-01

    I. Simple Entry Capsule Concept: a) Spin-Stabilized/No Active Control Systems; b) Ballistic Entry for 11.04 km/sec Velocity; c) No Heatshield Separation During Entry; d) Parachute Deploy via g-Switch + Timer. II. Stardust Design Inheritance a) Forebody Shape; b) Seal Concepts; c) Parachute Deploy Control; d) Utah Landing Site (UTTR). III. TPS Systems a) Heatshield - Carbon-Carbon - First Planetary Entry; b) Backshell - SLA-561V - Flight Heritage from Pathfinder, MER; d) Forebody Structural Penetrations Aerothermal and TPS Design Process has the Same Methodology as Used for Pathfinder, MER Flight Vehicles.

  8. Mars Pathfinder Atmospheric Entry Navigation Operations

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Spencer, D. A.; Kallemeyn, P. H.; Vaughan, R. M.

    1997-01-01

    On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing, coming to rest on the surface of Mars just 27 km from its target point. In the present paper, the atmospheric entry and approach navigation activities required in support of this mission are discussed. In particular, the flight software parameter update and landing site prediction analyses performed by the Pathfinder operations navigation team are described. A suite of simulation tools developed during Pathfinder's design cycle, but extendible to Pathfinder operations, are also presented. Data regarding the accuracy of the primary parachute deployment algorithm is extracted from the Pathfinder flight data, demonstrating that this algorithm performed as predicted. The increased probability of mission success through the software parameter update process is discussed. This paper also demonstrates the importance of modeling atmospheric flight uncertainties in the estimation of an accurate landing site. With these atmospheric effects included, the final landed ellipse prediction differs from the post-flight determined landing site by less then 0.5 km in downtrack.

  9. Pathfinder on lakebed rolling out for test flight

    NASA Image and Video Library

    1995-12-10

    The Pathfinder research aircraft's wing structure is clearly defined in this photo as personnel from AeroVironment rolled it out onto the lakebed at NASA's Dryden Flight Research Center, Edwards, California, for another test flight.

  10. Pathfinder over runway in Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high-spectral-resolution Digital Array Scanned Interferometer (DASI) and a high-spatial-resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  11. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  12. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Image and Video Library

    1995-09-11

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors.

  13. Navigation Flight Operations for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Kallemeyn, Pieter H., Jr.; Spencer, David A.; Braun, Robert D.

    2004-01-01

    On July 4, 1997, Mars Pathfinder became the first spacecraft to land on the surface of Mars in 21 years. Pathfinder was launched on December 4, 1996 and spent seven months en route to the red planet. This report discusses the navigation flight experience for the Mars Pathfinder interplanetary cruise. In particular, orbit determination and maneuver design and execution results are presented. Special emphasis is given to the navigation role in the days and hours leading up to and including the Entry, Descent, and Landing (EDL) phase.

  14. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Image and Video Library

    1997-07-07

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft.

  15. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  16. LISA Pathfinder: An important first step towards a space-based gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2017-08-01

    ESA's LISA Pathfinder mission was launched on Dec 3rd, 2015 and completed earlier this Summer. During this relatively short mission, Pathfinder at its two science payloads, Europe's LISA Technology Package and NASA's Disturbance Reduction System, demonstrated several techniques and technologies that enable development of a future space-based gravitational wave observatory. Most notably, Pathfinder demonstrated that the technique of drag-free flight could be utilized to place a test mass in near-perfect free-fall, with residual accelerations at the femto-g level in the milliHertz band. Additionally, technologies such as precision bonded optical structures for metrology, micropropulsion systems, and non-contact charge control, were successfully tested, retiring risk for LISA. In this talk, I will present an overview of Pathfinder's results to date and some perspective on how this success will be leveraged into realizing LISA.

  17. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; hide

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  18. 1201014

    NASA Image and Video Library

    2012-09-21

    ENGINEERS USING A STATE-OF-THE-ART VERTICAL WELDING TOOL AT THE MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., MOVE A "PATHFINDER" VERSION OF THE ADAPTER DESIGN THAT WILL BE USED ON TEST FLIGHTS OF THE ORION SPACECRAFT AND NASA'S SPACE LAUNCH SYSTEM

  19. 1201013

    NASA Image and Video Library

    2012-09-21

    ENGINEERS USING A STATE-OF-THE-ART VERTICAL WELDING TOOL AT THE MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALA., MOVE A "PATHFINDER" VERSION OF THE ADAPTER DESIGN THAT WILL BE USED ON TEST FLIGHTS OF THE ORION SPACECRAFT AND NASA'S SPACE LAUNCH SYSTEM

  20. Dynamic Control System Mode Performance of the Space Technology-7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Hsu, Oscar; Maghami, Peiman

    2017-01-01

    The Space Technology-7 (ST-7) Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft, launched on December 3, 2015. DRS consists of three primary components: Colloidal MicroNewton Thrusters (CMNTs), an Integrated Avionics Unit (IAU), and flight-software implementing the Command and Data Handling (C&DH) and Dynamic Control System (DCS) algorithms. The CMNTs were designed to provide thrust from 5 to 30 micro Newton, with thrust controllability and resolution of 0.1 micro Newton and thrust noise of 0.1 micro Newton/(square root of (Hz)) in the measurement band from 1-30 mHz. The IAU hosts the C&DH and DCS flight software, as well as interfaces with both the CMNT electronics and the LISA Pathfinder spacecraft. When in control, the DCS uses star tracker attitude data and capacitive or optically-measured position and attitude information from LISA Pathfinder and the LISA Technology Package (LTP) to control the attitude and position of the spacecraft and the two test masses inside the LTP. After completion of the nominal ESA LISA Pathfinder mission, the DRS experiment was commissioned followed by its nominal mission. DRS operations extended over the next five months, interspersed with station keeping, anomaly resolution, and periods where control was handed back to LISA Pathfinder for them to conduct further experiments. The primary DRS mission ended on December 6, 2016, with the experiment meeting all of its Level 1 requirements. The DCS, developed at the NASA Goddard Space Flight Center, consists of five spacecraft control modes and six test mass control modes, combined into six 'DRS Mission Modes'. Attitude Control and Zero-G were primarily used to control the spacecraft during initial handover and during many of the CMNT characterization experiments. The other Mission Modes, Drag Free Low Force, 18-DOF Transitional, and 18-DOF, were used to provide drag-free control of the spacecraft about the test masses. This paper will discuss the performance of these DCS spacecraft and test mass control modes. Flight data will be shown from each mode throughout the mission, both from nominal operations and during various flight experiments. The DCS team also made some changes to controller, filter, and limit parameters during operations; the motivation and results of these changes will be shown and discussed.

  1. Mars Pathfinder flight system integration and test.

    NASA Astrophysics Data System (ADS)

    Muirhead, B. K.

    This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.

  2. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  3. Harnessing the Power of the Sun

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) Alliance was created in 1994 and operated for 9 years as a NASA-sponsored coalition of 28 members from small companies, government, universities, and nonprofit organizations. ERAST s goal was to foster development of remotely piloted aircraft technology for scientific, humanitarian, and commercial purposes. Some of the aircraft in the ERAST Alliance were intended to fly unmanned at high altitudes for days at a time, and flying for such durations required alternative sources of power that did not add weight. The most successful solution for this type of sustained flight is the lightest solar energy. Photovoltaic cells convert sunlight directly into electricity. They are made of semi-conducting materials similar to those used in computer chips. When sunlight is absorbed, electrons are knocked loose from their atoms, allowing electricity to flow. Under the ERAST Alliance, two solar-powered technology demonstration aircraft, Pathfinder and Helios, were developed. Pathfinder is a lightweight, remotely piloted flying wing aircraft that demonstrated the technology of applying solar cells for long-duration, high-altitude flight. Solar arrays covering most of the upper wing surface provide power for the aircraft s electric motors, avionics, communications, and other electronic systems. Pathfinder also has a backup battery system that can provide power for between 2 and 5 hours to allow limited-duration flight after dark. It was designed, built, and operated by AeroVironment, Inc., of Monrovia, California. On September 11, 1995, Pathfinder reached an altitude of 50,500 feet, setting a new altitude record for solar-powered aircraft. The National Aeronautic Association presented the NASA-industry team with an award for 1 of the 10 Most Memorable Record Flights of 1995.

  4. Preliminary Findings of the Photovoltaic Cell Calibration Experiment on Pathfinder Flight 95-3

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos

    1997-01-01

    The objective of the photovoltaic (PV) cell calibration experiment for Pathfinder was to develop an experiment compatible with an ultralight UAV to predict the performance of PV cells at AM0, the solar spectrum in space, using the Langley plot technique. The Langley plot is a valuable technique for this purpose and requires accurate measurements of air mass (pressure), cell temperature, solar irradiance, and current-voltage(IV) characteristics with the cells directed normal to the direct ray of the sun. Pathfinder's mission objective (95-3) of 65,000 ft. maximum altitude, is ideal for performing the Langley plot measurements. Miniaturization of electronic data acquisition equipment enabled the design and construction of an accurate and light weight measurement system that meets Pathfinder's low payload weight requirements.

  5. Flight Reconstruction of the Mars Pathfinder Disk-Gap-Band Parachute Drag Coefficient

    NASA Technical Reports Server (NTRS)

    Desai, Prasun; Schofield, John T.; Lisano, Michael E.

    2003-01-01

    On July 4, 1997, the Mars Pathfinder (MPF) mission successfully landed on Mars. The entry, descent, and landing (EDL) scenario employed the use of a Disk-Gap-Band parachute design to decelerate the Lander. Flight reconstruction of the entry using MPF flight accelerometer data revealed that the MPF parachute decelerated faster than predicted. In the summer of 2003, the Mars Exploration Rover (MER) mission will send two Landers to the surface of Mars arriving in January 2004. The MER mission utilizes a similar EDL scenario and parachute design as that employed by MPF. As a result, characterizing the degree of underperformance of the MPF parachute system is critical for the MER EDL trajectory design. This paper provides an overview of the methodology utilized to estimate the MPF parachute drag coefficient as experienced on Mars.

  6. Drag-Free Performance of the ST7 Disturbance Reduction System Flight Experiment on the LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman; O'Donnell, James, Jr.; Hsu, Oscar; Ziemer, John; Dunn, Charles

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free control flight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nmHz, along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 (1 + [f3 mHz]) fmsHz, over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.

  7. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  8. A Review of Solar-Powered Aircraft Flight Activity at the Pacific Missile Range Test Facility, Kauai, Hawaii

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Donohue, Casey; Teets, Edward H., Jr.

    2004-01-01

    A series of solar-powered aircraft have been designed and operated by AeroVironment, Inc. (Monrovia, CA) as a part of National Aeronautics and Space Administration (NASA) objectives to develop energy-efficient high-altitude long-endurance platforms for earth observations and communications applications. Flight operations have been conducted at NASA's Dryden Flight Research Center, Edwards CA and at the U.S. Navy Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, HI. These aircraft flown at PMRF are named Pathfinder , Pathfinder Plus and Helios . Sizes of these three aircraft range from 560 lb with a 99-ft wingspan to 2300 lb with a 247-ft wingspan. Available payload capacity reaches approximately 200 lb. Pathfinder uses six engines and propellers: Pathfinder Plus 8; and Helios 14. The 2003 Helios fuel cell configurations used 10 engines and propellers. The PMRF was selected as a base of operations because if offers optimal summertime solar exposure, low prevailing wind-speeds on the runway, modest upper-air wind-speeds and the availability of suitable airspace. Between 1997 and 2001, successive altitude records of 71,530 ft, 80,200 ft, and 96,863 ft were established. Flight durations extended to 18 hours.

  9. ED01-0230-1

    NASA Image and Video Library

    2001-08-13

    NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii, for the record flight. As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingsp

  10. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  11. Processing and Analysis of Mars Pathfinder Science Data at JPL's Science Data Processing Section

    NASA Technical Reports Server (NTRS)

    LaVoie, S.; Green, W.; Runkle, A.; Alexander, D.; Andres, P.; DeJong, E.; Duxbury, E.; Freda, D.; Gorjian, Z.; Hall, J.; hide

    1998-01-01

    The Mars Pathfinder mission required new capabilities and adaptation of existing capabilities in order to support science analysis and flight operations requirements imposed by the in-situ nature of the mission.

  12. Mars Pathfinder mission operations concepts

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr.; Dias, William C.; Nakata, Albert Y.; Tai, Wallace S.

    1994-01-01

    The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day.

  13. JWST Pathfinder Telescope Risk Reduction Cryo Test Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Scorse, Thomas R.; Spina, John A.; Noel, Darin M.; Havey, Keith A., Jr.; Huguet, Jesse A.; Whitman, Tony L.; Wells, Conrad; Walker, Chanda B.; Lunt, Sharon; hide

    2015-01-01

    In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope.

  14. Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne

    1993-01-01

    The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.

  15. Testing of the LISA pathfinder GRS

    NASA Astrophysics Data System (ADS)

    Antonucci, Federica; Cavalleri, Antonella; Ciani, Giacomo; Congedo, Giuseppe; Dolesi, Rita; de Marchi, Fabrizio; Ferraioli, Luigi; Hueller, Mauro; Nicolodi, Daniele; Tombolato, David; Vitale, Stefano; Wass, Peter J.; Weber, William J.

    The ESA/NASA mission,LISA (Laser Interferometric Space Antenna), will measure gravita-tional waves emitted by astronomical sources, galactic and extra-galactic, at frequencies 10-4 to 10-1 Hz. LISA is a 5-million-km arm-length interferometer whose mirrors are test masses which must be nominally free-falling to a level which does not exceed 3 · 10-15 ms-2 Hz -1/2 in acceleration. LISA Pathfinder is a technology demonstration mission which will show that the relative parasitic acceleration between two masses on one spacecraft can be lower than 3 · 10-14 ms-2 Hz -1/2 , at frequencies around 1 mHz -one order of magnitude larger than LISA's goal. At the core of the LISA Pathfinder experiment is the GRS (gravitational reference sensor), a capacitive sensor with mm gaps used to measure the position of the test mass and actuate its position in 6-degrees-of-freedom. Testing the purity of free-fall for LISA Pathfinder on-ground is achieved using a torsion pendulum which allows us to measure force disturbances at a level relevant to LISA Pathfinder. We will present the latest campaign of tests of the LISA Pathfinder GRS using the 4-test-mass torsion pendulum facility aimed at measuring force-noise sources (responsible for the parasitic acceleration) for LISA Pathfinder in its frequency band. Our GRS , is the LISA Pathfinder flight-model replica, and its testing is crucial in verifying the design and performance of the flight instrument and measuring many of the unwanted disturbances which can limit the performance of LISA and LISA pathfinder. The measurements concern the dependence of the force on the test mass position in the sensor and their electrostatic coupling, electrostatic fields due to surface-potential variations and thermal gradients.

  16. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; hide

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  17. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This artist's concept depicts the X-34 Demonstrator in flight. Part of the Pathfinder Program, the X-34 was a reusable technology testbed vehicle that was designed and built by the Marshall Space Flight Center to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  18. LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2008-01-01

    USA Pathfinder is a space mission dedicated to demonstrating technology for the Laser Interferometer Space Antenna (LISA). LISA is a joint ESA/NASA mission to detect low-frequency gravitational waves on the 0.0001 to 0.1 Hz frequency band. LISA is expected to observe 100's of merging massive black hole binaries out z-15, tens of thousands of close compact binary systems in the Milky Way, merging intermediate-mass black hole binaries, tens of stellar-mass black holes falling into supermassive black holes in galactic centers, and possibly other exotic sources. Several critical LISA technologies have not been demonstrated at the requisite level of performance. In spaceflight, and some fight hardware cannot be tested in a 1-g environment. Hence, the LISA Pathfinder mission is being implemented to demonstrate these critical LISA technologies in a relevant flight environment. LISA Pathfinder mimics one arm of the LISA constellation by shrinking the 5-million-kilometer armlength down to a few tens of centimeters. The experimental concept is to measure the relative separation between two test masses nominally following their own geodesics, and thereby determine the relative residual acceleration between them near 1 mHz, about a decade above the lowest frequency required by LISA. To implement such a concept, disturbances on the test masses must be kept very small by many design features, but chiefly by "drag-free" flight. A drag-free spacecraft follows a free-falling test mass which it encloses, but has no mechanical connection to. The spacecraft senses it's orientation and separation with respect to the proof mass, and its propulsion system is commanded to keep the spacecraft centered about the test mass. Thus, the spacecraft shields the test mass from most external influences, and minimizes the effect of force gradients arising from the spacecraft, and acting on the test mass. LISA Pathfinder will compare the geodesic of one test mass against that of the other. Only a metrology system based on interferometry can achieve the displacement sensitivity. Interferometers monitor the separation of both test masses with a sensitivity comparable to that required by LISA, and using the same technologies. LISA Pathfinder is scheduled to be launched in the first half of 1020 to a Lissajous orbit around the first Sun-Earth Lagrange point, L1. In addition to a complete European technology package (the LISA Technology Package, or LTP), LISA Pathfinder will also carry thrusters and software, known as ST-7, a part of NASA's New Millennium Program.

  19. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  20. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  1. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  2. NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2009-01-01

    This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.

  3. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend the results to the drag-free control system to be designed for future space-based gravity wave observatories like LISA.

  4. PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.

    PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.

  5. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  6. Pathfinder-Plus aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  7. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  8. Engineering of the LISA Pathfinder mission—making the experiment a practical reality

    NASA Astrophysics Data System (ADS)

    Warren, Carl; Dunbar, Neil; Backler, Mike

    2009-05-01

    LISA Pathfinder represents a unique challenge in the development of scientific spacecraft—not only is the LISA Test Package (LTP) payload a complex integrated development, placing stringent requirements on its developers and the spacecraft, but the payload also acts as the core sensor and actuator for the spacecraft, making the tasks of control design, software development and system verification unusually difficult. The micro-propulsion system which provides the remaining actuation also presents substantial development and verification challenges. As the mission approaches the system critical design review, flight hardware is completing verification and the process of verification using software and hardware simulators and test benches is underway. Preparation for operations has started, but critical milestones for LTP and field effect electric propulsion (FEEP) lie ahead. This paper summarizes the status of the present development and outlines the key challenges that must be overcome on the way to launch.

  9. Rover imaging system for the Mars rover/sample return mission

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.

  10. Making a home in space

    NASA Technical Reports Server (NTRS)

    Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl

    1989-01-01

    NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.

  11. DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.

    1997-01-01

    The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.

  12. Centurion in Flight over Lakebed

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an early morning test flight over the Rogers Dry Lake adjacent to at NASA's Dryden Flight Research Center, Edwards, California. The flight was one of an initial series of low-altitude, battery-powered test flights conducted in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  13. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  14. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  15. The Helios Prototype aircraft in a northerly climb over Niihau Island, Hawaii, at about 8,000 feet a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  16. Drag-Free Performance of the ST7 Disturbance Reduction System Flight Experiment on the LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; O'Donnell, James R.; Hsu, Oscar H.; Ziemer, John K.; Dunn, Charles E.

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free controlflight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nm/(square root of Hz), along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 x 10(exp -14) (1 + ([f/3 mHz](exp 2))) m/sq s/(square root of Hz), over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.

  17. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  18. LISA Pathfinder first results

    NASA Astrophysics Data System (ADS)

    Vetrugno, D.

    LISA Pathfinder (LPF) is an in-flight technological demonstrator designed and launched to prove the feasibility of sub-femto-g free fall of kilo-sized test masses (TM), an essential ingredient for the future gravitational wave observatory from space. Half a year after launch, the first results are available and show an incredibly well-performing instrument. The results represent a first and important step towards the long awaited construction and launch of LISA, the Laser Interferometer Space Antenna.

  19. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  20. Review of the trajectory and atmospheric structure reconstruction for Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Towner, Martin; Hathi, Brijen; Zarnecki, John

    2004-02-01

    Mars Pathfinder landed on Mars on July 4, 1997. It used a novel deceleration procedure, consisting of a hypersonic aeroshell, a transonic parachute, retro-rockets, and airbags, to reach the surface safely. Its aerodynamic properties passively maintained a near-zero angle of attack throughout its entry. There were no gyroscopes to monitor attitude. Several different trajectory reconstructions have been based on the assumptions that accelerations along its symmetry axis are directed along its flight path and that accelerations in other directions are insignificant. The aerodynamics of Pathfinder once its parachute opened are still not well-understood and the available observations are probably not sufficient to improve matters significantly in the future.

  1. Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan

    2014-07-01

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.

  2. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured is the X-34 Demonstrator parked on the runway. Part of the Pathfinder Program, the X-34 was a reusable technology testbed vehicle that was designed and built by the Marshall Space Flight Center to demonstrate technologies that are essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  3. Centurion in Flight with Internal Wing Structure Visible

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The lightweight wing structure and covering of the Centurion remotely piloted flying wing can be clearly seen in this photo of the plane during one of its initial low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  4. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  5. NASA Prepares Webb Telescope Pathfinder for Famous Chamber

    NASA Image and Video Library

    2015-04-13

    Engineers and technicians manually deployed the secondary mirror support structure (SMSS) of the James Webb Space Telescope's Pathfinder backplane test model, outside of a giant space simulation chamber called Chamber A, at NASA's Johnson Space Center in Houston. This historic test chamber was previously used in manned spaceflight missions and is being readied for a cryogenic test of a Webb telescope component. In the weightless environment of space, the SMSS is deployed by electric motors. On the ground, specially trained operators use a hand crank and a collection of mechanical ground support equipment to overcome the force of gravity. "This structure needs to be in the deployed configuration during the cryogenic test to see how the structure will operate in the frigid temperatures of space," said Will Rowland, senior mechanical test engineer for Northrop Grumman Aerospace Systems, Redondo Beach, California. "The test also demonstrates that the system works and can be successfully deployed." After the deployment was completed, Chamber A's circular door was opened and the rails (seen in the background of the photo) were installed so that the Pathfinder unit could be lifted, installed and rolled into the chamber on a cart. The team completed a fit check for the Pathfinder. Afterwards they readied the chamber for the cryogenic test, which will simulate the frigid temperatures the Webb telescope will encounter in space. “The team has been doing a great job keeping everything on schedule to getting our first optical test results, " said Lee Feinberg, NASA Optical Telescope Element Manager. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Desiree Stover Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This artist's concept depicts the X-34 Demonstrator sitting on a runway. Part of the Pathfinder Program, the X-34 was a reusable technology testbed vehicle that was designed and built by the Marshall Space Flight Center to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  7. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This artist's concept depicts the X-34 Demonstrator landing in a dessert. Part of the Pathfinder Program, the X-34 was a reusable technology testbed vehicle that was designed and built by the Marshall Space Flight Center to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  8. Grid resolution and solution convergence for Mars Pathfinder forebody

    NASA Technical Reports Server (NTRS)

    Nettelhorst, Heather L.; Mitcheltree, Robert A.

    1994-01-01

    As part of the Discovery Program, NASA Plans to launch a series of probes to Mars. The Mars Pathfinder project is the first of this series with a scheduled Mars arrival in July 1997. The entry vehicle will perform a direct entry into the atmosphere and deliver a lander to the surface. Predicting the entry vehicle's flight performance and designing the forebody heatshield requires knowledge of the expected aerothermodynamic environment. Much of this knowledge can be obtained through computational fluid dynamic (CFD) analysis.

  9. Rover Family Photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.

  10. Rover Family Photo

    NASA Image and Video Library

    2003-02-26

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around NASA Rover 2 and its predecessor, a flight spare of the Pathfinder mission Sojourner rover, named Marie Curie.

  11. Centurion on Lakebed during Functional Checkout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close-up view of the 14 wide-bladed propellers and electric motors on the Centurion solar-powered, remotely piloted flying wing. This photo was taken during a functional checkout of the aircraft prior to its first test flights at NASA's Dryden Flight Research Center, Edwards, California, in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  12. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  13. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  14. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  15. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  16. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  17. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  18. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  19. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  20. Cognitive network organization and cockpit automation

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, R. J.; Paap, K. R.

    1985-01-01

    Attention is given to a technique for the derivation of pilot cognitive networks from empirical data, which has been successfully used to guide the redesign of the Control Display Unit that serves as the primary interface of the complex flight management system being developed by NASA's Advanced Concepts Flight Simulator program. The 'pathfinder' algorithm of Schvaneveldt et al. (1985) is used to obtain the conceptual organization of four pilots by generating a family of link-weighted networks from a set of psychological distance data derived through similarity ratings. The degree of conceptual agreement between pilots is assessed, and the means of translating a cognitive network into a menu structure are noted.

  1. Pathfinder Technology Demonstrator: GlobalStar Testing and Results

    NASA Technical Reports Server (NTRS)

    Kuroda, Vanessa; Limes, Gregory L.; Han, Shi Lei; Hanson, John Eric; Christa, Scott E.

    2016-01-01

    The communications subsystem of a spacecraft is typically a SWaP (size, weight, and power) intensive subsystem in a SWaP constrained environment such as a CubeSat. Use of a satellite-based communication system, such as GlobalStars duplex GSP-1720 radio is a low SWaP potentially game-changing low-cost communication subsystem solution that was evaluated for feasibility for the NASA Pathfinder Technology Demonstrator (PTD) project. The PTD project is a series of 6U CubeSat missions to flight demonstrate and characterize novel small satellite payloads in low Earth orbit. GlobalStar is a low Earth orbit satellite constellation for satellite phone and low-speed data communications, and the GSP-1720 is their single board duplex radio most commonly used in satellite phones and shipment tracking devices. The PTD project tested the GSP-1720 to characterize its viability for flight using NASA GEVS (General Environmental Verification Standard) vibration and thermal vacuum levels, as well as testing the uplink-downlink connectivity, data throughput, and file transfer capabilities. This presentation will present the results of the environmental and capability testing of the GSP-1720 performed at NASA Ames Research Center, as well as the viability for CubeSat use in LEO.

  2. Silver and Gold

    NASA Image and Video Library

    2017-12-08

    Inside NASA's Goddard Space Flight Center's giant clean room in Greenbelt, Md., JWST Optical Engineer Larkin Carey from Ball Aerospace, examines two test mirror segments recently placed on a black composite structure. This black composite structure is called the James Webb Space Telescope's “Pathfinder” and acts as a spine supporting the telescope's primary mirror segments. The Pathfinder is a non-flight prototype. The mirrors were placed on Pathfinder using a robotic arm move that involved highly trained engineers and technicians from Exelis, Northrop Grumman and NASA. "Getting this right is critical to proving we are ready to start assembling the flight mirrors onto the flight structure next summer," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "This is the first space telescope that has ever been built with a light-weighted segmented primary mirror, so learning how to do this is a groundbreaking capability for not only the Webb telescope but for potential future space telescopes." The James Webb Space Telescope is the successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. For more information about the Webb telescope, visit: www.jwst.nasa.gov or www.nasa.gov/webb Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Centurion in Flight over Lakebed with STS Mate-DeMate Device in Background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing in flight during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. The special Mate-DeMate structure used by NASA to attach Space Shuttle orbiters to the back of modified Boeing 747s for transport to other locations can be seen in the background of this photo. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  4. Centurion Quarter-scale Prototype Pre-flight Checkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians perform pre-test checks of a battery-powered quarter-scale prototype of the remotely-piloted Centurion flying wing during taxi tests In March 1997 at California's El Mirage Dry Lake. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  5. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the future Centurion solar-powered high-altitude research aircraft settles in for landing after a March 1997 test flight at El Mirage Dry Lake, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  6. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of of a March 1997 flight test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  7. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  8. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  9. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  10. Phillips with National Lab Pathfinder (NLP) on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-006156 (16 March 2009) --- Astronaut John Phillips, STS-119 mission specialist, works with Group Activation Packs (GAP) on the middeck of Space Shuttle Discovery during flight day two activities.

  11. Phillips with National Lab Pathfinder (NLP) on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-006157 (16 March 2009) --- Astronaut John Phillips, STS-119 mission specialist, works with Group Activation Packs (GAP) on the middeck of Space Shuttle Discovery during flight day two activities.

  12. The PoGO+ Ballon-Borne Hard X-ray Polarimetry Mission

    NASA Astrophysics Data System (ADS)

    Friis, Mette; Kiss, Mózsi; Mikhalev, Victor; Pearce, Mark; Takahashi, Hiromitsu

    2018-03-01

    The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 million cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.

  13. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  14. Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Lassiter, John O.; Ross, Brian P.

    2001-01-01

    This paper reports recently completed structural dynamics experimental activities with new ultralightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA Goddard Space Flight Center. Nine aspects of this work are covered, as follows: 1) inflated, rigidized tubes, 2) active control experiments, 3) photogrammetry, 4) laser vibrometry, 5) modal tests of inflatable structures, 6) in-vacuum modal tests, 7) tensioned membranes, 8) deployment tests, and 9) flight experiment support. Structural dynamics will play a major role in the design and eventual in-space deployment and performance of Gossamer spacecraft, and experimental R&D work such as this is required now to validate new analytical prediction methods. The activities discussed in the paper are pathfinder accomplishments, conducted on unique components and prototypes of future spacecraft systems.

  15. Experiences with operations and autonomy of the Mars Pathfinder Microrover.

    NASA Astrophysics Data System (ADS)

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.; Wilcox, B. H.

    The Microrover Flight Experiment (MFEX) is a NASA OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997. In the succeeding 30 sols (1 sol = 1 Martian day), the Sojourner microrover accomplished all of its primary and extended mission objectives. After completion of the originally planned extended mission, MFEX continued to conduct a series of technology experiments, deploy its alpha proton X-ray spectrometer (APXS) on rocks and soil, and image both terrain features and the lander. This mission was conducted under the constraints of a once-per-sol opportunity for command and telemetry transmissions between the lander and Earth operators. As such, the MFEX rover was required to carry out its mission, including terrain navigation and contingency response, under supervised autonomous control. For example, goal locations were specified daily by human operators; the rover then safely traversed to these locations. During traverses, the rover autonomously detected and avoided rock, slope, and drop-off hazards, changing its path as needed before turning back towards its goal. This capability to operate in an unmodeled environment, choosing actions in response to sensor input to accomplish requested objectives, is unique among robotic space missions to date.

  16. Assembling the Gossamer Albatross II in hangar

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here being assembled in a hangar at the Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. The aircraft was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  17. The effect of environmental initiatives on NASA specifications and standards activities

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis; Webb, David; Cook, Beth

    1995-01-01

    The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.

  18. VR for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Blackmon, Theodore

    1998-01-01

    Virtual reality (VR) technology has played an integral role for Mars Pathfinder mission, operations Using an automated machine vision algorithm, the 3d topography of the Martian surface was rapidly recovered fro -a the stereo images captured. by the Tender camera to produce photo-realistic 3d models, An advanced, interface was developed for visualization and interaction with. the virtual environment of the Pathfinder landing site for mission scientists at the Space Flight Operations Facility of the Jet Propulsion Laboratory. The VR aspect of the display allowed mission scientists to navigate on Mars in Bud while remaining here on Earth, thus improving their spatial awareness of the rock field that surrounds the lenders Measurements of positions, distances and angles could be easily extracted from the topographic models, providing valuable information for science analysis and mission. planning. Moreover, the VR map of Mars has also been used to assist with the archiving and planning of activities for the Sojourner rover.

  19. KSC-07pd0923

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The media swarm around Pilot Rick Svetkoff after his test flight of the Starfighter F-104, in the background. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd0916

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After returning from a test flight, pilot Rick Svetkoff climbs out of the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd0913

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 approaches the runway at the KSC Shuttle Landing Facility for a landing after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd0917

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- Bill Parsons (left), director of Kennedy Space Center, greets pilot Rick Svetkoff after a test flight of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd0914

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 lands on the runway at the KSC Shuttle Landing Facility after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  4. MARS PATHFINDER CAMERA TEST IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers from the Jet Propulsion Laboratory (JPL) are conducting a systems test of the imager for the Mars Pathfinder. Mounted on the Pathfinder lander, the imager (the white cylindrical element the worker is touching) is a specially designed camera featuring a stereo-imaging system with color capability provided by a set of selectable filters. It is mounted on an extendable mast that will pop up after the lander touches down on the Martian surface. The imager will transmit images of the terrain, allowing engineers back on Earth to survey the landing site before the Pathfinder rover is deployed to explore the area. The Mars Pathfinder is scheduled for launch aboard a Delta II expendable launch vehicle on Dec. 2. JPL manages the Pathfinder project for NASA.

  5. An Information NEXUS: The NASA Global Hawk Link Module

    NASA Technical Reports Server (NTRS)

    Sullivan, D. V.

    2012-01-01

    The Link Module described in this paper was first developed for the NASA Global Hawk Pacific Mission (GloPAC), four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). Its second use was during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link module negotiated all communication over the high bandwidth Ku satellite link, archived al the science data from onboard experiments in a spatially enable database, routed command and control of the instruments from the Global Hawk Operations Center, and retransmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. Also described is the next generation Link Module now being designed and tested to support the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (ATTREX) mission. Advanced data fusion technologies being developed will further advance the Scientific productivity, flexibility and robustness of these systems. Historically, the Link module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990's. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the next step in the evolution, a multi board system packaged in a Curtiss Wright MIL-spec, flight qualified enclosure.

  6. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  7. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  8. Robotic and automatic welding development at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  9. MARS PATHFINDER PYRO SYSTEMS SWITCHING ACTIVITY

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Mars Pathfinder lander is subjected to a electrical and functional tests of its pyrotechic petal deployer system by Jet Propulsion Laboratory (JPL) engineers and technicians in KSC's Spacecraft Assembly and Encapsulation Facility (SAEF-2). In the background is the Pathfinder cruise stage, which the lander will be mated to once its functional tests are complete. The lander will remain attached to this stage during its six-to-seven-month journey to Mars. When the lander touches down on the surface of Mars next year, the pyrotechnic system will deploy its three petals open like a flower and allow the Sojourner autonomous rover to explore the Martian surface. The Mars Pathfinder is scheduled for launch aboard a Delta II expendable launch vehicle on Dec. 2, the beginning of a 24-day launch period. JPL is managing the Mars Pathfinder project for NASA.

  10. KSC-07pd0904

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, a Starfighter F-104 aircraft is being prepared for test flights. Behind the plane is Dave Waldrop, co-pilot. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0905

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, a Starfighter F-104 aircraft is being prepared for test flights. Ready to climb into the cockpit is the pilot, Rick Svetkoff. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0918

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- Bill Parsons (left), director of Kennedy Space Center, greets pilot Rick Svetkoff and co-pilot Dave Waldrop after a test flight of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0915

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 comes to a stop on the KSC Shuttle Landing Facility after its test flight. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop.The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  14. The IRIS-GUS Shuttle Borne Upper Stage System

    NASA Technical Reports Server (NTRS)

    Tooley, Craig; Houghton, Martin; Bussolino, Luigi; Connors, Paul; Broudeur, Steve (Technical Monitor)

    2002-01-01

    This paper describes the Italian Research Interim Stage - Gyroscopic Upper Stage (IRIS-GUS) upper stage system that will be used to launch NASA's Triana Observatory from the Space Shuttle. Triana is a pathfinder earth science mission being executed on rapid schedule and small budget, therefore the mission's upper stage solution had to be a system that could be fielded quickly at relatively low cost and risk. The building of the IRIS-GUS system wa necessary because NASA lost the capability to launch moderately sized upper stage missions fro the Space Shuttle when the PAM-D system was retired. The IRIS-GUS system restores this capability. The resulting system is a hybrid which mates the existing, flight proven IRIS (Italian Research Interim Stage) airborne support equipment to a new upper stage, the Gyroscopic Upper Stage (GUS) built by the GSFC for Triana. Although a new system, the GUS exploits flight proven hardware and design approaches in most subsystems, in some cases implementing proven design approaches with state-of-the-art electronics. This paper describes the IRIS-GUS upper stage system elements, performance capabilities, and payload interfaces.

  15. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.

  16. KSC-07pd0889

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- Pilot Rick Svetkoff taxis a Starfighter F-104 down the runway on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd0888

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff lands on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd0887

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff approaches the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd0908

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff settles into the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  20. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.

  1. X-34 Poster Art

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  2. KSC-07pd0906

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff (left) and co-pilot Dave Waldrop are ready to climb into the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd0909

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, the Starfighter F-104 starts to taxi to the runway. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0910

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- From the KSC Shuttle Landing Facility, the Starfighter F-104 picks up speed on the runway for takeoff. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  5. KSC-07pd0911

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 is airborne after taking off from the KSC Shuttle Landing Facility. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd0907

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff (left) climbs toward the cockpit of the Starfighter F-104 while co-pilot Dave Waldrop settles in his seat. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd0912

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 banks for a turn after taking off from the KSC Shuttle Landing Facility. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  8. New Earth-Observing Instrument Installed on the International Space Station

    NASA Image and Video Library

    2017-12-08

    In January 2013, a new Earth-observing instrument was installed on the International Space Station (ISS). ISERV Pathfinder consists of a commercial camera, a telescope, and a pointing system, all positioned to look through the Earth-facing window of ISS’s Destiny module. ISERV Pathfinder is intended as an engineering exercise, with the long-term goal of developing a system for providing imagery to developing nations as they monitor natural disasters and environmental concerns. The image above is the “first light” from the new ISERV camera system, taken at 1:44 p.m. local time on February 16, 2013. It shows the Rio San Pablo as it empties into the Golfo de Montijo in Veraguas, Panama. It is an ecological transition zone, changing from agriculture and pastures to mangrove forests, swamps, and estuary systems. The area has been designated a protected area by the National Environmental Authority (ANAM) of Panama and is listed as a “wetland of international importance” under the Ramsar Convention. (Note that the image is rotated so that north is to the upper right.) “ISERV’s full potential is yet to be seen, but we hope it will really make a difference in people’s lives,” said principal investigator Burgess Howell of NASA’s Marshall Space Flight Center. “For example, if an earthen dam gives way in Bhutan, we want to be able to show officials where the bridge is out or where a road is washed out or a power substation is inundated. This kind of information is critical to focus and speed rescue efforts.” The instrument will be controlled from NASA Marshall in Huntsville, Alabama, in collaboration with researchers at hubs in Central America, East Africa, and the Hindu Kush–Himalaya region. They will rely on positioning software to know where the space station is at each moment and to calculate the next chance to view a particular area on the ground. If there's a good viewing opportunity, the SERVIR team will instruct the camera to take high-resolution photographs at 3 to 7 frames per second, totaling as many as 100 images per pass. With a resolution down to 3.2 meters (10 feet), it will be possible to spot fairly small details and objects. The current mission will test the limitations of Pathfinder and identify measures for improvements in a more permanent system. For instance, the engineering team is working to determine how the geometry of the ISS window affects the imagery; how much sunlight is needed to capture clear images; and how the atmosphere affects that clarity. This characterization phase will last several weeks to a few months. Eventually, ISERV should be made available to the natural hazards community and to basic research scientists. ISERV is short for ISS SERVIR Environmental Research and Visualization system. Together with the U.S. Agency for International Development, NASA runs the SERVIR program to provide satellite data, maps, and other tools to environmental decisionmakers in developing countries. (Servir is a Spanish word meaning “to serve.”) Learn more about the SERVIR program by clicking here: servirglobal.net/Global.aspx NASA image by Burgess Howell, SERVIR Global program. Caption by Dauna Coulter, NASA Marshall Space Flight Center, and Mike Carlowicz, NASA Earth Observatory. Instrument: ISS - ISERV Pathfinder Credit: NASA Earth Observatory - 1.usa.gov/12Aqmg9 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. PETER: A Hardware Simulator for the Test Mass-GRS System of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Bassan, M.; De Marchi, F.; Pucacco, G.; Visco, M.; Di Fiore, L.; De Rosa, R.; Garufi, F.

    2013-01-01

    Each LISA PathFinder test mass (TM) will be sensitive to forces along all its 6 Degrees of Freedom (DoFs). Extensive ground testing is required in order to evaluate the influence of cross-talks from the read-out and actuator channels. In the INFN laboratory of Firenze we have developed a facility for a good representation of the free fall conditions of the TM on flight. A hollow replica of a TM hanging from a double torsion pendulum can move inside a Gravitational Reference Sensor (GRS) with quasi free fall condition on two Dofs, in the frequency band (0.1 ÷ 100)mHz. On both DoFs, the target residual accelerations (yet to be achieved) at the low end frequency range are ≤ 3 × 10-13ms-2, limited by the thermal noise of the fibres. At higher frequencies, the sensitivity is limited by the readout noise of the readout, a replica of the flight electronics. After a long commissioning, we are now in operating conditions, and can carry out a series of experiments to better qualify the interaction between TM and GRS. In this paper we will show some significant qualification measurements and a first scientific measurements, i.e. the measurement and compensation of the DC bias in the GRS using two independent channels, as well as a measurement of the residual acceleration of the translational DoF, with the feedback loop closed on the rotational one, and viceversa.

  10. James Webb Space Telescope in NASA's giant thermal vacuum chamber

    NASA Image and Video Library

    2015-04-20

    Inside NASA's giant thermal vacuum chamber, called Chamber A, at NASA's Johnson Space Center in Houston, the James Webb Space Telescope's Pathfinder backplane test model, is being prepared for its cryogenic test. Previously used for manned spaceflight missions, this historic chamber is now filled with engineers and technicians preparing for a crucial test. Exelis developed and installed the optical test equipment in the chamber. "The optical test equipment was developed and installed in the chamber by Exelis," said Thomas Scorse, Exelis JWST Program Manager. "The Pathfinder telescope gives us our first opportunity for an end-to-end checkout of our equipment." "This will be the first time on the program that we will be aligning two primary mirror segments together," said Lee Feinberg, NASA Optical Telescope Element Manager. "In the past, we have always tested one mirror at a time but this time we will use a single test system and align both mirrors to it as though they are a single monolithic mirror." The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. KSC-07pd0921

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Jim Ball, KSC Spaceport Development manager, addresses the media. Behind him are Pilot Rick Svetkoff; Al Wassel, a representative from the FAA Office of Commercial Space; and Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0922

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Pilot Rick Svetkoff addresses the media on the KSC Shuttle Landing Facility. Behind him are Al Wassel (left), a representative from the FAA Office of Commercial Space, and (right) Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  13. Space Launch System Resource Reel 2017

    NASA Image and Video Library

    2017-12-01

    NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.

  14. The Use of Environmental Test Facilities for Purposes Beyond Their Original Design

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; Marner, W. J.

    2000-01-01

    Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.

  15. The Role of the NASA Global Hawk Link Module as an Information Nexus For Atmospheric Mapping Missions

    NASA Technical Reports Server (NTRS)

    Sullivan, D. V.

    2015-01-01

    The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely long duration UASs, with on-board multi-instrument (>= 12) Sensor Webs.

  16. Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    Ziemer, John; Marrese-Reading, Colleen; Dunn, Charley; Romero-Wolf, Andrew; Cutler, Curt; Javidnia, Shahram; Li, Thanh; Li, Irena; Franklin, Garth; Barela, Phil; hide

    2017-01-01

    Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.

  17. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO)

    NASA Technical Reports Server (NTRS)

    McCormick, M. Patrick; Winker, David M.

    1998-01-01

    This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.

  18. Disturbance Reduction System Thrusters Stabilize LISA Pathfinder

    NASA Image and Video Library

    2015-12-03

    The LISA Pathfinder spacecraft is on its way to space, having successfully launched from Kourou, French Guiana Dec. 3, 2015. On board is the state-of-the-art Disturbance Reduction System DRS, a thruster technology developed at NASA JPL.

  19. X-34 Technology Demonstrator in High Bay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  20. Summary of Results from the Risk Management Program for the Mars Microrover Flight Experiment

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Matijevic, Jacob R.

    2000-01-01

    On 4 July 1997, the Mars Pathfinder landed on the surface of Mars carrying the first planetary rover, known as the Sojourner. Formally known as the Microrover Flight Experiment (MFEX), the Sojourner was a low cost, high-risk technology demonstration, in which new risk management techniques were tried. This paper summarizes the activities and results of the effort to conduct a low-cost, yet meaningful risk management program for the MFEX. The specific activities focused on cost, performance, schedule, and operations risks. Just as the systems engineering process was iterative and produced successive refinements of requirements, designs, etc., so was the risk management process. Qualitative risk assessments were performed first to gain some insights for refining the microrover design and operations concept. These then evolved into more quantitative analyses. Risk management lessons from the manager's perspective is presented for other low-cost, high-risk space missions.

  1. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  2. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  3. Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept

    NASA Astrophysics Data System (ADS)

    Lee, G.; Polidan, R. S.; Ross, F.

    2015-12-01

    The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  4. In-flight propulsion system characterization for both Mars Exploration Rover Spacecraft

    NASA Technical Reports Server (NTRS)

    Barber, Todd J.; Picha, Frank Q.

    2004-01-01

    Two Mars Exploration Rover spacecraft were dispensed to red planet in 2003, culminating in a phenomenally successful prime science mission. Twin cruise stage propulsion systems were developed in record time, largely through heritage with Mars Pathfinder. As expected, consumable usage was minimal during the short seven-month cruise for both spacecraft. Propellant usage models based on pressure and temperature agreed with throughput models with in a few percent. Trajectory correction maneuver performance was nominal, allowing the cancellation of near-Mars maneuvers. Spin thruster delivered impulse was 10-12% high vs. ground based models for the intial spin-down maneuvers, while turn performance was XX-XX% high/low vs. expectations. No clear indications for pressure transducer drift were noted during the brief MER missions.

  5. KSC-07pd0920

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Al Wassel, a representative from the FAA Office of Commercial Space, addresses the media on the KSC Shuttle Landing Facility. At left is the F-104 pilot, Rick Svetkoff. At right is Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd0919

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- Bill Parsons, director of Kennedy Space Center, addresses the media at the KSC Shuttle Landing Facility after a test flight of the Starfighter F-104. Behind Parsons, at left, is the pilot Rick Svetkoff. At right is Al Wassel, a representative from the FAA Office of Commercial Space. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  7. Terrain at Landing Site

    NASA Image and Video Library

    1997-07-05

    Portions of Mars Pathfinder's deflated airbags (seen in the foreground), a large rock in mid-field, and a hill in the background were taken by the Imager for Mars Pathfinder (IMP) aboard Mars Pathfinder during the spacecraft's first day on the Red Planet. Pathfinder successfully landed on Mars at 10:07 a.m. PDT earlier today. The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per "eye." It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters. http://photojournal.jpl.nasa.gov/catalog/PIA00615

  8. Pathfinder

    NASA Image and Video Library

    1966-05-21

    The Delta Clipper-Experimental Advanced (DC-XA) is a single-stage-to-orbit, vertical takeoff / vertical landing launch vehicle concept, whose development was geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology. This photograph shows the descending vehicle landing during the first successful test flight at White Sands Missile Range, New Mexico. The program was discontinued in 2003.

  9. EC99-45140-12

    NASA Image and Video Library

    1999-08-18

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  10. EC99-45161-10

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  11. EC99-45140-2

    NASA Image and Video Library

    1999-08-18

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  12. EC99-45161-8

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  13. EC99-45161-9

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  14. NASA Glenn Research Center Support of the ASRG Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  15. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  16. MARS PATHFINDER CAMERA TEST IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers from the Jet Propulsion Laboratory (JPL) are conducting a systems test of the imager for the Mars Pathfinder. The imager (white and metallic cylindrical element close to hand of worker at left) is a specially designed camera featuring a stereo- imaging system with color capability provided by a set of selectable filters. It is mounted atop an extendable mast on the Pathfinder lander. Visible to the far left is the small rover which will be deployed from the lander to explore the Martian surface. Transmitting back to Earth images of the trail left by the rover will be one of the mission objectives for the imager. To the left of the worker standing near the imager is the mast for the low-gain antenna; the round high-gain antenna is to the right. Visible in the background is the cruise stage that will carry the Pathfinder on a direct trajectory to Mars. The Mars Pathfinder is one of two Mars-bound spacecraft slated for launch aboard Delta II expendable launch vehicles this year.

  17. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  18. KSC-05PD-1101

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At a radar site on North Merritt Island, Fla., north of the Haulover Canal, workers are assembling the dish for the 50-foot NASA C-band radar. The radar will be used for long-term Shuttle missions to track the launches and observe possible debris coming from the Shuttle. In the background is an existing 30-foot C-band Pathfinder radar whose use was demonstrated on the Delta Messenger launch. It will be used on the upcoming two Return to Flight missions. The launch window for the first Return to Flight mission, STS-114, is July 13 to July 31..

  19. KSC-05PD-1094

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Equipment is delivered for installation of another NASA C-band radar at a radar site on North Merritt Island, Fla. The 50-foot C-band radar will be used for long-term Shuttle missions to track the launches and observe possible debris coming from the Shuttle. In the background is an existing 30-foot C-band Pathfinder radar whose use was demonstrated on the Delta Messenger launch. It will be used on the upcoming two Return to Flight missions. The launch window for the first Return to Flight mission, STS-114, is July 13 to July 31.

  20. KSC-05PD-1095

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Equipment is delivered for installation of another NASA C-band radar at a radar site on North Merritt Island, Fla. The 50-foot C-band radar will be used for long-term Shuttle missions to track the launches and observe possible debris coming from the Shuttle. In the background is an existing 30-foot C-band Pathfinder radar whose use was demonstrated on the Delta Messenger launch. It will be used on the upcoming two Return to Flight missions. The launch window for the first Return to Flight mission, STS-114, is July 13 to July 31.

  1. KSC-05PD-1103

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At a radar site on North Merritt Island, Fla., north of the Haulover Canal, a 50-foot dish for NASAs C-band radar is being assembled. The radar will be used for long-term Shuttle missions to track the launches and observe possible debris coming from the Shuttle. At left is an existing 30-foot C-band Pathfinder radar whose use was demonstrated on the Delta Messenger launch. It will be used on the upcoming two Return to Flight missions. The launch window for the first Return to Flight mission, STS-114, is July 13 to July 31.

  2. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  3. Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Braun, Robert D.; Weilmuenster, K. James; Mitcheltree, Robert A.; Engelund, Walter C.; Powell, Richard W.

    1998-01-01

    Postflight analysis of the Mars Pathfinder hypersonic, continuum aerodynamic data base is presented. Measured data include accelerations along the body axis and axis normal directions. Comparisons of preflight simulation and measurements show good agreement. The prediction of two static instabilities associated with movement of the sonic line from the shoulder to the nose and back was confirmed by measured normal accelerations. Reconstruction of atmospheric density during entry has an uncertainty directly proportional to the uncertainty in the predicted axial coefficient. The sensitivity of the moment coefficient to freestream density, kinetic models and center-of-gravity location are examined to provide additional consistency checks of the simulation with flight data. The atmospheric density as derived from axial coefficient and measured axial accelerations falls within the range required for sonic line shift and static stability transition as independently determined from normal accelerations.

  4. Actuation stability test of the LISA pathfinder inertial sensor front-end electronics

    NASA Astrophysics Data System (ADS)

    Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter

    In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.

  5. Testing Phoenix Mars Lander Parachute in Idaho

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander will parachute for nearly three minutes as it descends through the Martian atmosphere on May 25, 2008. Extensive preparations for that crucial period included this drop test near Boise, Idaho, in October 2006.

    The parachute used for the Phoenix mission is similar to ones used by NASA's Viking landers in 1976. It is a 'disk-gap-band' type of parachute, referring to two fabric components -- a central disk and a cylindrical band -- separated by a gap.

    Although the Phoenix parachute has a smaller diameter (11.8 meters or 39 feet) than the parachute for the 2007 Mars Pathfinder landing (12.7 meters or 42 feet), its Viking configuration results in slightly larger drag area. The smaller physical size allows for a stronger system because, given the same mass and volume restrictions, a smaller parachute can be built using higher strength components. The Phoenix parachute is approximately 1.5 times stronger than Pathfinder's. Testing shows that it is nearly two times stronger than the maximum opening force expected during its use at Mars.

    Engineers used a dart-like weight for the drop testing in Idaho. On the Phoenix spacecraft, the parachute is attached the the backshell. The backshell is the upper portion of a capsule around the lander during the flight from Earth to Mars and protects Phoenix during the initial portion of the descent through Mars' atmosphere.

    Phoenix will deploy its parachute at about 12.6 kilometers (7.8 miles) in altitude and at a velocity of 1.7 times the speed of sound. A mortar on the spacecraft fires to deploy the parachute, propelling it away from the backshell into the supersonic flow. The mortar design for Phoenix is essentially the same as Pathfinder's. The parachute and mortar are collectively called the 'parachute decelerator system.' Pioneer Aerospace, South Windsor, Conn., produced this system for Phoenix. The same company provided the parachute decelerator systems for Pathfinder, Mars Polar Lander, Spirit, and Opportunity, ensuring that lessons learned from past programs were incorporated into the Phoenix system.

    During the first 25 seconds of the three-minute period when Phoenix descends on its parachute, the spacecraft will cast away its heat shield and extend its three legs. About 43 seconds before reaching the surface of Mars, the lander will shed the parachute by separating from the backshell. The lander will begin firing its descent thrusters half a second after the separation from the backshell and continue using them until touchdown.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; hide

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  7. AeroVironment's Jim Daley, Rik Meininger, Derek Lisoski and Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus.

    NASA Image and Video Library

    2004-09-17

    AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.

  8. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  9. Martian Surface & Pathfinder Airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  11. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of the X-34 reusable technology testbed vehicle that was designed to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine that was designed and built by the Marshall Space Flight Center, the X-34 was capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  12. A design pathfinder with material correlation points for inflatable systems

    NASA Astrophysics Data System (ADS)

    Fulcher, Jared Terrell

    The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures. KEYWORDS: Nonlinear Finite Element, Inflatable Structures, Gossamer Space Systems, Photogrammetry Measurements, Coated Woven Fabric.

  13. Precise and Scalable Static Program Analysis of NASA Flight Software

    NASA Technical Reports Server (NTRS)

    Brat, G.; Venet, A.

    2005-01-01

    Recent NASA mission failures (e.g., Mars Polar Lander and Mars Orbiter) illustrate the importance of having an efficient verification and validation process for such systems. One software error, as simple as it may be, can cause the loss of an expensive mission, or lead to budget overruns and crunched schedules. Unfortunately, traditional verification methods cannot guarantee the absence of errors in software systems. Therefore, we have developed the CGS static program analysis tool, which can exhaustively analyze large C programs. CGS analyzes the source code and identifies statements in which arrays are accessed out of bounds, or, pointers are used outside the memory region they should address. This paper gives a high-level description of CGS and its theoretical foundations. It also reports on the use of CGS on real NASA software systems used in Mars missions (from Mars PathFinder to Mars Exploration Rover) and on the International Space Station.

  14. Integrating Automation into a Multi-Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.

    2007-01-01

    NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.

  15. MER : from landing to six wheels on Mars ... twice

    NASA Technical Reports Server (NTRS)

    Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris

    2005-01-01

    Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.

  16. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  17. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of the X-34 Demonstrator, a reusable technology testbed vehicle that was designed to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine that was designed and built by the Marshall Space Flight Center, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  18. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This is an artist's concept of the X-34 reusable technology testbed demonstrator on-orbit. The X-34 was designed to demonstrate technologies that are essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine designed and built by the Marshall Space Flight Center, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  19. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  20. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the RPSF. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  1. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  2. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program consisting of acceptance, vibration, shock, and thermal vacuum test. During the last test, the thermal vacuum test (TVT), a performance decrease was observed. According to a preliminary analysis, this performance decrease is not linked to the thermal conditions simulated in the TVT but might be rather linked to secondary effects of the TVT set-up.

  3. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.

    2018-01-01

    In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.

  4. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  5. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  6. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletalmore » muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.« less

  7. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  8. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, conracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  9. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, approaches the raised span of the NASA railroad bridge to continue over the Indian River north of Kennedy Space Center with two containers on railcars for storage at the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  10. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard near the center. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  11. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, continues along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  12. Health Physics Innovations Developed During Cassini for Future Space Applications

    NASA Technical Reports Server (NTRS)

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  13. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  14. Ballistic Range Testing of the Mars Exploration Rover Entry Capsule

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Hathaway, Wayne; Yates, Leslie; Desai, Prasun

    2005-01-01

    Results from a 25 shot ballistic range test of the Mars Exploration Rover (MER) aeroshell are presented. The supersonic pitch damping properties of the MER capsule were characterized between Mach = 1.5 and Mach = 3.5 and total angles-of-attack from 0 degrees to greater than 25 degrees. Three capsule center-of-gravity positions were tested across this range of conditions, 0.27, 0.30 and 0.33 body diameters aft of the nose. Parameter identification results show that the capsule is dynamically unstable at low angles-of-attack across the Mach numbers tested, with instability increasing with lower speeds. This dynamic instability was seen to increase with aft center-of-gravity movement. The MER outer mold line was very similar to the successful Mars Pathfinder capsule with only minor modifications. Pathfinder relied on Viking forced oscillation data for preflight predictions. The pitch damping data calculated from this test program are shown to more accurately reproduce the measured Path finder flight data.

  15. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  16. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  17. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  18. Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.

    2016-12-01

    The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.

  19. Pathfinder: A Retrospective

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Mars is one of the most interesting planets in the solar system, featuring enormous canyons, giant volcanoes, and indications that, early in its history, it might have had rivers and perhaps even oceans. Five years ago, in July of 1997, the Pathfinder mission landed on Mars, bringing with it the microwave-oven sized Sojourner rover to wander around on the surface and analyse rocks. Among the experiments on the mission was one designed to analyse dust deposition. Pathfinder is only the first of an armada of spacecraft which will examine Mars from the pole to the equator in the next decade, culminating with a mission to bring humans to Mars.

  20. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2015-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA GRC that demonstrate the capabilities of the ASC.

  1. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA Glenn that demonstrate the capabilities of the ASC.

  2. Pathfinder

    NASA Image and Video Library

    1997-06-04

    A close-up view of Bantam duration testing of the 40K Fastrac II Engine for X-34 at Marshall Space Flight Center's (MSFC) test stand 116. The Bantam test refers to the super lightweight engines of the Fastrac program. The engines were designed as part of the low cost X-34 Reusable Launch Vehicle (RLV). The testing of these engines at MSFC allowed the engineers to determine the capabilities of these engines and the metal alloys that were used in their construction. The Fastrac and X-34 programs were cancelled in 2001.

  3. The X-34 Demonstrator Landing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's concept depicts the X-34 Demonstrator landing in a dessert. Part of the Pathfinder Program, the X-34 was a reusable technology testbed vehicle that was designed and built by the Marshall Space Flight Center to demonstrate technologies that were essential to lowering the cost of access to space. Powered by a LOX and RP-1 liquid Fastrac engine, the X-34 would be capable of speeds up to Mach 8 and altitudes of 250,000-feet. The X-34 program was cancelled in 2001.

  4. Analysis and Ground Testing for Validation of the Inflatable Sunshield in Space (ISIS) Experiment

    NASA Technical Reports Server (NTRS)

    Lienard, Sebastien; Johnston, John; Adams, Mike; Stanley, Diane; Alfano, Jean-Pierre; Romanacci, Paolo

    2000-01-01

    The Next Generation Space Telescope (NGST) design requires a large sunshield to protect the large aperture mirror and instrument module from constant solar exposure at its L2 orbit. The structural dynamics of the sunshield must be modeled in order to predict disturbances to the observatory attitude control system and gauge effects on the line of site jitter. Models of large, non-linear membrane systems are not well understood and have not been successfully demonstrated. To answer questions about sunshield dynamic behavior and demonstrate controlled deployment, the NGST project is flying a Pathfinder experiment, the Inflatable Sunshield in Space (ISIS). This paper discusses in detail the modeling and ground-testing efforts performed at the Goddard Space Flight Center to: validate analytical tools for characterizing the dynamic behavior of the deployed sunshield, qualify the experiment for the Space Shuttle, and verify the functionality of the system. Included in the discussion will be test parameters, test setups, problems encountered, and test results.

  5. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight software, avionics and reliability will be summarized.

  6. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  7. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.

  8. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  9. Detection of Micrometeoroids with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Thorpe, Ira; Littenberg, Tyson; Janchez, Diego; Baker, John; The LISA Pathfinder Team Team

    2017-01-01

    The LISA Pathfinder mission (LPF), a joint ESA/NASA technology demonstration mission currently operating at the Sun-Earth L1 point, contains the most precise accelerometry system ever flown. Analysis suggests that LPF should have sufficient sensitivity to detect impacts of small micrometeoroids and dust through their transfer of momentum to the spacecraft. Moreover, LPF's ability to fully resolve both the linear and angular momentum transfer in three dimensions allows a magnitude, direction, and location to be estimated for each impact. We present preliminary results from a systematic search of the LISA Pathfinder data for such impacts and discuss the prospects for using these and future results to inform models of the formation and evolution of dust populations in the inner solar system. These models have wide applicability to both pure and applied space science, ranging from the physics of planet formation and dynamics of minor Solar System bodies to estimates of the micrometeorite hazard for future spacecraft. 2017 NASA Science Innovation Fund.

  10. Advanced Stirling Convertor (ASC) Development for NASA RPS

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  11. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  12. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    NASA Technical Reports Server (NTRS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Thorpe, J. I.

    2016-01-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  13. The Fizeau Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  14. Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thomas, Hans; Lau, Sonie (Technical Monitor)

    1998-01-01

    Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.

  15. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  16. Successful Completion of the JWST OGSE2 Cryogenic Test at JSC Chamber-A While Managing Numerous Challenges

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Brinckerhoff, Pamela; Franck, Randy; Schweickart, Rusty; Thomson, Shaun; Burt, Bill; Ousley, Wes

    2016-01-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and scheduled for launch in 2018. The JWST OTE, including the primary mirrors, secondary mirror, and the Aft Optics Subsystems (AOS) are designed to be passively cooled and operate at near 45 degrees Kelvin. Due to the size of its large sunshield in relation to existing test facilities, JWST cannot be optically or thermally tested as a complete observatory-level system at flight temperatures. As a result, the telescope portion along with its instrument complement will be tested as a single unit very late in the program, and on the program schedule critical path. To mitigate schedule risks, a set of 'pathfinder' cryogenic tests will be performed to reduce program risks by demonstrating the optical testing capabilities of the facility, characterizing telescope thermal performance, and allowing project personnel to learn valuable testing lessons off-line. This paper describes the 'pathfinder' cryogenic test program, focusing on the recently completed second test in the series called the Optical Ground Support Equipment 2 (OGSE2) test. The JWST OGSE2 was successfully completed within the allocated project schedule while faced with numerous conflicting thermal requirements during cool-down to the final cryogenic operational temperatures, and during warm-up after the cryo-stable optical tests. The challenges include developing a pre-test cool-down and warm-up profiles without a reliable method to predict the thermal behaviors in a rarified helium environment, and managing the test article hardware safety driven by the project Limits and Constraints (L&C's). Furthermore, OGSE2 test included the time critical Aft Optics Subsystem (AOS), a part of the flight Optical Telescope Element that would need to be placed back in the overall telescope assembly integrations. The OGSE2 test requirements included the strict adherence of the project contamination controls due to the presence of the contamination sensitive flight optical elements. The test operations required close coordination of numerous personnel while they being exposed and trained for the 'final' combined OTE and instrument cryo-test in 2017. This paper will also encompass the OGSE2 thermal data look-back review.

  17. LISA Pathfinder Spacecraft Artist Concept

    NASA Image and Video Library

    2015-12-03

    This artist's concept shows ESA's LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began. http://photojournal.jpl.nasa.gov/catalog/PIA20196

  18. Dropping in on Mars

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso P.

    2003-01-01

    Here I was: 26 years old, I had never worked on a flight project before, and all eyes were on me. Every time I walked by the Pathfinder project office, Tony Spear, the project manager, would throw his arm around me and announce, 'Hey everybody, the whole mission is riding on this guy right here.' Our task was to design and build airbags for Pathfinder s landing on Mars - an approach that had never been used on any mission. Airbags may seem like a simple, low-tech product, but it was eye-opening to discover just how little we knew about them. We knew that the only way to find out what we needed to learn was to build prototypes and test them. We just didn t know how ignorant we were going to be. Airbags seemed like a crazy idea to a lot of people. Nobody ever said that, mind you, but there seemed to be a widespread feeling that the airbags weren t going to work. 'We ll let you guys go off and fool around until you fall flat on your faces.' That was the unspoken message I received day after day.

  19. Constraints on LISA Pathfinder's Self-Gravity: Design Requirements, Estimates and Testing Procedures

    NASA Technical Reports Server (NTRS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, M.; Brandt, Nico; Bursi, Alessandro; Slutsky. J.; hide

    2016-01-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  20. Model Based Definition

    NASA Technical Reports Server (NTRS)

    Rowe, Sidney E.

    2010-01-01

    In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.

  1. A Flight/Ground/Test Event Logging Facility

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel

    1999-01-01

    The onboard control software for spacecraft such as Mars Pathfinder and Cassini is composed of many subsystems including executive control, navigation, attitude control, imaging, data management, and telecommunications. The software in all of these subsystems needs to be instrumented for several purposes: to report required telemetry data, to report warning and error events, to verify internal behavior during system testing, and to provide ground operators with detailed data when investigating in-flight anomalies. Events can range in importance from purely informational events to major errors. It is desirable to provide a uniform mechanism for reporting such events and controlling their subsequent processing. Since radiation-hardened flight processors are several years behind the speed and memory of their commercial cousins, and since most subsystems require real-time control, and since downlink rates to earth can be very low from deep space, there are limits to how much of the data can be saved and transmitted. Some kinds of events are more important than others and should therefore be preferentially retained when memory is low. Some faults can cause an event to recur at a high rate, but this must not be allowed to consume the memory pool. Some event occurrences may be of low importance when reported but suddenly become more important when a subsequent error event gets reported. Some events may be so low-level that they need not be saved and reported unless specifically requested by ground operators.

  2. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  3. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  4. Powering the future - a new generation of high-performance solar arrays

    NASA Astrophysics Data System (ADS)

    Geyer, Freddy; Caswell, Doug; Signorini, Carla

    2007-08-01

    Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.

  5. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    NASA Technical Reports Server (NTRS)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  6. Development Status of the NASA 30-cm Ion Thruster and Power Processor

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.

    1994-01-01

    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.

  7. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  8. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  9. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  10. MARS PATHFINDER CAMERA TEST IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) workers conduct a systems test of the Mars Pathfinder imager, installed atop the Pathfinder lander (with JPL insignia). The imager is the white cyclindrical structure close to the worker's gloved hand. At left is the small rover that will be deployed from the lander to explore the Martian surface. The rover is mounted on one of three petals that will be attached to the lander. The two-pronged mast extending upward from the lander is for the low-gain antenna. The imager is mounted on a mast that will be extended after the lander touches down on Mars, affording a better view of the area. The imager is a camera that will transmit images of the Martian surface as well as the trail left by the rover, helping researchers to better understand the composition of the soil. It also is equipped with selectable filters for gathering data about the atmosphere of the Red Planet. JPL manages the Mars Pathfinder project for NASA. The journey to Mars is scheduled to begin with liftoff Dec. 2 aboard a Delta II expendable launch vehicle.

  11. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  12. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Sanjuan, J.; Nofrarias, M.

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  13. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder.

    PubMed

    Sanjuan, J; Nofrarias, M

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ∼10 μK Hz -1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz -1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  14. Extreme Rock Distributions on Mars and Implications for Landing Safety

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    2001-01-01

    Prior to the landing of Mars Pathfinder, the size-frequency distribution of rocks from the two Viking landing sites and Earth analog surfaces was used to derive a size-frequency model, for nomimal rock distributions on Mars. This work, coupled with extensive testing of the Pathfinder airbag landing system, allowed an estimate of what total rock abundances derived from thermal differencing techniques could be considered safe for landing. Predictions based on this model proved largely correct at predicting the size-frequency distribution of rocks at the Mars Pathfinder site and the fraction of potentially hazardous rocks. In this abstract, extreme rock distributions observed in Mars Orbiter Camera (MOC) images are compared with those observed at the three landing sites and model distributions as an additional constraint on potentially hazardous surfaces on Mars.

  15. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place payloads of up to 1900 kilograms in near- earth orbit. The rocket is 29 meters long with a diameter of 2.5 meters. The launch weight is about 107 tons. Satellite launches with Rockot are a service offered and carried out by Eurockot Launch Service GmbH. It is a European Russian joint venture which is 51% controlled by Astrium and 49 % by Khrunichev, Russia's leading launch vehicle firm. The Rockot vehicles can be launched from Plesetsk in northern Russia and Baikonur in Kazakhstan. EUROCKOT provides a wide choice of flight-proven adapters and multi-satellite platforms to the customer to allow such payloads to be accommodated. These range from the Russian Single Pyro Point Attachment System (SPPA)

  16. Dynamic Pathfinders: Leveraging Your OPAC to Create Resource Guides

    ERIC Educational Resources Information Center

    Hunter, Ben

    2008-01-01

    Library pathfinders are a time-tested method of leading library users to important resources. However, paper-based pathfinders suffer from space limitations, and both paper-based and Web-based pathfinders require frequent updates to keep up with new library acquisitions. This article details a step-by-step method to create an online dynamic…

  17. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, and Technologies for Exploration and Resources Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony

    2015-01-01

    Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy

  18. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.

  19. KSC-04PD-1605

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  20. KSC-04PD-1606

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  1. KSC-04pd1607

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  2. KSC-04pd1609

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  3. KSC-04pd1605

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  4. KSC-04pd1606

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  5. KSC-04pd1610

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  6. KSC-04pd1608

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.

  7. A Perspective on Computational Aerothermodynamics at NASA

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

  8. KSC-04PD-1607

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  9. KSC-04PD-1610

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  10. KSC-04PD-1609

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  11. KSC-04PD-1608

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.

  12. Helios Prototype on lakebed during ground check of electric motors

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. Helios is one of several remotely-piloted aircraft-also known as uninhabited aerial vehicles or UAV's-being developed as technology demonstrators by several small airframe manufacturers under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Developed by AeroVironment, Inc., of Monrovia, Calif., the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight, and to maintain flight above 50,000 feet altitude for at least four days, both on electrical power derived from non-polluting solar energy. During later flights, AeroVironment's flight test team will evaluate new motor-control software which may allow the pitch of the aircraft-the nose-up or nose-down attitude in relation to the horizon-to be controlled entirely by the motors. If successful, productions versions of the Helios could eliminate the elevators on the wing's trailing edge now used for pitch control, saving weight and increasing the area of the wing available for installation of solar cells.

  13. Pathfinder landing sites at candidate SNC impact ejection sites

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew P.

    1994-01-01

    If Mars Pathfinder were able to land at a site on Mars from which the SNC meteorites were ejected by impact, the Pathfinder mission would essentially represent a very inexpensive sample return mission. Geologic units that contain four potential impact craters from which SNC meteorites could have been ejected from Mars are accessible to the Mars Pathfinder lander. Determining that SNC meteorites came from a particular spot on Mars raises the intriguing possibility of using Pathfinder as a sample return mission and providing a radiometric age for the considerably uncertain martian crater-age timescale. Pathfinder instruments are capable of determining if the rock type at the landing site is similar to that of one or more of the SNC meteorites, which would strengthen the hypothesis that the SNC meteorites did, in fact, come from Mars. Unfortunately, instrument observations from Pathfinder are probably not capable of determining if the geologic unit sampled by the lander is definitively the unit from which a SNC meteorite came from as opposed to Mars in general or perhaps a particular region on Mars. This abstract evaluates the possibility of landing at potential SNC ejection sites and the ability of Pathfinder to identify the landing site as the place from which an SNC meteorite came.

  14. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  15. Drill/borescope System for the Mars Polar Pathfinder

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Wood, S. E.; Vasavada, A. R.

    1993-01-01

    The primary goals of the Mars Polar Pathfinder (MPP) Discovery Mission are to characterize the composition and structure of Mars' north polar ice cap, and to determine whether a climate record may be preserved in layers of ice and dust. The MPP would land as close as possible to the geographic north pole of Mars and use a set of instruments similar to those used by glaciologists to study polar ice caps on Earth: a radar sounder, a drill/borescope system, and a thermal probe. The drill/borescope system will drill approximately 50 cm into the surface and image the sides of the hole at 10 micron resolution for compositional and stratigraphic analysis. Several uncertainties have guided the development of this instrument, and they are discussed.

  16. Thermal Protection Test Bed Pathfinder Development Project

    NASA Technical Reports Server (NTRS)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  17. The use of x-ray pulsar-based navigation method for interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  18. Mechanosensing is critical for axon growth in the developing brain

    PubMed Central

    Pillai, Eva K.; Sheridan, Graham K.; Svoboda, Hanno; Viana, Matheus; da F. Costa, Luciano; Guck, Jochen; Holt, Christine E.; Franze, Kristian

    2016-01-01

    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signalling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell (RGC) axons. In vivo atomic force microscopy revealed striking stiffness gradient patterns in the embryonic brain. RGC axons grew towards the tissue’s softer side, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically, and knocked down the mechanosensitive ion channel Piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness–read out by mechanosensitive ion channels–is critically involved in instructing neuronal growth in vivo. PMID:27643431

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  20. FIREBALL-2: Pioneering Space UV Baryon Mapping (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    This is the lead proposal of a multi-institutional submission. The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the Intergalactic Medium (IGM) for low redshift galaxies. This balloon is a modification of FIREBall-1 (FB-1), a path-finding mission built by our team with two successful flights. FB-1 provided the strongest constrains on IGM emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is nearly ready for integration and testing before an anticipated Spring 2016 launch from Ft. Sumner, New Mexico. The spectrograph has been redesigned and an upgraded detector system including a groundbreaking high QE, low-noise, UV CCD detector is under final testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and flight support team, with construction of all components nearly complete. The initial FIREBall-2 launch is now scheduled for Spring 2016. FIREBall-2 combines several innovations: -First ever multi-object UV spectrograph -Arcsecond quality balloon pointing system, developed from scratch, improved from FB-1 -Partnership of national space agencies (NASA & CNES); highly leveraged NASA resources -A Schmidt corrector built into the UV grating for better optical performance and throughput -A total of four women trained in space experimental astrophysics, including 3 Columbia Ph.Ds. and 1 Caltech Ph.D. -A total of 7 graduate students trained on FIREBall-1 (3) and FIREBall-2 (4), with opportunities for more in future flights. FIREBall-2 will test key technologies and science strategies for a future mission to map IGM emission. Its flights will provide important training for the next generation of space astrophysicists working in UV instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and opening a new field of CGM science.

  1. Pathfinder

    NASA Image and Video Library

    2001-07-01

    This photograph shows two Marshall Space Flight Center (MSFC) engineers, Mark Vaccaro (left) and Ken Welzyn, testing electrodynamic tethers in the MSFC Tether Winding and Spark Testing Facility. For 4 years, MSFC and industry partners have been developing the Propulsive Small Expendable Deployer System experiment, called ProSEDS. ProSEDS will test electrodynamic tether propulsion technology. Electrodynamic tethers are long, thin wires that collect electrical current when passing through a magnetic field. The tether works as a thruster as a magnetic field exerts a force on a current-carrying wire. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long non-conducting tether. This photograph shows Less Johnson, a scientist at MSFC, inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.

  2. Pathfinder

    NASA Image and Video Library

    1999-03-25

    Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.

  3. Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki L. H.; Myers, Theodore

    1997-01-01

    This report documents a high risk, high pay-off experiment with the objective of detecting, for the first time, the presence of aircraft wake vortices in clear air using X-band Doppler radar. Field experiments were conducted in January 1995 at the Wallops Flight Facility (WFF) to demonstrate the capability of the 9.33 GHz (I=3 cm) radar, which was assembled using an existing nine-meter parabolic antenna reflector at VVTT and the receiver/transmitter from the NASA Airborne Windshear Radar-Program. A C-130-aircraft, equipped with wingtip smoke generators, created visually marked wake vortices, which were recorded by video cameras. A C-band radar also observed the wake vortices during detection attempts with the X-band radar. Rawinsonde data was used to calculate vertical soundings of wake vortex decay time, cross aircraft bearing wind speed, and water vapor mixing ratio for aircraft passes over the radar measurement range. This experiment was a pathfinder in predicting, in real time, the location and persistence of C-130 vortices, and in setting the flight path of the aircraft to optimize X-band radar measurement of the wake vortex core in real time. This experiment was conducted in support of the NASA Aircraft Vortex Spacing System (AVOSS).

  4. Apical root canal transportation of different pathfinding systems and their effects on shaping ability of ProTaper Next

    PubMed Central

    Türker, Sevinç-Aktemur

    2015-01-01

    Background This study aimed to compare glide path preparation of different pathfinding systems and their effects on the apical transportation of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) in mesial root canals of extracted human mandibular molars, using digital subtraction radiography. Material and Methods The mesial canals of 40 mandibular first molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 4 groups with 10 canals each. Glide paths were created in group 1 with #10, #15 and #20 K-type (Dentsply Maillefer, Ballaigues, Switzerland) stainless steel manual files; in group 2 with Path-File (Dentsply Maillefer) #1, #2, and #3 and in group 3 with #16 ProGlider (Dentsply Maillefer) rotary instruments; in group 4 no glide paths were created. All canals were instrumented up to ProTaper Next X2 to the working length. A double digital radiograph technique was used, pre and post-instrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. Instrument failures were also recorded. The data were analyzed statistically using ANOVA and Tukey tests (p<0.05). Results No significant differences were found among groups regarding apical transportation (p>0.05). Two ProTaper Next instruments failed in-group 4. Conclusions Within the parameters of this study, there was no difference between the performance of path-finding files and ProTaper Next system maintained root canal curvature well and was safe to use either with path-finding files or alone. Key words:Glide path, PathFile, ProGlider, ProTaper Next, transportation. PMID:26330936

  5. The Data Processor of the JEM-EUSO pathfinders

    NASA Astrophysics Data System (ADS)

    Scotti, V.; Osteria, G.

    2014-06-01

    JEM-EUSO is a wide-angle refractive UV telescope being proposed for attachment to the Japanese Experiment Module on ISS. The main goal of the mission is to study Extreme Energy Cosmic Rays. Two pathfinder mission are now in progress: EUSO-TA and EUSO-Balloon. The EUSO-TA project foresees the installation of a telescope prototype in the Telescope Array site. The aim of this project is to calibrate the telescope with the TA fluorescence detector. An initial run of one year starting from 2013 is foreseen. EUSO-Balloon is a pathfinder mission in which a prototype telescope will be mounted on a stratospheric balloon. The main aim of this mission is to perform a end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. EUSO-Balloon will measure the UV background fundamental for the development of the simulations. EUSO-Balloon has the potential to detect Extensive Air Showers from above, paving the way for any future space-based EECR observatory. We will present the Data Processor of the pathfinders. The DP is the component of the Electronics System which performs data management and instrument control. The DP controls front-end electronics, performs 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages mass memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor and handles interface to the telemetry system. We will describe the main components of the DP, the state-of-the-art and the results of the tests carried out.

  6. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2004-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  7. Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA

    NASA Astrophysics Data System (ADS)

    Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.

    2013-01-01

    We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.

  8. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2005-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  9. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  10. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as two cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System (SLS) rocket into the vertical position inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. The pathfinder booster segment will be moved to the other end of the RPSF and secured on a test stand. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  11. Pathfinder autonomous rendezvous and docking project

    NASA Technical Reports Server (NTRS)

    Lamkin, Stephen (Editor); Mccandless, Wayne (Editor)

    1990-01-01

    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements.

  12. Indoor A* Pathfinding Through an Octree Representation of a Point Cloud

    NASA Astrophysics Data System (ADS)

    Rodenberg, O. B. P. M.; Verbree, E.; Zlatanova, S.

    2016-10-01

    There is a growing demand of 3D indoor pathfinding applications. Researched in the field of robotics during the last decades of the 20th century, these methods focussed on 2D navigation. Nowadays we would like to have the ability to help people navigate inside buildings or send a drone inside a building when this is too dangerous for people. What these examples have in common is that an object with a certain geometry needs to find an optimal collision free path between a start and goal point. This paper presents a new workflow for pathfinding through an octree representation of a point cloud. We applied the following steps: 1) the point cloud is processed so it fits best in an octree; 2) during the octree generation the interior empty nodes are filtered and further processed; 3) for each interior empty node the distance to the closest occupied node directly under it is computed; 4) a network graph is computed for all empty nodes; 5) the A* pathfinding algorithm is conducted. This workflow takes into account the connectivity for each node to all possible neighbours (face, edge and vertex and all sizes). Besides, a collision avoidance system is pre-processed in two steps: first, the clearance of each empty node is computed, and then the maximal crossing value between two empty neighbouring nodes is computed. The clearance is used to select interior empty nodes of appropriate size and the maximal crossing value is used to filter the network graph. Finally, both these datasets are used in A* pathfinding.

  13. The semantic pathfinder: using an authoring metaphor for generic multimedia indexing.

    PubMed

    Snoek, Cees G M; Worring, Marcel; Geusebroek, Jan-Mark; Koelma, Dennis C; Seinstra, Frank J; Smeulders, Arnold W M

    2006-10-01

    This paper presents the semantic pathfinder architecture for generic indexing of multimedia archives. The semantic pathfinder extracts semantic concepts from video by exploring different paths through three consecutive analysis steps, which we derive from the observation that produced video is the result of an authoring-driven process. We exploit this authoring metaphor for machine-driven understanding. The pathfinder starts with the content analysis step. In this analysis step, we follow a data-driven approach of indexing semantics. The style analysis step is the second analysis step. Here, we tackle the indexing problem by viewing a video from the perspective of production. Finally, in the context analysis step, we view semantics in context. The virtue of the semantic pathfinder is its ability to learn the best path of analysis steps on a per-concept basis. To show the generality of this novel indexing approach, we develop detectors for a lexicon of 32 concepts and we evaluate the semantic pathfinder against the 2004 NIST TRECVID video retrieval benchmark, using a news archive of 64 hours. Top ranking performance in the semantic concept detection task indicates the merit of the semantic pathfinder for generic indexing of multimedia archives.

  14. Validating the Usefulness of Combined Japanese GMS Data For Long-Term Global Change Studies

    NASA Technical Reports Server (NTRS)

    Simpson, James J.; Dodge, James C. (Technical Monitor)

    2001-01-01

    The primary objectives of the Geostationary Meteorological Satellite (GMS)-5 Pathfinder Project were the following: (1) to evaluate GMS-5 data for sources of error and develop methods for minimizing any such errors in GMS-5 data; (2) to prepare a GMS-5 Pathfinder data set for the GMS-5 Pathfinder Benchmark Period (1 July 95 - 30 June 96); and (3) show the usefulness of the improved Pathfinder data set in at least one geophysical application. All objectives were met.

  15. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.

    PubMed

    Hall, S G; Bieber, A J

    1997-03-01

    We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.

  16. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Space Science

    NASA Image and Video Library

    1996-12-04

    The Mars Pathfinder began the journey to Mars with liftoff atop a Delta II expendable launch vehicle from launch Complex 17B on Cape Canaveral Air Station. The Mars Pathfinder traveled on a direct trajectory to Mars, and arrived there in July 1997. Mars Pathfinder sent a lander and small robotic rover, Sojourner, to the surface of Mars. The primary objective of the mission was to demonstrate a low-cost way of delivering a science package to the surface of Mars using a direct entry, descent and landing with the aid of small rocket engines, a parachute, airbags and other techniques. In addition, landers and rovers of the future will share the heritage of Mars Pathfinder designs and technologies first tested in this mission. Pathfinder also collected invaluable data about the Martian surface.

  18. Identification of metabolic pathways using pathfinding approaches: a systematic review.

    PubMed

    Abd Algfoor, Zeyad; Shahrizal Sunar, Mohd; Abdullah, Afnizanfaizal; Kolivand, Hoshang

    2017-03-01

    Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Report on the Brazilian Scientific Balloon Program

    NASA Astrophysics Data System (ADS)

    Braga, Joao

    We report on the recent scientific ballooning activities in Brazil, including important international collaborations, and present the plans for the next few years. We also present the recent progress achieved in the development and calibration of the protoMIRAX balloon experiment, especially about the detector system. protoMIRAX is a balloon-borne X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray (30-200 keV) coded-aperture imager which employs a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detector. A collimator defines a fully-coded field-of-view of 20(°) x 20(°) , with 4(°) x 4(°) of full sensitivity. The angular resolution will be of 1.7(°) , defined by the use of a 1mm-thick lead coded-mask with an extended (˜4x4) 13x13 MURA pattern will 20mm-side cells, placed at a distance of 650 mm from the detector plane. We describe the design and development of the front-end electronics, with charge preamplifiers and shaping amplifiers customized for these detectors. We present spectral results obtained in the laboratory as well as initial calibration results of the acquisition system designed to get positions and energies in the detector plane. We show simulations of the flight background and the expected flight images of bright sources.

  20. Dynamic Control System Performance during Commissioning of the Space Technology 7-Disturbance Reduction System Experiment of LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agency's LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three primary components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after propulsion separation. A recommissioning period was added after an anomaly occurred in the thruster system. The paper will describe the activities used to commission DRS, present results from the commissioning of the DCS and the recommissioning activities per-formed after the thruster anomaly.

  1. Dynamic Control System Performance during Commissioning of the Space Technology 7-Disturbance Reduction System Experiment of LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agencys LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three prima-ry components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after pro-pulsion separation. A recommissioning period was added after an anomaly oc-curred in the thruster system. The paper will describe the activities used to com-mission DRS, present results from the commissioning of the DCS and the re-commissioning activities performed after the thruster anomaly.

  2. Simulation-Based Verification of Autonomous Controllers via Livingstone PathFinder

    NASA Technical Reports Server (NTRS)

    Lindsey, A. E.; Pecheur, Charles

    2004-01-01

    AI software is often used as a means for providing greater autonomy to automated systems, capable of coping with harsh and unpredictable environments. Due in part to the enormous space of possible situations that they aim to addrs, autonomous systems pose a serious challenge to traditional test-based verification approaches. Efficient verification approaches need to be perfected before these systems can reliably control critical applications. This publication describes Livingstone PathFinder (LPF), a verification tool for autonomous control software. LPF applies state space exploration algorithms to an instrumented testbed, consisting of the controller embedded in a simulated operating environment. Although LPF has focused on NASA s Livingstone model-based diagnosis system applications, the architecture is modular and adaptable to other systems. This article presents different facets of LPF and experimental results from applying the software to a Livingstone model of the main propulsion feed subsystem for a prototype space vehicle.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit,more » approaching the LISA performance.« less

  4. All Recent Mars Landers Have Landed Downrange - Are Mars Atmosphere Models Mis-Predicting Density?

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.

    2008-01-01

    All recent Mars landers (Mars Pathfinder, the two Mars Exploration Rovers Spirit and Opportunity, and the Mars Phoenix Lander) have landed further downrange than their pre-entry predictions. Mars Pathfinder landed 27 km downrange of its prediction [1], Spirit and Opportunity landed 13.4 km and 14.9 km, respectively, downrange from their predictions [2], and Phoenix landed 21 km downrange from its prediction [3]. Reconstruction of their entries revealed a lower density profile than the best a priori atmospheric model predictions. Do these results suggest that there is a systemic issue in present Mars atmosphere models that predict a higher density than observed on landing day? Spirit Landing: The landing location for Spirit was 13.4 km downrange of the prediction as shown in Fig. 1. The navigation errors upon Mars arrival were very small [2]. As such, the entry interface conditions were not responsible for this downrange landing. Consequently, experiencing a lower density during the entry was the underlying cause. The reconstructed density profile that Spirit experienced is shown in Fig. 2, which is plotted as a fraction of the pre-entry baseline prediction that was used for all the entry, descent, and landing (EDL) design analyses. The reconstructed density is observed to be less dense throughout the descent reaching a maximum reduction of 15% at 21 km. This lower density corresponded to approximately a 1- low profile relative to the dispersions predicted. Nearly all the deceleration during the entry occurs within 10- 50 km. As such, prediction of density within this altitude band is most critical for entry flight dynamics analyses and design (e.g., aerodynamic and aerothermodynamic predictions, landing location, etc.).

  5. The Space Technology-7 Disturbance Reduction Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad

    2004-01-01

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  6. Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher; hide

    2007-01-01

    The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at http://ltdr.nascom.nasa.gov/ltdr/ltdr.html.

  7. First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Adams, J. H., Jr.; Ahriche, A.; Allard, D.; Allen, L.; Alonso, G.; Anchordoqui, L.; Anzalone, A.; Arai, Y.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Bayer, J.; Beldjilali, B.; Belenguer, T.; Belkhalfa, N.; Bellotti, R.; Belov, A.; Belov, K.; Benmessai, K.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bozzo, E.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Cotto, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Cummings, A.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Diaz Damian, A.; Djemil, T.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujii, T.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Genci, J.; Giraudo, G.; González Alvarado, C.; Gorodetzky, P.; Greg, R.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber Cruz, W.; Ikeda, D.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Jeong, S.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kleifges, M.; Klimov, P. A.; Kolev, D.; Krantz, H.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; La Barbera, A.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larson, R.; Larsson, O.; Lee, J.; Licandro, J.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Marszał, W.; Martens, K.; Martín, Y.; Martinez, O.; Martucci, M.; Masciantonio, G.; Mase, K.; Mastafa, M.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mendoza, M. A.; Menshikov, A.; Merino, A.; Meseguer, J.; Meyer, S. S.; Mimouni, J.; Miyamoto, H.; Mizumoto, Y.; Monaco, A.; Morales de los Ríos, J. A.; Moretto, C.; Nagataki, S.; Naitamor, S.; Napolitano, T.; Naslund, W.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Pagliaro, A.; Painter, W.; Panasyuk, M. I.; Panico, B.; Pasqualino, G.; Parizot, E.; Park, I. H.; Pastircak, B.; Patzak, T.; Paul, T.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Polonski, Z.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Puehlhofer, G.; Putis, M.; Rabanal, J.; Radu, A. A.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Rodencal, M.; Ronga, F.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Salazar, H.; Sanchez Balanzar, J. C.; Sánchez, J. L.; Santangelo, A.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Spataro, B.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Thomas, S. B.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tubbs, J.; Turriziani, S.; Uchihori, Y.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2018-05-01

    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.

  8. Integrating Subject Pathfinders into Online Catalogs.

    ERIC Educational Resources Information Center

    Jarvis, William E.

    1985-01-01

    Discusses the integration of subject pathfinders into online public access catalogs (OPAC) through following features: within the OPAC, offline user guide manuals, remotely printed upon user request, or online as saved searches displayed in help screen format. Excerpts of a pathfinder display for biotechnology are presented. Four sources are…

  9. Future launcher demonstrator. Challenge and pathfinder

    NASA Astrophysics Data System (ADS)

    Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.

    1996-02-01

    For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which proposes a winged suborbital rocket launcher operations & technology demonstrator for vertical take-off and horizontal landing — using primarily conventional technology and materials as a first step towards the challenging goal of a reusable SSTO ETO launch vehicle.

  10. Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder

    NASA Technical Reports Server (NTRS)

    Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm

    1996-01-01

    This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed well. Approximately 70 percent of the thermocouples yielded good data.

  11. Software Aids Visualization Of Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Weidner, Richard J.

    1996-01-01

    Report describes Simulator for Imager for Mars Pathfinder (SIMP) computer program. SIMP generates "virtual reality" display of view through video camera on Mars lander spacecraft of Mars Pathfinder mission, along with display of pertinent textual and graphical data, for use by scientific investigators in planning sequences of activities for mission.

  12. Pathfinder Rear Ramp

    NASA Image and Video Library

    1997-07-06

    NASA's Mars Pathfinder's rear rover ramp can be seen successfully unfurled in this image, taken at the end of Sol 2 by the Imager for Mars Pathfinder (IMP). This ramp was later used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. Areas of a lander petal and deflated airbag are visible at left. The image helped Pathfinder scientists determine that the rear ramp was the one to use for rover deployment. At upper right is the rock dubbed "Barnacle Bill," which Sojourner will later study. http://photojournal.jpl.nasa.gov/catalog/PIA00627

  13. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. MESUR Pathfinder Science Investigations

    NASA Technical Reports Server (NTRS)

    Golombek, M.

    1993-01-01

    The MESUR (Mars Environmental Survey) Pathfinder mission is the first Discovery mission planned for launch in 1996. MESUR Pathfinder is designed as an engineering demonstration of the entry, descent and landing approach to be employed by the follow-on MESUR Network mission, which will land of order 10 small stations on the surface of Mars to investigate interior, atmospheric and surface properties. Pathfinder is a small Mars lander, equipped with a microrover to deploy instruments and explore the local landing site. Instruments selected for Pathfinder include a surface imager on a 1 m pop-up mast (stereo with spectral filters), an atmospheric structure instrument/surface meteorology package, and an alpha proton x-ray spectrometer. The microrover will carry the alpha proton x-ray spectrometer to a number of different rocks and surface materials and provide close-up imaging...

  15. Java PathFinder User Guide

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    1999-01-01

    The JAVA PATHFINDER, JPF, is a translator from a subset of JAVA 1.0 to PROMELA, the programming language of the SPIN model checker. The purpose of JPF is to establish a framework for verification and debugging of JAVA programming based on model checking. The main goal is to automate program verification such that a programmer can apply it in the daily work without the need for a specialist to manually reformulate a program into a different notation in order to analyze the program. The system is especially suited for analyzing multi-threaded JAVA applications, where normal testing usually falls short. The system can find deadlocks and violations of boolean assertions stated by the programmer in a special assertion language. This document explains how to Use JPF.

  16. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Yoder, C. F.; Yuan, D. N.; Standish, E. M.; Preston, R. A.

    1997-01-01

    Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

  17. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder.

    PubMed

    Folkner, W M; Yoder, C F; Yuan, D N; Standish, E M; Preston, R A

    1997-12-05

    Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

  18. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    NASA Astrophysics Data System (ADS)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  19. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W., Jr. (Editor)

    1995-01-01

    This volume, the first of two comprising the technical report for this workshop, contains papers that have been accepted for presentation at the Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region, September 24-30, 1995, in Spokane, Washington. The Mars Pathfinder Project received a new start in October 1993 as one of the next missions in NASA's long-term Mars exploration program. The mission involves landing a single vehicle on the surface of Mars in 1997. The project is one of the first Discovery-class missions and is required to be a quick, low-cost mission and achieve a set of significant but focused engineering, science, and technology objectives. The primary objective is to demonstrate a low-cost cruise, entry, descent, and landing system required to place a payload on the martian surface in a safe, operational configuration. Additional objectives include the deployment and operation of various science instruments and a microrover. Pathfinder paves the way for a cost-effective implementation of future Mars lander missions. Also included in this volume is the field trip guide to the Channeled Scabland and Missoula Lake Break-out. On July 4, 1997, Mars Pathfinder is scheduled to land near 19.5 deg N, 32.8 deg W, in a portion of Ares Vallis. The landing ellipse covers a huge (100 x 200 km) area that appears to include both depositional and erosional landforms created by one or more giant, catastrophic floods. One of the best known terrestrial analogs to martian outflow channels (such as Ares Vallis) is the region known as the Channeled Scabland. The field trip guide describes some of the geomorphological features of the Channeled Scabland and adjacent Lake Missoula break-out area near Lake Pend Oreille, Idaho.

  20. First image of clouds over Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the first image ever taken from the surface of Mars of an overcast sky. Featured are stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The 'you are here' notation marks where Earth was situated in the sky at the time the image was taken. Scientists had hoped to see Earth in this image, but the cloudy conditions prevented a clear viewing. Similar images will be taken in the future with the hope of capturing a view of Earth. From Mars, Earth would appear as a tiny blue dot as a star would appear to an Earthbound observer. Pathfinder's imaging system will not be able to resolve Earth's moon. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  2. NASA Ocean Altimeter Pathfinder Project. Report 2; Data Set Validation

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Ray, Richard D.; Beckley, Brian D.; Bremmer, Anita; Tsaoussi, Lucia S.; Wang, Yan-Ming

    1999-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how existing satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-series data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. Details are currently presented in two technical reports: Report# 1: Data Processing Handbook Report #2: Data Set Validation This report describes the validation of the data sets against a global network of high quality tide gauge measurements and provides an estimate of the error budget. The first report describes the processing schemes used to produce the geodetic consistent data set comprised of SEASAT, GEOSAT, ERS-1, TOPEX/ POSEIDON, and ERS-2 satellite observations.

  3. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  4. MOC's Highest Resolution View of Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] (A) Mars Pathfinder site, left: April 1998; right: January 2000.

    [figure removed for brevity, see original site] (B) top: April 1998; bottom: January 2000.

    Can Mars Global Surveyor's 1.5 meter (5 ft) per pixel camera be used to find any evidence as to the fate of the Mars Polar Lander that was lost on December 3, 1999? One way to find out is to look for one of the other Mars landers and determine what, if anything, can be seen. There have been three successful Mars lander missions: Viking 1 (July 1976), Viking 2 (September 1976), and Mars Pathfinder (July 1997). Of these, the location of Mars Pathfinder is known the best because there are several distinct landmarks visible in the lander's images that help in locating the spacecraft. The MGS MOC Operations Team at Malin Space Science Systems has been tasked since mid-December 1999 with looking for the lost Polar Lander. Part of this effort has been to test the capabilities of MOC by taking a picture of the landing site of Mars Pathfinder.

    An attempt to photograph the Pathfinder site was made once before, in April 1998, by turning the entire MGS spacecraft so that the camera could point at the known location of the Mars Pathfinder lander. Turning the MGS spacecraft like this is not a normal operation--it takes considerable planning, and disrupts the on-going, normal acquisition of science data. It took 3 attempts to succeed, but on April 22, 1998, MOC acquired the picture seen on the left side of Figure A, above. The three near-by major landmarks that were visible to the Pathfinder's cameras are labeled here (North Peak, Big Crater, Twin Peaks). It was known at the time that this image was not adequate to see the Pathfinder lander because the camera was not in focus and had a resolution of only 3.3 meters (11 ft) per pixel. In this and all other images shown here, north is up. All views of the 1998 MOC image are illuminated from the lower right, all views of the 2000 MOC image are illuminated from the lower left.

    As part of the Polar Lander search effort, the Mars Pathfinder site was targeted again in December 1999 and January 2000. Like the 1998 attempt, the spacecraft had to be pointed off of its normal, nadir (straight-down) view. Like history repeating itself, it once again took 3 tries before the Pathfinder landing site was hit. The picture on the right side of Figure A, above, shows the new image that was acquired on January 16, 2000. The white box indicates the location shown in Figure B (above, right). The 1000 m scale bar equals 0.62 miles.

    Figure B (above) shows a subsection of both the 1998 image (top, labeled SPO-1-25603) and the 2000 image (bottom, labeled m11-2414) projected at a scale of 3 meters (10 ft) per pixel. At this scale, the differences in camera focus and sunlight illumination angle are apparent, with the January 2000 image being both in focus and having better lighting conditions. In addition, the MGS spacecraft took the 2000 image from a lower altitude than in 1998, thus the image has better spatial resolution overall. The 500 m scale bar is equal to about 547 yards. The white box shows the location of images in Figure C, below.

    [figure removed for brevity, see original site] (C) higher-resolution view; left: April 1998; right: January 2000.

    [figure removed for brevity, see original site] D) Erroneous, preliminary identification of Mars Pathfinder location in January 2000 image. Subsequent analysis (Figures E & F, below) identified the correct spot.

    The third figure (C, above) again shows portions of the April 1998 image (C, left) and January 2000 image (C, right), only this time they have been enlarged to a resolution of 0.75 meters (2.5 ft) per pixel. The intrinsic resolution of the January 2000 image is 1.5 meters (5 ft), so this is a 200% expanded view of the actual M11-02414 image. The circular features in this and the previous images are impact craters in various states of erosion. Some boulders (dark dots) can be seen near the crater in the lower left corner. The texture that runs diagonally across the scene from upper left toward lower right consists of ridges created by the giant floods that washed through the Pathfinder site from Ares and/or Tiu Vallis many hundreds of millions of years ago. These ridges and the troughs between them were also seen by the Pathfinder lander; their crests often covered with boulders and cobbles (which cannot be seen at the resolution of the MOC image). The 100 m scale bar is equal to 109 yards (which can be compared with a 100 yard U.S. football field). The Mars Pathfinder landing site is located near the center of this view.

    The fourth picture, Figure D (above), shows a feature that was initially thought to be the Mars Pathfinder lander by MOC investigators. This and the following figures point out just how difficult it is to find a lander on the martian surface using the MGS MOC. Figure D was prepared early in the week following receipt of the new MOC image on January 17, 2000, and for several days it was believed that the lander had been found. As the subsequent two figures will show (E, and F, below), this location appears to be in error. How the features were misidentified is discussed below. Both Figure D and Figure F, showing possible locations of the Pathfinder lander in the MOC image, are enlarged by a factor of three over the intrinsic resolution of that image (that is, to a scale of 0.5 meters or about 1 ft, 7 inch per pixel). The right picture in Figure D shows sight-lines to the large horizon features--Big Crater, Twin Peaks, and North Peak--that were derived by the MOC team by looking at the images taken by the lander in 1997. After placing these lines on the overall image, there appeared to be two features close to the intersection of the sight-lines. Based upon the consistency of the size and shape of the lander as illuminated by sunlight in this image, the northern of the two candidate features (the small 'hump' at the center of both left and right pictures) was considered, at the time, to be the most likely. HOWEVER...

    [figure removed for brevity, see original site] (E) Photoclinometry, Topography, and Revised Landing Site Location.

    [figure removed for brevity, see original site] (F) Mars Pathfinder Landing Site; lander not resolved by MOC.

    Later in the week following acquisition of the January 16, 2000, image (and over the following weekend), there was time for additional analysis to determine whether the rounded hump identified earlier in the week (Figure D, above) was, in fact, the Mars Pathfinder lander. A computer program that estimates relative topography in a MOC image from knowledge of the illumination (called 'shape-from-shading' or photoclinometry) was run to determine which parts of the landing site image are depressions, which are hills, and which are flat surfaces. The picture at the left in Figure E (above) shows the photoclinometry results for the area around the Pathfinder lander. The picture at the center of Figure E shows the same photoclinometry results overlain by an inset of a topographic map of the Pathfinder landing site derived by the U.S. Geological Survey Astrogeology Branch (Flagstaff, Arizona) from photogrammetry (parallax measurements) using images from Pathfinder's own stereo camera. By matching the features seen by MOC with those seen by the Pathfinder (the large arrows are examples of the matching), the location of the lander was refined and is now indicated in the picture on the right side of Figure E. The large, rounded hump previously identified as Pathfinder in Figure D (above), is more likely a large boulder that was seen in Pathfinder's images and named 'Couch' by the Pathfinder science team in 1997.

    Figure F is summary of the results of this effort to find Mars Pathfinder: it shows that while the landing site of Mars Pathfinder can be identified, the lander itself cannot be seen. It is too small to be resolved in an image where each pixel acquired by the MOC covers a square of 1.5 meters (5 feet) to a side, given the contrast conditions on Mars and the MOC's ability to discriminate contrast. At this scale, Pathfinder is not much larger than two pixels, and the same is true of the lost Polar Lander.

    No evidence has been found in the January 2000 MOC image of the aft portion of Mars Pathfinder's aeroshell or its parachute, either. If the aeroshell is laying on its side, as interpreted from Mars Pathfinder's images, then it would be very difficult to see this from orbit. Because Pathfinder did not image the parachute, it is not known how it may be configured on the surface--it could be wrapped around the aeroshell or a boulder, for example.

    This effort to photograph the Mars Pathfinder lander demonstrates that it is extremely difficult to find a lander on the surface of Mars using the Mars Orbiter Camera aboard the MGS spacecraft. This analysis suggests that it is not very likely that the December 1999 Polar Lander will be found by MOC.

  5. Reduction and Analysis of Meteorology Data from the Mars Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    Dr. James Murphy is a member of the Mars Pathfinder Atmospheric Structure Investigation Meteorology (ASI/MET) Science Team. The activities of Dr. Murphy, and his collaborators are summarized in this report, which reviews the activities in support of the analysis of the meteorology data from the Mars Pathfinder Lander.

  6. AVHRR-Based Polar Pathfinder Products: Evaluation, Enhancement, and Transition to MODIS

    NASA Technical Reports Server (NTRS)

    Fowler, Charles; Maslanik, James; Stone, Robert; Stroeve, Julienne; Emery, William

    2001-01-01

    The AVHRR-Based Polar Pathfinder (APP) products include calibrated AVHRR channel data, surface temperatures, albedo, satellite scan and solar geometries, and a cloud mask composited into twice- per-day images, and daily averaged fields of sea ice motion, for regions poleward of 50 deg. latitude. Our goals under this grant, in general, are four-fold: 1. To quantify the APP accuracy and sources of error by comparing Pathfinder products with field measurements. 2. To determine the consistency of mean fields and trends in comparison with longer time series of available station data and forecast model output. 3. To investigate the consistency of the products between the different AVHRR instruments over the 1982-present period of the NOAA program. 4. To compare an annual cycle of the AVHRR Pathfinder products with MODIS to establish a baseline for extending Pathfinder-type products into the new ESE period. Year One tasks include intercomparisons of the Pathfinder products with field measurements, testing of algorithm assumptions, collection of field data, and further validation and possible improvement of the multi-sensor ice motion fields. Achievements for these tasks are summarized below.

  7. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: Overview and Air-side System Description

    NASA Technical Reports Server (NTRS)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; hide

    2016-01-01

    This work presents an overview of the This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes., a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  8. A review of parameters and heuristics for guiding metabolic pathfinding.

    PubMed

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  9. Kenneth J. Szalai

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kenneth J. Szalai was Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, Calif., from January 1994 through July 1998. He retired from NASA at the end of July to join IBP Aerospace Group, Inc., as the company's new president and chief operating officer. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls; advanced optical sensors and controls; viscous drag reduction; advanced configurations; high-altitude, long-endurance aircraft; remotely piloted vehicle technology; hypersonic vehicle experiments; high-speed research for civil transportation; atmospheric tests of advanced rocket and airbreathing propulsion concepts; instrumentation systems; and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. When Dryden was administratively a part of the NASA Ames Research Center, Moffett Field, Calif., Szalai was director and also held the position of Ames Deputy Director for Dryden from December 1990 until assuming his current position From 1982 until December 1990, Szalai directed the Dryden Research Engineering Division. He served as Associate Director of the Ames Research Center in 1989. Prior to 1982 he was chief of the Research Engineering Division's Dynamics and Control Branch, and chief of the Flight Control Section. Szalai began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin, where he attended both the Milwaukee and Madison campuses. His bachelor of science degree is in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. Szalai also held research and systems engineering positions on several research aircraft programs investigating flying qualities, integrated flight controls, and fault tolerant-flight critical systems. He was also flight test engineer and principal investigator on the NASA Airborne Simulator before assuming management positions within the Research Engineering Division. Szalai has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank awards. Szalai was born June 1, 1942, in Milwaukee, Wisc., where he graduated from West Division High School.

  10. Generation of Level 3 SMMR and SSM/I Brightness Temperatures for the Period 1978-1999

    NASA Technical Reports Server (NTRS)

    Partington, Kim

    1999-01-01

    The NOAA/NASA Pathfinder Program was initially designed to assure that certain key remote sensing data sets of particular significance to global change research were scientifically validated, consistently processed and made readily available to the research community at minimal cost. Through this Program the National Snow and Ice Data Center (NSIDC), University of Colorado has successfully processed, archived and distributed the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) Level 3 (EASE-Grid format) Pathfinder data sets for the period 1978 to 1999. These data are routinely distributed to approximately 150 researchers through various media including CD-ROM, 8 mm tape, ftp and the EOS Information Management System (IMS). At NSIDC these data are currently being applied in the development and validation of algorithms to derive snow water equivalent (NASA NAG5-6636), the mapping of frozen ground and the detection of the onset of melt over ice sheets, sea ice and snow cover. The EASE-Grid format, developed at NSIDC in conjunction with the SMMR-SSM/I Pathfinder project has also been applied to Advanced Very High Resolution Radiometer (AVHRR) and TOVS Pathfinder data, as well as ancillary data such as digital elevation, land cover classification and several in situ data sets. EASE-Grid will also be used for all land products derived from the NASA EOS AMSR-E instrument.

  11. A Multi-Center Space Data System Prototype Based on CCSDS Standards

    NASA Technical Reports Server (NTRS)

    Rich, Thomas M.

    2016-01-01

    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and inclusion in a new international standard being developed by the CCSDS Telerobotic Operations Working Group. Software gateways for the purpose of interfacing RAPID messages with the existing SM&C based infrastructure were developed. Telerobotic monitor, control, and bridge applications were written in the RAPID framework, which were then tailored to the NAO telerobotic test article hardware, a product of Aldebaran Robotics.

  12. Space Technology 5: Pathfinder for Future Micro-Sat Constellations

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Finnegan, Eric

    2004-01-01

    The Space Technology 5 (ST-5) Project, currently in the implementation phase, is part of the National Aeronautics and Space Administration (NASA) s New Millennium Program (NMP). ST-5 will consist of a constellation of three miniature satellites, each with mass less than 25 kg and size approximately 60 cm by 30 cm. ST-5 addresses technology challenges, as well as fabrication, assembly, test and operations strategies for future micro-satellite missions. ST-5 will be deployed into a highly eccentric, geo-transfer orbit (GTO). This will expose the spacecraft to a high radiation environment as well as provide a low level magnetic background. A three-month flight demonstration phase is planned to validate the technologies and demonstrate concepts for future missions. Each ST-5 spacecraft incorporates NMP competitively-selected breakthrough technologies. These include Cold Gas Micro-Thrusters for propulsion and attitude control, miniature X-band transponder for space-ground communications, Variable Emittance Coatings for dynamic thermal control, and CULPRiT ultra low power logic chip used for Reed-Solomon encoding. The ST-5 spacecraft itself is a technology that can be infused into future missions. It is a fully functional micro-spacecraft built within tight volume and mass constraints. It is built to withstand a high radiation environment, large thermal variations, and high launch loads. The spacecraft power system is low-power and low-voltage, and is designed to turn on after separation &om the launch vehicle. Some of the innovations that are included in the ST-5 design are a custom spacecraft deployment structure, magnetometer deployment boom, nutation damper, X-band antenna, miniature spinning sun sensor, solar array with triple junction solar cells, integral card cage assembly containing single card Command and Data Handling and Power System Electronics, miniature magnetometer, and lithium ion battery. ST-5 will demonstrate the ability of a micro satellite to perform research-quality science. Each ST-5 spacecraft will deploy a precision magnetometer to be used both for attitude determination and as a representative science instrument. The spacecraft has been developed with a low magnetic signature to avoid interference with the magnetometer. The spacecraft will be able to detect and respond autonomously to science events, i.e. significant changes in the magnetic field measurements. The three spacecraft will be a pathfinder for future constellation missions. They will be deployed to demonstrate an appropriate geometry for scientific measurements as a constellation. They will be operationally managed as a constellation, demonstrating automation and communication strategies that will be useful for future missions. The technologies and future mission concepts will be validated both on the ground and in space. Technologies will be validated on the ground by a combination of component level and system level testing of the flight hardware in a thermal vacuum environment. In flight, specific validation runs are planned for each of the technologies. Each validation run consists of one or more orbits with a specific validation objective. This paper will describe the ST-5 mission, and the applicability of the NMP technologies, spacecraft, and mission concepts to future missions. It will also discuss the validation approach for the ST-5 technologies and mission concepts.

  13. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  14. Avionics of the Cyclone Global Navigation Satellite System (CYGNSS) microsat constellation

    NASA Astrophysics Data System (ADS)

    Dickinson, John R.; Alvarez, Jennifer L.; Rose, Randall J.; Ruf, Christopher S.; Walls, Buddy J.

    The Cyclone Global Navigation Satellite System (CYGNSS), which was recently selected as the Earth Venture-2 investigation by NASA's Earth Science System Pathfinder (ESSP) Program, measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a tropical cyclone (TC). The CYGNSS flight segment consists of 8 microsatellite-class observatories, which represent SwRI's first spacecraft bus design, installed on a Deployment Module for launch. They are identical in design but provide their own individual contribution to the CYGNSS science data set. Subsystems include the Attitude Determination and Control System (ADCS), the Communication and Data Subsystem (CDS), the Electrical Power Supply (EPS), and the Structure, Mechanisms, and Thermal Subsystem (SMT). This paper will present an overview of the mission and the avionics, including the ADCS, CDS, and EPS, in detail. Specifically, we will detail how off-the-shelf components can be utilized to do ADCS and will highlight how SwRI's existing avionics solutions will be adapted to meet the requirements and cost constraints of microsat applications. Avionics electronics provided by SwRI include a command and data handling computer, a transceiver radio, a low voltage power supply (LVPS), and a peak power tracker (PPT).

  15. Gambling on the Protestants: the Pathfinder Fund and birth control in Peru, 1958-1965.

    PubMed

    López, L Necochea

    2014-01-01

    Among the agencies involved in population control activities in the mid-twentieth century, none scored as many early victories in Latin America as did the Pathfinder Fund, founded by Procter & Gamble scion Clarence Gamble. This article analyzes a style in the delivery of family planning assistance in the developing world through the work of the Pathfinder Fund in Peru, the organization's hub in South America, and shows how Pathfinder personnel collaborated with local Protestant institutions. Its Protestant allies helped Pathfinder set up and manage rapid interventions such as the production of pamphlets, the smuggling of contraceptives, and the enrollment of physicians as advocates of the use of intrauterine devices. Although these rapid interventions helped quickly disseminate information and certain technologies among a fortunate few, they also weakened legitimate state agencies, neglected the monitoring of the safety of the drugs supplied, and alienated allies with their high-handed boldness.

  16. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. LISA Pathfinder and eLISA news

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Mueller, Guido

    2014-01-01

    Two important gatherings of the space-based gravitational-wave detector community were held in Zurich, Switzerland this past March. The first was a meeting of the Science Working Team for LISA Pathfinder (LPF), a dedicated technology demonstrator mission for a future LISA-like gravitational wave observatory. LPF is entering an extremely exciting phase with launch less than 15 months away. All flight components for both the European science payload, known as the LISA Technology Package (LTP), and the NASA science payload, known as the Space Technology 7 Disturbance Reduction System (ST7-DRS), have been delivered and are undergoing integration. The final flight component for the spacecraft bus, a cold-gas thruster based on the successful GAIA design, will be delivered later this year. Current focus is on completing integration of the science payload (see Figures 1 and 2) and preparation for operations and data analysis. After a launch in Summer 2015, LPF will take approximately 90 days to reach its operational orbit around the Earth-Sun Lagrange point (L1), where it will begin science operations. After 90 days of LTP operations followed by 90 days of DRS operations, LPF will have completed its prime mission of paving the way for a space-based observatory of gravitational waves in the milliHertz band. Immediately following the meeting of the LPF team, the eLISA consortium held its third progress meeting. The consortium (www.elisascience.org) is the organizing body of the European space-based gravitational-wave community, and it was responsible for the "The Gravitational Universe" whitepaper that resulted in the November 2013 election of a gravitational-wave science theme for ESA's Cosmic Visions L3 opportunity. In preparation for an L3 mission concept call, which is expected later this decade, and for launch in the mid 2030s, the eLISA consortium members are coordinating technology development and mission study activities which will build on the LPF results. The final mission concept is expected to include some international (non-European) contributions, and NASA has expressed an interest in participating in this ground-breaking mission. The US research community supports such a collaboration, or any other mission scenario that achieves the high-priority science of a space-based gravitational-wave observatory at the earliest possible date.

  18. Electric Propulsion Platforms at DFRC

    NASA Technical Reports Server (NTRS)

    Baraaclough, Jonathan

    2009-01-01

    NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.

  19. Mars Pathfinder Landing Site Workshop

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew (Editor)

    1994-01-01

    The Mars Pathfinder Project is an approved Discovery-class mission that will place a lander and rover on the surface of the Red Planet in July 1997. The Mars Pathfinder Landing Site Workshop was designed to allow the Mars scientific community to provide input as to where to land Pathfinder on Mars. The workshop was attended by over 60 people from around the United States and from Europe. Over 20 landing sites were proposed at the workshop, and the scientific questions and problems concerning each were addressed. The workshop and the discussion that occured during and afterward have significantly improved the ability to select a scientifically exciting but safe landing site on Mars.

  20. Visible and Near-Infrared Properties of Optical Fibers Coupled to the Pathfinder High-Resolution NIR Spectrograph

    NASA Astrophysics Data System (ADS)

    McCoy, K.; Ramsey, L.

    2011-09-01

    The Penn State Astronomy and Astrophysics Department’s Pathfinder instrument is a fiber-fed, warm-bench echelle spectrograph designed to explore technical issues that must be resolved in order to measure precise radial velocities that will allow the detection of exoplanets in the near-infrared (NIR). In May 2010, Pathfinder demonstrated 10-20 m/s radial-velocity precision in the NIR at the 9 meter Hobby-Eberly Telescope. To attain even higher precision, we are investigating the NIR properties of the optical fibers that transmit light from the telescope to Pathfinder. We conducted a series of modal noise tests with visible and NIR laser diodes on a 200 micron diameter, fused-silica, multimode optical fiber as the preliminary step in analyzing the degrading effects of modal noise on radial-velocity precision. We report these test results and comment on our future tests to reduce the negative effects of modal noise and focal ratio degradation (FRD). The lessons learned from this research and the Pathfinder prototype will be used in Pathfinder II, which will aim to achieve better than 5 m/s in the NIR.

  1. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  2. Pathfinder Rover, Airbags, & Martian Terrain

    NASA Image and Video Library

    1997-07-05

    This is one of the first pictures taken by the camera on the Mars Pathfinder lander shortly after its touchdown at 10:07 AM Pacific Daylight Time on July 4, 1997. The small rover, named Sojourner, is seen in the foreground in its position on a solar panel of the lander. The white material on either side of the rover is part of the deflated airbag system used to absorb the shock of the landing. Between the rover and the horizon is the rock-strewn martian surface. Two hills are seen in the right distance, profiled against the light brown sky. http://photojournal.jpl.nasa.gov/catalog/PIA00611

  3. Cars on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  4. Imager for Mars Pathfinder (IMP) image calibration

    USGS Publications Warehouse

    Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.

    1999-01-01

    The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.

  5. Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Stoker, C.; Zbinden, E.; Blackmon, T.; Nguyen, L.

    1999-01-01

    We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.

  6. The Australian SKA Pathfinder: project update and initial operations

    NASA Astrophysics Data System (ADS)

    Schinckel, Antony E. T.; Bock, Douglas C.-J.

    2016-08-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.

  7. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  8. Statechart Analysis with Symbolic PathFinder

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2012-01-01

    We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.

  9. Structural analyses of the JPL Mars Pathfinder impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-12-31

    The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis showmore » the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.« less

  10. Structural analyses of the JPL Mars Pathfinder impact

    NASA Astrophysics Data System (ADS)

    Gwinn, Kenneth W.

    The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis show the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.

  11. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  12. Establishing a Disruptive New Capability for NASA to Fly UAV's into Hazardous Conditions

    NASA Technical Reports Server (NTRS)

    Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Patrick Hon Man; Richards, Lance

    2015-01-01

    A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.

  13. Establishing a disruptive new capability for NASA to fly UAV's into hazardous conditions

    NASA Astrophysics Data System (ADS)

    Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Hon M.; Richards, Lance

    2015-05-01

    A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.

  14. Two Highly-Complementary Future Instruments for Climate Studies

    NASA Astrophysics Data System (ADS)

    Kopp, Greg; Pilewskie, Peter

    2017-04-01

    Measurements of the total solar irradiance (TSI) provide the most accurate knowledge of the net energy powering the Earth's climate system and thus give the incoming side of the Earth's radiative energy balance. The spectral distribution of this radiant energy, the spectral solar irradiance (SSI), determines how that incoming energy interacts with different components of the Earth's coupled ocean-atmosphere-surface climate system. Spatially- and spectrally-resolved Earth-reflected measurements of this shortwave radiation indicate the relative amount of the incident sunlight that is absorbed by different spatial regions and ecosystems around the globe. Particularly if very accurate and acquired over sufficiently long periods of time, those outgoing radiance measurements can lead to improved quantification of and physical understandings of the local and global processes causing climate change. Two upcoming and very complementary missions provide these measurements. The soon-to-be-launched Total and Spectral Solar Irradiance Sensor (TSIS) acquires the solar-irradiance measurements, with the Total Irradiance Monitor (TIM) providing highly-accurate values of the TSI and the Spectral Irradiance Monitor (SIM) measuring the SSI. The recently-selected CLARREO Pathfinder (CPF) is a technology-demonstration mission that measures the solar-reflected radiation via spatially- and spectrally-resolved observations of Earth scenes from its HyperSpectral Imager for Climate Science (HySICS), a spaceflight version of a high-altitude balloon-flight imaging spectrometer that achieves high radiometric accuracies via in-flight cross-calibrations directly tied to the SSI. We give an overview of the TSIS and the CPF, describing their instruments, the high complementarity of their measurements and intended uncertainties, and their planned timelines and current status.

  15. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  16. Martian Surface & Pathfinder Airbags

    NASA Image and Video Library

    1997-07-05

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right. http://photojournal.jpl.nasa.gov/catalog/PIA00612

  17. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less

  18. Human life support during interplanetary travel and domicile. I - System approach

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1989-01-01

    The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.

  19. Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.

  20. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  2. NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron

    1998-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.

  3. Using CloudSat and the A-Train to Estimate Tropical Cyclone Intensity in the Western North Pacific

    DTIC Science & Technology

    2014-09-01

    CloudSat System Data Flow (from Cooperative Institute for Research in the Atmosphere 2008...radar Department of Defense Data Processing Center European Centre for Medium-Range Weather Forecasts Earth observing system Earth observing... system data and information system Earth sciences systems pathfinder hierarchical data format moderate resolution imaging spectroradiometer moist

  4. Kenneth J. Szalai

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Kenneth J. Szalai is Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, California. He was named Center director in January 1994 assuming the position on March 1, 1994. Before that, he served as Ames-Dryden Deputy Center Director and Director of the Dryden Flight Research Facility from December 3, 1990, to March 1, 1994. Ken began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin with a bachelor of science degree in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. He has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank Awards.

  5. Constellations Solar Array Design, Industrialization And In-Flight Results

    NASA Astrophysics Data System (ADS)

    Combet, Yannick; Clapper, Paul

    2011-10-01

    Constellations has become a recurring opportunities in Thales Alenia Space since 3 majors programs had been awarded: Globalstar was the pathfinder with 48 flight sets followed by O3b with 8 an the latest is Iridium Next with 81 models. For these 3 programs, the Solar Array is fully developed, validated and produced by Thales Alenia Space with major subcontractors. This new segment of the activity leads to new development, design and industrialization approaches. This paper describes the Solar Array design and the alternative to current approach build and applied with the following drivers: - the low recurring cost and mass of the flight hardware, with particular attention on the Solar Array, - high robustness for system integration and in-orbit operations, - a long mission duration (typically 15 years in LEO) leading to take into account high number of thermal cycles (60 to 72.000 cycles), - new production concept with strict schedule management, - design segmented in subassemblies to reduce the integration time as well as a improved trouble shooting management, - delivery rate up to 1 wing per week and after learning curve effect, a integration duration divided by 3 compared to current production, - a delivery of a qualified PFM solar array in 22 months including the design to producibility constrains, This demanding requirement for delivery scheme and cost target did not jeopardize the requirements and standards for space application. After a brief description of the way the main drivers have been considered, the paper presents the main features and performances of the subsystem and shows the main validation test results. The first launch was successful in October 2010 and the first in-orbit results are presented.

  6. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  7. The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2008-01-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.

  8. The Orbiting Carbon Observatory: NASA's first dedicated carbon dioxide mission

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2008-10-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, XCO2. Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality XCO2 data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory XCO2 product will be validated and then archived starting about 3 months after that.

  9. NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.; Paules, Granville E., III

    1999-01-01

    Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.

  10. Pathfinder

    NASA Image and Video Library

    2004-04-15

    This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.

  11. Ventifacts at the Pathfinder landing site

    USGS Publications Warehouse

    Bridges, N.T.; Greeley, R.; Haldemann, A.F.C.; Herkenhoff, K. E.; Kraft, M.; Parker, T.J.; Ward, A.W.

    1999-01-01

    About half of the rocks at the Mars Pathfinder Ares Vallis landing site appear to be ventifacts, rocks abraded by windborne particles. Comparable resolution images taken by the Imager for Mars Pathfinder (IMP) camera and the Viking landers show that ventifacts are more abundant at the Pathfinder site. The ventifacts occur in several forms, including rocks with faceted edges, finger-like projections, elongated pits, flutes, grooves, and possible rills. The trends of elongated pits, flutes, grooves, and rills cluster at ???280-330?? clockwise from north and generally dip 10-30?? away from their trend direction. These orientations are indicative of southeast to northwest winds and differ from the trend of wind tails at the landing site, the direction of local wind streaks, and predictions of the Global Circulation Model, all of which indicate northeast to southwest winds. The disparity between these data sets strongly suggests that local circulation patterns have changed since the abrasion of the ventifacted rocks. The greater number of ventifacts at the Pathfinder site compared to either of the Viking sites is most easily explained as being due to a larger supply of abrading particles, composed of either sand-sized grains or indurated dust aggregates, and higher surface roughness, which should increase the momentum of saltating grains. The Pathfinder ventifacts may have formed shortly after the deposition of outflow channel sediments nearly 2 Gry ago, when a large local supply of abrading particles should have been abundant and atmospheric conditions may have been more conducive to rock abrasion from saltating grains. Based on how ventifacts form on Earth, the several ventifact forms seen at the Pathfinder site and their presence on some rocks but not on others are probably due to local airflow conditions, original rock shape, exposure duration, rock movement, and to a lesser extent, rock lithology. The abundance of ventifacts at the Pathfinder site, together with other evidence of weathering, indicates that unaltered rock surfaces are rare on Mars. Copyright 1999 by the American Geophysical Union.

  12. Pathfinder Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.

    2016-02-01

    Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.

  13. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. The Australian SKA Pathfinder: operations management and user engagement

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa

    2016-07-01

    This paper describes the science operations model for the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. ASKAP is a radio interferometer currently being commissioned in Western Australia. It will be operated by a dedicated team of observatory staff with the support of telescope monitoring, control and scheduling software. These tools, as well as the proposal tools and data archive will enable the telescope to operate with little direct input from the astronomy user. The paper also discusses how close engagement with the telescope user community has been maintained throughout the ASKAP construction and commissioning phase, leading to positive outcomes including early input into the design of telescope systems and a vibrant early science program.

  16. Acquisition of Complex Systemic Thinking: Mental Models of Evolution

    ERIC Educational Resources Information Center

    d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.

    2004-01-01

    We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…

  17. The Integration and Test Program of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2012-01-01

    The James Webb Space Telescope (JWST) project has entered into a comprehensive integration and test (I&T) program that over the coming years will assemble the various elements of the observatory (the Optical Telescope Element [OTE], the Integrated Science Instrument Module [ISIM], and the Spacecraft) and verify the readiness of the integrated system for launch. The I&T program as replanned for a 2018 launch readiness date has a number of interesting features. These include a streamlined ISIM cryo-vacuum test program at Goddard Space Flight Center, a streamlined OTIS (OTE + ISIM) test program at Johnson Space Center (JSC), the addition of a second Core cryo-vacuum thermal test, the enhancement of the Pathfinder program at JSC, and enhancement of the subsystem-level testing program for the MIRI cryo-cooler. These latter activities all serve to reduce the risk heading into the end-to-end optical and thermal testing of the telescope at JSC, leading to reduced cost and schedule risk for that critical activity. We report here on the overall I&T program for JWST and on the status of the hardware and plans that support it.

  18. Reflectron Time-of-Flight Mass Spectrometer (REMAS) Instrumentation

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; McEntire, R. W.; Cheng, A. F.

    2000-01-01

    The restricted mass and power budgets of landed science missions present a challenge to obtaining detailed analyses of planetary bodies. In situ studies, whether alone or as reconnaissance for sample return, must rely on highly miniaturized and autonomous instrumentation. Such devices must still produce useful data sets from a minimum of measurements. The great desire to understand the surfaces and interiors of planets, moons, and small bodies had driven the development of small, robotic techniques with ever-increasing capabilities. One of the most important goals on a surface mission is to study composition in many geological contexts. The mineralogical, molecular, elemental, and isotopic content of near-surface materials (regolith, rocks, soils, dust, etc.) at a variety of sites can complement broader imaging to describe the makeup and formative history of the body in question. Instruments that perform this site-to-site analysis must be highly transportable and work as a suite. For instance, a camera, microscope, spectrophotometer, and mass spectrometer can share several components and operate under a parallel command structure. Efficient use of multiple systems on a small rover has been demonstrated on the Mars Pathfinder mission.

  19. Ames Research Center Mars/Pathfinder Heat Shield Design Verification ARC-JET Test

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Hui, Frank; Wercinski, Paul; Cartledge, Alan; Tauber, Mike; Tran, Duoc T.; Chen, Y. K.; Arnold, James O. (Technical Monitor)

    1995-01-01

    Design verification tests were performed on samples representing the aerobrake of the Mars/Pathfinder vehicle. The test specimens consisted of the SLA-561V ablator bonded to the honeycomb structure. The primary objective was to evaluate the ablation materials performance and to measure temperatures within the ablator, at the structural bondline and at the back sheet of the honeycomb structure. Other objectives were to evaluate the effect of ablative repair plug material treatment and voids in the heat shield. A total of 29 models were provided for testing in the Ames 60MW arc-jet facility. Of these, 23 models were flat-faced and six remaining models were curved edge ones, intended to simulate the conditions on the curved rim of the forebody where the maximum shear occurred. Eight sets of test conditions were used. The stagnation point heating rates varied from 47 to 240 W/cm2 and the stagnation pressures from 0.15 to 0.27 atm. (The maximum flight values are 132 W/cm2 and 0.25 atm) The majority of these runs were made at a nominal stagnation pressure of 0.25 atm. Two higher pressure runs were made to check the current (denser) ablation material for spallation, or other forms of thermal stress failure. Over 60% of the flatfaced models yielded good thermocouple data and all produced useful surface recession information. Of the five curved-edge models that were tested, only one gave good data; the remaining ones experienced model-holder failure. The test results can be summarized by noting that no failure of the ablative material was observed on any model. Also, the bondline temperature design limit of 250 C was never reached within an equivalent flight time despite a stagnation point heat load that exceeded the maximum flight value by up to 130%. At heating rates of over 200W/cm2 and stagnation pressures of 0.25 atm, or greater, the average surface recessions exceeded 0.5 cm on some models. The surface roughness increased dramatically at pressures above 0.25 atm and was four times greater at 0.27 atm than at 0.25 atm. Procured repair plug material performed much better than room-temperature cured plugs, as observed in the previous tests. Voids in the ablator did not increase local temperatures and gaps did not grow during testing.

  20. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    PubMed Central

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718

  1. Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

    NASA Technical Reports Server (NTRS)

    Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.

    2005-01-01

    The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.

  2. MARS PATHFINDER INSPECTED BY ENGINEER LINDA ROBECK IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the SAEF-2 spacecraft checkout facility, engineer Linda Robeck of the Jet Propulsion Laboratory inspects the Mars Pathfinder lander. The spacecraft arrived at Kennedy Space Center from Pasadena, CA on Aug. 13, 1996. The petals of the lander will be opened for checkout of the spacecraft and the installation of the small rover. Launch of Mars Pathfinder aboard a McDonnell Douglas Delta II rocket will occur from Pad B at Complex 17 on Dec. 2.

  3. Constraints and Approach for Selecting the Mars Surveyor '01 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Weitz, C.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  4. Constraints, Approach and Present Status for Selecting the Mars Surveyor 2001 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Anderson, F.; Bridges, N.; Briggs, G.; Gilmore, M.; Gulick, V.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; hide

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  5. Laser modulator for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.

  6. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Galactic binary science with the new LISA design

    NASA Astrophysics Data System (ADS)

    Cornish, Neil; Robson, Travis

    2017-05-01

    Building on the great success of the LISA Pathfinder mission, the outlines of a new LISA mission design were laid out at the 11th International LISA Symposium in Zurich. The revised design calls for three identical spacecraft forming an equilateral triangle with 2.5 million kilometer sides, and two laser links per side delivering full polarization sensitivity. With the demonstrated Pathfinder performance for the disturbance reduction system, and a well studied design for the laser metrology, it is anticipated that the new mission will have a sensitivity very close to the original LISA design. This implies that the mid-band performance, between 0.5 mHz and 3 mHz, will be limited by unresolved signals from compact binaries in our galaxy. Here we use the new LISA design to compute updated estimates for the galactic confusion noise, the number of resolvable galactic binaries, and the accuracy to which key parameters of these systems can be measured.

  8. NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Kakar, Ramesh; Zipser, Edward; Heymsfield, Gerald; Albers, Cerese; Brown, Shannon; Durden, Stephen; Guimond, Stephen; Halverson, Jeffery; Heymsfield, Andrew; hide

    2013-01-01

    In August–September 2010, NASA, NOAA, and the National Science Foundation (NSF) conducted separate but closely coordinated hurricane field campaigns, bringing to bear a combined seven aircraft with both new and mature observing technologies. NASA's Genesis and Rapid Intensification Processes (GRIP) experiment, the subject of this article, along with NOAA's Intensity Forecasting Experiment (IFEX) and NSF's Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment, obtained unprecedented observations of the formation and intensification of tropical cyclones. The major goal of GRIP was to better understand the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. A key focus of GRIP was the application of new technologies to address this important scientific goal, including the first ever use of the unmanned Global Hawk aircraft for hurricane science operations. NASA and NOAA conducted coordinated flights to thoroughly sample the rapid intensification (RI) of Hurricanes Earl and Karl. The tri-agency aircraft teamed up to perform coordinated flights for the genesis of Hurricane Karl and Tropical Storm Matthew and the non-redevelopment of the remnants of Tropical Storm Gaston. The combined GRIP–IFEX–PREDICT datasets, along with remote sensing data from a variety of satellite platforms [Geostationary Operational Environmental Satellite (GOES), Tropical Rainfall Measuring Mission (TRMM), Aqua, Terra, CloudSat, and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)], will contribute to advancing understanding of hurricane formation and intensification. This article summarizes the GRIP experiment, the missions flown, and some preliminary findings.

  9. Navigating Without Road Maps: The Early Business of Automobile Route Guide Publishing in the United States

    NASA Astrophysics Data System (ADS)

    Bauer, John T.

    2018-05-01

    In the United States, automobile route guides were important precursors to the road maps that Americans are familiar with today. Listing turn-by-turn directions between cities, they helped drivers navigate unmarked, local roads. This paper examines the early business of route guide publishing through the Official Automobile Blue Book series of guides. It focuses specifically on the expansion, contraction, and eventual decline of the Blue Book publishing empire and also the work of professional "pathfinders" that formed the company's data-gathering infrastructure. Be- ginning in 1901 with only one volume, the series steadily grew until 1920, when thirteen volumes were required to record thousands of routes throughout the country. Bankruptcy and corporate restructuring in 1921 forced the publishers to condense the guide into a four-volume set in 1922. Competition from emerging sheet maps, along with the nationwide standardization of highway numbers, pushed a switch to an atlas format in 1926. Blue Books, however, could not remain competitive and disappeared after 1937. "Pathfinders" were employed by the publishers and equipped with reliable automobiles. Soon they developed a shorthand notation system for recording field notes and efficiently incorporating them into the development workflow. Although pathfinders did not call themselves cartographers, they were geographical data field collectors and considered their work to be an "art and a science," much the same as modern-day cartographers. The paper concludes with some comments about the place of route guides in the history of American commercial cartography and draws some parallels between "pathfinders" and the digital road mappers of today.

  10. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hechenblaikner, Gerald; Gerndt, Ruediger; Johann, Ulrich

    We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensormore » signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.« less

  12. Mars Pathfinder Landing Site and Surroundings

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Pathfinder landed on Mars on July 4, 1997, and continued operating until Sept. 27 of that year. The landing site is on an ancient flood plain of the Ares and Tiu outflow channels. The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took an image on Dec. 21, 2006, that provides unprecedented detail of the geology of the region and hardware on the surface.

    [figure removed for brevity, see original site] HiRISE Image This is the entire image. The crater at center bottom was unofficially named 'Big Crater' by the Pathfinder team. Its wall was visible from Pathfinder, located 3 kilometers (2 miles) to the north. The two bright features to the upper left of Big Crater are the 'Twin Peaks,' also observed by Pathfinder. The bright mound to the upper right of the Twin Peaks is 'North Knob,' seen in Pathfinder images as peaking over the horizon.

    At this scale there is no obvious geologic evidence of an ancient flood. Rather, impact craters dominate the scene, attesting to an old surface. The age is probably on the order of 1.8 billion to 3.5 billion years, when the Ares and Tiu floods are estimated to have occurred. Wind-formed linear ripples and dunes are seen throughout and are concentrated within craters. Sets of polygonal ridges of enigmatic origin are seen east of the Pathfinder lander. Rocks are visible over the entire image, with heavy concentrations near fresh-looking craters. Most of them are probably blocks tossed outward by crater-forming impacts.

    The complete image is centered at 19.1 degrees north latitude, 326.8 degrees east longitude. The range to the target site was 284.7 kilometers (177.9 miles). At this distance the image scale is 28.5 centimeters (11 inches) per pixel, so objects about 85 centimeters (33 inches) across are resolved. The image shown here has been map-projected to 25 centimeters (10 inches) per pixel. North is up. The image was taken at a local Mars time of 3:35 p.m., and the scene is illuminated from the west with a solar incidence angle of 52 degrees, thus the sun was about 38 degrees above the horizon. At a solar longitude of 154.0 degrees, the season on Mars is northern summer.

    [figure removed for brevity, see original site] Landing Site Region This is a close-up of the area in the vicinity of the Pathfinder landing site. Major features are named. The white box outlines the area of the image, discussed next, where hardware is seen.

    [figure removed for brevity, see original site] Hardware on the Surface This image shows the Pathfinder lander on the surface. Zooming in, one can discern the ramps, science deck, and portions of the airbags on the Pathfinder lander. (See next image for closer view.) The back shell and parachute are to the south, and four features that may be portions of the heat shield are identified. Two of these were visible from Pathfinder. At the time of that mission, the nearest object was provisionally identified as the back shell. However, analysis of the HiRISE image and reinterpretation of Pathfinder images, plus an improved understanding of how hardware looks on the Martian surface based on ground-level and orbital images of the Mars Exploration Rover landing sites, indicate that the glint is bright enough that it may be insulating material from inside the heat shield. The back shell and parachute were out of sight behind a ridge from Pathfinder's ground view. One of the three bright features, identified as heat shield debris, was also identified during the Pathfinder mission.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Annotated Version Unannotated Version Topographic Map of Landing Site Region Portions of the HiRISE image are overlaid onto color-coded topographic maps constructed by the U.S. Geological Survey from stereo images acquired by the Imager for Mars Pathfinder on the lander. The white feature at the center is Pathfinder lander. The scales on the x and y axes are in meters, with the lander as the zero point. The color code for elevation relative to the lander is different in the left and right images, and shown in meters underneath each image. The correspondence between the overhead view revealed by HiRISE and the positions of topographic features inferred almost a decade ago from Pathfinder's horizontal view of the landscape is striking. The close-up on the right complements panoramas taken by the lander's camera, including the accompanying composite version showing the Sojourner rover at various locations it reached during the mission.

    [figure removed for brevity, see original site] Mars Pathfinder Gallery Panorama This version of the Gallery Panorama taken with the lander's Imager for Mars Pathfinder camera shows many of the locations where the mission's Sojourner rover ended a Martian day during the 12-week mission. (There was only one Sojourner. The image is a composite.) One annotation indicates the last known position of Sojourner, near the rock 'Chimp,' at the time of the final data transmission from the lander. The location labeled 'Sojourner?' has been tentatively identified as the current position of the rover based on comparison of the ground-level view with the Dec. 21, 2006, image from NASA's Mars Reconnaissance Orbiter. At the proposed current location of the rover, a feature can be discerned in the 2006 orbital image that is about the right size for Sojourner and wasn't present when the Gallery Panorama was taken. Some rocks and other features that can be identified in the orbiter's high-resolution view are labeled in this ground-level view.

    [figure removed for brevity, see original site] Topographic Perspective of Landing Site Region) This is a perspective view based on the topographic map and artificial color derived from Pathfinder and other data. The vertical scale is exaggerated by a factor of three, compared with horizontal dimensions. The white feature at center is the Pathfinder lander. It appears flat because the topographic map derived from the Imager for Mars Pathfinder data did not include the spacecraft itself.

  13. MARS PATHFINDER LANDER REMOVED FROM SHIPPING CONTAINER IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the SAEF-2 spacecraft checkout facility at Kennedy Space Center, engineers and technicians from Jet Propulsion Laboratory remove the Mars Pathfinder lander from its shipping container, still covered in protective wrapping. Pictured from L-R, Linda Robeck, Jerry Gutierrez, Lorraine Garcia, Chuck Foehlinger of JPL. The arrival of the spacecraft at KSC from Pasadena, CA occurred on Aug. 13, 1996. Launch of Mars Pathfinder aboard a McDonnell Douglas Delta II rocket will occur from Pad B at Complex 17 on Dec. 2.

  14. MARS PATHFINDER AIR BAG INSTALLATION IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Jet Propulsion Laboratory (JPL) team installs air bags on the Mars Pathfinder lander. The four airbags will cushion the lander as it touches down on the Martian surface, protecting the delicate instruments and Surveyor small rover inside the tetrahedral-shaped lander. The Mars Pathfinder is one of two Mars-bound spacecraft being prepared for launch this fall. Liftoff is set for Dec. 2 at the beginning of a 24-day launch period.

  15. Pathfinder Innovation Projects

    EPA Pesticide Factsheets

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  16. A Review of Aerothermal Modeling for Mars Entry Missions

    NASA Technical Reports Server (NTRS)

    Wright, Michael J; Tang, Chun Y.; Edquist, Karl T.; Hollis, Brian R.; Krasa, Paul

    2009-01-01

    The current status of aerothermal analysis for Mars entry missions is reviewed. The aeroheating environment of all Mars missions to date has been dominated by convective heating. Two primary uncertainties in our ability to predict forebody convective heating are turbulence on a blunt lifting cone and surface catalysis in a predominantly CO2 environment. Future missions, particularly crewed vehicles, will encounter additional heating from shock-layer radiation due to a combination of larger size and faster entry velocity. Localized heating due to penetrations or other singularities on the aeroshell must also be taken into account. The physical models employed to predict these phenomena are reviewed, and key uncertainties or deficiencies inherent in these models are explored. Capabilities of existing ground test facilities to support aeroheating validation are also summarized. Engineering flight data from the Viking and Pathfinder missions, which may be useful for aerothermal model validation, are discussed, and an argument is presented for obtaining additional flight data. Examples are taken from past, present, and future Mars entry missions, including the twin Mars Exploration Rovers and the Mars Science Laboratory, scheduled for launch by NASA in 2011.

  17. The Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Damadeo, R. P.; Gasbarre, J. F.

    2017-12-01

    Stratospheric ozone has been the subject of observation and research for decades. Measurements from satellites provided data on the initial decline in the late 1970s and early 1980s that supported the adoption of the Montreal Protocol to current observations hinting at potential recovery. Adequate determination of that recovery requires continuous and, in the case of multiple instruments, overlapping data records. However, most current satellite systems are well beyond their expected lifetimes and thus, with only a few "younger" instruments available, we look towards the future of satellite observations of stratospheric ozone to develop the Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder. The SAGE IV Pathfinder project will develop and validate a technology demonstration that will pave the way for a future SAGE IV mission. Utilizing solar occultation imaging, SAGE IV will be capable of measuring ozone, aerosol, and other trace gas species with the same quality as previous SAGE instruments but with greatly improved pointing knowledge. Furthermore, current technological advancements allow SAGE IV to fit within a CubeSat framework and make use of commercial hardware, significantly reducing the size and cost when compared with traditional missions and enabling sustainability of future measurements.

  18. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3

  19. Detection and Characterization of Micrometeoroid Impacts on LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Hourihane, S.; Littenberg, T.; Baker, J. G.; Pagane, N.; Slutsky, J. P.; Thorpe, J. I.

    2017-12-01

    LISA Pathfinder (LPF) was a joint ESA/NASA technology demonstration mission for the Laser Interferometer Space Antenna (LISA) gravitational wave observatory. LPF, the most sensitive accelerometer ever flown in space, was launched in December 2015 and successfully concluded its mission in July 2017. Due in part to LPFs success, LISA was selected by the European Space Agency for launch in the early 2030s. An ancillary benefit of LPFs capabilities made it a sensitive detector of micrometeoroid impacts. We report on the capabilities of LPF to detect and characterize impacts, and progress towards using those inferences to advance our understanding of the micrometeoroid environment in the solar system. In doing so, we assess the prospect of space-based gravitational wave observatories as micrometeoroid detection instruments.

  20. ATIS Market Research: A Survey of Operational Tests and University and Government Research

    DOT National Transportation Integrated Search

    1994-03-01

    This report outlines research that examines the market for Advanced Traveler Information Systems (ATIS). The report includes detailed descriptions of Pathfinder, TravTek, and SmarTraveler ATIS operational tests. It includes basic background informati...

  1. Immersive Environments for Mission Operations: Beyond Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.

    1998-01-01

    Immersive environments are just beginning to be used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover.

  2. Pathfinder Innovation Projects: Awardees 2015

    EPA Pesticide Factsheets

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  3. Pathfinder Innovation Projects: Awardees 2016

    EPA Pesticide Factsheets

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  4. Photogrammetric analysis of horizon panoramas: The Pathfinder landing site in Viking orbiter images

    USGS Publications Warehouse

    Oberst, J.; Jaumann, R.; Zeitler, W.; Hauber, E.; Kuschel, M.; Parker, T.; Golombek, M.; Malin, M.; Soderblom, L.

    1999-01-01

    Tiepoint measurements, block adjustment techniques, and sunrise/sunset pictures were used to obtain precise pointing data with respect to north for a set of 33 IMP horizon images. Azimuth angles for five prominent topographic features seen at the horizon were measured and correlated with locations of these features in Viking orbiter images. Based on this analysis, the Pathfinder line/sample coordinates in two raw Viking images were determined with approximate errors of 1 pixel, or 40 m. Identification of the Pathfinder location in orbit imagery yields geological context for surface studies of the landing site. Furthermore, the precise determination of coordinates in images together with the known planet-fixed coordinates of the lander make the Pathfinder landing site the most important anchor point in current control point networks of Mars. Copyright 1999 by the American Geophysical Union.

  5. Yogi the rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. The soil in the foreground will be the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists will be able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder

    USGS Publications Warehouse

    Bell, J.F.; McSween, H.Y.; Crisp, J.A.; Morris, R.V.; Murchie, S.L.; Bridges, N.T.; Johnson, J. R.; Britt, D.T.; Golombek, M.P.; Moore, H.J.; Ghosh, A.; Bishop, J.L.; Anderson, R.C.; Brückner, J.; Economou, T.; Greenwood, J.P.; Gunnlaugsson, H.P.; Hargraves, R.M.; Hviid, S.; Knudsen, J.M.; Madsen, M.B.; Reid, R.; Rieder, R.; Soderblom, L.

    2000-01-01

    Mars Pathfinder obtained multispectral, elemental, magnetic, and physical measurements of soil and dust at the Sagan Memorial Station during the course of its 83 sol mission. We describe initial results from these measurements, concentrating on multispectral and elemental data, and use these data, along with previous Viking, SNC meteorite, and telescopic results, to help constrain the origin and evolution of Martian soil and dust. We find that soils and dust can be divided into at least eight distinct spectral units, based on parameterization of Imager for Mars Pathfinder (IMP) 400 to 1000 nm multispectral images. The most distinctive spectral parameters for soils and dust are the reflectivity in the red, the red/blue reflectivity ratio, the near-IR spectral slope, and the strength of the 800 to 1000 nm absorption feature. Most of the Pathfinder spectra are consistent with the presence of poorly crystalline or nanophase ferric oxide(s), sometimes mixed with small but varying degrees of well-crystalline ferric and ferrous phases. Darker soil units appear to be coarser-grained, compacted, and/or mixed with a larger amount of dark ferrous materials relative to bright soils. Nanophase goethite, akaganeite, schwertmannite, and maghemite are leading candidates for the origin of the absorption centered near 900 nm in IMP spectra. The ferrous component in the soil cannot be well-constrained based on IMP data. Alpha proton X-ray spectrometer (APXS) measurements of six soil units show little variability within the landing site and show remarkable overall similarity to the average Viking-derived soil elemental composition. Differences exist between Viking and Pathfinder soils, however, including significantly higher S and Cl abundances and lower Si abundances in Viking soils and the lack of a correlation between Ti and Fe in Pathfinder soils. No significant linear correlations were observed between IMP spectral properties and APXS elemental chemistry. Attempts at constraining the mineralogy of soils and dust using normative calculations involving mixtures of smectites and silicate and oxide minerals did not yield physically acceptable solutions. We attempted to use the Pathfinder results to constrain a number of putative soil and dust formation scenarios, including palagonitization and acid-fog weathering. While the Pathfinder soils cannot be chemically linked to the Pathfinder rocks by palagonitization, this study and McSween et al. [1999] suggest that palagonitic alteration of a Martian basaltic rock, plus mixture with a minor component of locally derived andesitic rock fragments, could be consistent with the observed soil APXS and IMP properties.

  7. The spatial data and knowledge gateways at the International Water Management Institute (IWMI)

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Biradar, C. M.; Noojipady, P.; Islam, A.; Velpuri, M.; Vithanage, J.; Kulawardhana, W.; Li, Yuan Jie; Dheeravath, V.; Gunasinghe, S.; Alankara, R.

    2006-10-01

    In this paper we discuss spatial data and knowledge base (SDKB) gateway portals developed by the International Water Management Institute (IWMI). Our vision is to generate and/or facilitate easy and free access to state-of-art SDKB of excellence globally. Our mission is to make SDKB accessible online, globally, for free. The IWMI data storehouse pathway (IWMIDSP; http://www.iwmidsp.org) is a pathfinder global public good (GPG) portal on remote sensing and GIS (RS/GIS) data and products with specific emphasis on river basin data, but also storing valuable data on Nations, Regions, and the World. A number of other specialty GPG portals have also been released. These include Global map of irrigated area (http://www.iwmigiam.org), Drought monitoring system for southwest Asia (http://dms.iwmi.org), Tsunami satellite sensor data catalogue (http://tsdc.iwmi.org), and Knowledge base system (KBS) for Sri Lanka (http://www.iwmikbs.org). The IWMIDSP has been the backbone of several other projects such as global irrigated area mapping, drought monitoring system, wetlands, and knowledge base systems. A discussion on these pathfinder web portals follow.

  8. Constraints, Approach, and Status of Mars Surveyor 2001 Landing Site Selection

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Briggs, G.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Soderblom, L.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities. Additional information is contained in the original extended abstract.

  9. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Frank, Harvey; Staniewicz, R. J.; Willson, John

    1996-01-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  11. MPF Lander Measured Surface Pressure

    NASA Image and Video Library

    1997-10-14

    In this figure from NASA's Mars Pathfinder, you can see a significant increase in pressure on Sol 81, Sept. 25 1997. This is an indication of a frontal system has moved across the landing sight. http://photojournal.jpl.nasa.gov/catalog/PIA00977

  12. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  13. Overhead View of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Planimetric (overhead view) map of the landing site, to a distance of 20 meters from the spacecraft. North is at the top in this and Plates 3-5. To produce this map, images were geometrically projected onto an assumed mean surface representing the ground. Features above the ground plane (primarily rocks) therefore appear displaced radially outward; the amount of distortion increases systematically with distance. The upper surfaces of the lander and rover also appear enlarged and displaced because of their height. Primary grid (white) is based on the Landing Site Cartographic (LSC) coordinate system, defined with X eastward, Y north, and Z up, and origin located at the mean ground surface immediately beneath the deployed position of the IMP camera gimbal center. Secondary ticks (cyan) are based on the Mars local level (LL) frame, which has X north, Y east, Z down, with origin in the center of the lander baseplate. Rover positions (including APXS measurements) are commonly reported in the LL frame. Yellow grid shows polar coordinates based on the LSC system. Cartographic image processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  14. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  15. Sojourner Sits Near "Rock Garden"

    NASA Image and Video Library

    2003-02-01

    The Mars Pathfinder Rover Sojourner images by the Imager for Mars Pathfinder as it nears the rock "Wedge." Part of the Rock Garden is visible in the upper right of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04318

  16. Analysis of Mars Pathfinder Entry Data, Aerothermal Heating, and Heat Shield Material Response

    NASA Technical Reports Server (NTRS)

    Milos, Frank; Chen, Y. K.; Tran, H. K.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Mars Pathfinder heatshield contained several thermocouples and resistance thermometers. A description of the experiment, the entry data, and analysis of the entry environment and material response is presented. In particular, the analysis addresses uncertainties of the data and the fluid dynamics and material response models. The calculations use the latest trajectory and atmosphere reconstructions for the Pathfinder entry. A modified version of the GIANTS code is used for CFD (computational fluid dynamics) analyses, and FIAT is used for material response. The material response and flowfield are coupled appropriately. Three different material response models are considered. The analysis of Pathfinder entry data for validation of aerothermal heating and material response models is complicated by model uncertainties and unanticipated data-acquisition and processing problems. We will discuss these issues as well as ramifications of the data and analysis for future Mars missions.

  17. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. AVHRR-Based Polar Pathfinder Products: Evaluation, Enhancement and Transition to MODIS

    NASA Technical Reports Server (NTRS)

    Fowler, Charles; Masalanik, James; Stone, Robert; Stroeve, Julienne; Emery, William

    2001-01-01

    The Advanced Very High Resolution Radiometer (AVHRR)-Based Polar Pathfinder (APP) products include calibrated AVHRR channel data, surface temperatures, albedo, satellite scan and solar geometries, and cloud mask, all composited into twice-per-day images, and daily averaged fields of sea ice motion, for regions poleward of 50 latitude. Our general goals under this grant: (1) Quantify the APP accuracy and sources of error by comparing Pathfinder products with field measurements; (2) Determine the consistency of mean fields and trends in comparison with longer time series of available station data and forecast model output; (3) Investigate the consistency of the products between the different AVHRR instruments over the 1982-present period of the NOAA program; and (4) Compare and annual cycle of the APP products with MODIS to establish a baseline for extending Pathfinder-type products into the new ESE period.

  19. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  20. Interactions of UNC-34 Enabled With Rac GTPases and the NIK Kinase MIG-15 in Caenorhabditis elegans Axon Pathfinding and Neuronal Migration

    PubMed Central

    Shakir, M. Afaq; Gill, Jason S.; Lundquist, Erik A.

    2006-01-01

    Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration. PMID:16204220

  1. Dark Energy and Gravity Experiment Explorer and Pathfinder

    NASA Astrophysics Data System (ADS)

    Chiow, S.-w.; Yu, N.

    2018-02-01

    We propose to utilize the unique gravity and vacuum environment in the orbits of the Deep Space Gateway for direct detections of dark energy using atom interferometers, and for pathfinder experiments for future gravitational wave and dark matter detections.

  2. X-37 CD Rom (Mini Business Card Version)

    NASA Technical Reports Server (NTRS)

    Stewart, Scotty

    2000-01-01

    The mini X-37 CD was developed as an educational tool for the public and commercial industry about the X-37 pathfinder vehicle program. This CD contains overview information about the X-37 program along with general vehicle system and technology description information.

  3. Injection of a Body into a Geodesic: Lessons Learnt from the LISA Pathfinder Case

    NASA Technical Reports Server (NTRS)

    Bortoluzzi, Daniele; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; hide

    2016-01-01

    Launch lock and release mechanisms constitute a common space business, however, some science missions due to very challenging functional and performance requirements need the development and testing of dedicated systems. In the LISA Pathfinder mission, a gold-coated 2-kg test mass must be injected into a nearly pure geodesic trajectory with a minimal residual velocity with respect to the spacecraft. This task is performed by the Grabbing Positioning and Release Mechanism, which has been tested on-ground to provide the required qualification. In this paper, we describe the test method that analyzes the main contributions to the mechanism performance and focuses on the critical parameters affecting the residual test mass velocity at the injection into the geodesic trajectory. The test results are also presented and discussed.

  4. Calibrating the system dynamics of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-06-01

    LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.

  5. Modis, SeaWIFS, and Pathfinder funded activities

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.

    1995-01-01

    MODIS (Moderate Resolution Imaging Spectrometer), SeaWIFS (Sea-viewing Wide Field Sensor), Pathfinder, and DSP (Digital Signal Processor) objectives are summarized. An overview of current progress is given for the automatic processing database, client/server status, matchup database, and DSP support.

  6. Design Overview of the DM Radio Pathfinder Experiment

    NASA Technical Reports Server (NTRS)

    Silva-Feaver, Maximiliano; Chaudhuri, Saptarshi; Cho, Hsaio-Mei; Dawson, Carl; Graham, Peter; Irwin, Kent; Kuenstner, Stephen; Li, Dale; Mardon, Jeremy; Moseley, Harvey; hide

    2016-01-01

    We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the differential SQUID readout circuit, the shielding, and the cryogenic mounting structure. We present the current status of the pathfinder experiment and illustrate it's potential science reach in the context of the larger experimental program.

  7. "Roadrunner Flats"

    NASA Image and Video Library

    1997-10-14

    This enhanced color image of the Pathfinder landing site shows the eastern horizon. The elongated, reddish, low contrast region in the distance is "Roadrunner Flats." This image was taken by the Imager for Mars Pathfinder (IMP). Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00979

  8. Strategy for selecting Mars Pathfinder landing sites

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kuzmin, Ruslin O.

    1994-01-01

    A strategy for Pathfinder site selection must be developed that is fundamentally different from most previous considerations. At least two approaches can be identified. In one approach, the objective is to select a site representing a key geologic unit on Mars, i.e., a unit that is widespread, easily recognized, and used frequently as a datum in various investigations. The second approach is to select a site that potentially affords access to a wide variety of rock types. Because rover range is limited, rocks from a variety of sources must be assembled in a small area for sampling. Regardless of the approach taken in site selection, the Pathfinder site should include eolian deposits and provisions should be made to obtain measurements on soils. A recommended approach for selecting the Mars Pathfinder landing site is to identify a deltaic deposit, composed of sediments derived from sources of various ages and geologic units that shows evidence of eolian activity. The site should be located as close as possible to the part of the outwash where rapid deposition occurred because the likelihood of 'sorting' by size and composition increases with distance, decreasing the probability of heterogeneity. In addition, it is recommended that field operation tests be conducted to gain experience and insight into conducting science with Pathfinder.

  9. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  10. Mobile Robot Localization by Remote Viewing of a Colored Cylinder

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Litwin, T.; Matthies, L.

    1995-01-01

    A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.

  11. The Pathfinder Mission for Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Baize, R. R.; Boyer, C.; Cageao, R.; Currey, C.; Fleming, G. A.; Jackson, T.; Johnson, D. G.; Leckey, J.; Liu, X.; Lukashin, C.; hide

    2016-01-01

    Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen.

  12. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  13. Exobiology opportunities from Discovery-class missions. [Abstract only

    NASA Technical Reports Server (NTRS)

    Meyer, Michael A.; Rummel, John D.

    1994-01-01

    Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and chemical evolution of organic matter on small planetary bodies. The following mission concepts are of particular interest to the Exobiology Program: Cometary coma chemical composition, comet nucleus tour, near earth asteroid returned sample, small missions to asteroids and comets, and solar wind sample return. The following three Discovery mission concepts that have been targeted for further consideration are relevant to the study of the evolution of biogenic compounds: Comet nucleus penetrator, mainbelt asteroid rendezvous explorer, and the Mars polar Pathfinder.

  14. Hardware Assessment in Support of the Dynamic Power Convertor Development Effort

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Oriti, Sal M.; Schifer, Nicholas A.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.

  15. Rock Abrasion on Mars: Clues from the Pathfinder and Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Parker, T. J.; Kramer, G. M.

    2000-01-01

    A significant discovery of the Mars Pathfinder (MPF) mission was that many rocks exhibit characteristics of ventifacts, rocks that have been sculpted by saltating particles. Diagnostic features identifying the rocks as ventifacts am elongated pits, flutes, and grooves (collectively referred to as "flutes" unless noted otherwise). Faceted rocks or rock portions, circular pits, rills, and possibly polished rock surfaces are also seen and could be due, to aeolian abrasion. Many of these features were initially identified in rover images, where spatial resolution generally exceeded that of the IMP (Imager for Mars Pathfinder) camera. These images had two major limitations: 1) Only a limited number of rocks were viewed by the rover, biasing flute statistics; and 2) The higher resolution obtained by the rover images and the lack of such pictures at the Viking landing sites hampered comparisons of rock morphologies between the Pathfinder and Viking sites. To avoid this problem, rock morphology and ventifact statistics have been examined using new "super-resolution" IMP and Viking Lander images. Analyses of these images show that: 1) Flutes are seen on about 50% or more of the rocks in the near field at the MPF site; 2) The orientation of these flutes is similar to that for flutes identified in rover images; and 3) Ventifacts are significantly more abundant at the Pathfinder landing site than at the two Viking Landing sites, where rocks have undergone only a limited amount of aeolian abrasion. This is most likely due to the ruggedness of the Pathfinder site and a greater supply of abrading particles available shortly after the Arcs and Tiu Valles outflow channel floods.

  16. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  17. Performance of active vibration control technology: the ACTEX flight experiments

    NASA Astrophysics Data System (ADS)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed spacecraft bus smart structures by developing over 20 new technologies. As pathfinders, experience was gained in the implications of space system analyses, verification tests, and for ways to leverage this technology to meet new satellite performance requirements.

  18. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  19. Curricular/Instructional Technology Resources.

    ERIC Educational Resources Information Center

    Roy, Loriene, Comp.

    Part of a larger report on the Four Directions Project, an American Indian technology innovation project, this section includes 10 "pathfinders" to locating information on learning and instructional technology resources. The pathfinders were designed by students in the Graduate School of Library and Information Science at the University…

  20. Internet Technology Resources.

    ERIC Educational Resources Information Center

    Roy, Loriene, Comp.

    Part of a larger report on the Four Directions Project, an American Indian technology innovation project, this section includes six "pathfinders" to locating information on Internet resources. The pathfinders were designed by students in the Graduate School of Library and Information Science at the University of Texas at Austin in…

  1. Cultural Themes.

    ERIC Educational Resources Information Center

    Roy, Loriene, Comp.

    Part of a larger report on the Four Directions Project, an American Indian technology innovation project, this section includes 10 "pathfinders" to locating information on Native American cultural themes. The pathfinders were designed by students in the Graduate School of Library and Information Science at the University of Texas at…

  2. Correspondence and Least Squares Analyses of Soil and Rock Compositions for the Viking Lander 1 and Pathfinder Sites

    NASA Technical Reports Server (NTRS)

    Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.

    2000-01-01

    Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.

  3. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  4. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Soil disturbance by airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Disturbance of the drift at the Pathfinder landing site reveals a shallow subsurface that is slightly darker but has similar spectral properties. The top set of images, in true color, shows the soils disturbed by the last bounce of the lander on its airbags before coming to rest and the marks created by retraction of the airbags. In the bottom set of images color differences have been enhanced. The mast at center is the Atmospheric Structure Instrument/Meteorology Package (ASI/MET). The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. A shadow of the ASI/MET appears on a rock at left.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    NASA Technical Reports Server (NTRS)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  8. PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment

    NASA Technical Reports Server (NTRS)

    Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.

    1995-01-01

    PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.

  9. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Holographic beam mapping of the CHIME pathfinder array

    NASA Astrophysics Data System (ADS)

    Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-François; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Johnson, Andre M.; Landecker, Tom L.; Masui, Kiyoshi W.; Mena Parra, Juan; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Recnik, Andre; Robishaw, Timothy; Shaw, J. Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald

    2016-08-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between z 0.8-2.5 CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.

  11. CloudSat system engineering: techniques that point to a future success

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Boain, R. J.; Lam, T.

    2002-01-01

    Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.

  12. Pathfinder, v6 n6, Nov/Dec 2008. Foundation Data and Technology

    DTIC Science & Technology

    2008-12-01

    Geospatial-Intelligence Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 -5003 8. PERFORMING ORGANIZATION REPORT...Communications 4600 Sangamore Road, Mail Stop D-54 Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil

  13. A Pathfinder for Animal Research and Animal Rights.

    ERIC Educational Resources Information Center

    Anderson, David C.

    1992-01-01

    This pathfinder was originally prepared for "Biomedical Research and Animal Rights," a session sponsored by the Veterinary Medical Libraries and Research Libraries Sections of the Medical Library Association. Current resources are described, from bibliographies to electronic bulletin boards, which relate to the issue of laboratory animal…

  14. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, S.

    2011-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload that will launch in early 2012. A larger sensitivity and dynamic range than currently available are needed in order to image faint X-rays from electron beams in the tenuous corona, particularly those near the coronal acceleration region and those that escape into interplanetary space. FOXSI combines nested, grazing-incidence replicated optics with double-sided silicon strip detectors to achieve a dynamic range of >100 and a sensitivity 100 times that of RHESSI. Advances in the fabrication and assembly of the optics at the NASA Marshall Space Flight Center provide a spatial resolution of 8 arcseconds (FWHM), while the silicon detectors, developed by the Astro-H team at ISAS/JAXA, offer an energy resolution of 0.4 keV. FOXSI's first flight will conduct a search for nonthermal electrons in the quiet Sun, possibly related to nanoflares. FOXSI will serve as a pathfinder for future space-based solar hard X-ray spectroscopic imagers, which will be able to image nonthermal electrons in flare acceleration sites and provide quantitative measurements such as energy spectra, densities, and energy content in accelerated electrons.

  15. The Focusing Optics X-ray Solar Imager

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, S.; Christe, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Saito, S.

    2011-05-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload that will launch in late 2011. A larger sensitivity and dynamic range than currently available are needed in order to image faint X-rays from electron beams in the tenuous corona, particularly those near any coronal acceleration region and those that escape into interplanetary space. FOXSI combines fast-replication, nested, grazing-incidence optics with double-sided silicon strip detectors to achieve a dynamic range of >100 and a sensitivity 100 times that of RHESSI. Advances in the fabrication and assembly of the optics at the NASA Marshall Space Flight Center provide a spatial resolution of 8 arcseconds, while the silicon detectors, developed by the Astro-H team at ISAS/JAXA, offer an energy resolution of 0.5 keV. FOXSI's first flight will be used to conduct a search for X-ray emission from nonthermal electron beams in quiet Sun nanoflares. In addition, FOXSI will serve as a pathfinder for future space-based solar hard X-ray spectroscopic imagers, which will be able to image nonthermal electrons in flare acceleration sites and provide quantitative measurements such as energy spectra, densities, and energy content in accelerated electrons.

  16. Is it feasible to pool funds for local children's services in England? Evidence from the national evaluation of children's trust pathfinders.

    PubMed

    Lorgelly, Paula; Bachmann, Max; Shreeve, Ann; Reading, Richard; Thorburn, June; Mugford, Miranda; O'Brien, Margaret; Husbands, Chris

    2009-01-01

    To describe how funds were pooled or otherwise jointly managed by National Health Service (NHS) primary care trusts and local authorities in England. To compare expenditure on local children's services by health, education and social services. We conducted a questionnaire survey of all 35 children's trust pathfinders, six months after they were launched, with a follow-up at 2.5 years. We also undertook an in-depth analysis of local authorities and primary care trusts, within eight pathfinder areas and three non-pathfinder areas, whereby we compared expenditure on children's services, interviewed managers and professionals and examined financial documents. Local authorities and NHS trusts coordinated expenditure in various ways, most commonly through informal agreements and aligning budgets but also by formally pooling budgets. The latter were usually for selected services such as child and adolescent mental health services, though four children's trusts pathfinders pooled (or aligned) their budgets for all children's services. Total expenditure per child was greatest for education, lowest for social services and intermediate for health. However, it was difficult to quantify education expenditure on children with health and social care needs, and health care expenditure on children. Sharing money for local children's services requires shared objectives, trust, and legal and accounting expertise. Several different mechanisms are permitted and many are feasible but programme budgeting for children's services could make them more effective.

  17. Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Conklin, J. W.

    2016-12-01

    The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at University of Florida used to test the performance of precision inertial sensors. We also plan to evaluate the importance of acceleration noise when a second inclined pair of satellites is included in the analysis, following the work of Weise in 2012, which showed that two satellite pairs decreased aliasing errors.

  18. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3

  19. The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    1999-01-01

    NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.

  20. Manufacturing and NDE of Large Composite Structures for Space Transportation at MSFC

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Russell, Sam

    2000-01-01

    This paper presents the Marshall Space Flight Center's (MSFC's) vision to manufacture, increase safety and reduce the cost of launch vehicles. Nondestructive evaluations of large composite structures are tested for space transportation at MSFC. The topics include: 1) 6 1/2 Generations of Airplanes in a Century; 2) Shuttle Safety Upgrades; 3) Generations of Reusable Launch Vehicles; 4) RLV Technology Demonstration Path; 5) Second Generation; 6) Key NASA Requirements; 7) X-33 Elements; 8) Future-X Pathfinder Projects and Experiments; 9) Focus Area Technical Goals; 10) X-34 Expanded View; 11) X-38 Spacecraft with De-Orbit Propulsion Stage (DPS); 12) Deorbit Module (DM) Critical Design Review (CDR) Design; 13) Forward Structural Adapter (FSA) CDR Design; 14) X-38 DPS CDR Design; 15) RLV Focused Propulsion Technologies; and 16) Challenges in Technology. This paper is presented in viewgraph form.

  1. The Pathfinder Microrover

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Bickler, D. B.; Braun, D. F.; Eisen, H. J.; Matthies, L. H.; Mishkin, A. H.; Stone, H. W.; van Nieuwstadt, L. M.; Wen, L. C.; Wilcox, B. H.; hide

    1996-01-01

    An exciting scientific component of the Pathfinder mission is the rover, which will act as a mini-field geologist by providing us with access to samples for chemical analyses and close-up images of the Martian surface, performing active experiments to modify the surface and study the results, and exploring the landing site area.

  2. Pathfinders: An Intellectual Guide to Libraries.

    ERIC Educational Resources Information Center

    Jung, Claudia Ruediger; And Others

    Intended as an example for other college libraries, this collection of 38 pathfinders and bibliographies was developed by the reference staff of the Calvin Coolidge Library at Castleton State College, Vermont. Designed to present the types of literature available in particular subject fields and those works readily available in the Coolidge…

  3. Pathfinder Teaching and Learning Units.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Sea Grant Program.

    This collection of teaching units were selected from materials developed during the Operation Pathfinder Institutes (OPI) which took place in the Pacific region between 1994 and 1999. The institutes were intended to provide upper elementary and middle school science teachers with an opportunity to develop a deeper understanding of the marine…

  4. Sedimentary geomorphology of the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Rice, James W., Jr.; Parker, Timothy Jay

    1997-01-01

    The first landing on Mars in over 20 years will take place July 4, 1997, near te mouth of the Ares Vallis outflow channel located in southeastern Chryse Planitia. Mars Pathfinder, unlike Viking 1, is expected to land on a surface that has a distinct and unambiguous fluvial signature.

  5. Teacher Job Satisfaction: Lessons from the TSW Pathfinder Project

    ERIC Educational Resources Information Center

    Butt, Graham; Lance, Ann; Fielding, Antony; Gunter, Helen; Rayner, Steve; Thomas, Hywel

    2005-01-01

    Government policy assumes that modernization and remodelling will be effective as external intervention mechanisms to improve job satisfaction. Based on data collected as part of the evaluation of the "Transforming the School Workforce Pathfinder Project", an argument is presented here which suggests that internal management models may…

  6. Airbag Retraction

    NASA Image and Video Library

    1997-07-05

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT. http://photojournal.jpl.nasa.gov/catalog/PIA00618

  7. Pathfinders on Black Dance in America.

    ERIC Educational Resources Information Center

    Roy, Loriene, Ed.

    This is a compilation of 18 pathfinders (i.e., a bibliographic instruction aid) on black dance in America, prepared by graduate students in the "Information Resources in the Humanities" and the "Information Resources in the Social Sciences" classes in the Graduate School of Library and Information Science at the University of…

  8. Mechanical design of the Mars Pathfinder mission

    NASA Technical Reports Server (NTRS)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  9. Pathfinder, Volume 7. Number 4, Jul/Aug 2009. GEOINT in Action

    DTIC Science & Technology

    2009-08-01

    Rd,Bethesda,MD, 20816 -5003 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...Communications 4600 Sangamore Road, Mail Stop D-39 Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil

  10. Pathfinder, v6 n3, May/Jun 2008. Unifying the Intelligence Profession

    DTIC Science & Technology

    2008-06-01

    ADDRESS(ES) National Geospatial-Intelligence Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 -5003 8. PERFORMING...Sangamore Road, Mail Stop D-54 Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil Director Vice Adm. Robert

  11. Pathfinder, v6 n5, Sep/Oct 2008. Shielding Our Home and Nation

    DTIC Science & Technology

    2008-10-01

    Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 -5003 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING... 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil Director Vice Adm. Robert B. Murrett, U.S. Navy Deputy Director

  12. The Twin Peaks in 3-D, as Viewed by the Mars Pathfinder IMP Camera

    NASA Image and Video Library

    1997-11-04

    Twin Peaks are modest-size hills to the southwest of NASA Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997. 3D glasses are necessary to identify surface detail.

  13. Pathfinder, Volume 7, Number 3, May/June 2009. A Historic Role

    DTIC Science & Technology

    2009-06-01

    Intelligence System (DMIGS) into service. These self- contained vehicles represent “NGA on wheels” and can travel to any and all National Special Security...never had any formal military training, but with Hogarth’s interces - sion, he received a commission as a second lieutenant interpreter in the British

  14. Summary Report for Personal Chemical Exposure Informatics: Visualization and Exploratory Research in Simulations and Systems (PerCEIVERS)

    EPA Science Inventory

    EPA Research Pathfinder Innovation Projects (PIPs), an internal competition for Agency scientists, was launched in 2010 to solicit innovative research proposals that would help the Agency to advance science for sustainability. In 2011, of the 117 proposals received from almost 30...

  15. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.

  16. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov Websites

    Eyes for the Warfighter Actionable Intelligence for the Decision Maker Actionable Intelligence for the Decision Maker All Weather, Persistent, Optical Like All Weather, Persistent, Optical Like Real-time, High radar systems encompass the entire end-to-end connectivity needed for decision superiority to ensure

  17. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control mechanisms. In conjunction with these tests, the stowed sails were subjected to launch vibration and ascent vent tests. Other investments studied radiation effects on the solar sail materials, investigated spacecraft charging issues, developed shape measuring techniques and instruments, produced advanced trajectory modeling capabilities, and identified and resolved gossamer structure dynamics issues. Technology validation flight and application to a He1iophysics science mission is on the horizon.

  18. Fabrication of the HIAD Large-Scale Demonstration Assembly and Upcoming Mission Applications

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; Dinonno, J. M.; Cheatwood, F M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  19. Fabrication of the HIAD Large-Scale Demonstration Assembly

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; DiNonno, J. M.; Cheatwood, F. M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  20. Dust Wind Tails Around Rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Sojourner rover's left front camera on Sol 32. The Pathfinder lander is at right and is about 9 meters away. Wind tails of dust are clearly seen extending from the left side of many of the small rocks in the foreground. The large rocks on the horizon at left center are the next goal of Sojourner as it continues our exploration of Mars.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  1. HOWARD EISEN, JPL'S LEAD MECHANICAL TECHNICIAN, HOLDS MARS PATHFINDER 'SOJOURNER' ROVER 1:1 SCALE DU

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Mars Pathfinder 'Sojourner' rover l:l scale duplicate test vehicle is held by Howard Eisen, its lead mechanical technician from the Jet Propulsion Laboratory, with Kennedy Space Center's Vehicle Assembly Building looming in the background. The launch of NASA's Mars Pathfinder spacecraft aboard a McDonnell Douglas Delta II rocket is scheduled for Monday, Dec. 2, at 2:09:11 a.m. EST. This is a single instantaneous target launch time without a second opportunity on that day. Liftoff will occur from Pad B at Launch Complex 17 on Cape Canaveral Air Station, Fla. There is a 24-day launch opportunity which extends through Dec. 31.

  2. LISA Pathfinder: A Mission Status

    NASA Astrophysics Data System (ADS)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  3. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    NASA Astrophysics Data System (ADS)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  4. Pathfinders: Making a Way from Segregation to Community Life.

    ERIC Educational Resources Information Center

    O'Brien, Connie Lyle; Mount, Beth; O'Brien, John; Rosen, Fredda

    This paper describes the Pathfinders program in New York (New York), which works to facilitate the full integration of adults with developmental disabilities into workplaces and neighborhoods. The paper is organized around the question of whether students graduating from special education can find paid and volunteer work in community settings,…

  5. Do Integrated Children's Services Improve Children's Outcomes?: Evidence from England's Children's Trust Pathfinders

    ERIC Educational Resources Information Center

    O'Brien, Margaret; Bachmann, Max O.; Jones, Natalia R.; Reading, Richard; Thoburn, June; Husbands, Chris; Shreeve, Ann; Watson, Jacqueline

    2009-01-01

    Thirty-five children's trust pathfinders, local cross-sector partnerships, were introduced across England in 2003 to promote greater integration in children's services. Using administrative performance data, this paper tracks yearly trends in child service outputs and child well-being outcomes from 1997 to 2004 in these local areas, including the…

  6. Global Climate Change Pathfinder: A Guide to Information Resources. Second Edition.

    ERIC Educational Resources Information Center

    Pintozzi, Chestalene; Jones, Douglas E.

    This pathfinder is a guide to scientific and technical aspects of global climate change including meteorological and climatological aspects; biological, agricultural, and public policy implications; and the chemical processes involved. Sources are arranged by type of publication and include: (1) 10 reference sources; (2) 12 bibliographies; (3) 44…

  7. Pathfinder. Volume 8, Number 3, May/June 2010. Technology - Rendering an Ever-Clearer Picture

    DTIC Science & Technology

    2010-06-01

    Agency,Office of Corporate Communications,4600 Sangamore Road, Mail Stop D-54,Bethesda,MD, 20816 -5003 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil Director Vice Adm. Robert B. Murrett, U.S. Navy Deputy

  8. Wind Drifts at Viking 1 Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image is of so-called wind drifts seen at the Viking 1 landing site. These are somewhat different from the features seen at the Pathfinder site in two important ways. 1) These landforms have no apparent slip-or avalanche-face as do both terrestrial dunes and the Pathfinder features, and may represent deposits of sediment falling from the air, as opposed to dune sand, which 'hops' or saltates along the ground; 2) these features may indicate erosion on one side, because of the layering and apparent scouring on their right sides. They may, therefore have been deposited by a wind moving left to right, partly or weakly cemented or solidified by surface processes at some later time, then eroded by a second wind (right to left), exposing their internal structure.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  9. Statistical analysis of soil geochemical data to identify pathfinders associated with mineral deposits: An example from the Coles Hill uranium deposit, Virginia, USA

    USGS Publications Warehouse

    Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.

    2015-01-01

    Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.

  10. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain.

    PubMed

    Huang, Chia-Yi; Chu, Dachen; Hwang, Wei-Chao; Tsaur, Meei-Ling

    2012-11-01

    Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding. Copyright © 2012 Wiley Periodicals, Inc.

  11. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  12. Drosophila as a genetic and cellular model for studies on axonal growth

    PubMed Central

    Sánchez-Soriano, Natalia; Tear, Guy; Whitington, Paul; Prokop, Andreas

    2007-01-01

    One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth. PMID:17475018

  13. A Nonlinear, Six-Degree of Freedom Precision Formation Control Algorithm, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.

    2003-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.

  14. Model Checking JAVA Programs Using Java Pathfinder

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  15. Assessment of Mars Pathfinder landing site predictions

    USGS Publications Warehouse

    Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.

    1999-01-01

    Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer. Copyright 1999 by the American Geophysical Union.

  16. Formal Analysis of the Remote Agent Before and After Flight

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Lowry, Mike; Park, SeungJoon; Pecheur, Charles; Penix, John; Visser, Willem; White, Jon L.

    2000-01-01

    This paper describes two separate efforts that used the SPIN model checker to verify deep space autonomy flight software. The first effort occurred at the beginning of a spiral development process and found five concurrency errors early in the design cycle that the developers acknowledge would not have been found through testing. This effort required a substantial manual modeling effort involving both abstraction and translation from the prototype LISP code to the PROMELA language used by SPIN. This experience and others led to research to address the gap between formal method tools and the development cycle used by software developers. The Java PathFinder tool which directly translates from Java to PROMELA was developed as part of this research, as well as automatic abstraction tools. In 1999 the flight software flew on a space mission, and a deadlock occurred in a sibling subsystem to the one which was the focus of the first verification effort. A second quick-response "cleanroom" verification effort found the concurrency error in a short amount of time. The error was isomorphic to one of the concurrency errors found during the first verification effort. The paper demonstrates that formal methods tools can find concurrency errors that indeed lead to loss of spacecraft functions, even for the complex software required for autonomy. Second, it describes progress in automatic translation and abstraction that eventually will enable formal methods tools to be inserted directly into the aerospace software development cycle.

  17. KSC-2012-2337

    NASA Image and Video Library

    2012-04-16

    CAPE CANAVERAL, Fla. – It’s a full house on the tarmac at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida with the arrival of astronauts in T-38 jets, the “pathfinder” aircraft for space shuttle Discovery’s ferry flight and the Shuttle Carrier Aircraft with Discovery secured on its back. The astronauts are participating in the festivities related to the final departure of Discovery from Kennedy. The NASA C-9 pathfinder aircraft will fly about 100 miles ahead of Discovery to scout for the safest route between destinations. Its crew includes an SCA flight engineer who studies the weather patterns along the flight path to find a route free of rain and other turbulence. The carrier aircraft, also known as an SCA, is a Boeing 747 jet, originally manufactured for commercial use which was modified by NASA to transport the shuttles between destinations on Earth. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, and is assigned to all remaining ferry missions, delivering the shuttles to their permanent public display sites. After its arrival at Dulles, Discovery will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center on April 19. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Amanda Diller

  18. KSC-2009-1498

    NASA Image and Video Library

    2009-01-26

    VANDENBERG AIR FORCE BASE, Calif. -- The avionics are mated to stage 2 of the Taurus XL launch vehicle for the Orbiting Carbon Observatory at Vandenberg Air Force Base in California. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is scheduled for Feb. 23. Photo credit: NASA/VAFB

  19. How the OCLC CORC Service Is Helping Weave Libraries into the Web.

    ERIC Educational Resources Information Center

    Covert, Kay

    2001-01-01

    Describes OCLC's CORC (Cooperative Online Resource Catalog) service. As a state-of-the-art Web-based metadata creation system, CORC is optimized for creating bibliographic records and pathfinders for electronic resources. Discusses how libraries are using CORC in technical services, public services, and collection development and explains the…

  20. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

Top