Sample records for pathogen detection system

  1. Detection and treatment of chemical weapons and/or biological pathogens

    DOEpatents

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  2. Evaluation of 3M molecular detection system and ANSR pathogen detection system for rapid detection of salmonella from egg products

    USDA-ARS?s Scientific Manuscript database

    Loop-mediated isothermal amplification (LAMP) is a novel simple detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to evaluate the effectiveness of 3M Molecular Detection System (MDS) and ANSR Pathogen Det...

  3. Biosensors for plant pathogen detection.

    PubMed

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    PubMed

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  5. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    PubMed Central

    Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce

    2014-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394

  6. A novel sensitive pathogen detection system based on Microbead Quantum Dot System.

    PubMed

    Wu, Tzong-Yuan; Su, Yi-Yu; Shu, Wei-Hsien; Mercado, Augustus T; Wang, Shi-Kwun; Hsu, Ling-Yi; Tsai, Yow-Fu; Chen, Chung-Yung

    2016-04-15

    A fast and accurate detection system for pathogens can provide immediate measurements for the identification of infectious agents. Therefore, the Microbead Quantum-dots Detection System (MQDS) was developed to identify and measure target DNAs of pathogenic microorganisms and eliminated the need of PCR amplifications. This nanomaterial-based technique can detect different microorganisms by flow cytometry measurements. In MQDS, pathogen specific DNA probes were designed to form a hairpin structure and conjugated on microbeads. In the presence of the complementary target DNA sequence, the probes will compete for binding with the reporter probes but will not interfere with the binding between the probe and internal control DNA. To monitor the binding process by flow cytometry, both the reporter probes and internal control probes were conjugated with Quantum dots that fluoresce at different emission wavelengths using the click reaction. When MQDS was used to detect the pathogens in environmental samples, a high correlation coefficient (R=0.994) for Legionella spp., with a detection limit of 0.1 ng of the extracted DNAs and 10 CFU/test, can be achieved. Thus, this newly developed technique can also be applied to detect other pathogens, particularly viruses and other genetic diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Lab-on-a-chip modules for detection of highly pathogenic bacteria: from sample preparation to detection

    NASA Astrophysics Data System (ADS)

    Julich, S.; Kopinč, R.; Hlawatsch, N.; Moche, C.; Lapanje, A.; Gärtner, C.; Tomaso, H.

    2014-05-01

    Lab-on-a-chip systems are innovative tools for the detection and identification of microbial pathogens in human and veterinary medicine. The major advantages are small sample volume and a compact design. Several fluidic modules have been developed to transform analytical procedures into miniaturized scale including sampling, sample preparation, target enrichment, and detection procedures. We present evaluation data for single modules that will be integrated in a chip system for the detection of pathogens. A microfluidic chip for purification of nucleic acids was established for cell lysis using magnetic beads. This assay was evaluated with spiked environmental aerosol and swab samples. Bacillus thuringiensis was used as simulant for Bacillus anthracis, which is closely related but non-pathogenic for humans. Stationary PCR and a flow-through PCR chip module were investigated for specific detection of six highly pathogenic bacteria. The conventional PCR assays could be transferred into miniaturized scale using the same temperature/time profile. We could demonstrate that the microfluidic chip modules are suitable for the respective purposes and are promising tools for the detection of bacterial pathogens. Future developments will focus on the integration of these separate modules to an entire lab-on-a-chip system.

  8. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    PubMed

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  9. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins

    PubMed Central

    Bai, Jaewoo; Kim, You-Tae; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs) from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods. PMID:27092128

  11. Integrated microfluidic system with automatic sampling for permanent molecular and antigen-based detection of CBRNE-related pathogens

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Schattschneider, Sebastian; Klemm, Richard; Hlawatsch, Nadine; Gärtner, Claudia

    2015-03-01

    The continuous monitoring of the environment for lethal pathogens is a central task in the field of biothreat detection. Typical scenarios involve air-sampling in locations such as public transport systems or large public events and a subsequent analysis of the samples by a portable instrument. Lab-on-a-chip technologies are one of the promising technological candidates for such a system. We have developed an integrated microfluidic system with automatic sampling for the detection of CBRNE-related pathogens. The chip contains a two-pronged analysis strategy, on the one hand an immunological track using antibodies immobilized on a frit and a subsequent photometric detection, on the other hand a molecular biology approach using continuous-flow PCR with a fluorescence end-point detection. The cartridge contains two-component molded rotary valve to allow active fluid control and switching between channels. The accompanying instrument contains all elements for fluidic and valve actuation, thermal control, as well as the two detection modalities. Reagents are stored in dedicated reagent packs which are connected directly to the cartridge. With this system, we have been able to demonstrate the detection of a variety of pathogen species.

  12. Design and Elementary Evaluation of a Highly-Automated Fluorescence-Based Instrument System for On-Site Detection of Food-Borne Pathogens

    PubMed Central

    Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping

    2017-01-01

    A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 102–103 CFU·mL−1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens. PMID:28241478

  13. Design and Elementary Evaluation of a Highly-Automated Fluorescence-Based Instrument System for On-Site Detection of Food-Borne Pathogens.

    PubMed

    Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping

    2017-02-23

    A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 10²-10³ CFU·mL -1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens.

  14. A microsensor for the detection of a single pathogenic bacterium using magnetotactic bacteria-based bio-carriers: simulations and preliminary experiments.

    PubMed

    Denomme, Ryan C; Lu, Zhao; Martel, Sylvain

    2007-01-01

    The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.

  15. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems.

    PubMed

    Bauer, Beth A; Besch-Williford, Cynthia; Livingston, Robert S; Crim, Marcus J; Riley, Lela K; Myles, Matthew H

    2016-11-01

    Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals.

  16. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems

    PubMed Central

    Bauer, Beth A; Besch-Williford, Cynthia; Livingston, Robert S; Crim, Marcus J; Riley, Lela K; Myles, Matthew H

    2016-01-01

    Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals. PMID:27931317

  17. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System.

    PubMed

    Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li

    2017-09-20

    The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.

  18. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  19. APDS: Autonomous Pathogen Detection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, R G; Brown, S; Burris, L

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS,more » a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.« less

  20. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  1. A distributed national network for label-free rapid identification of emerging pathogens

    NASA Astrophysics Data System (ADS)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  2. Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens

    USDA-ARS?s Scientific Manuscript database

    The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...

  3. Tracking serum antibody response to viral antigens with arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Mace, Charles R.; Rose, Robert C.; Miller, Benjamin L.

    2009-02-01

    Arrayed Imaging Reflectometry, or "AIR", is a new label-free technique for detecting proteins that relies on bindinginduced changes in the response of an antireflective coating on the surface of a silicon ship. Because the technique provides high sensitivity, excellent dynamic range, and readily integrates with standard silicon wafer processing technology, it is an exceptionally attractive platform on which to build systems for detecting proteins in complex solutions. In our early research, we used AIR chips bearing secreted receptor proteins from enteropathogenic E. coli to develop sensors for this pathogen. Recently, we have been exploring an alternative strategy: Rather than detecting the pathogen directly, can one immobilize antigens from a pathogen, and employ AIR to detect antibody responses to those antigens? Such a strategy would provide enhanced sensitivity for pathogen detection (as the immune system essentially amplifies the "signal" caused by the presence of an organism to which it responds), and would also potentially prove useful in the process of vaccine development. We describe herein preliminary results in the application of such a strategy to the detection of antibodies to human papillomavirus (HPV).

  4. Evaluation of commercially prepared transport systems for nonlethal detection of Aeromonas salmonicida in salmonid fish

    USGS Publications Warehouse

    Cipriano, R.C.; Bullock, G.L.

    2001-01-01

    In vitro studies indicated that commercially prepared transport systems containing Amies, Stuart's, and Cary-Blair media worked equally well in sustaining the viability of the fish pathogen Aeromonas salmonicida, which causes furunculosis. The bacterium remained viable without significant increase or decrease in cell numbers for as long as 48 h of incubation at 18-20??C in Stuart's transport medium; consequently, obtaining mucus samples in such tubes were comparable to on-site detection of A. salmonicida by dilution plate counts on Coomassie Brilliant Blue agar. In three different assays of 100 samples of mucus from Atlantic salmon Salmo salar infected subclinically with A. salmonicida, dilution counts conducted on-site proved more reliable for detecting the pathogen than obtaining the samples in the transport system. In the on-site assays, dilution counts detected the pathogen in 34, 41, and 22 samples, whereas this was accomplished in only 15, 15, and 3 of the respective samples when the transport system was used. In an additional experiment, Arctic char Salvelinus alpinus sustaining a frank epizootic of furunculosis were sampled similarly. Here, too, dilution counts were more predictive of the prevalence of A. salmonicida and detected the pathogen in 46 mucus samples; in comparison, only 6 samples collected by using the transport system were positive. We also observed that the transport system supported the growth of the normal mucus bacterial flora. Particularly predominant among these were motile aeromonads and Pseudomonas fluorescens. In studies of mixed culture growth, two representatives of both of the latter genera of bacteria outgrew A. salmonicida - in some cases, to the total exclusion of the pathogen itself.

  5. Integrated optical biosensor system (IOBS)

    DOEpatents

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  6. Imperfect pathogen detection from non-invasive skin swabs biases disease inference

    USGS Publications Warehouse

    DiRenzo, Graziella V.; Grant, Evan H. Campbell; Longo, Ana; Che-Castaldo, Christian; Zamudio, Kelly R.; Lips, Karen

    2018-01-01

    1. Conservation managers rely on accurate estimates of disease parameters, such as pathogen prevalence and infection intensity, to assess disease status of a host population. However, these disease metrics may be biased if low-level infection intensities are missed by sampling methods or laboratory diagnostic tests. These false negatives underestimate pathogen prevalence and overestimate mean infection intensity of infected individuals. 2. Our objectives were two-fold. First, we quantified false negative error rates of Batrachochytrium dendrobatidis on non-invasive skin swabs collected from an amphibian community in El Copé, Panama. We swabbed amphibians twice in sequence, and we used a recently developed hierarchical Bayesian estimator to assess disease status of the population. Second, we developed a novel hierarchical Bayesian model to simultaneously account for imperfect pathogen detection from field sampling and laboratory diagnostic testing. We evaluated the performance of the model using simulations and varying sampling design to quantify the magnitude of bias in estimates of pathogen prevalence and infection intensity. 3. We show that Bd detection probability from skin swabs was related to host infection intensity, where Bd infections < 10 zoospores have < 95% probability of being detected. If imperfect Bd detection was not considered, then Bd prevalence was underestimated by as much as 16%. In the Bd-amphibian system, this indicates a need to correct for imperfect pathogen detection caused by skin swabs in persisting host communities with low-level infections. More generally, our results have implications for study designs in other disease systems, particularly those with similar objectives, biology, and sampling decisions. 4. Uncertainty in pathogen detection is an inherent property of most sampling protocols and diagnostic tests, where the magnitude of bias depends on the study system, type of infection, and false negative error rates. Given that it may be difficult to know this information in advance, we advocate that the most cautious approach is to assume all errors are possible and to accommodate them by adjusting sampling designs. The modeling framework presented here improves the accuracy in estimating pathogen prevalence and infection intensity.

  7. Technical Evaluation: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System.

    PubMed

    Kinoshita, Moritoshi; Higashihara, Eiji; Kawano, Haruna; Higashiyama, Ryo; Koga, Daisuke; Fukui, Takafumi; Gondo, Nobuhisa; Oka, Takehiko; Kawahara, Kozo; Rigo, Krisztina; Hague, Tim; Katsuragi, Kiyonori; Sudo, Kimiyoshi; Takeshi, Masahiko; Horie, Shigeo; Nutahara, Kikuo

    2016-01-01

    Genetic testing of PKD1 and PKD2 is expected to play an increasingly important role in determining allelic influences in autosomal dominant polycystic kidney disease (ADPKD) in the near future. However, to date, genetic testing is not commonly employed because it is expensive, complicated because of genetic heterogeneity, and does not easily identify pathogenic variants. In this study, we developed a genetic testing system based on next-generation sequencing (NGS), long-range polymerase chain reaction, and a new software package. The new software package integrated seven databases and provided access to five cloud-based computing systems. The database integrated 241 polymorphic nonpathogenic variants detected in 140 healthy Japanese volunteers aged >35 years, who were confirmed by ultrasonography as having no cysts in either kidney. Using this system, we identified 60 novel and 30 known pathogenic mutations in 101 Japanese patients with ADPKD, with an overall detection rate of 89.1% (90/101) [95% confidence interval (CI), 83.0%-95.2%]. The sensitivity of the system increased to 93.1% (94/101) (95% CI, 88.1%-98.0%) when combined with multiplex ligation-dependent probe amplification analysis, making it sufficient for use in a clinical setting. In 82 (87.2%) of the patients, pathogenic mutations were detected in PKD1 (95% CI, 79.0%-92.5%), whereas in 12 (12.8%) patients pathogenic mutations were detected in PKD2 (95% CI, 7.5%-21.0%); this is consistent with previously reported findings. In addition, we were able to reconfirm our pathogenic mutation identification results using Sanger sequencing. In conclusion, we developed a high-sensitivity NGS-based system and successfully employed it to identify pathogenic mutations in PKD1 and PKD2 in Japanese patients with ADPKD.

  8. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex.

    PubMed

    Kishimoto, Mai; Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Hasebe, Ayako; Otsu, Keiko; Sugimura, Satoshi; Kobayashi, Suguru; Komatsu, Natsumi; Nagai, Makoto; Omatsu, Tsutomu; Naoi, Yuki; Sano, Kaori; Okazaki-Terashima, Sachiko; Oba, Mami; Katayama, Yukie; Sato, Reiichiro; Asai, Tetsuo; Mizutani, Tetsuya

    2017-03-18

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.

  9. Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR.

    PubMed

    Nikitin, M M; Statsyuk, N V; Frantsuzov, P A; Dzhavakhiya, V G; Golikov, A G

    2018-03-01

    Create a method for highly sensitive, selective, rapid and easy-to-use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously. Test-systems for real-time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test-systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA ® amplifier. Preloaded 30-reaction micromatrices having shelf life of 3 and 6 months (for RNA- and DNA-based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg). The accurate, rapid and user-friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies. © 2018 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  10. Programmed Pathogen Sense and Destroy Circuits

    DTIC Science & Technology

    2009-02-18

    detection and the peptide-mediated Com QS system of Bacillus subtilis for gram-positive detection. Together these two prototype sentinel circuits cover a...and E. coli. We are currently in the process of constructing receivers for a gram-positive pathogen, Bacillus subtilis . Gram-negative...QS signals. Figure 11: Gram positive QS systems. Agr QS of Staphylococcus aureus (left) and Com QS of Bacillus subtilis . Following the successful

  11. Microfluidics-based integrated airborne pathogen detection systems

    NASA Astrophysics Data System (ADS)

    Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob

    2006-09-01

    Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.

  12. Amoeba-related health risk in drinking water systems: could monitoring of amoebae be a complementary approach to current quality control strategies?

    PubMed

    Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi

    2012-01-01

    Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.

  13. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Mohd Nasori, Khairul Nazrin; Chew, Li Lee; Chong, Ving Ching; Thong, Kwai Lin; Chai, Lay Ching

    2014-06-15

    The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  15. A net fishing enrichment strategy for colorimetric detection of E. coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    The strict regulatory requirements for pathogen monitoring in food systems to ensure safety demands that the detection method can recognize small numbers of pathogens. Although significant efforts on the development of biosensors have been reported with marked improvement in sensitivity, appropriate...

  16. A microfluidic platform with integrated arrays for immunologic assays for biological pathogen detection

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Becker, Holger; Hlawatsch, Nadine; Julich, Sandra; Miethe, Peter; Moche, Christian; Schattschneider, Sebastian; Tomaso, Herbert; Gärtner, Claudia

    2014-05-01

    The ability to integrate complete assays on a microfluidic chip helps to greatly simplify instrument requirements and allows the use of lab-on-a-chip technology in the field. A core application for such field-portable systems is the detection of pathogens in a CBRN scenario such as permanent monitoring of airborne pathogens, e.g. in subway stations or hospitals etc. An immunological assay was chosen as method for the pathogen identification. The conceptual approach was its realization as a lab-on-a-chip system, enabling an easy handling of the sample in an automated manner. The immunological detection takes place on an antibody array directly implemented in the microfluidic network. Different immobilization strategies will be presented showing the performance of the system. Central elements of the disposable microfluidic device like fluidic interface, turning valves, liquid introduction and waste storage, as well as the architecture of measurement and control fluidic network, will be introduced. Overall process times of about 30 minutes were achieved and assays for the detection of Francisella tularensis and Yersinia pestis are presented. An important feature of the integrated lab-on-a-chip approach is that all waste liquids remain on-chip and contamination risks can be avoided.

  17. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  18. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens.

    PubMed

    Monzó, Javier; Insua, Ignacio; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2015-11-07

    Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.

  19. Real-time and rapid detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance setup

    NASA Astrophysics Data System (ADS)

    Lukose, Jijo; Shetty, Vignesh; Ballal, Mamatha; Chidangil, Santhosh; Sinha, Rajeev K.

    2018-07-01

    Cost-effective diagnostic platforms for rapid pathogen detection are always incumbent in both developing and developed worlds. However, exorbitant diagnostic expenses and the inability to detect pathogens early are a matter of concern for the sustainability and affordability of healthcare devices, which are crucial for deciding how to provide healthcare solutions to the masses, especially in developing countries. Herein, we present the rapid and real-time detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance (SPR) imaging set up. Pathogen detection is accomplished with the aid of a monoclonal antibody immobilized on a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide): N-hydroxysuccinimide-modified self-assembled monolayer covalently bonded to a Au thin film. Successful pathogen detection is performed at two concentrations, ~1.5  ×  108 and ~1  ×  106 cfu ml‑1, in phosphate-buffered saline solution. The developed system is capable of detecting bacterial cells within 6–7 min after their injection into the SPR sensor surface. The present study reveals a cost-effective device having high potential for pathogen detection without any labelling tags.

  20. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  1. Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong

    2015-08-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.

  2. DETECTION AND ENUMERATION OF PATHOGENS AND INDICATOR MICROORGANISMS

    EPA Science Inventory

    Pathogenic microorganisms are routinely discharged to collection systems throughout the world along with a myriad of commensal organisms, organic and inorganic wastes. It is not surprising then that the density of any given pathogen is relatively small in relationship to the popu...

  3. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    NASA Astrophysics Data System (ADS)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  4. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  5. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  6. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems

    PubMed Central

    van den Bosch, Frank; Gottwald, Timothy R.; Alonso Chavez, Vasthi

    2017-01-01

    The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled. PMID:28846676

  7. Lab-on-a-Chip Pathogen Sensors for Food Safety

    PubMed Central

    Yoon, Jeong-Yeol; Kim, Bumsang

    2012-01-01

    There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors. PMID:23112625

  8. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of magnetic microdiscs for bacterial pathogen detection

    NASA Astrophysics Data System (ADS)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  10. Advanced biosensors for detection of pathogens related to livestock and poultry.

    PubMed

    Vidic, Jasmina; Manzano, Marisa; Chang, Chung-Ming; Jaffrezic-Renault, Nicole

    2017-02-21

    Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.

  11. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens.

    PubMed

    Bokhari, Habib

    2018-03-07

    Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.

  13. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease preventionmore » and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.« less

  14. Occurrence of Opportunistic Pathogens Legionella Pneumophilaand Non-tuberculous Mycobacteria in Hospital Plumbing Systems

    EPA Science Inventory

    Opportunistic premise plumbing pathogens (OPPPs) such as Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are frequently detected in the plumbing systems of large buildings. The ability of these organisms to form biofilms and to grow in phagocytic amoeba ar...

  15. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    PubMed

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples

    EPA Science Inventory

    Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...

  17. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation.

    PubMed

    Zhao, Xinyan; Dong, Tao; Yang, Zhaochu; Pires, Nuno; Høivik, Nils

    2012-02-07

    Waterborne pathogens usually pose a global threat to animals and human beings. There has been a growing demand for convenient and sensitive tools to detect the potential emerging pathogens in water. In this study, a lab-on-a-chip (LOC) device based on the real-time immuno-NASBA (immuno-nucleic acid sequence-based amplification) assay was designed, fabricated and verified. The disposable immuno-NASBA chip is modelled on a 96-well ELISA microplate, which contains 43 reaction chambers inside the bionic channel networks. All valves are designed outside the chip and are reusable. The sample and reagent solutions were pushed into each chamber in turn, which was controlled by the valve system. Notably, the immuno-NASBA chip is completely compatible with common microplate readers in a biological laboratory, and can distinguish multiple waterborne pathogens in water samples quantitatively and simultaneously. The performance of the LOC device was demonstrated by detecting the presence of a synthetic peptide, ACTH (adrenocorticotropic hormone) and two common waterborne pathogens, Escherichia coli (E. coli) and rotavirus, in artificial samples. The results indicated that the LOC device has the potential to quantify traces of waterborne pathogens at femtomolar levels with high specificity, although the detection process was still subject to some factors, such as ribonuclease (RNase) contamination and non-specific adsorption. As an ultra-sensitive tool to quantify waterborne pathogens, the LOC device can be used to monitor water quality in the drinking water system. Furthermore, a series of compatible high-throughput LOC devices for monitoring waterborne pathogens could be derived from this prototype with the same design idea, which may render the complicated immuno-NASBA assays convenient to common users without special training.

  18. Microbe Detector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The AutoMicrobic System (AMS) represents years of intensive research and development by McDonnell Douglas Corp. that originated with a NASA study aimed at development of a fully automated microbial detection and identification system for spacecraft use. A urine specimen is placed into the system, where it is subjected to different freeze-dried microbe nutrients for the nine most common pathogens. An electro-optical scanner studies each specimen once an hour through a 4-to-13 hour cycle, operating automatically. Changes in cell growths on each culture are monitored by computer. The presence of pathogens is indicated when growth reaches a predetermined level. The system also enumerates the pathogens and specifies the type. Developed initially to handle urine testing, AMS soon is expected to allow analyses of blood, spinal fluid, and other body fluids. An additional capability under development is "susceptibility testing," or the determination of which microbe-killing agents-such as penicillin or other antibiotics-would be most effective in eliminating the pathogens. The whole process of detecting, identifying, and enumerating the pathogens and determining susceptibility is accomplished in less half the time required for the manual procedure. The AMS minimizes human error, reduces technician time , and increases laboratory output.

  19. Microbial Indicators, Pathogens, and Antibiotic Resistance in Groundwater Impacted by Animal Farming: Field Scale to Basin Scale

    NASA Astrophysics Data System (ADS)

    Harter, T.; Li, X.; Atwill, E. R.; Packman, A. I.

    2015-12-01

    Several surveys of microbial indicators and pathogens were conducted to determine the impact of confined animal farming operations (CAFOs) on shallow, local, and regional groundwater quality in the Central Valley aquifer system, California. The aquifer system consists of highly heterogeneous, alluvial, unconsolidated coarse- to fine-grained sediments and is among the largest aquifers in the U.S.. Overlying landuse includes 3 million ha of irrigated agriculture and 1.7 million mature dairy cows in nearly 1,500 CAFOs. A multi-scale survey of water-borne indicator pathogens (Enterococcus spp. and generic E. coli) and of three water-borne pathogens (Campylobacter, Salmonella, and E. coli O157:H7) was conducted at five different spatial scales, increasing with distance from animal sources of these enteric microbial organisms: moist surfaces within individual CAFO sub-systems (calf-hutches, heifer corrals, mature cow stalls, hospital barn etc.), first encountered (shallow) groundwater immediately below these sub-systems, production aquifer below CAFOs, production aquifer near CAFOs, and production aquifer away from CAFOs. Where found, indicator pathogens were tested for antibiotic resistance. Hundreds of samples were collected at each scale: continuously during irrigation events and seasonally over a multi-year period at the three smaller site-scales; and in a one-time survey at the two larger, regional scales. All three pathogens were frequently detected in moist surface samples across CAFO sub-systems, albeit at concentrations several orders of magnitude lower than enteric indicators. Two of the three pathogens (but not Campylobacter) were also detected in first encountered groundwater, at 3-9 m below ground surface, in 1% of samples. No pathogens were found at the production aquifer scales. Generic E. coli was detected in ¼ of first encountered groundwater samples, and in 4% of production aquifer samples, while Enterococcus spp. was ubiquitously present across the three site scales on CAFOs and in ¼ of production aquifer samples near and away from CAFOs. Two thirds of E. coli and five in six Enterococcus exhibited resistance to multiple (> 2) antibiotics. Field monitoring results are consistent with fate and transport modeling that accounts for heterogeneity in aquifer systems.

  20. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  1. Continuous-flow, microfluidic, qRT-PCR system for RNA virus detection.

    PubMed

    Fernández-Carballo, B Leticia; McBeth, Christine; McGuiness, Ian; Kalashnikov, Maxim; Baum, Christoph; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2018-01-01

    One of the main challenges in the diagnosis of infectious diseases is the need for rapid and accurate detection of the causative pathogen in any setting. Rapid diagnosis is key to avoiding the spread of the disease, to allow proper clinical decisions to be made in terms of patient treatment, and to mitigate the rise of drug-resistant pathogens. In the last decade, significant interest has been devoted to the development of point-of-care reverse transcription polymerase chain reaction (PCR) platforms for the detection of RNA-based viral pathogens. We present the development of a microfluidic, real-time, fluorescence-based, continuous-flow reverse transcription PCR system. The system incorporates a disposable microfluidic chip designed to be produced industrially with cost-effective roll-to-roll embossing methods. The chip has a long microfluidic channel that directs the PCR solution through areas heated to different temperatures. The solution first travels through a reverse transcription zone where RNA is converted to complementary DNA, which is later amplified and detected in real time as it travels through the thermal cycling area. As a proof of concept, the system was tested for Ebola virus detection. Two different master mixes were tested, and the limit of detection of the system was determined, as was the maximum speed at which amplification occurred. Our results and the versatility of our system suggest its promise for the detection of other RNA-based viruses such as Zika virus or chikungunya virus, which constitute global health threats worldwide. Graphical abstract Photograph of the RT-PCR thermoplastic chip.

  2. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems.

    PubMed

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit

    2016-08-15

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate quantification of small amounts of viable, aerosolized bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Detection of plant quarantine pathogen Ralstonia solanacearum r3b2 with portable POCKIT™ and BLItz® systems

    USDA-ARS?s Scientific Manuscript database

    Ralstonia solanacearum (Rs) race 3 biovar 2 (r3b2) is designated as a quarantine pathogen in many countries and additionally as a Select Agent in the United States. Rapid, sensitive and accurate detection methods are urgently needed. We report here the development of two portable platforms for r3b...

  4. Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms.

    PubMed

    Fischer, Nicholas O; Tarasow, Theodore M; Tok, Jeffrey B-H

    2007-03-01

    Rapid and efficient sensors are essential for effective defense against the emerging threat of bioterrorism and biological warfare. This review article describes several recent immunosensing advances that are relevant to biothreat detection. These highly diverse examples are intended to demonstrate the breadth of these immunochemical sensing systems and platforms while highlighting those technologies that are suitable for pathogen detection.

  5. Real-time pathogen monitoring during enrichment: a novel nanotechnology-based approach to food safety testing.

    PubMed

    Weidemaier, Kristin; Carruthers, Erin; Curry, Adam; Kuroda, Melody; Fallows, Eric; Thomas, Joseph; Sherman, Douglas; Muldoon, Mark

    2015-04-02

    We describe a new approach for the real-time detection and identification of pathogens in food and environmental samples undergoing culture. Surface Enhanced Raman Scattering (SERS) nanoparticles are combined with a novel homogeneous immunoassay to allow sensitive detection of pathogens in complex samples such as stomached food without the need for wash steps or extensive sample preparation. SERS-labeled immunoassay reagents are present in the cultural enrichment vessel, and the signal is monitored real-time through the wall of the vessel while culture is ongoing. This continuous monitoring of pathogen load throughout the enrichment process enables rapid, hands-free detection of food pathogens. Furthermore, the integration of the food pathogen immunoassay directly into the enrichment vessel enables fully biocontained food safety testing, thereby significantly reducing the risk of contaminating the surrounding environment with enriched pathogens. Here, we present experimental results showing the detection of E. coli, Salmonella, or Listeria in several matrices (raw ground beef, raw ground poultry, chocolate milk, tuna salad, spinach, brie cheese, hot dogs, deli turkey, orange juice, cola, and swabs and sponges used to sample a stainless steel surface) using the SERS system and demonstrate the accuracy of the approach compared to plating results. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform

    PubMed Central

    Renner, Lars D.; Zan, Jindong; Hu, Linda I.; Martinez, Manuel; Resto, Pedro J.; Siegel, Adam C.; Torres, Clint; Hall, Sara B.; Slezak, Tom R.

    2016-01-01

    ABSTRACT An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing. PMID:27986722

  7. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform.

    PubMed

    Renner, Lars D; Zan, Jindong; Hu, Linda I; Martinez, Manuel; Resto, Pedro J; Siegel, Adam C; Torres, Clint; Hall, Sara B; Slezak, Tom R; Nguyen, Tuan H; Weibel, Douglas B

    2017-02-15

    An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing. Copyright © 2017 Renner et al.

  8. Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis)measurement.

    PubMed

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo

    2018-01-09

    Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

  9. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System

    PubMed Central

    DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu

    2018-01-01

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557

  11. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection.

    PubMed

    Andresen, Dennie; von Nickisch-Rosenegk, Markus; Bier, Frank F

    2009-05-01

    The need for fast, specific and sensitive multiparametric detection methods is an ever growing demand in molecular diagnostics. Here we report on a newly developed method, the helicase dependent OnChip amplification (OnChip-HDA). This approach integrates the analysis and detection in one single reaction thus leading to time and cost savings in multiparametric analysis. HDA is an isothermal amplification method that is not depending on thermocycling as known from PCR due to the helicases' ability to unwind DNA double-strands. We have combined the HDA with microarray based detection, making it suitable for multiplex detection. As an example we used the OnChip HDA in single and multiplex amplifications for the detection of the two pathogens N. gonorrhoeae and S. aureus directly on surface bound primers. We have successfully shown the OnChip-HDA and applied it for single- and duplex-detection of the pathogens N. gonorrhoeae and S. aureus. We have developed a new method, the OnChip-HDA for the multiplex detection of pathogens. Its simplicity in reaction setup and potential for miniaturization and multiparametric analysis is advantageous for the integration in miniaturized Lab on Chip systems, e.g. needed in point of care diagnostics.

  12. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  13. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    PubMed Central

    Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.

    2017-01-01

    Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328

  14. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  15. Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection

    PubMed Central

    Diaz, Maureen H.; Waller, Jessica L.; Napoliello, Rebecca A.; Islam, Md. Shahidul; Wolff, Bernard J.; Burken, Daniel J.; Holden, Rhiannon L.; Srinivasan, Velusamy; Arvay, Melissa; McGee, Lesley; Oberste, M. Steven; Whitney, Cynthia G.; Schrag, Stephanie J.; Winchell, Jonas M.; Saha, Samir K.

    2013-01-01

    Identification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pathogens is challenging. The TaqMan Array Card (TAC) is a multiple-pathogen detection method that has previously been identified as a valuable technique for determining etiology of infections and holds promise for expanded use in clinical microbiology laboratories and surveillance studies. We selected TAC for use in the Aetiology of Neonatal Infection in South Asia (ANISA) study for identifying etiologies of severe disease in neonates in Bangladesh, India, and Pakistan. Here we report optimization of TAC to improve pathogen detection and overcome technical challenges associated with use of this technology in a large-scale surveillance study. Specifically, we increased the number of assay replicates, implemented a more robust RT-qPCR enzyme formulation, and adopted a more efficient method for extraction of total nucleic acid from blood specimens. We also report the development and analytical validation of ten new assays for use in the ANISA study. Based on these data, we revised the study-specific TACs for detection of 22 pathogens in NP/OP swabs and 12 pathogens in blood specimens as well as two control reactions (internal positive control and human nucleic acid control) for each specimen type. The cumulative improvements realized through these optimization studies will benefit ANISA and perhaps other studies utilizing multiple-pathogen detection approaches. These lessons may also contribute to the expansion of TAC technology to the clinical setting. PMID:23805203

  16. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  17. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    PubMed

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N.meningitidis, one H.influenzae, one L.monocytogenes). Besides, it is noteworthy that multiple pathogens were detected such as bacteria-virus combination in eight patients and two different bacteria in one patient. In the aseptic meningitis/encephalitis group, pathogens were detected in 14 out of 33 patients; single type of viruses in 11 patients (seven enterovirus, two HSV1, one HSV2, one VZV) and two different viruses were determined in three patients. These data suggest that multiplex PCR methods may increase the isolation rate of pathogens in central nervous system infections. Existence of mixed pathogen growth is remarkable in our study. Further studies are needed for the clinical relevance of this result.

  18. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    PubMed

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  19. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  20. Rapid Identification of Key Pathogens in Wound Infection by Molecular Means

    DTIC Science & Technology

    2006-01-01

    diagnosis and monitoring of infectious diseases [4]. Rapid diagnosis can be achieved by the direct detection of characteristic bacterial genes in clinical... System ABI PRISM® 7500 Sequence Detection System (Applied Biosystems, Foster City, Calif.) was purchased, set up and standardized. This system ...integrated system for real-time detection of PCR. The system includes a built-in thermal cycler, a laser to induce fluorescence, CCD (charge-coupled device

  1. Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter.

    PubMed

    Liu, Yongcheng; Brandon, Robert; Cate, Michael; Peng, Xiaogang; Stony, Robert; Johnson, Michael

    2007-11-15

    A biosensor system for detection of pathogens was developed by using CdSe/ZnS core/shell dendron nanocrystals with high efficiency and stability as fluorescence labels and a flowing chamber with a microporous immunofilter. The antibody-immobilized immunofilter captured the targeted pathogens, Escherichia coli O157:H7 as an example for bacteria and hepatitis B being a model system for viruses. The CdSe/ZnS core/shell dendron nanocrystals were conjugated with the corresponding antibodies and then passed through the microporous membrane where they attached to the membrane-antigen-antibody. The efficient and stable photoluminescence (PL) of the CdSe/ZnS nanocrystals on the formed "sandwich" structure complexes (membrane-antigen-antibody conjugated with the nanocrystals) was used as the detection means. The effects of the pore size of the membranes, buffer pH, and assay time on the detection of E. coli O157:H7 were investigated and optimized. The detectable level of this new system was as low as 2.3 CFU/mL for E. coli O157:H7 and 5 ng/mL for hepatitis B surface Ag (HBsAg). The assay time was shortened to 30 min without any enrichment and incubation.

  2. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    PubMed Central

    Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.

    2011-01-01

    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434

  3. Application of the laser to the study of pathogenic fungi.

    PubMed

    Thibaut, M

    1979-05-15

    Laser microanalysis has been applied to the study of pathogenic fungi. Such a method allows chemical information to be obtained and permits the detection of 74 elements in the periodic system of Mendeleev from lithium (3) to uranium (92).

  4. Spectrum of pathogens in native liver, bile, and blood during pediatric liver transplantation.

    PubMed

    Schukfeh, Nagoud; Doerner, Judith M; Heintschel von Heinegg, Evelyn; Steinmann, Joerg; Metzelder, Martin L; Kathemann, Simone; Hoyer, Peter F; Paul, Andreas; Gerner, Patrick

    2014-05-01

    During LTX, there may be a risk that pathogens of the native liver are released into the systemic circulation. No investigations on incidence/spectrum of pathogens in native livers have been published. We hypothesized that pathogens are found in the native liver of a large proportion of pediatric patients during LTX and investigated the microbiology of native livers. These data may help optimize antibiotic therapy. Twenty-two consecutive pediatric patients (median age 14 months, range, 5 months-15 yr) receiving LTX in our department from October 2010 to October 2011 were included in this prospective study. Tissue and bile were collected from the explanted liver and were cultivated on different media. All liver tissues were investigated using a broad-range PCR (SepsiTest(®)). In 16 patients, blood cultures were collected post-transplantation. Eleven patients (50%) had at least one pathogen detected; nine of these patients had an underlying diagnosis of biliary atresia. SepsiTest(®) was positive in seven patients. In four patients it was the only test detecting any pathogen. In detail, the positivity rate for liver tissue in all patients was 41% (n = 9); for bile 25% (n = 3); and for blood 25% (n = 4). Thirteen different pathogens (69% bacterial, 31% fungal) were isolated. A highly-sensitive broad-range PCR appears to be an effective method to detect pathogens in native livers of patients undergoing LTX. A high number and variety of microbes, including a high proportion of fungal pathogens, were detected. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Disease Management in the Genomics Era-Summaries of Focus Issue Papers.

    PubMed

    Klosterman, S J; Rollins, J R; Sudarshana, M R; Vinatzer, B A

    2016-10-01

    The genomics revolution has contributed enormously to research and disease management applications in plant pathology. This development has rapidly increased our understanding of the molecular mechanisms underpinning pathogenesis and resistance, contributed novel markers for rapid pathogen detection and diagnosis, and offered further insights into the genetics of pathogen populations on a larger scale. The availability of whole genome resources coupled with next-generation sequencing (NGS) technologies has helped fuel genomics-based approaches to improve disease resistance in crops. NGS technologies have accelerated the pace at which whole plant and pathogen genomes have become available, and made possible the metagenomic analysis of plant-associated microbial communities. Furthermore, NGS technologies can now be applied routinely and cost effectively to rapidly generate plant and/or pathogen genome or transcriptome marker sequences associated with virulence phenotypes in the pathogen or resistance phenotypes in the plant, potentially leading to improvements in plant disease management. In some systems, investments in plant and pathogen genomics have led to immediate, tangible benefits. This focus issue covers some of the systems. The articles in this focus issue range from overall perspective articles to research articles describing specific genomics applications for detection and control of diseases caused by nematode, viral, bacterial, fungal, and oomycete pathogens. The following are representative short summaries of the articles that appear in this Focus Issue .

  8. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens

    PubMed Central

    Mustafa, Fatima; Andreescu, Silvana

    2017-01-01

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research. PMID:28914769

  9. Efficient surveillance for healthcare-associated infections spreading between hospitals

    PubMed Central

    Ciccolini, Mariano; Donker, Tjibbe; Grundmann, Hajo; Bonten, Marc J. M.; Woolhouse, Mark E. J.

    2014-01-01

    Early detection of new or novel variants of nosocomial pathogens is a public health priority. We show that, for healthcare-associated infections that spread between hospitals as a result of patient movements, it is possible to design an effective surveillance system based on a relatively small number of sentinel hospitals. We apply recently developed mathematical models to patient admission data from the national healthcare systems of England and The Netherlands. Relatively short detection times are achieved once 10–20% hospitals are recruited as sentinels and only modest reductions are seen as more hospitals are recruited thereafter. Using a heuristic optimization approach to sentinel selection, the same expected time to detection can be achieved by recruiting approximately half as many hospitals. Our study provides a robust evidence base to underpin the design of an efficient sentinel hospital surveillance system for novel nosocomial pathogens, delivering early detection times for reduced expenditure and effort. PMID:24469791

  10. Macro to microfluidics system for biological environmental monitoring.

    PubMed

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  12. Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    van der Kooij, Dick

    2013-01-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134

  13. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands.

    PubMed

    van der Wielen, Paul W J J; van der Kooij, Dick

    2013-02-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.

  14. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri.

    PubMed

    Yu, Zhihao; Miller, Haylea C; Puzon, Geoffrey J; Clowers, Brian H

    2017-04-18

    Despite comparatively low levels of infection, primary amoebic meningoencephalitis (PAM) induced by Naegleria fowleri is extremely lethal, with mortality rates above 95%. As a thermophile, this organism is often found in moderate-to-warm climates and has the potential to colonize drinking water distribution systems (DWDSs). Current detection approaches require days to obtain results, whereas swift corrective action can maximize the benefit of public health. Presently, there is little information regarding the underlying in situ metabolism for this amoeba but the potential exists to exploit differentially expressed metabolic signatures as a rapid detection technique. This research outlines the biochemical profiles of selected pathogenic and nonpathogenic Naegleria in vitro using an untargeted metabolomics approach to identify a panel of diagnostically meaningful compounds that may enable rapid detection of viable pathogenic N. fowleri and augment results from traditional monitoring approaches.

  15. Omics approaches in food safety: fulfilling the promise?

    PubMed Central

    Bergholz, Teresa M.; Moreno Switt, Andrea I.; Wiedmann, Martin

    2014-01-01

    Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to detection, prevention and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. While practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions. PMID:24572764

  16. Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system.

    PubMed

    Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi

    2016-02-21

    We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.

  17. [EXTERNAL QUALITY ASSESSMENT FOR THE LABORATORY IDENTIFICATION OF THE PATHOGENS OF PARASITIC DISEASES AS AN ELEMENT FOR IMPROVING THE POSTGRADUATE TRAINING OF SPECIALISTS].

    PubMed

    Dovgalev, A S; Astanina, S Yu; Malakhov, V N; Serdyuk, A P; Imamkuliev, K D; Gorbunova, Yu P; Pautova, E A; Prodeus, T V; Semenova, T A; Fedyanina, L V

    2016-01-01

    Within the framework of the Federal External Quality Assessment (EQA) System and in the context of postgraduate training improvement for health workers in 2010-2014, specialists from the laboratories of the therapeutic-prophylactic organizations and institutions of the Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare were examined for their professional competence in microscopically identifying the pathogens of parasitic diseases in feces. The virtual remote educational computer technology tools that included different combinations of 16 helminthic species, 5 intestinal protozoan species, and a number of artefacts, were used. The specialists from 984 laboratories of multidisciplinary therapeutic-prophylactic organizations and hygiene and epidemiology centers in all Federal Districts of the Russian Federation were covered. A total of 8245 replies were analyzed. The detection rate for helminths was 64.0%, including those by a taxonomic group (nematodes, 65.0%; cestodes, 72.0%; trematodes, 55.1%). There was a dynamic decrease in the above indicators. There were low detection rates for trematodes parasitizing the small intestine (Metagonimus, 10.2%; Nanophyetus, 26.2%) and hepatobiliary organs (Fasciola, 59.6%; Clonorchis, 34.9%). The similar trend was seen in the detection rates for the pathogens of geohelminthisms (ascariasis, trichocephaliasis, etc.) and contagious helminthisms (enterobiasis, hymenolepiasis). The level of competence in detecting and identifying intestinal protozoa was much lower than the similar rates for helminthism pathogens. EQA for the laboratory diagnosis of the pathogens of parasitic diseases, by using the virtual tools is a leading element of the postgraduate training system for laboratory specialists. The results of EQA for the laboratory diagnosis of the pathogens of parasitic diseases are a basic material for the development, and improvement of training modernization programs, by applying a modular approach.

  18. Avoiding Pandemic Fears in the Subway and Conquering the Platypus.

    PubMed

    Gonzalez, A; Vázquez-Baeza, Y; Pettengill, J B; Ottesen, A; McDonald, D; Knight, R

    2016-01-01

    Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the "normal subway microbiome." In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue.

  19. Plant pathogen nanodiagnostic techniques: forthcoming changes?

    PubMed Central

    Khiyami, Mohammad A.; Almoammar, Hassan; Awad, Yasser M.; Alghuthaymi, Mousa A.; Abd-Elsalam, Kamel A.

    2014-01-01

    Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens. PMID:26740775

  20. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    PubMed

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  1. Immunoassay procedures for fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ligler, Frances S.

    1988-04-01

    There is an increasing need for the development of an ultrasensitive immunoassay for use with fiber optic sensors. These detection systems can be used for such applications as disease diagnosis, detection of chemical and biological warfare agents or drugs of abuse, pollution control, therapeutic monitoring, and explosive detection. This specific program is designed to produce generic chemistries for use with existing fiber optic-based sensors to detect pathogens of particular threat to Army personnel as determined by USAMRIID. The detection system under development involves the attachment of antibodies to an optical fiber at high density. In addition, the immobilization must be achieved in a way which retains the antibody's ability to bind antigen. The functionality of the antibody will be tested through the binding of a labelled antigen. In the future, this assay could incorporate the antibodies developed by the Army for pathogens of particularly military concern.

  2. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold

    PubMed Central

    Bruno, John G.

    2014-01-01

    Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection. PMID:25437803

  3. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  4. Rapid and amplification-free detection of fish pathogens by utilizing a molecular beacon-based microfluidic system.

    PubMed

    Su, Yi-Chih; Wang, Chih-Hung; Chang, Wen-Hsin; Chen, Tzong-Yueh; Lee, Gwo-Bin

    2015-01-15

    Nervous necrosis virus (NNV) and iridovirus are highly infectious pathogens that can cause lethal diseases in various species of fish. These infectious diseases have no effective treatments and the mortality rate is over 80%, which could cause dramatic economic losses in the aquaculture industry. Conventional diagnostic methods of NNV or iridovirus infected fishes, such as virus culture, enzyme-linked immunosorbent assays and nucleic acid assays usually require time-consuming and complex procedures performed by specialized technicians with delicate laboratory facilities. Rapid, simple, accurate and on-site detection of NNV and iridovirus infections would enable timely preventive measures such as immediate sacrifice of infected fishes, and is therefore critically needed for the aquaculture industry. In this study, a microfluidic-based assay that employ magnetic beads conjugated with viral deoxyribonucleic acid (DNA) capturing probes and fluorescent DNA molecular beacons were developed to rapidly detect NNV and iridovirus. Importantly, this new assay was realized in an integrated microfluidic system with a custom-made control system. With this approach, direct and automated NNV and iridovirus detection from infected fishes can be achieved in less than 30 min. Therefore, this molecular-beacon based microfluidic system presents a potentially promising tool for rapid diagnosis of fish pathogens in the field in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†

    PubMed Central

    Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2018-01-01

    A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776

  6. Molecular-Based Identification and Detection of Salmonella in Food Production Systems: Current Perspectives.

    PubMed

    Ricke, Steven C; Kim, Sun Ae; Shi, Zhaohao; Park, Si Hong

    2018-04-19

    Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies has greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    PubMed Central

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  8. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  9. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  10. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  11. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen

    USDA-ARS?s Scientific Manuscript database

    Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...

  12. DEVELOPMENT OF A BIOMARKER SYSTEM FOR DETECTING EXPOSURE TO WATERBORNE VIRAL PATHOGENS

    EPA Science Inventory

    EPA has published a drinking water contaminant candidate list (CCL) that includes waterborne pathogens and chemicals that may be considered for regulation at a future date. For each contaminant on the CCL, the Agency will need sufficient data to conduct analyses on the extent of...

  13. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    PubMed

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  14. Molecular Analysis of Bacterial Communities and Detection of Potential Pathogens in a Recirculating Aquaculture System for Scophthalmus maximus and Solea senegalensis

    PubMed Central

    Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329

  15. Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems

    PubMed Central

    Zhang, Ya; Kitajima, Masaaki; Whittle, Andrew J.; Liu, Wen-Tso

    2017-01-01

    The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs. PMID:29097994

  16. Rapid diagnosis of Propionibacterium acnes infection in patient with hyperpyrexia after hematopoietic stem cell transplantation by next-generation sequencing: a case report.

    PubMed

    Ye, Mingzhi; Wei, Wei; Yang, Zhikai; Li, Yingzhen; Cheng, Shaomin; Wang, Kang; Zhou, Tianliangwen; Sun, Jingmeng; Liu, Sha; Ni, Na; Jiang, Hui; Jiang, Hua

    2016-01-08

    The rapid determination of pathogenic agent is very important to clinician for guiding their clinical medication. However, current diagnostic methods are of limitation in many aspects, such as detecting range, time-consuming, specificity and sensitivity. In this report, we apply our new-developing pathogen detection method to clarify that Propionibacterium acnes is the causative agent of a two-year-old boy with juvenile myelomonocytic leukemia presenting clinical symptoms including serious rash and hyperpyrexia while traditional clinical methods of diagnosis fail to detect the pathogenic agent and multiple antimicrobial drugs are almost ineffective Propionibacterium acnes is confirmed to be the infectious agent by quantitative real-time polymerase chain reaction. After haploidentical hematopoietic stem cell transplantation, a two-year-old boy with juvenile myelomonocytic leukemia presented to a pediatrist in a medical facility with hyperpyrexia and red skin rash which later changed to black skin rash all over his body. Traditional diagnostic assays were unrevealing, and several routine antimicrobial treatments were ineffective, including the vancomycin, meropenem, tobramycin, cefepime and rifampin. In this case, pediatrist resorted to the next-generation sequencing technology for uncovering potential pathogens so as to direct their use of specific drugs against pathogenic bacteria. Therefore, based on the BGISEQ100 (Ion Proton System) which performed sequencing-by-synthesis, with electrochemical detection of synthesis, and each such reaction coupled to its own sensor, which are in turn organized into a massively parallel sensor array on a complementary metal-oxidesemiconductor chip, we detect and identify the potential pathogens. As a result, we detected a significantly higher abundance of skin bacteria Propionibacterium acnes in patient's blood than controls. It had been reported that patients infected by Propionibacterium acnes almost always had history of immunodeficiency, trauma or surgery. Considering this possible cause, antimicrobial treatment was adjusted to target this rare opportunistic pathogen. Fever and black skin rashes were rapidly reduced after administrating specific drugs against Propionibacterium acnes. This case showed our new-developing pathogen detection method was a powerful tool in assisting clinical diagnosis and treatment. And it should be paid more attention to Propionibacterium acnes infection in clinical cases.

  17. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.

  18. Automated Methods for Multiplexed Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cyclermore » where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.« less

  19. Detection of Pneumonia Associated Pathogens Using a Prototype Multiplexed Pneumonia Test in Hospitalized Patients with Severe Pneumonia

    PubMed Central

    Schulte, Berit; Eickmeyer, Holm; Heininger, Alexandra; Juretzek, Stephanie; Karrasch, Matthias; Denis, Olivier; Roisin, Sandrine; Pletz, Mathias W.; Klein, Matthias; Barth, Sandra; Lüdke, Gerd H.; Thews, Anne; Torres, Antoni; Cillóniz, Catia; Straube, Eberhard; Autenrieth, Ingo B.; Keller, Peter M.

    2014-01-01

    Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods – particularly in patients with prior antibiotic treatment – and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system). Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI) lower bound: 63.3%, upper bound: 76.9%) and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%). Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1%) and 96.6% specificity (95% CI lower bound: 96.1%). Time to result was 5.2 hours (median) for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time. Trial Registration Deutsches Register Klinischer Studien (DRKS) DRKS00005684 PMID:25397673

  20. An Improved Multiplex Real-Time SYBR Green PCR Assay for Analysis of 24 Target Genes from 16 Bacterial Species in Fecal DNA Samples from Patients with Foodborne Illnesses.

    PubMed

    Kawase, Jun; Etoh, Yoshiki; Ikeda, Tetsuya; Yamaguchi, Keiji; Watahiki, Masanori; Shima, Tomoko; Kameyama, Mitsuhiro; Horikawa, Kazumi; Fukushima, Hiroshi; Goto, Ryoichi; Shirabe, Komei

    2016-05-20

    Here, we developed a new version of our original screening system (Rapid Foodborne Bacterial Screening 24; RFBS24), which can simultaneously detect 24 genes of foodborne pathogens in fecal DNA samples. This new version (RFBS24 ver. 5) detected all known stx2 subtypes, enterotoxigenic Escherichia coli (STh genotype), and Vibrio parahaemolyticus (trh2), which were not detected by the original RFBS24 assay. The detection limits of RFBS24 ver. 5 were approximately 5.6 × 10(-2)-5.6 × 10(-5) (ng DNA)/reaction, significantly lower (10- to 100-fold) than those of the original RFBS24 for the 22 target genes analyzed here. We also tested the new assay on fecal DNA samples from patients infected with Salmonella, Campylobacter, or enterohemorrhagic E. coli. The number of bacterial target genes detected by RFBS24 ver. 5 was greater than that detected by RFBS24. RFBS24 ver. 5 combined with an Ultra Clean Fecal DNA Isolation Kit showed adequate performance (sensitivity and specificity 89% and 100%, respectively, for Salmonella spp. and 100% and 83%, respectively, for Campylobacter jejuni) in terms of rapid detection of a causative pathogen during foodborne-illness outbreaks. Thus, RFBS24 ver. 5 is more useful than the previous assay system for detection of foodborne pathogens and offers quick simultaneous analysis of many targets and thus facilitates rapid dissemination of information to public health officials.

  1. Evaluation of a statewide foodborne illness complaint surveillance system in Minnesota, 2000 through 2006.

    PubMed

    Li, John; Smith, Kirk; Kaehler, Dawn; Everstine, Karen; Rounds, Josh; Hedberg, Craig

    2010-11-01

    Foodborne outbreaks are detected by recognition of similar illnesses among persons with a common exposure or by identification of case clusters through pathogen-specific surveillance. PulseNet USA has created a national framework for pathogen-specific surveillance, but no comparable effort has been made to improve surveillance of consumer complaints of suspected foodborne illness. The purpose of this study was to characterize the complaint surveillance system in Minnesota and to evaluate its use for detecting outbreaks. Minnesota Department of Health foodborne illness surveillance data from 2000 through 2006 were analyzed for this study. During this period, consumer complaint surveillance led to detection of 79% of confirmed foodborne outbreaks. Most norovirus infection outbreaks were detected through complaints. Complaint surveillance also directly led or contributed to detection of 25% of salmonellosis outbreaks. Eighty-one percent of complainants did not seek medical attention. The number of ill persons in a complainant's party was significantly associated with a complaint ultimately resulting in identification of a foodborne outbreak. Outbreak confirmation was related to a complainant's ability to identify a common exposure and was likely related to the process by which the Minnesota Department of Health chooses complaints to investigate. A significant difference (P < 0.001) was found in incubation periods between complaints that were outbreak associated (median, 27 h) and those that were not outbreak associated (median, 6 h). Complaint systems can be used to detect outbreaks caused by a variety of pathogens. Case detection for foodborne disease surveillance in Minnesota happens through a multitude of mechanisms. The ability to integrate these mechanisms and carry out rapid investigations leads to improved outbreak detection.

  2. Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex.

    PubMed

    Donoso, Wendy; Castro, Ricardo I; Guzmán, Luis; López-Cabaña, Zoraya; Nachtigall, Fabiane M; Santos, Leonardo S

    2017-09-01

    Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 10 3 colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.

  3. One step preparation and electrochemical analysis of IQS, a cell-cell communication signal in the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2014-10-01

    Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Avoiding Pandemic Fears in the Subway and Conquering the Platypus

    PubMed Central

    Vázquez-Baeza, Y.; Pettengill, J. B.; Ottesen, A.; McDonald, D.; Knight, R.

    2016-01-01

    ABSTRACT Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the “normal subway microbiome.” In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue. PMID:27832215

  5. Evaluation of rapid SYS system as screen for Yersinia enterocolitica in the United States.

    PubMed Central

    Mele, L; Nadler, H; Gomez, S

    1987-01-01

    Clinical isolates (n = 150) from stool specimens were selected for evaluation of the Rapid SYS system (Analytab Products, Plainview, N.Y.) as a screening test for Shigella spp., Yersinia enterocolitica, and Salmonella spp. The Gram-Negative Identification Card (Vitek Systems, Inc., Hazelwood, Mo.) was used for identification. Although acceptable performance of the Rapid SYS system was described, the interpretative criteria provided by the vendor for previous studies led to inappropriate screening for Y. enterocolitica, particularly biotype 1. When corrected screening criteria were used for the present study, the sensitivity for the detection of 76 enteric pathogens was 98.7%. Of the 76 pathogens, 1 of 21 Shigella spp. was not detected. However, specificity was only 16.6% when 72 selected nonpathogens frequently encountered in stools were eliminated. Although the Rapid SYS system can identify Shigella spp., Y. enterocolitica, and Salmonella spp., only phenylalanine deaminase-producing and cytochrome oxidase-producing organisms can be eliminated from additional testing. Therefore, the Rapid SYS system cannot be used as a three-pathogen screen in the United States or in other geographic locales where Y. enterocolitica biotype 1 may be encountered. PMID:3323232

  6. Development of oligonucleotide microarrays for simultaneous multi-species identification of Phellinus tree-pathogenic fungi.

    PubMed

    Tzean, Yuh; Shu, Po-Yao; Liou, Ruey-Fen; Tzean, Shean-Shong

    2016-03-01

    Polyporoid Phellinus fungi are ubiquitously present in the environment and play an important role in shaping forest ecology. Several species of Phellinus are notorious pathogens that can affect a broad variety of tree species in forest, plantation, orchard and urban habitats; however, current detection methods are overly complex and lack the sensitivity required to identify these pathogens at the species level in a timely fashion for effective infestation control. Here, we describe eight oligonucleotide microarray platforms for the simultaneous and specific detection of 17 important Phellinus species, using probes generated from the internal transcribed spacer regions unique to each species. The sensitivity, robustness and efficiency of this Phellinus microarray system was subsequently confirmed against template DNA from two key Phellinus species, as well as field samples collected from tree roots, trunks and surrounding soil. This system can provide early, specific and convenient detection of Phellinus species for forestry, arboriculture and quarantine inspection, and could potentially help to mitigate the environmental and economic impact of Phellinus-related diseases. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Specific Discrimination of Three Pathogenic Salmonella enterica subsp. enterica Serotypes by carB-Based Oligonucleotide Microarray

    PubMed Central

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846

  8. Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray.

    PubMed

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.

  9. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  10. Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC) along Potable Water Distribution Pipelines

    PubMed Central

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-01-01

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use. PMID:25046636

  11. Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines.

    PubMed

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-07-18

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.

  12. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  13. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  14. A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system.

    PubMed

    Oba, Mami; Tsuchiaka, Shinobu; Omatsu, Tsutomu; Katayama, Yukie; Otomaru, Konosuke; Hirata, Teppei; Aoki, Hiroshi; Murata, Yoshiteru; Makino, Shinji; Nagai, Makoto; Mizutani, Tetsuya

    2018-01-08

    We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The microfluidic bioagent autonomous networked detector (M-BAND): an update. Fully integrated, automated, and networked field identification of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Probst, L.; Blazevic, E.; Nakao, B.; Northrup, M. A.

    2011-11-01

    We describe a fully automated and autonomous air-borne biothreat detection system for biosurveillance applications. The system, including the nucleic-acid-based detection assay, was designed, built and shipped by Microfluidic Systems Inc (MFSI), a new subsidiary of PositiveID Corporation (PSID). Our findings demonstrate that the system and assay unequivocally identify pathogenic strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. In order to assess the assay's ability to detect unknown samples, our team also challenged it against a series of blind samples provided by the Department of Homeland Security (DHS). These samples included natural occurring isolated strains, near-neighbor isolates, and environmental samples. Our results indicate that the multiplex assay was specific and produced no false positives when challenged with in house gDNA collections and DHS provided panels. Here we present another analytical tool for the rapid identification of nine Centers for Disease Control and Prevention category A and B biothreat organisms.

  16. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method.

    PubMed

    Maeda, Hiroshi; Kokeguchi, Susumu; Fujimoto, Chiyo; Tanimoto, Ichiro; Yoshizumi, Wakako; Nishimura, Fusanori; Takashiba, Shogo

    2005-02-01

    A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.

  17. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    PubMed

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  18. Pathogenic and Nonpathogenic Strains of Entamoeba histolytica can be Differentiated by Monoclonal Antibodies to the Galactose-Specific Adherence Lectin

    DTIC Science & Technology

    1991-04-01

    AD- A235 913 DEVELOPMENT Ei ENGINEERING CENTER CRDEC-TR-268 PATHOGENIC AND NONPATHOGENIC STRAINS OF ENTAMOEBA HISTOLYTICA CAN BE DIFFERENTIATED BY...Pathogenic and Nonpathogenic Strains of Entamoeba Histolytica can be Differentiated by Monoclonal PR-IFJlX2XXRPEW Antibodies to the Galactose-Specific...galactose lectin produced by Entamoeba histolytica provide the basis for development of a model system for the environmental detection of adherence and

  19. Diagnostic accuracy of the ROCHE Septifast PCR system for the rapid detection of blood pathogens in neonatal sepsis-A prospective clinical trial.

    PubMed

    Straub, Julia; Paula, Helga; Mayr, Michaela; Kasper, David; Assadian, Ojan; Berger, Angelika; Rittenschober-Böhm, Judith

    2017-01-01

    Diagnosis of neonatal sepsis remains a major challenge in neonatology. Most molecular-based methods are not customized for neonatal requirements. The aim of the present study was to assess the diagnostic accuracy of a modified multiplex PCR protocol for the detection of neonatal sepsis using small blood volumes. 212 episodes of suspected neonatal late onset sepsis were analyzed prospectively using the Roche SeptiFast® MGRADE PCR with a modified DNA extraction protocol and software-handling tool. Results were compared to blood culture, laboratory biomarkers and clinical signs of sepsis. Of 212 episodes, 85 (40.1%) were categorized as "not infected". Among these episodes, 1 was false positive by blood culture (1.2%) and 23 were false positive by PCR (27.1%). Of 51 (24.1%) episodes diagnosed as "culture proven sepsis", the same pathogen was detected by blood culture and PCR in 39 episodes (76.5%). In 8 episodes, more pathogens were detected by PCR compared to blood culture, and in 4 episodes the pathogen detected by blood culture was not found by PCR. One of these episodes was caused by Bacillus cereus, a pathogen not included in the PCR panel. In 76/212 (35.8%) episodes, clinical sepsis was diagnosed. Among these, PCR yielded positive results in 39.5% of episodes (30/76 episodes). For culture-positive sepsis, PCR showed a sensitivity of 90.2% (95%CI 86.2-94.2%) and a specificity of 72.9% (95%CI 67.0-79.0%). The Roche SeptiFast® MGRADE PCR using a modified DNA extraction protocol showed acceptable results for rapid detection of neonatal sepsis in addition to conventional blood culture. The benefit of rapid pathogen detection has to be balanced against the considerable risk of contamination, loss of information on antibiotic sensitivity pattern and increased costs.

  20. [Usefulness of the molecular techniques for detecting and/or identifing of parasites and fungi in humans and animals or pathogens transmitted by ticks (Part I)].

    PubMed

    Myjak, P; Majewska, A C; Bajer, A; Siński, E; Wedrychowicz, H; Gołab, E; Budak, A; Stańczak, J

    2001-01-01

    After a long period of using basic microscopic, immunological and biochemical methods for diagnosis, rapid development of nucleic acids investigation enabled introduction of specific and sensitive methods of detection of pathogenic agents on the molecular level. Among others, polymerase chain reaction (PCR), discovered in mid of 80'ies and then automatized, offered an attractive alternative to conventional testing systems. In this paper we describe reliable diagnostic tests widely used in the world, including Poland, and capable of detecting different disease agents as parasites and fungi in clinical specimens and pathogens of emerging zoonotic diseases in ticks. The possibilities of using molecular methods for determination of Plasmodium falciparum drug resistance is also discussed. Moreover, the report offers information concerning kinds of molecular tests and institutions in which there are executed.

  1. Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    PubMed Central

    Peng, Peichao; Cheng, Xiaoxing; Wang, Guoqing; Qian, Minping; Gao, Huafang; Han, Bei; Chen, Yusheng; Hu, Yinghui; Geng, Rong; Hu, Chengping; Zhang, Wei; Yang, Jingping; Wan, Huanying; Yu, Qin; Wei, Liping; Li, Jiashu; Tian, Guizhen; Wang, Qiuyue; Hu, Ke; Wang, Siqin; Wang, Ruiqin; Du, Juan; He, Bei; Ma, Jianjun; Zhong, Xiaoning; Mu, Lan; Cai, Shaoxi; Zhu, Xiangdong; Xing, Wanli; Yu, Jun; Deng, Minghua; Gao, Zhancheng

    2012-01-01

    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship. Trial Registration ClinicalTrials.gov NCT00567827 PMID:22719933

  2. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    PubMed

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux.

    PubMed

    Kim, Jinwoo; Kim, Minsik; Kim, Seongmi; Ryu, Sangryeol

    2017-08-02

    Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm 2 , 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Self/nonself perception in plants in innate immunity and defense

    PubMed Central

    Sanabria, Natasha M; Huang, Ju-Chi

    2010-01-01

    The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176

  5. Rapid Waterborne Pathogen Detection with Mobile Electronics.

    PubMed

    Wu, Tsung-Feng; Chen, Yu-Chen; Wang, Wei-Chung; Kucknoor, Ashwini S; Lin, Che-Jen; Lo, Yu-Hwa; Yao, Chun-Wei; Lian, Ian

    2017-06-09

    Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal-oxide-semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.

  6. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...

  7. Lack of Utility of the Lysis-Centrifugation Blood Culture Method for Detection of Fungemia in Immunocompromised Cancer Patients

    PubMed Central

    Creger, Richard J.; Weeman, Kisa E.; Jacobs, Michael R.; Morrissey, Anne; Parker, Pamela; Fox, Robert M.; Lazarus, Hillard M.

    1998-01-01

    We retrospectively compared the utility of a fungal isolation device (Isolator) versus conventional techniques for recovering fungal organisms from blood cultures obtained from neutropenic cancer patients. Positive cultures were deemed true pathogens, possible pathogens, or contaminants according to laboratory and clinical criteria. Fifty-three patients had 66 positive blood cultures for fungi, nine on multiple occasions. In 20 episodes true pathogens were recovered, 6 from broth medium alone, 4 from the Isolator system alone, and 10 from both systems. False-negative cultures were noted in 4 of 20 (20%) cases in which broth medium was used and in 6 of 20 (30%) cases in which the Isolator system was used. Possible pathogens were detected in 4 of 66 blood culture-positive cases. Forty-two positive cultures were considered contaminants, 1 collected from standard medium and 41 of 42 (98%) which grew only in Isolators. Eleven of 18 patients with true fungal infections expired as a result of infection, while 4 of 33 patients with a contaminant expired, none from a fungal cause. We do not advocate the routine use of Isolator tubes in the evaluation of the febrile, neutropenic patient due to the high rates of false positives and of contamination. PMID:9431970

  8. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    PubMed

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  9. A Spike Cocktail Approach to Improve Microbial Performance Monitoring for Water Reuse.

    PubMed

    Zimmerman, Brian D; Korajkic, Asja; Brinkman, Nichole E; Grimm, Ann C; Ashbolt, Nicholas J; Garland, Jay L

      Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems.

  10. Compact USB-powered mobile ELISA-based pathogen detection: design and implementation challenges

    NASA Astrophysics Data System (ADS)

    Starodubov, Dmitry; Asanbaeva, Anya; Berezhnyy, Ihor; Chao, Chung-Yen; Koziol, Richard; Miller, David; Patton, Edward; Trehan, Sushma; Ulmer, Chris

    2011-05-01

    Physical Optics Corporation (POC) presents a novel Mobile ELISA-based Pathogen Detection system that is based on a disposable microfluidic chip for multiple-threat detection and a highly sensitive portable microfluidic fluorescence measurement unit that also controls the flow of samples and reagents through the microfluidic channels of the chip. The fluorescence detection subsystem is composed of a commercial 635-nm diode laser, an avalanche photodiode (APD) that measures fluorescence, and three filtering mirrors that provide more than 100 dB of excitation line suppression in the signal detection channel. Special techniques to suppress the fluorescence and scattering background allow optimizing the dynamic range for a compact package. Concentrations below 100 ng/mL can be reliably identified. The entire instrument is powered using a USB port of a notebook PC and operates as a plug-and-play human-interface device, resulting in a truly peripheral biosensor. The operation of the system is fully automated, with minimal user intervention through the detection process. The resolved challenges of the design and implementation are presented in detail in this publication.

  11. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    PubMed

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Enteric Pathogens Associated with Childhood Diarrhea in Tripoli-Libya

    PubMed Central

    Rahouma, Amal; Klena, John D.; Krema, Zaineb; Abobker, Abdalwahed A.; Treesh, Khalid; Franka, Ezzedin; Abusnena, Omar; Shaheen, Hind I.; El Mohammady, Hanan; Abudher, Abdulhafid; Ghenghesh, Khalifa Sifaw

    2011-01-01

    Stool samples from children < 5 years of age with diarrhea (N = 239) were examined for enteric pathogens using a combination of culture, enzyme-immunoassay, and polymerase chain reaction methods. Pathogens were detected in 122 (51%) stool samples; single pathogens were detected in 37.2% and co-pathogens in 13.8% of samples. Norovirus, rotavirus, and diarrheagenic Escherichia coli (DEC) were the most frequently detected pathogens (15.5%, 13.4%, and 11.2%, respectively); Salmonella, adenovirus, and Aeromonas were detected less frequently (7.9%, 7.1%, and 4.2%). The most commonly detected DEC was enteroaggregative E. coli (5.4%). Resistance to ≥ 3 antimicrobials was observed in 60% (18/30) of the bacterial pathogens. Salmonella resistance to ciprofloxacin (63.1%) has become a concern. Enteric viral pathogens were the most significant causative agents of childhood diarrhea in Tripoli. Bacterial pathogens were also important contributors to pediatric diarrhea. The emergence of ciprofloxacin-resistant Salmonella represents a serious health problem that must be addressed by Libyan health authorities PMID:21633024

  13. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    PubMed

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Continuous-Flow Detector for Rapid Pathogen Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less

  15. Interpretation of Blood Microbiology Results - Function of the Clinical Microbiologist.

    PubMed

    Kristóf, Katalin; Pongrácz, Júlia

    2016-04-01

    The proper use and interpretation of blood microbiology results may be one of the most challenging and one of the most important functions of clinical microbiology laboratories. Effective implementation of this function requires careful consideration of specimen collection and processing, pathogen detection techniques, and prompt and precise reporting of identification and susceptibility results. The responsibility of the treating physician is proper formulation of the analytical request and to provide the laboratory with complete and precise patient information, which are inevitable prerequisites of a proper testing and interpretation. The clinical microbiologist can offer advice concerning the differential diagnosis, sampling techniques and detection methods to facilitate diagnosis. Rapid detection methods are essential, since the sooner a pathogen is detected, the better chance the patient has of getting cured. Besides the gold-standard blood culture technique, microbiologic methods that decrease the time in obtaining a relevant result are more and more utilized today. In the case of certain pathogens, the pathogen can be identified directly from the blood culture bottle after propagation with serological or automated/semi-automated systems or molecular methods or with MALDI-TOF MS (matrix-assisted laser desorption-ionization time of flight mass spectrometry). Molecular biology methods are also suitable for the rapid detection and identification of pathogens from aseptically collected blood samples. Another important duty of the microbiology laboratory is to notify the treating physician immediately about all relevant information if a positive sample is detected. The clinical microbiologist may provide important guidance regarding the clinical significance of blood isolates, since one-third to one-half of blood culture isolates are contaminants or isolates of unknown clinical significance. To fully exploit the benefits of blood culture and other (non- culture based) diagnoses, the microbiologist and the clinician should interact directly.

  16. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production.

    PubMed

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 10(5) CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases.

  17. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    PubMed Central

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 105 CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases. PMID:24829562

  18. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    NASA Astrophysics Data System (ADS)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  19. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection.

    PubMed

    Bachert, Beth A; Choi, Soo J; Snyder, Anna K; Rio, Rita V M; Durney, Brandon C; Holland, Lisa A; Amemiya, Kei; Welkos, Susan L; Bozue, Joel A; Cote, Christopher K; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.

  20. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  1. Evaluation of a TaqMan Array Card for Detection of Central Nervous System Infections.

    PubMed

    Onyango, Clayton O; Loparev, Vladimir; Lidechi, Shirley; Bhullar, Vinod; Schmid, D Scott; Radford, Kay; Lo, Michael K; Rota, Paul; Johnson, Barbara W; Munoz, Jorge; Oneko, Martina; Burton, Deron; Black, Carolyn M; Neatherlin, John; Montgomery, Joel M; Fields, Barry

    2017-07-01

    Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites ( Balamuthia mandrillaris and Acanthamoeba ), six bacterial pathogens ( Streptococcus pneumonia e, Haemophilus influenzae , Neisseria meningitidis , Mycoplasma pneumoniae , Mycobacterium tuberculosis , and Bartonella ), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease. Copyright © 2017 American Society for Microbiology.

  2. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    DOE PAGES

    Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; ...

    2008-01-01

    Tmore » he possibility of using single-walled carbon nanotubes (SWCNs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8  ml/g, respectively. he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less

  3. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems.

    PubMed

    Jjemba, Patrick K; Weinrich, Lauren A; Cheng, Wei; Giraldo, Eugenio; Lechevallier, Mark W

    2010-07-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use.

  4. Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems ▿

    PubMed Central

    Jjemba, Patrick K.; Weinrich, Lauren A.; Cheng, Wei; Giraldo, Eugenio; LeChevallier, Mark W.

    2010-01-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use. PMID:20453149

  5. Detecting Bioaerosols When Time Is of the Essence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    About seven years ago, Livermore researchers received seed funding from the Laboratory Directed Research and Development Program to develop an instrument that counters bioterrorism by providing a rapid early warning system for pathogens, such as anthrax. (See S&TR, January/February 2002, pp. 24-26.) That instrument, the Autonomous Pathogen Detection System (APDS), is now ready for deployment to better protect the public from a bioaerosol attack, and the development team has been honored with a 2004 R&D 100 Award. The lectern-size APDS can be placed in airports, office buildings, performing arts centers, mass transit systems, sporting arenas--anywhere an attack might be launched.more » APDS was designed to get results fast and get them right, without false positives. Biological scientist Richard Langlois, who spearheaded the APDS development effort, explains, ''The system provides results on the spot. Faster results allow a faster emergency response, which in the end means saving lives.''« less

  6. Co-infection does not predict disease signs in Gopherus tortoises

    PubMed Central

    Gov, Ryan; Sandmeier, Franziska C.; Snyder, Sarah J.; Tracy, C. Richard

    2017-01-01

    In disease ecology, the host immune system interacts with environmental conditions and pathogen properties to affect the impact of disease on the host. Within the host, pathogens may interact to facilitate or inhibit each other's growth, and pathogens interact with different hosts differently. We investigated co-infection of two Mycoplasma and the association of infection with clinical signs of upper respiratory tract disease in four congeneric tortoise host species (Gopherus) in the United States to detect differences in infection risk and disease dynamics in these hosts. Mojave Desert tortoises had greater prevalence of Mycoplasma agassizii than Texas tortoises and gopher tortoises, while there were no differences in Mycoplasma testudineum prevalence among host species. In some host species, the presence of each pathogen influenced the infection intensity of the other; hence, these two mycoplasmas interact differently within different hosts, and our results may indicate facilitation of these bacteria. Neither infection nor co-infection was associated with clinical signs of disease, which tend to fluctuate across time. From M. agassizii DNA sequences, we detected no meaningful differentiation of haplotypes among hosts. Experimental inoculation studies and recurrent resampling of wild individuals could help to decipher the underlying mechanisms of disease dynamics in this system. PMID:29134096

  7. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    PubMed

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    PubMed

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  10. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor

    PubMed Central

    Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.

    2007-01-01

    Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865

  11. Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae. Insights from a one-year study of water and mussels surveyed on the French Atlantic coast.

    PubMed

    Deter, J; Lozach, S; Derrien, A; Véron, A; Chollet, J; Hervio-Heath, D

    2010-02-01

    The present study focused on the isolation of culturable bacteria from mussels and sea water to identify Vibrionaceae potentially pathogenic for humans. Three sites located on the French Atlantic coast were monitored monthly (twice each month during summer) for 1 year. Environmental parameters were surveyed (water temperature, salinity, turbidity, chlorophyll a) and bacteria were detected by culture and identified by API 20E(®) systems (BioMérieux) and PCR. A total of seven species were detected (Grimontia hollisae, Photobacterium damselae, Vibrio alginolyticus, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus) and species diversity was higher at the end of summer. Surprisingly, V. cholerae non-O1/non-O139 was detected in spring. No site effect was detected. Using Sørensen similarity indices and statistical analyses, we showed that chlorophyll a had a significant influence on the bacterial community detected in mussels and assemblages were more similar to one another when chlorophyll a values were above 20 µg l(-1) . No significant effect of any parameter was found on the community detected in water samples. Such surveys are essential for the understanding of sanitary crises and detection of emerging pathogens. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine.

    PubMed

    Crim, Marcus J; Lawrence, Christian; Livingston, Robert S; Rakitin, Andrei; Hurley, Shane J; Riley, Lela K

    2017-07-01

    Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish.

  13. Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine

    PubMed Central

    Crim, Marcus J; Lawrence, Christian; Livingston, Robert S; Rakitin, Andrei; Hurley, Shane J; Riley, Lela K

    2017-01-01

    Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish. PMID:28724491

  14. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins.

    PubMed

    Siggers, Keri A; Lesser, Cammie F

    2008-07-17

    Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.

  15. Polymerase Chain Reaction for Detection of Systemic Plant Pathogens

    USDA-ARS?s Scientific Manuscript database

    This chapter outlines the advances and application of the polymerase chain reaction (PCR) since its development in 1984 and its enhancements and applications to detection of viruses, viroids and phytoplasma in pome and stone fruits. PCR is probably the most rapidly and widely adopted technology eve...

  16. Comparison of two suspension arrays for simultaneous detection of five biothreat bacterial in powder samples.

    PubMed

    Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan

    2012-01-01

    We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.

  17. Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview

    PubMed Central

    Dutse, Sabo Wada; Yusof, Nor Azah

    2011-01-01

    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment. PMID:22163925

  18. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health. PMID:26824897

  19. Use of WHONET-SaTScan system for simulated real-time detection of antimicrobial resistance clusters in a hospital in Italy, 2012 to 2014

    PubMed Central

    Natale, Alessandra; Stelling, John; Meledandri, Marcello; Messenger, Louisa A; D'Ancona, Fortunato

    2017-01-01

    Resistant pathogens infections cause in healthcare settings, higher patient mortality, longer hospitalisation times and higher costs for treatments. Strengthening and coordinating local, national and international surveillance systems is the cornerstone for the control of antimicrobial resistance (AMR). In this study, the WHONET-SaTScan software was applied in a hospital in Italy to identify potential outbreaks of AMR. Data from San Filippo Neri Hospital in Rome between 2012 and 2014 were extracted from the national surveillance system for antimicrobial resistance (AR-ISS) and analysed using the simulated prospective analysis for real-time cluster detection included in the WHONET-SaTScan software. Results were compared with the hospital infection prevention and control system. The WHONET-SaTScan identified 71 statistically significant clusters, some involving pathogens carrying multiple resistance phenotypes. Of these 71, three were also detected by the hospital system, while a further 15, detected by WHONET-SaTScan only, were considered of relevant importance and worth further investigation by the hospital infection control team. In this study, the WHONET-SaTScan system was applied for the first time to the surveillance of AMR in Italy as a tool to strengthen this surveillance to allow more timely intervention strategies both at local and national level, using data regularly collected by the Italian national surveillance system. PMID:28333615

  20. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study.

    PubMed

    Sonnier, Jakeitha L; Karns, Jeffrey S; Lombard, Jason E; Kopral, Christine A; Haley, Bradd J; Kim, Seon-Woo; Van Kessel, Jo Ann S

    2018-03-01

    The dairy farm environment is a well-documented reservoir for zoonotic pathogens such as Salmonella enterica, Shiga-toxigenic Escherichia coli, and Listeria monocytogenes, and humans may be exposed to these pathogens via consumption of unpasteurized milk and dairy products. As part of the National Animal Health Monitoring System Dairy 2014 study, bulk tank milk (BTM, n = 234) and milk filters (n = 254) were collected from a total of 234 dairy operations in 17 major dairy states and analyzed for the presence of these pathogens. The invA gene was detected in samples from 18.5% of operations and Salmonella enterica was isolated from 18.0% of operations. Salmonella Dublin was detected in 0.7% of operations. Sixteen Salmonella serotypes were isolated, and the most common serotypes were Cerro, Montevideo, and Newport. Representative Salmonella isolates (n = 137) were tested against a panel of 14 antimicrobials. Most (85%) were pansusceptible; the remaining were resistant to 1 to 9 antimicrobials, and within the resistant strains the most common profile was resistance to ampicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Listeria spp. were isolated from 19.9% of operations, and L. monocytogenes was isolated from 3.0% of operations. Serogroups 1/2a and 1/2b were the most common, followed by 4b and 4a. One or more E. coli virulence genes were detected in the BTM from 30.5% of operations and in the filters from 75.3% of operations. A combination of stx 2 , eaeA, and γ-tir genes was detected in the BTM from 0.5% of operations and in the filters from 6.6% of operations. The results of this study indicate an appreciable prevalence of bacterial pathogens in BTM and filters, including serovars known to infect humans. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    PubMed

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  2. ONLINE WATER MONITORING UTILIZING AN AUTOMATED MICROARRAY BIOSENSOR INSTRUMENT - PHASE I

    EPA Science Inventory

    Constellation Technology Corporation (Constellation) proposes the use of an integrated recovery and detection system for online water supply monitoring.  The integrated system is designed to efficiently capture and recover pathogens such as bacteria, viruses, parasites, an...

  3. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    PubMed

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A true real-time, on-line security system for waterborne pathogen surveillance

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David L.

    2008-04-01

    Over the past several years many advances have been made to monitor potable water systems for toxic threats. However, the need for real-time, on-line systems to detect the malicious introduction of deadly pathogens still exists. Municipal water distribution systems, government facilities and buildings, and high profile public events remain vulnerable to terrorist-related biological contamination. After years of research and development, an instrument using multi-angle light scattering (MALS) technology has been introduced to achieve on-line, real-time detection and classification of a waterborne pathogen event. The MALS system utilizes a continuous slip stream of water passing through a flow cell in the instrument. A laser beam, focused perpendicular to the water flow, strikes particles as they pass through the beam generating unique light scattering patterns that are captured by photodetectors. Microorganisms produce patterns termed 'bio-optical signatures' which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database of microorganism patterns, detection and classification occurs within minutes. If a pattern is not recognized, it is classified as an 'unknown' and the unidentified contaminant is registered as a potential threat. In either case, if the contaminant exceeds a customer's threshold, the system will immediately alert personnel to the contamination event while extracting a sample for confirmation. The system, BioSentry TM, developed by JMAR Technologies is now field-tested and commercially available. BioSentry is cost effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in many water treatment environments. Examples of HLS installations will be presented along with data from the US EPA NHSRC Testing and Evaluation Facility.

  5. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  6. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  7. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  8. Development and Comparison of Two Assay Formats for Parallel Detection of Four Biothreat Pathogens by Using Suspension Microarrays

    PubMed Central

    Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407

  9. Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays.

    PubMed

    Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.

  10. The clinical diagnostic accuracy of rapid detection of healthcare-associated bloodstream infection in intensive care using multipathogen real-time PCR technology

    PubMed Central

    Dunn, Graham; Chadwick, Paul; Young, Duncan; Bentley, Andrew; Carlson, Gordon; Warhurst, Geoffrey

    2011-01-01

    Background There is growing interest in the potential utility of real-time PCR in diagnosing bloodstream infection by detecting pathogen DNA in blood samples within a few hours. SeptiFast is a multipathogen probe-based real-time PCR system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection and has European regulatory approval. The SeptiFast pathogen panel is suited to identifying healthcare-associated bloodstream infection acquired during complex healthcare, and the authors report here the protocol for the first detailed health-technology assessment of multiplex real-time PCR in this setting. Methods/design A Phase III multicentre double-blinded diagnostic study will determine the clinical validity of SeptiFast for the rapid detection of healthcare-associated bloodstream infection, against the current service standard of microbiological culture, in an adequately sized population of critically ill adult patients. Results from SeptiFast and standard microbiological culture procedures in each patient will be compared at study conclusion and the metrics of clinical diagnostic accuracy of SeptiFast determined in this population setting. In addition, this study aims to assess further the preliminary evidence that the detection of pathogen DNA in the bloodstream using SeptiFast may have value in identifying the presence of infection elsewhere in the body. Furthermore, differences in circulating immune-inflammatory markers in patient groups differentiated by the presence/absence of culturable pathogens and pathogen DNA will help elucidate further the patho-physiology of infection developing in the critically ill. Ethics and dissemination Ethical approval has been granted by the North West 6 Research Ethics Committee (09/H1003/109). Based on the results of this first non-commercial study, independent recommendations will be made to The Department of Health (open-access health technology assessment report) as to whether SeptiFast has sufficient clinical diagnostic accuracy to move forward to efficacy testing during the provision of routine clinical care. PMID:22021785

  11. Most Common Foodborne Pathogens and Mycotoxins on Fresh Produce: A Review of Recent Outbreaks.

    PubMed

    Yeni, F; Yavaş, S; Alpas, H; Soyer, Y

    2016-07-03

    Every year millions of people are affected and thousands of them die due to infections and intoxication as a result of foodborne outbreaks, which also cause billions of dollars' worth of damage, public health problems, and agricultural product loss. A considerable portion of these outbreaks is related to fresh produce and caused by foodborne pathogens on fresh produce and mycotoxins. Escherichia coli O104:H4 outbreak, occurred in Germany in 2011, has attracted a great attention on foodborne outbreaks caused by contaminated fresh produce, and especially the vulnerability and gaps in the early warning and notification networks in the surveillance systems in all around the world. In the frame of this paper, we reviewed the most common foodborne pathogens on fresh produce, traceback investigations of the outbreaks caused by these pathogens, and lastly international early warning and notification systems, including PulseNet International and Rapid Alert System for Food and Feed, aiming to detect foodborne outbreaks.

  12. Plague.

    PubMed

    Prentice, Michael B; Rahalison, Lila

    2007-04-07

    Bubonic plague is an often fulminant systemic zoonosis, caused by Yersinia pestis. Conventional microbiology, bacterial population genetics, and genome sequence data, all suggest that Y pestis is a recently evolved clone of the enteric pathogen Yersinia pseudotuberculosis. The genetic basis of this organism's rapid adaptation to its insect vector (the flea) with transmission between mammalian hosts by novel subcutaneous and pneumonic routes of infection is becoming clearer. This transition provides a paradigm for the way in which new pathogens could emerge. Plague in humans is controlled by suppression of rodent reservoir hosts and their fleas and by early detection and treatment of cases of disease. Detection systems for plague in non-endemic regions might now be needed because of a bioterrorism threat. Rapid diagnostic tests are available and a subunit vaccine is in clinical trials.

  13. Electrochemical Methodologies for the Detection of Pathogens.

    PubMed

    Amiri, Mandana; Bezaatpour, Abolfazl; Jafari, Hamed; Boukherroub, Rabah; Szunerits, Sabine

    2018-05-25

    Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.

  14. AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lee, Sangdae; Yoon, Seung-Chul; Sundaram, Jaya; Windham, William R.; Hinton, Arthur, Jr.; Lawrence, Kurt C.

    2011-06-01

    Hyperspectral microscope imaging (HMI) method which provides both spatial and spectral information can be effective for foodborne pathogen detection. The AOTF-based hyperspectral microscope imaging method can be used to characterize spectral properties of biofilm formed by Salmonella enteritidis as well as Escherichia coli. The intensity of spectral imagery and the pattern of spectral distribution varied with system parameters (integration time and gain) of HMI system. The preliminary results demonstrated determination of optimum parameter values of HMI system and the integration time must be no more than 250 ms for quality image acquisition from biofilm formed by S. enteritidis. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 498, 522, 550 and 594 nm were distinctive for biofilm; whereas, the intensity of spectral images at 546 nm was distinctive for E. coli. For more accurate comparison of intensity from spectral images, a calibration protocol, using neutral density filters and multiple exposures, need to be developed to standardize image acquisition. For the identification or classification of unknown food pathogen samples, ground truth regions-of-interest pixels need to be selected for "spectrally pure fingerprints" for the Salmonella and E. coli species.

  15. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  16. Quantitative detection of pathogens in centrifugal microfluidic disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    A system and methods for detection of a nucleic acid including forming a plurality of nucleic acid detection complexes are described, each of the complexes including a nucleic acid analyte, a detection agent and a functionalized probe. The method further including binding the nucleic acid detection complexes to a plurality of functionalized particles in a fluid sample and separating the functionalized particles having the nucleic acid detection complexes bound thereto from the fluid sample using a density media. The nucleic acid analyte is detected by detecting the detection agent.

  17. High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations.

    PubMed

    Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J

    2015-06-01

    Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

  18. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  19. Development of a versatile lab-on-a-chip enzyme assay platform for pathogen detection in CBRNE scenarios

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Schattschneider, Sebastian; Jahn, Tobias; Hlawatsch, Nadine; Julich, Sandra; Becker, Holger; Gärtner, Claudia

    2013-05-01

    The ability to integrate complete assays on a microfluidic chip helps to greatly simplify instrument requirements and allows the use of lab-on-a-chip technology in the field. A core application for such field-portable systems is the detection of pathogens in a CBRNE scenario such as permanent monitoring of airborne pathogens, e.g. in metro stations or hospitals etc. As one assay methodology for the pathogen identification, enzymatic assays were chosen. In order evaluate different detection strategies, the realized on-chip enzyme assay module has been designed as a general platform chip. In all application cases, the assays are based on immobilized probes located in microfluidic channels. Therefore a microfluidic chip was realized containing a set of three individually addressable channels, not only for detection of the sample itself also to have a set of references for a quantitative analysis. It furthermore includes two turning valves and a waste container for clear and sealed storage of potential pathogenic liquids to avoid contamination of the environment. All liquids remain in the chip and can be disposed of in proper way subsequently to the analysis. The chip design includes four inlet ports consisting of one sample port (Luer interface) and three mini Luer interfaces for fluidic support of e.g. washing buffer, substrate and enzyme solution. The sample can be applied via a special, sealable sampling vessel with integrated female Luer interface. Thereby also pre-anaytical contamination of the environment can be provided. Other reagents that are required for analysis will be stored off chip.

  20. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    PubMed Central

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-01-01

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern. PMID:28335539

  1. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa.

    PubMed

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-03-20

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes ( eagg , eaeA , stx1 , stx2 , flichH7 , ST , ipaH , ibeA ) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  2. A Spike Cocktail Approach to Improve Microbial Performance ...

    EPA Pesticide Factsheets

    Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems. This manuscrupt details an approach for developing "spike cocktail", a mixture of microorganisms that can be used to evaluate the performance of engineered and natural systems.

  3. Vulnerability of water distribution systems to pathogen intrusion: how effective is a disinfectant residual?

    PubMed

    Propato, Marco; Uber, James G

    2004-07-01

    Can the spread of infectious disease through water distribution systems be halted by a disinfectant residual? This question is overdue for an answer. Regulatory agencies and water utilities have long been concerned about accidental intrusions of pathogens into distribution system pipelines (i.e., cross-connections) and are increasingly concerned about deliberate pathogen contamination. Here, a simulation framework is developed and used to assess the vulnerability of a water system to microbiological contamination. The risk of delivering contaminated water to consumers is quantified by a network water quality model that includes disinfectant decay and disinfection kinetics. The framework is applied to two example networks under a worst-case deliberate intrusion scenario. Results show that the risk of consumer exposure is affected by the residual maintenance strategy employed. The common regulation that demands a "detectable" disinfectant residual may not provide effective consumer protection against microbial contamination. A chloramine residual, instead of free chlorine, may significantly weaken this final barrier against pathogen intrusions. Moreover, the addition of a booster station at storage tanks may improve consumer protection without requiring excessive disinfectant.

  4. Microbiology: Detection of Bacterial Pathogens and Their Occurrence.

    ERIC Educational Resources Information Center

    Reasoner, Donald J.

    1978-01-01

    Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)

  5. LITERATURE REVIEW OF MOLECULAR METHODS FOR SIMULTANEOUS DETECTION OF PATHOGENS IN WATER

    EPA Science Inventory

    This literature search is a review of molecular technologies (qPCR, microarray, microfluidics and lab-on-a-chip) for simultaneous detection of multiple waterborne pathogens in order to understand the state of the technology. The search content focuses on: pathogen detection witho...

  6. Insect E-probe Diagnostic Nucleic acid Analysis (EDNA): the application of a novel bioinformatic tool to detection of vectors and pathogens in individual insect and simulated insect trap metagenomes

    USDA-ARS?s Scientific Manuscript database

    Plant pathogen detection takes many forms. In simple cases, researchers are attempting to detect a known pathogen from a known host utilizing targeted nucleic acid or antigenic assays. However, in more complex scenarios researchers may not know the identity of a pathogen, or they may need to screen ...

  7. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  8. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    PubMed Central

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  9. Field-deployable colorimetric biosensor system for the rapid detection of pathogenic organisms

    NASA Astrophysics Data System (ADS)

    Duy, Janice

    The rapid identification of pathogenic organisms is necessary for recognizing and managing human and environmental health risks. Numerous detection schemes are available, but most are difficult to employ in non-laboratory settings due to their need for bulky, specialized equipment, multiple reagents, or highly trained personnel. To address this problem, a rapid, field-compatible biosensor system based on the colorimetric detection of nucleic acid hybrids was developed. Peptide nucleic acid (PNA) probes were used to capture ribosomal RNA sequences from environmental samples. Non-target nucleic acids, including single-base mismatches flanked by adenines and uracils, were removed with a micrococcal nuclease digestion step. Matched PNA-RNA hybrids remained intact and were indicated by the cyanine dye DiSC2(5). PNA-containing duplexes function as templates for the aggregation of DiSC2(5), visualized as a change in solution color from blue to purple. This transition can be measured as an increase in the solution absorbance at 540 nm (dye aggregate) at the expense of the dye monomer peak at 650 nm. These concomitant spectral changes were used to calculate a "hybridization signal" using the ratio A aggregate/Amonomer ≈ A540/A650. Testing with pathogenic environmental samples was accomplished using two model organisms: the harmful algal bloom-causing dinoflagellate Alexandrium species, and the potato wart disease-causing fungus Synchytrium endobioticum. In both cases, the colorimetric approach was able to distinguish the targets with sensitivities rivaling those of established techniques, but with the advantages of decreased hands-on time and cost. Assay fieldability was tested with a portable colorimeter designed to quantify the dye-indicated hybridization signal and assembled from commercially available components. Side-by-side testing revealed no difference in the sensing performance of the colorimeter compared to a laboratory spectrophotometer (Pearson's r=0.99935). Assay results were obtained within 15 minutes, with a limit of detection down to 10--17 mole. This quick, inexpensive and robust system has the potential to replace laborious pathogen identification schemes in field environments, and is easily adapted for the detection of different organisms.

  10. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.

    PubMed

    Faria, Vítor G; Martins, Nelson E; Paulo, Tânia; Teixeira, Luís; Sucena, Élio; Magalhães, Sara

    2015-11-01

    Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.

    PubMed

    Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret

    2007-11-01

    LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

  12. Immunomagnetic isolation of pathogen-containing phagosomes and apoptotic blebs from primary phagocytes.

    PubMed

    Steinhäuser, Christine; Dallenga, Tobias; Tchikov, Vladimir; Schaible, Ulrich E; Schütze, Stefan; Reiling, Norbert

    2014-04-02

    Macrophages and polymorphonuclear neutrophils are professional phagocytes essential in the initial host response against intracellular pathogens such as Mycobacterium tuberculosis. Phagocytosis is the first step in phagocyte-pathogen interaction, where the pathogen is engulfed into a membrane-enclosed compartment termed a phagosome. Subsequent effector functions of phagocytes result in killing and degradation of the pathogen by promoting phagosome maturation, and, terminally, phago-lysosome fusion. Intracellular pathogenic microbes use various strategies to avoid detection and elimination by phagocytes, including induction of apoptosis to escape host cells, thereby generating apoptotic blebs as shuttles to other cells for pathogens and antigens thereof. Hence, phagosomes represent compartments where host and pathogen become quite intimate, and apoptotic blebs are carrier bags of the pathogen's legacy. In order to investigate the molecular mechanisms underlying these interactions, both phagosomes and apoptotic blebs are required as purified subcellular fractions for subsequent analysis of their biochemical properties. Here, we describe a lipid-based procedure to magnetically label surfaces of either pathogenic mycobacteria or apoptotic blebs for purification by a strong magnetic field in a novel free-flow system. Copyright © 2014 John Wiley & Sons, Inc.

  13. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen Bordetella pertussis.

    PubMed

    de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S

    2007-01-01

    An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.

  14. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    USDA-ARS?s Scientific Manuscript database

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  15. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  16. Automated and miniaturized detection of biological threats with a centrifugal microfluidic system

    NASA Astrophysics Data System (ADS)

    Mark, D.; van Oordt, T.; Strohmeier, O.; Roth, G.; Drexler, J.; Eberhard, M.; Niedrig, M.; Patel, P.; Zgaga-Griesz, A.; Bessler, W.; Weidmann, M.; Hufert, F.; Zengerle, R.; von Stetten, F.

    2012-06-01

    The world's growing mobility, mass tourism, and the threat of terrorism increase the risk of the fast spread of infectious microorganisms and toxins. Today's procedures for pathogen detection involve complex stationary devices, and are often too time consuming for a rapid and effective response. Therefore a robust and mobile diagnostic system is required. We present a microstructured LabDisk which performs complex biochemical analyses together with a mobile centrifugal microfluidic device which processes the LabDisk. This portable system will allow fully automated and rapid detection of biological threats at the point-of-need.

  17. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a LAMP assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-co...

  18. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  19. Waterborne Pathogens: Detection Methods and Challenges

    PubMed Central

    Ramírez-Castillo, Flor Yazmín; Loera-Muro, Abraham; Jacques, Mario; Garneau, Philippe; Avelar-González, Francisco Javier; Harel, Josée; Guerrero-Barrera, Alma Lilián

    2015-01-01

    Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health. PMID:26011827

  20. Biosensor for the detection of Listeria monocytogenes: emerging trends.

    PubMed

    Soni, Dharmendra Kumar; Ahmad, Rafiq; Dubey, Suresh Kumar

    2018-05-23

    The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.

  1. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  2. [Study on serological cross-reactivity of six pathogenic phleboviruses].

    PubMed

    Wu, Wei; Zhang, Shuo; Zhang, Quan-Fu; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2014-07-01

    This article aimed to study the antigenicity of nucleocapsid proteins (NPs) in six pathogenic phleboviruses and to provide theoretical evidence for the development of serological diagnostic reagents. NPs of six pathogenic phleboviruses were expressed and purified using a prokaryotic expression system and rabbits were immunized with individual recombinant NPs. Cross-reactions among NPs and rabbit sera were determined by both indirect ELISA and Western blotting analyses, and the sera titer was determined by indirect ELISA. Furthermore, sera from SFTS patients were also detected by each recombinant NP as a coating antigen using indirect ELISA. The cross-reactions and the sera titer were subsequently determined. Both the concentration and purity of recombinant NPs of six pathogenic phleboviruses met the standards for immunization and detection. The results of indirect ELISA and Western blotting showed that each anti-phlebovirus NP rabbit immune serum had potential serological cross-reactivity with the other five virus NP antigens. Furthermore, the sera from SFTS patients also had cross-reactivity with the other five NP antigens to a certain extent. Our preliminary study evaluated the antigenicity and immune reactivity of six pathogenic phleboviruses NPs and laid the foundation for the development of diagnostic reagents.

  3. Detection of E. coli O157:H7 in complex matrices under varying flow parameters with a robotic fluorometric assay system

    NASA Astrophysics Data System (ADS)

    Leskinen, Stephaney D.; Schlemmer, Sarah M.; Kearns, Elizabeth A.; Lim, Daniel V.

    2009-02-01

    The development of rapid assays for detection of microbial pathogens in complex matrices is needed to protect public health due to continued outbreaks of disease from contaminated foods and water. An Escherichia coli O157:H7 detection assay was designed using a robotic, fluorometric assay system. The system integrates optics, fluidics, robotics and software for the detection of foodborne pathogens or toxins in as many as four samples simultaneously. It utilizes disposable fiber optic waveguides coated with biotinylated antibodies for capture of target analytes from complex sample matrices. Computer-controlled rotation of sample cups allows complete contact between the sample and the waveguide. Detection occurs via binding of a fluorophore-labeled antibody to the captured target, which leads to an increase in the fluorescence signal. Assays are completed within twenty-five minutes. Sample matrices included buffer, retentate (material recovered from the filter of the Automated Concentration System (ACS) following hollow fiber ultrafiltration), spinach wash and ground beef. The matrices were spiked with E. coli O157:H7 (103-105 cells/ml) and the limits of detection were determined. The effect of sample rotation on assay sensitivity was also examined. Rotation parameters for each sample matrix included 10 ml with rotation, 5 ml with rotation and 0.1 ml without rotation. Detection occurred at 104 cells/ml in buffer and spinach wash and at 105 cells/ml in retentate and ground beef. Detection was greater for rotated samples in each matrix except ground beef. Enhanced detection of E. coli from large, rotated volumes of complex matrices was confirmed.

  4. 3M™ Molecular detection system versus MALDI-TOF mass spectrometry and molecular techniques for the identification of Escherichia coli 0157:H7, Salmonella spp. &Listeria spp.

    PubMed

    Loff, Marché; Mare, Louise; de Kwaadsteniet, Michele; Khan, Wesaal

    2014-06-01

    The aim of this study was to compare standard selective plating, conventional PCR (16S rRNA and species specific primers), MALDI-TOF MS and the 3M™ Molecular Detection System for the routine detection of the pathogens Listeria, Salmonella and Escherichia coli 0157:H7 in wastewater and river water samples. MALDI-TOF MS was able to positively identify 20/21 (95%) of the E. coli isolates obtained at genus and species level, while 16S rRNA sequencing only correctly identified 6/21 (28%) as E. coli strains. None of the presumptive positive Listeria spp. and Salmonella spp. isolates obtained by culturing on selective media were positively identified by MALDI-TOF and 16S rRNA analysis. The species-specific E. coli 0157:H7 PCR described in this present study, was not able to detect any E. coli 0157:H7 strains in the wastewater and river water samples analysed. However, E. coli strains, Listeria spp., L. monocytogenes and Salmonella spp. were detected using species specific PCR. Escherichia coli 0157:H7, Listeria spp. and Salmonella spp. were also sporadically detected throughout the sampling period in the wastewater and river water samples analysed by the 3M™ Molecular Detection System. MALDI-TOF MS, which is a simple, accurate and cost-effective detection method, efficiently identified the culturable organisms, while in the current study both species specific PCR (Listeria spp. and Salmonella spp.) and 3M™ Molecular Detection System could be utilised for the direct routine analysis of pathogens in water sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Rapid Identification of Pathogens from Positive Blood Cultures by Multiplex PCR using the FilmArray System

    PubMed Central

    Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.

    2012-01-01

    Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332

  6. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  7. Quantitative real-time PCR-based assessment of tile drainage management influences on bacterial pathogens in tile drainage and groundwater.

    PubMed

    Liu, Linda; Cloutier, Michel; Craiovan, Emilia; Edwards, Mark; Frey, Steven K; Gottschall, Natalie; Lapen, David R; Sunohara, Mark; Topp, Edward; Khan, Izhar U H

    2018-05-15

    This study compared the impact of controlled tile drainage (CD) and freely draining (FD) systems on the prevalence and quantitative real-time PCR-based enumeration of four major pathogens including Arcobacter butzleri, Campylobacter jejuni, Campylobacter coli, and Helicobacter pylori in tile- and groundwater following a fall liquid swine manure (LSM) application on clay loam field plots. Although the prevalence of all target pathogens were detected in CD and FD systems, the loads of A. butzleri, C. jejuni, and C. coli were significantly lower in CD tile-water (p<0.05), in relation to FD tile-water. However, concentrations of A. butzleri were significantly greater in CD than FD tile-water (p<0.05). In shallow groundwater (1.2m depth), concentrations of A. butzleri, C. coli, and H. pylori showed no significant difference between CD and FD plots, while C. jejuni concentrations were significantly higher in FD plots (p<0.05). No impact of CD on the H. pylori was observed since quantitative detection in tile- and groundwater was scarce. Although speculative, H. pylori occurrence may have been related to the application of municipal biosolids four years prior to the LSM experiment. Overall, CD can be used to help minimize off-field export of pathogens into surface waters following manure applications to land, thereby reducing waterborne pathogen exposure risks to humans. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  9. System for rapid detection of antibiotic resistance of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Noiseux, I.; Mouslinkina, L.; Vernon, M. L.; Laflamme, C.; Filion, G.; Duchaine, C.; Ho, J.

    2009-05-01

    This project uses function-based detection via a fundamental understanding of the genetic markers of AR to distinguish harmful organisms from innocuous ones. This approach circumvents complex analyses to unravel the taxonomic details of 1399 pathogen species, enormously simplifying detection requirements. Laval Hospital's fast permeabilization strategy enables AR revelation in <1hr. Packaging the AR protocols in liquid-processing cartridges and coupling these to our in-house miniature fiber optic flow cell (FOFC) provides first responders with timely information on-site. INO's FOFC platform consists of a specialty optical fiber through which a hole is transversally bored by laser micromachining. The analyte solution is injected into the hole of the fiber and the particles are detected and counted. The advantage with respect to classic free space FC is that alignment occurs in the fabrication process only and complex excitation and collection optics are replaced by optical fibers. Moreover, we use a sheathless configuration which has the advantage of increase the portability of the system, to reduce excess biohazard material and the need for weekly maintenance. In this paper we present the principle of our FOFC along with a, demonstration of the basic capability of the platform for detection of bacillus cereus spores using permeabilized staining.

  10. Quaternized magnetic nanoparticles-fluorescent polymer system for detection and identification of bacteria.

    PubMed

    Wan, Yi; Sun, Yan; Qi, Peng; Wang, Peng; Zhang, Dun

    2014-05-15

    Nanomaterial-based 'chemical nose' sensor with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. A sensor array containing three quaternized magnetic nanoparticles (q-MNPs)-fluorescent polymer systems has been designed to identify and quantify bacteria. The bacterial cell membranes disrupt the q-MNP-fluorescent polymer, generating unique fluorescence response array. The response intensity of the array is dependent on the level of displacement determined by the relative q-MNP-fluorescent polymer binding strength and bacteria cells-MNP interaction. These characteristic responses show a highly repeatable bacteria cells and can be differentiated by linear discriminant analysis (LDA). Based on the array response matrix from LDA, our approach has been used to measure bacteria with an accuracy of 87.5% for 10(7) cfu mL(-1) within 20 min. Combined with UV-vis measurement, the method can be successfully performed to identify and detect eight different pathogen samples with an accuracy of 96.8%. The measurement system has a potential for further applications and provides a facile and simple method for the rapid analysis of protein, DNA, and pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization.

    PubMed

    Lee, Chi-Ying; Panicker, Gitika; Bej, Asim K

    2003-05-01

    Outbreak of diseases associated with consumption of raw shellfish especially oysters is a major concern to the seafood industry and public health agencies. A multiplex PCR amplification of targeted gene segments followed by DNA-DNA sandwich hybridization was optimized to detect the etiologic agents. First, a multiplex PCR amplification of hns, spvB, vvh, ctx and tl was developed enabling simultaneous detection of total Salmonella enterica serotype Typhimurium, Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus from both pure cultures and seeded oysters. Amplicons were then subjected to a colorimetric CovaLink NH microwell plate sandwich hybridization using phosphorylated and biotinlylated oligonucleotide probes, the nucleotide sequences of which were located internal to the amplified DNA. The results from the hybridization with the multiplexed PCR amplified DNA exhibited a high signal/noise ratio ranging between 14.1 and 43.2 measured at 405 nm wavelength. The sensitivity of detection for each pathogen was 10(2) cells/g of oyster tissue homogenate. The results from this study showed that the combination of the multiplex PCR with a colorimetric microwell plate sandwich hybridization assay permits a specific, sensitive, and reproducible system for the detection of the microbial pathogens in shellfish, thereby improving the microbiological safety of shellfish to consumers.

  12. Characterization of novel sufraces by FTIR spectroscopy and atomic force microscopy for food pathogen detection

    USDA-ARS?s Scientific Manuscript database

    Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...

  13. A comparison of in-house real-time LAMP assays with a commercial assay for the detection of pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Molecular detection of bacterial pathogens based on LAMP methods is a faster and simpler approach than conventional culture methods. Although different LAMP-based methods for pathogenic bacterial detection are available, a systematic comparison of these different LAMP assays has not been performed. ...

  14. 9 CFR 113.36 - Detection of pathogens by the chicken inoculation test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of pathogens by the chicken... REQUIREMENTS Standard Procedures § 113.36 Detection of pathogens by the chicken inoculation test. The test for...,000 doses. (b) At least 25 healthy susceptible young chickens, properly identified and obtained from...

  15. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  16. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  17. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria.

    PubMed

    Ryan, P L; Christiansen, D L; Hopper, R M; Walters, F K; Moulton, K; Curbelo, J; Greene, J M; Willard, S T

    2011-05-01

    Uterine and placental infections are the leading cause of abortion, stillbirth, and preterm delivery in the mare. Whereas uterine and placental infections in women have been studied extensively, a comprehensive examination of the pathogenic processes leading to this unsatisfactory pregnancy outcome in the mare has yet to be completed. Most information in the literature relating to late-term pregnancy loss in mares is based on retrospective studies of clinical cases submitted for necropsy. Here we report the development and application of a novel approach, whereby transgenically modified bacteria transformed with lux genes of Xenorhabdus luminescens or Photorhabdus luminescens origin and biophotonic imaging are utilized to better understand pathogen-induced preterm birth in late-term pregnant mares. This technology uses highly sensitive bioluminescence imaging camera systems to localize and monitor pathogen progression during tissue invasion by measuring the bioluminescent signatures emitted by the lux-modified pathogens. This method has an important advantage in that it allows for the potential tracking of pathogens in vivo in real time and over time, which was hitherto impossible. Although the application of this technology in domestic animals is in its infancy, investigators were successful in identifying the fetal lungs, sinuses, nares, urinary, and gastrointestinal systems as primary tissues for pathogen invasion after experimental infection of pregnant mares with lux-modified Escherichia coli. It is important that pathogens were not detected in other vital organs, such as the liver, brain, and cardiac system. Such precision in localizing sites of pathogen invasion provides potential application for this novel approach in the development of more targeted therapeutic interventions for pathogen-related diseases in the equine and other domestic species.

  18. Performance of Kiestra Total Laboratory Automation Combined with MS in Clinical Microbiology Practice

    PubMed Central

    Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.

    2014-01-01

    Background Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. Methods Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. Results Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. Conclusions The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner. PMID:24624346

  19. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia

    PubMed Central

    Gyarmati, P.; Kjellander, C.; Aust, C.; Song, Y.; Öhrmalm, L.; Giske, C. G.

    2016-01-01

    Leukemic patients are often immunocompromised due to underlying conditions, comorbidities and the effects of chemotherapy, and thus at risk for developing systemic infections. Bloodstream infection (BSI) is a severe complication in neutropenic patients, and is associated with increased mortality. BSI is routinely diagnosed with blood culture, which only detects culturable pathogens. We analyzed 27 blood samples from 9 patients with acute leukemia and suspected BSI at different time points of their antimicrobial treatment using shotgun metagenomics sequencing in order to detect unculturable and non-bacterial pathogens. Our findings confirm the presence of bacterial, fungal and viral pathogens alongside antimicrobial resistance genes. Decreased white blood cell (WBC) counts were associated with the presence of microbial DNA, and was inversely proportional to the number of sequencing reads. This study could indicate the use of high-throughput sequencing for personalized antimicrobial treatments in BSIs. PMID:26996149

  20. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain.

    PubMed

    Yang, Xiang; Noyes, Noelle R; Doster, Enrique; Martin, Jennifer N; Linke, Lyndsey M; Magnuson, Roberta J; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina; Morley, Paul S; Belk, Keith E

    2016-04-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes. Copyright © 2016 Yang et al.

  1. Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk--sheep are not small cows.

    PubMed

    Zadoks, Ruth N; Tassi, Riccardo; Martin, Elena; Holopainen, Jani; McCallum, Sarah; Gibbons, James; Ballingall, Keith T

    2014-10-01

    Mastitis, inflammation of the mammary gland, is an important cause of disease, mortality, and production losses in dairy and meat sheep. Mastitis is commonly caused by intramammary infection with bacteria, which can be detected by bacterial culture or PCR. PathoProof (Thermo Fisher Scientific Ltd., Vantaa, Finland) is a commercially available real-time PCR system for the detection of bovine mastitis pathogens. Sheep differ from cattle in the bacterial species or bacterial strains that cause mastitis, as well as in the composition of their milk. The aim of this study was to evaluate whether the PathoProof system was suitable for detection of mastitis pathogens in sheep milk. Milk samples were collected aseptically from 219 udder halves of 113 clinically healthy ewes in a single flock. Aliquots were used for bacteriological culture and real-time PCR-based detection of bacteria. For species identified by culture, the diagnosis was confirmed by species-specific conventional PCR or by sequencing of a housekeeping gene. The majority of samples were negative by culture (74.4% of 219 samples) and real-time PCR (82.3% of 192 samples). Agreement was observed for 138 of 192 samples. Thirty-four samples were positive by culture only, mostly due to presence of species that are not covered by primers in the PCR system (e.g., Mannheimia spp.). Two samples were positive for Streptococcus uberis by culture but not by PCR directly from the milk samples. This was not due to inability of the PCR primers to amplify ovine Streptococcus uberis, as diluted DNA extracts from the same samples and DNA extracts from the bacterial isolates were positive by real-time PCR. For samples containing Staphylococcus spp., 11 samples were positive by culture and PCR, 9 by culture only, and 20 by PCR only. Samples that were negative by either method had lower bacterial load than samples that were positive for both methods, whereas no clear relation with species identity was observed. This study provides proof of principle that real-time PCR can be used for detection of mastitis pathogens in ovine milk. Routine use in sheep may require inclusion of primer sets for sheep-specific mastitis pathogens. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  3. Development of a Commercial Prototype of the Autonomous Pathogen Detection System Final Report CRADA No. TC-02077-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzenitis, J. M.; Haigh, P.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), and GE Ion Track, Inc. (GEIT) to develop a commercial prototype of the Autonomous Pathogen Detection System (APDS), an instrument that monitors the air for all three biological threat agents (bacteria, viruses and toxins). This was originally a one year CRADA project, with the cost of the work at LLNL being funded by the Department of Homeland Security's Office of National Laboratories. The original project consisted of five major tasks and deliverables. The CRADA was then amended, converting the CRADA from amore » programmatically funded CRADA to a funds-in CRADA, extending the project for an additional 14 months, and adding four new tasks and deliverable to the project.« less

  4. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  5. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Method for detecting pathogens attached to specific antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2005-01-25

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  7. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  8. Detection of Microbial Water Quality Indicators and Fecal Waterborne Pathogens in Environmental Waters: A Review of Methods, Applications, and Limitations

    EPA Science Inventory

    Environmental waters are important reservoirs of pathogenic microorganisms, many of which are of fecal origin. In most cases, the presence of pathogens is determined using surrogate bacterial indicators. In other cases, direct detection of the pathogen in question is required. M...

  9. Occupancy Modeling for Improved Accuracy and Understanding of Pathogen Prevalence and Dynamics

    PubMed Central

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%. PMID:25738709

  10. Occupancy modeling for improved accuracy and understanding of pathogen prevalence and dynamics

    USGS Publications Warehouse

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmonOncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population:Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.

  11. Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems

    PubMed Central

    Li, Xiang; Harwood, Valerie J.; Nayak, Bina

    2016-01-01

    Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716

  12. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes. PMID:23800426

  13. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  14. Droplet microfluidics for amplification-free genetic detection of single cells.

    PubMed

    Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei

    2012-09-21

    In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.

  15. Rapid analysis of foodborne pathogens by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sengupta, Atanu; Shende, Chetan; Huang, Hermes; Farquharson, Stuart; Inscore, Frank

    2012-05-01

    Foodborne diseases resulting from Campylobacter, Escherichia, Listeria, Salmonella, Shigella and Vibrio species affect as many as 76 million persons in the United States each year, resulting in 325,000 hospitalizations and 5,000 deaths. The challenge to preventing distribution and consumption of contaminated foods lies in the fact that just a few bacterial cells can rapidly multiply to millions, reaching infectious doses within a few days. Unfortunately, current methods used to detect these few cells rely on lengthy growth enrichment steps that take a similar amount of time (1 to 4 days). Consequently, there is a critical need for an analyzer that can rapidly extract and detect foodborne pathogens in 1-2 hours (not days), at 100 colony forming units per gram of food, and with a specificity that differentiates from indigenous microflora, so that false alarms are eliminated. In an effort to meet this need, we have been developing a sample system that extracts such pathogens from food, selectively binds these pathogens, and produces surface-enhanced Raman spectra (SERS). Here we present preliminary SERS measurements of Listeria and Salmonella.

  16. ETV Report and Statement for ENDETEC TECTA™ B-16 BY PATHOGEN DETECTION SYSTEMS, INC.

    EPA Science Inventory

    This report provides results for the verification testing of the ENDETEC™ TECTA B-16 by PDS (hereafter referred to as the TECTA™ B-16). The following is a description of the TECTA B-16, based on information provided by the vendor. The TECTA B-16 is a bench top detection and data ...

  17. Xenosurveillance: A Novel Mosquito-Based Approach for Examining the Human-Pathogen Landscape

    PubMed Central

    Grubaugh, Nathan D.; Sharma, Supriya; Krajacich, Benjamin J.; Fakoli III, Lawrence S.; Bolay, Fatorma K.; Diclaro II, Joe W.; Johnson, W. Evan; Ebel, Gregory D.; Foy, Brian D.; Brackney, Doug E.

    2015-01-01

    Background Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations. Methodology/Principal Findings To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host’s blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus. Conclusions/Significance Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts. PMID:25775236

  18. Field application of pathogen detection technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Call, Douglas R.; Bruckner-Lea, Cindy J.

    Over the last 10 years there has been a significant increase in commercial products designed for field-based detection of microbial pathogens. This is due, in part, to the anthrax attacks in the United States in 2001, and the need for first responders to quickly identify the composition of suspected white powders and other potential biothreats. Demand for rapid detection is also driven by the need to ensure safe food, water, and environmental systems. From a technology perspective, rapid identification methods have largely capitalized on PCR and other molecular recognition techniques that can be deployed as robust field instrumentation. Examples ofmore » the relevant needs include the ability to: 1) declare a water distribution system free of microbial pathogens after a pipe/main break repair; 2) assess risks of contamination such as when produce production and processing plants are located near concentrated animal feeing operations; 3) evaluate the safety of ready-to-eat products; 4) determine the extent of potential serious disease outbreaks in remote and/or disaster stricken areas where access to clinical laboratories is not an immediate option; and 5) quickly assess credible biological terrorism events. Many of the principles underlying rapid detection methods are derived from methods for environmental microbiology, but there is a dearth of literature describing and evaluating field-based detection systems. Thus, the aims of this chapter are to: 1) summarize the different kinds of commercially available sampling kits and field-based biological detectors; 2) highlight some of the continued challenges of sample preparation to stimulate new research towards minimizing the impact of inhibitors on PCR-based detection systems; 3) describe our general rationale and statistically-based approach for instrument evaluation; 4) provide statistical and spatial guidelines for developing valid sampling plans; and 5) summarize some current needs and emerging technologies. This information is presented both to highlight the state of the field, and to also highlight major questions that students may wish to consider investigating further. Where possible we will cite studies that have been conducted and published either in traditional peer-reviewed or other literature (e.g., AOAC International Methods).« less

  19. Colonization of citrus seed coats by 'Candidatus Liberibacter asiaticus': implications for seed transmission of the bacterium.

    PubMed

    Hilf, Mark E

    2011-10-01

    Huanglongbing is an economically damaging disease of citrus associated with infection by 'Candidatus Liberibacter asiaticus'. Transmission of the organism via infection of seeds has not been demonstrated but is a concern since some citrus varieties, particularly those used as rootstocks in commercial plantings are propagated from seed. We compared the incidence of detection of 'Ca. Liberibacter asiaticus' DNA in individual fruit peduncles, seed coats, seeds, and in germinated seedlings from 'Sanguenelli' sweet orange and 'Conners' grapefruit fruits sampled from infected trees. Using real-time quantitative PCR (qPCR) we detected pathogen DNA in nucleic acid extracts of 36 and 100% of peduncles from 'Sanguenelli' and from 'Conners' fruits, respectively. We also detected pathogen DNA in extracts of 37 and 98% of seed coats and in 1.6 and 4% of extracts from the corresponding seeds of 'Sanguenelli' and 'Conners', respectively. Small amounts of pathogen DNA were detected in 10% of 'Sanguenelli' seedlings grown in the greenhouse, but in none of 204 extracts from 'Conners' seedlings. Pathogen DNA was detected in 4.9% and in 89% of seed coats peeled from seeds of 'Sanguenelli' and 'Conners' which were germinated on agar, and in 5% of 'Sanguenelli' but in none of 164 'Conners' seedlings which grew from these seeds on agar. No pathogen DNA was detected in 'Ridge Pineapple' tissue at 3 months post-grafting onto 'Sanguenelli' seedlings, even when pathogen DNA had been detected initially in the 'Sanguenelli' seedling. Though the apparent colonization of 'Conners' seeds was more extensive and nearly uniform compared with 'Sanguenelli' seeds, no pathogen DNA was detected in 'Conners' seedlings grown from these seeds. For either variety, no association was established between the presence of pathogen DNA in fruit peduncles and seed coats and in seedlings.

  20. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    PubMed

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.

  1. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen.

    PubMed

    Mosher, Brittany A; Huyvaert, Kathryn P; Bailey, Larissa L

    2018-06-02

    Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.

  2. Detection of human pathogenic Fusarium species in hospital and communal sink biofilms by using a highly specific monoclonal antibody.

    PubMed

    Al-Maqtoofi, Marwan; Thornton, Christopher R

    2016-11-01

    The fungus Fusarium is well known as a plant pathogen, but has recently emerged as an opportunistic pathogen of humans. Habitats providing direct human exposure to infectious propagules are largely unknown, but there is growing evidence that plumbing systems are sources of human pathogenic strains in the Fusarium solani species complex (FSSC) and Fusarium oxysporum species complex (FOSC), the most common groups infecting humans. Here, a newly developed Fusarium-specific monoclonal antibody (mAb ED7) was used to track FSSC and FOSC strains in sink drain biofilms by detecting its target antigen, an extracellular 200 kDa carbohydrate, in saline swabs. The antigen was detectable in 52% of swab samples collected from sinks across a University campus and a tertiary care hospital. The mAb was 100% accurate in detecting FSSC, FOSC, and F. dimerum species complex (FDSC) strains that were present, as mixed fungal communities, in 83% of sink drain biofilms. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of culturable yeasts and molds that were recovered using mycological culture, while translation elongation factor (TEF)-1α analysis of Fusarium isolates included FSSC 1-a, FOSC 33, and FDSC ET-gr, the most common clinical pathotypes in each group. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Detection and characterization of foodborne pathogenic bacteria with hyperspectral microscope imaging

    USDA-ARS?s Scientific Manuscript database

    Rapid detection and identification of pathogenic microorganisms naturally occurring during food processing are important in developing intervention and verification strategies. In the poultry industry, contamination of poultry meat with foodborne pathogens (especially, Salmonella and Campylobacter) ...

  4. PulseNet China, a model for future laboratory-based bacterial infectious disease surveillance in China.

    PubMed

    Li, Wei; Lu, Shan; Cui, Zhigang; Cui, Jinghua; Zhou, Haijian; Wang, Yiqing; Shao, Zhujun; Ye, Changyun; Kan, Biao; Xu, Jianguo

    2012-12-01

    Surveillance is critical for the prevention and control of infectious disease. China's real-time web-based infectious disease reporting system is a distinguished achievement. However, many aspects of the current China Infectious Disease Surveillance System do not yet meet the demand for timely outbreak detection and identification of emerging infectious disease. PulseNet, the national molecular typing network for foodborne disease surveillance was first established by the Centers for Disease Control and Prevention of the United States in 1995 and has proven valuable in the early detection of outbreaks and tracing the pathogen source. Since 2001, the China CDC laboratory for bacterial pathogen analysis has been a member of the PulseNet International family; and has been adapting the idea and methodology of PulseNet to develop a model for a future national laboratory-based surveillance system for all bacterial infectious disease.We summarized the development progress for the PulseNet China system and discussed it as a model for the future of China's national laboratory-based surveillance system.

  5. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  6. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems.

    PubMed

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O; Pruden, Amy

    2012-09-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems.

  7. Molecular Survey of the Occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba Hosts in Two Chloraminated Drinking Water Distribution Systems

    PubMed Central

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O.

    2012-01-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems. PMID:22752174

  8. Bacteria, viruses, and parasites in an intermittent stream protected from and exposed to pasturing cattle: prevalence, densities, and quantitative microbial risk assessment.

    PubMed

    Wilkes, G; Brassard, J; Edge, T A; Gannon, V; Jokinen, C C; Jones, T H; Neumann, N; Pintar, K D M; Ruecker, N; Schmidt, P J; Sunohara, M; Topp, E; Lapen, D R

    2013-10-15

    Over 3500 individual water samples, for 131 sampling times, targeting waterborne pathogens/fecal indicator bacteria were collected during a 7-year period from 4 sites along an intermittent stream running through a small livestock pasture system with and without cattle access-to-stream restriction measures. The study assessed the impact of cattle pasturing/riparian zone protection on: pathogen (bacterial, viral, parasite) occurrence, concentrations of fecal indicators, and quantitative microbial risk assessments (QMRA) of the risk of Cryptosporidium, Giardia and Escherichia coli O157:H7 infection in humans. Methodologies were developed to compute QMRA mean risks on the basis of water samples exhibiting potentially human infectious Cryptosporidium and E. coli based on genotyping Crytosporidium, and E. coli O157:H7 presence/absence information paired with enumerated E. coli. All Giardia spp. were considered infectious. No significant pasturing treatment effects were observed among pathogens, with the exception of Campylobacter spp. and E. coli O157:H7. Campylobacter spp. prevalence significantly decreased downstream through pasture treatments and E. coli O157:H7 was observed in a few instances in the middle of the unrestricted pasture. Densities of total coliform, fecal coliform, and E. coli reduced significantly downstream in the restricted pasture system, but not in the unrestricted system. Seasonal and flow conditions were associated with greater indicator bacteria densities, especially in the summer. Norovirus GII was detected at rates of 7-22% of samples for all monitoring sites, and rotavirus in 0-7% of samples for all monitoring sites; pasture treatment trends were not evident, however. Seasonal and stream flow variables (and their interactions) were relatively more important than pasture treatments for initially stratifying pathogen occurrence and higher fecal indicator bacteria densities. Significant positive associations among fecal indicator bacteria and Campylobacter spp. detection were observed. For QMRA, adjusting for the proportion of Cryptosporidium spp. detected that are infectious for humans reduces downstream risk estimates by roughly one order of magnitude. Using QMRA in this manner provides a more refined estimate of beneficial management practice effects on pathogen exposure risks to humans. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Detection and Differentiation of Lyme Spirochetes and Other Tick-Borne Pathogens from Blood Using Real-Time PCR with Molecular Beacons.

    PubMed

    Schlachter, Samantha; Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2017-01-01

    Real-time PCR assays have recently been implemented in diagnostics for many bacterial pathogens, allowing rapid and accurate detection, which ultimately results in improved clinical intervention. Here, we describe a sensitive method of detection for three common tick-borne pathogens Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti since coinfections with these pathogens have started occurring with increasing frequency over the last several years in both North America and Europe. A shared geographic region, the same tick vectors, and similar transmission cycle all favor simultaneous transmission of these three tick-borne pathogens. Furthermore, early symptoms of the diseases are often similar and somewhat nonspecific leading to poor clinical identification. The multiplex real-time PCR assay we describe here utilizes gene-specific primers, molecular beacon probes tagged with different fluorophores, and optimized PCR conditions to detect even small amounts of specific pathogen DNA without interference. Application of this detection method will offer better diagnostics for acute and persistent infection compared to the two-tier serological tests that are currently approved in North America and Europe, which do not necessarily detect active infection.

  10. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J

    2010-12-08

    Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.

  11. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  12. Prevalence and Relative Risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes Associated with the Body Surfaces and Guts of Individual Filth Flies

    PubMed Central

    Pearson, Rachel E. Goeriz; Miller, Amy K.; Ziobro, George C.

    2012-01-01

    Although flies are important vectors of food-borne pathogens, there is little information to accurately assess the food-related health risk of the presence of individual flies, especially in urban areas. This study quantifies the prevalence and the relative risk of food-borne pathogens associated with the body surfaces and guts of individual wild flies. One hundred flies were collected from the dumpsters of 10 randomly selected urban restaurants. Flies were identified using taxonomic keys before being individually dissected. Cronobacter spp., Salmonella spp., and Listeria monocytogenes were detected using the PCR-based BAX system Q7. Positive samples were confirmed by culture on specific media and through PCR amplification and sequencing or ribotyping. Among collected flies were the housefly, Musca domestica (47%), the blowflies, Lucilia cuprina (33%) and Lucilia sericata (14%), and others (6%). Cronobacter species were detected in 14% of flies, including C. sakazakii, C. turicensis, and C. universalis, leading to the proposal of flies as a natural reservoir of this food-borne pathogen. Six percent of flies carried Salmonella enterica, including the serovars Poona, Hadar, Schwarzengrund, Senftenberg, and Brackenridge. L. monocytogenes was detected in 3% of flies. Overall, the prevalence of food-borne pathogens was three times greater in the guts than on the body surfaces of the flies. The relative risk of flies carrying any of the three pathogens was associated with the type of pathogen, the body part of the fly, and the ambient temperature. These data enhance the ability to predict the microbiological risk associated with the presence of individual flies in food and food facilities. PMID:22941079

  13. Evaluation of microplate immunocapture method for detection of Vibrio cholerae, Salmonella Typhi and Shigella flexneri from food.

    PubMed

    Fakruddin, Md; Hossain, Md Nur; Ahmed, Monzur Morshed

    2017-08-29

    Improved methods with better separation and concentration ability for detection of foodborne pathogens are in constant need. The aim of this study was to evaluate microplate immunocapture (IC) method for detection of Salmonella Typhi, Shigella flexneri and Vibrio cholerae from food samples to provide a better alternative to conventional culture based methods. The IC method was optimized for incubation time, bacterial concentration, and capture efficiency. 6 h incubation and log 6 CFU/ml cell concentration provided optimal results. The method was shown to be highly specific for the pathogens concerned. Capture efficiency (CE) was around 100% of the target pathogens, whereas CE was either zero or very low for non-target pathogens. The IC method also showed better pathogen detection ability at different concentrations of cells from artificially contaminated food samples in comparison with culture based methods. Performance parameter of the method was also comparable (Detection limit- 25 CFU/25 g; sensitivity 100%; specificity-96.8%; Accuracy-96.7%), even better than culture based methods (Detection limit- 125 CFU/25 g; sensitivity 95.9%; specificity-97%; Accuracy-96.2%). The IC method poses to be the potential to be used as a method of choice for detection of foodborne pathogens in routine laboratory practice after proper validation.

  14. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa.

    PubMed

    Bischel, Heather N; Özel Duygan, Birge D; Strande, Linda; McArdell, Christa S; Udert, Kai M; Kohn, Tamar

    2015-11-15

    In eThekwini, South Africa, the production of agricultural fertilizers from human urine collected from urine-diverting dry toilets is being evaluated at a municipality scale as a way to help finance a decentralized, dry sanitation system. The present study aimed to assess a range of human and environmental health hazards in source-separated urine, which was presumed to be contaminated with feces, by evaluating the presence of human pathogens, pharmaceuticals, and an antibiotic resistance gene. Composite urine samples from households enrolled in a urine collection trial were obtained from urine storage tanks installed in three regions of eThekwini. Polymerase chain reaction (PCR) assays targeted 9 viral and 10 bacterial human pathogens transmitted by the fecal-oral route. The most frequently detected viral pathogens were JC polyomavirus, rotavirus, and human adenovirus in 100%, 34% and 31% of samples, respectively. Aeromonas spp. and Shigella spp. were frequently detected gram negative bacteria, in 94% and 61% of samples, respectively. The gram positive bacterium, Clostridium perfringens, which is known to survive for extended times in urine, was found in 72% of samples. A screening of 41 trace organic compounds in the urine facilitated selection of 12 priority pharmaceuticals for further evaluation. The antibiotics sulfamethoxazole and trimethoprim, which are frequently prescribed as prophylaxis for HIV-positive patients, were detected in 95% and 85% of samples, reaching maximum concentrations of 6800 μg/L and 1280 μg/L, respectively. The antiretroviral drug emtricitabine was also detected in 40% of urine samples. A sulfonamide antibiotic resistance gene (sul1) was detected in 100% of urine samples. By coupling analysis of pathogens and pharmaceuticals in geographically dispersed samples in eThekwini, this study reveals a range of human and environmental health hazards in urine intended for fertilizer production. Collection of urine offers the benefit of sequestering contaminants from environmental release and allows for targeted treatment of potential health hazards prior to agricultural application. The efficacy of pathogen and pharmaceutical inactivation, transformation or removal during urine nutrient recovery processes is thus briefly reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification.

    PubMed

    Chen, Xingxing; Wu, Xiaoli; Gan, Min; Xu, Feng; He, Lihua; Yang, Dong; Xu, Hengyi; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is one of the main pathogens in dairy and meat products; therefore, developing a highly sensitive and rapid method for its detection is necessary. In this study, a quantitative detection method for Staph. aureus was developed using silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. First, genomic DNA was extracted from lysed bacteria using silica-coated magnetic nanoparticles and amplified using thermophilic helicase-dependent isothermal amplification. After adding the nucleic-acid dye SYBR Green I to the amplicons, the fluorescence intensity was observed using a UV lamp or recorded using a fluorescence spectrophotometer. This detection system had a detection limit of 5×10(0) cfu/mL in pure culture and milk-powder samples and 5×10(1) cfu/mL in pork samples using a UV light in less than 2h. In addition, a good linear relationship was obtained between fluorescence intensity and bacterial concentrations ranging from 10(2) to 10(4) cfu/mL under optimal conditions. Furthermore, the results from contaminated milk powder and pork samples suggested that the detection system could be used for the quantitative analysis of Staph. aureus and applied potentially to the food industry for the detection of this pathogen. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Prevalence and Seasonal Distribution of Respiratory Viruses During the 2014 - 2015 Season in Istanbul

    PubMed Central

    Goktas, Safak; Sirin, Mumtaz Cem

    2016-01-01

    Background Acute respiratory tract infection (ARTI) is one of the most common infections worldwide, causing significant morbidity and mortality. Objectives This study was conducted to determine the prevalence and seasonal distribution of respiratory viruses in our region, in children and adults with a pre-diagnosis of ARTI. Methods A total of 845 nasopharyngeal swab specimens were analyzed with the RespiFinder Smart 22 kit (PathoFinder BV, Netherlands) and the Rotor-Gene 6000 real-time PCR system. Results At least one pathogen was detected in 612 (72.4%) of the specimens. Overall, 902 pathogens were detected; 821 (91%) were viruses and 81 (9%) were bacteria. The most commonly detected pathogens were influenza A virus (IFV-A) (n = 219), influenza B virus (IFV-B) (n=157), rhinovirus/enterovirus (n = 107), human bocavirus (HBoV) (n = 91), respiratory syncytial virus (RSV) A/B (n = 64), adenovirus (n = 56), human coronaviruses (n = 51), Mycoplasma pneumoniae (n = 49), parainfluenza viruses (n = 40), human metapneumovirus (n = 36), Bordetella pertussis (n = 15), Legionella pneumophila (n = 11), and Chlamydophila pneumoniae (n = 6), respectively. Among the 215 (25.4%) co-infected cases, IFV-A/HBoV and IFV-A/IFV-B were the most common co-infections. IFV-A was the most prevalent agent in all age groups except for children under 5 years of age, in whom RSV A/B was the most common pathogen. Approximately two thirds of the respiratory viruses were detected in early spring and winter, with peaks in January, March, and April. Conclusions With regard to the prevalence and seasonal distribution of respiratory viruses, our epidemiological data for the 2014 - 2015 season in Istanbul showed a predominance of IFV-A infections with a peak activity in early spring. Enhanced surveillance and early detection of respiratory viral pathogens can be useful in the diagnosis, treatment, and prevention of ARTIs, and for guiding the development of appropriate public health strategies. PMID:27800148

  17. Application of PCDA/SPH/CHO/Lysine vesicles to detect pathogenic bacteria in chicken.

    PubMed

    de Oliveira, Taíla V; Soares, Nilda de F F; de Andrade, Nélio J; Silva, Deusanilde J; Medeiros, Eber Antônio A; Badaró, Amanda T

    2015-04-01

    During the course of infection, Salmonella must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments, as lysine decarboxylation to cadaverine. The idea of Salmonella defenses responses could be employed in systems as polydiacetylene (PDA) to detect this pathogen so important to public health system. Beside that PDA is an important substance because of the unique optical property; that undergoes a colorimetric transitions by various external stimuli. Therefore 10,12-pentacosadyinoic acid (PCDA)/Sphingomyelin(SPH)/Cholesterol(CHO)/Lysine system was tested to determine the colorimetric response induced by Salmonella choleraesuis. PCDA/SPH/CHO/Lysine vesicles showed a colour change even in low S. choleraesuis concentration present in laboratory conditions and in chicken meat. Thus, this work showed a PCDA/SPH/CHO/Lysine vesicle application to simplify routine analyses in food industry, as chicken meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  19. National animal health surveillance: Return on investment.

    PubMed

    Scott, Aaron E; Forsythe, Kenneth W; Johnson, Cynthia L

    2012-08-01

    A weighted benefit-cost analysis (BCA) supports prioritization of animal health surveillance activities to safeguard animal agriculture industries and reduce the impact of disease on the national economy. We propose to determine the value of investment in surveillance by assessing benefits from: avoiding disease incursion and expansion modified by the probability of occurrence of the disease event, the sensitivity of systems to detect it, and the degree to which we can mitigate disease impact when detected. The weighted benefit-cost ratio is the modified value of surveillance as laid out above divided by the cost of surveillance. We propose flexible, stream-based surveillance that capitalizes on combining multiple streams of information from both specific pathogen based and non-pathogen based surveillance. This stream-based type of system provides high value with lower costs and will provide a high return for the funds invested in animal health surveillance. Published by Elsevier B.V.

  20. Digital PCR for detection of citrus pathogens

    USDA-ARS?s Scientific Manuscript database

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  1. Rainwater harvesting in American Samoa: current practices and indicative health risks.

    PubMed

    Kirs, Marek; Moravcik, Philip; Gyawali, Pradip; Hamilton, Kerry; Kisand, Veljo; Gurr, Ian; Shuler, Christopher; Ahmed, Warish

    2017-05-01

    Roof-harvested rainwater (RHRW) is an important alternative source of water that many island communities can use for drinking and other domestic purposes when groundwater and/or surface water sources are contaminated, limited, or simply not available. The aim of this pilot-scale study was to investigate current RHRW practices in American Samoa (AS) and to evaluate and compare the quality of water from common potable water sources including RHRW stored in tanks, untreated stream water, untreated municipal well water, and treated municipal tap water samples. Samples were analyzed using culture-based methods, quantitative polymerase chain reaction (qPCR), and 16S amplicon sequencing-based methods. Based on indicator bacteria (total coliform and Escherichia coli) concentrations, the quality of RHRW was slightly lower than well and chlorinated tap water but exceeded that of untreated stream water. Although no Giardia or Leptospira spp. were detected in any of the RHRW samples, 86% of the samples were positive for Cryptosporidium spp. All stream water samples tested positive for Cryptosporidium spp. Opportunistic pathogens (Pseudomonas aeruginosa and Mycobacterium intracellulare) were also detected in the RHRW samples (71 and 21% positive samples, respectively). Several potentially pathogenic genera of bacteria were also detected in RHRW by amplicon sequencing. Each RHRW system was characterized by distinct microbial communities, 77% of operational taxonomic units (OTUs) were detected only in a single tank, and no OTU was shared by all the tanks. Risk of water-borne illness increased in the following order: chlorinated tap water/well water < RHRW < stream water. Frequent detection of opportunistic pathogens indicates that RHRW should be treated before use. Stakeholder education on RHRW system design options as well as on importance of regular cleaning and proper management techniques could improve the quality of the RHRW in AS.

  2. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  4. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    PubMed

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Comparison of the Idaho Technology FilmArray System to Real-Time PCR for Detection of Respiratory Pathogens in Children

    PubMed Central

    Pierce, Virginia M.; Elkan, Michael; Leet, Marilyn; McGowan, Karin L.

    2012-01-01

    The FilmArray Respiratory Panel (RP) multiplexed nucleic acid amplification test (Idaho Technology, Inc., Salt Lake City, UT) was compared to laboratory-developed real-time PCR assays for the detection of various respiratory viruses and certain bacterial pathogens. A total of 215 frozen archived pediatric respiratory specimens previously characterized as either negative or positive for one or more pathogens by real-time PCR were examined using the FilmArray RP system. Overall agreement between the FilmArray RP and corresponding real-time PCR assays for shared analytes was 98.6% (kappa = 0.92 [95% confidence interval (CI), 0.89 to 0.94]). The combined positive percent agreement was 89.4% (95% CI, 85.4 to 92.6); the negative percent agreement was 99.6% (95% CI, 99.2 to 99.8). The mean real-time PCR threshold cycle (CT) value for specimens with discordant results was 36.46 ± 4.54. Detection of coinfections and correct identification of influenza A virus subtypes were comparable to those of real-time PCR when using the FilmArray RP. The greatest comparative difference in sensitivity was observed for adenovirus; only 11 of 24 (45.8%; 95% CI, 27.9 to 64.9) clinical specimens positive for adenovirus by real-time PCR were also positive by the FilmArray RP. In addition, upon testing 20 characterized adenovirus serotypes prepared at high and low viral loads, the FilmArray RP did not detect serotypes 6 and 41 at either level and failed to detect serotypes 2, 20, 35, and 37 when viral loads were low. The FilmArray RP system is rapid and extremely user-friendly, with results available in just over 1 h with almost no labor involved. Its low throughput is a significant drawback for laboratories receiving large numbers of specimens, as only a single sample can be processed at a time with one instrument. PMID:22116144

  6. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria

    PubMed Central

    Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon

    2013-01-01

    Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591

  7. Leapfrog diagnostics: Demonstration of a broad spectrum pathogen identification platform in a resource-limited setting

    PubMed Central

    2012-01-01

    Background Resource-limited tropical countries are home to numerous infectious pathogens of both human and zoonotic origin. A capability for early detection to allow rapid outbreak containment and prevent spread to non-endemic regions is severely impaired by inadequate diagnostic laboratory capacity, the absence of a “cold chain” and the lack of highly trained personnel. Building up detection capacity in these countries by direct replication of the systems existing in developed countries is not a feasible approach and instead requires “leapfrogging” to the deployment of the newest diagnostic systems that do not have the infrastructure requirements of systems used in developed countries. Methods A laboratory for molecular diagnostics of infectious agents was established in Bo, Sierra Leone with a hybrid solar/diesel/battery system to ensure stable power supply and a satellite modem to enable efficient communication. An array of room temperature stabilization and refrigeration technologies for reliable transport and storage of reagents and biological samples were also tested to ensure sustainable laboratory supplies for diagnostic assays. Results The laboratory demonstrated its operational proficiency by conducting an investigation of a suspected avian influenza outbreak at a commercial poultry farm at Bo using broad range resequencing microarrays and real time RT-PCR. The results of the investigation excluded influenza viruses as a possible cause of the outbreak and indicated a link between the outbreak and the presence of Klebsiella pneumoniae. Conclusions This study demonstrated that by application of a carefully selected set of technologies and sufficient personnel training, it is feasible to deploy and effectively use a broad-range infectious pathogen detection technology in a severely resource-limited setting. PMID:22759725

  8. Bacterial Pathogens Associated with Community-acquired Pneumonia in Children Aged Below Five Years.

    PubMed

    Das, Anusmita; Patgiri, Saurav J; Saikia, Lahari; Dowerah, Pritikar; Nath, Reema

    2016-03-01

    To determine the spectrum of bacterial pathogens causing community-acquired pneumonia in children below 5 years of age. Children aged below 5 years satisfying the WHO criteria for pneumonia, severe pneumonia or very severe pneumonia, and with the presence of lung infiltrates on chest X-ray were enrolled. Two respiratory samples, one for culture and the other for PCR analysis, and a blood sample for culture were collected from every child. Of the 180 samples processed, bacterial pathogens were detected in 64.4%. Streptococcus pneumoniae and Hemophilus influenzae were most frequently detected. The performance of PCR analysis and culture were identical for the typical bacterial pathogens; atypical pathogens were detected by PCR analysis only. S. pneumoniae and H. influenza were the most commonly detected organisms from respiratory secretions of children with community acquired pneumonia.

  9. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations.

    PubMed

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  10. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  11. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less

  12. Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection

    PubMed Central

    Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.; Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.

    2011-01-01

    Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is ~90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube’s port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63°C for ~1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. PMID:21342806

  13. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations.

    PubMed

    Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun

    2018-05-22

    Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.

  14. The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.

    PubMed

    Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng

    2017-05-01

    Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The cell surface environment for pathogen recognition and entry.

    PubMed

    Stow, Jennifer L; Condon, Nicholas D

    2016-04-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.

  16. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  17. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  18. Biofilms in Water, Its role and impact in human disease transmission

    DTIC Science & Technology

    2008-01-01

    increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine

  19. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  20. Rapid Multiplex PCR Assay To Identify Respiratory Viral Pathogens: Moving Forward Diagnosing The Common Cold

    PubMed Central

    Gordon, Sarah M; Elegino-Steffens, Diane U; Agee, Willie; Barnhill, Jason; Hsue, Gunther

    2013-01-01

    Upper respiratory tract infections (URIs) can be a serious burden to the healthcare system. The majority of URIs are viral in etiology, but definitive diagnosis can prove difficult due to frequently overlapping clinical presentations of viral and bacterial infections, and the variable sensitivity, and lengthy turn-around time of viral culture. We tested new automated nested multiplex PCR technology, the FilmArray® system, in the TAMC department of clinical investigations, to determine the feasibility of replacing the standard viral culture with a rapid turn-around system. We conducted a feasibility study using a single-blinded comparison study, comparing PCR results with archived viral culture results from a convenience sample of cryopreserved archived nasopharyngeal swabs from acutely ill ED patients who presented with complaints of URI symptoms. A total of 61 archived samples were processed. Viral culture had previously identified 31 positive specimens from these samples. The automated nested multiplex PCR detected 38 positive samples. In total, PCR was 94.5% concordant with the previously positive viral culture results. However, PCR was only 63.4% concordant with the negative viral culture results, owing to PCR detection of 11 additional viral pathogens not recovered on viral culture. The average time to process a sample was 75 minutes. We determined that an automated nested multiplex PCR is a feasible alternative to viral culture in an acute clinical setting. We were able to detect at least 94.5% as many viral pathogens as viral culture is able to identify, with a faster turn-around time. PMID:24052914

  1. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood.

    PubMed

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H; Didar, Tohid; Dimitrakakis, Nikolaos; Cartwright, David; Super, Michael; Ingber, Donald E

    2016-07-01

    Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (<1h) detected the presence of active infection in animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Two pathogen reduction technologies--methylene blue plus light and shortwave ultraviolet light--effectively inactivate hepatitis C virus in blood products.

    PubMed

    Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel

    2013-05-01

    Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.

  3. Detection and prevalence of pathogenic Yersinia enterocolitica in refrigerated and frozen dairy products by duplex PCR and dot hybridization targeting the virF and ail genes.

    PubMed

    Ye, Y W; Ling, N; Han, Y J; Wu, Q P

    2014-11-01

    Pathogenic Yersinia enterocolitica is involved in yersiniosis through expression of chromosome-borne or plasmid-borne virulence factors. Yersinia enterocolitica is a cold-tolerant pathogen frequently isolated from refrigerated or frozen foods. However, little attention has been focused on the prevalence of pathogenic Y. enterocolitica in refrigerated or frozen dairy samples in China. In this study, we developed a new duplex PCR targeting the plasmid-borne virF gene and chromosome-borne ail gene for detection of pathogenic Y. enterocolitica isolates. We established a detection limit for the duplex PCR of 6.5 × 10(2)cfu/mL in artificially contaminated dairy samples. In addition, the duplex PCR could detect directly 4.5 to 5.7 cfu of Y. enterocolitica in 5 mL of brain heart infusion broth after 6 h of enrichment at 28 °C. A newly developed dot hybridization assay further confirmed specificity of the duplex PCR for detection of virulent Y. enterocolitica. Furthermore, 13 Y. enterocolitica and 5 pathogenic strains, from 88 commercial frozen or refrigerated dairy products, were detected successfully by the China National Standard method (GB/T4789.8-2008) and the duplex PCR, respectively. Finally, biotypes and serotypes of pathogenic Y. enterocolitica strains were further characterized. The duplex PCR developed here is reliable for large-scale screening, routine monitoring, and risk assessment of pathogenic Y. enterocolitica in refrigerated or frozen dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing.

    PubMed

    Whiley, Harriet

    2016-12-24

    Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.

  5. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing

    PubMed Central

    Whiley, Harriet

    2016-01-01

    Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups. PMID:28029126

  6. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  7. Correlation between Detection of a Plasmid and High-Level Virulence of Vibrio nigripulchritudo, a Pathogen of the Shrimp Litopenaeus stylirostris▿

    PubMed Central

    Reynaud, Yann; Saulnier, Denis; Mazel, Didier; Goarant, Cyrille; Le Roux, Frédérique

    2008-01-01

    Vibrio nigripulchritudo, the etiological agent of Litopenaeus stylirostris summer syndrome, is responsible for mass mortalities of shrimp in New Caledonia. Epidemiological studies led to the suggestion that this disease is caused by an emergent group of pathogenic strains. Genomic subtractive hybridization was carried out between two isolates exhibiting low and high virulence. Our subtraction library was constituted of 521 specific fragments; 55 of these were detected in all virulent isolates from our collection (n = 32), and 13 were detected only in the isolates demonstrating the highest pathogenicity (n = 19), suggesting that they could be used as genetic markers for high virulence capacity. Interestingly, 10 of these markers are carried by a replicon of 11.2 kbp that contains sequences highly similar to those of a plasmid detected in Vibrio shilonii, a coral pathogen. The detection of this plasmid was correlated with the highest pathogenicity status of the isolates from our collection. The origin and consequence of this plasmid acquisition are discussed. PMID:18359828

  8. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  9. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    PubMed Central

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; Singh, Anup K.

    2016-01-01

    Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ∼10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples. PMID:26858815

  10. Comparison between nasopharyngeal swab and nasal wash, using culture and PCR, in the detection of potential respiratory pathogens.

    PubMed

    Gritzfeld, Jenna F; Roberts, Paul; Roche, Lorna; El Batrawy, Sherouk; Gordon, Stephen B

    2011-04-13

    Nasopharyngeal carriage of potential pathogens is important as it is both the major source of transmission and the prerequisite of invasive disease. New methods for detecting carriage could improve comfort, accuracy and laboratory utility. The aims of this study were to compare the sensitivities of a nasopharyngeal swab (NPS) and a nasal wash (NW) in detecting potential respiratory pathogens in healthy adults using microbiological culture and PCR. Healthy volunteers attended for nasal washing and brushing of the posterior nasopharynx. Conventional and real-time PCR were used to detect pneumococcus and meningococcus. Statistical differences between the two nasal sampling methods were determined using a nonparametric Mann-Whitney U test; differences between culture and PCR methods were determined using the McNemar test.Nasal washing was more comfortable for volunteers than swabbing (n = 24). In detection by culture, the NW was significantly more likely to detect pathogens than the NPS (p < 0.00001). Overall, there was a low carriage rate of pathogens in this sample; no significant difference was seen in the detection of bacteria between culture and PCR methods. Nasal washing and PCR may provide effective alternatives to nasopharyngeal swabbing and classical microbiology, respectively.

  11. Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR

    PubMed Central

    Lamarche, Josyanne; Potvin, Amélie; Pelletier, Gervais; Stewart, Don; Feau, Nicolas; Alayon, Dario I. O.; Dale, Angela L.; Coelho, Aaron; Uzunovic, Adnan; Bilodeau, Guillaume J.; Brière, Stephan C.; Hamelin, Richard C.; Tanguay, Philippe

    2015-01-01

    Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada. PMID:26274489

  12. [Microbiological point of care tests].

    PubMed

    Book, Malte; Lehmann, Lutz Eric; Zhang, Xianghong; Stüber, Frank

    2010-11-01

    It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future. © Georg Thieme Verlag Stuttgart · New York.

  13. Biosurveillance enterprise for operational awareness, a genomic-based approach for tracking pathogen virulence

    PubMed Central

    Valdivia-Granda, Willy A

    2013-01-01

    To protect our civilians and warfighters against both known and unknown pathogens, biodefense stakeholders must be able to foresee possible technological trends that could affect their threat risk assessment. However, significant flaws in how we prioritize our countermeasure-needs continue to limit their development. As recombinant biotechnology becomes increasingly simplified and inexpensive, small groups, and even individuals, can now achieve the design, synthesis, and production of pathogenic organisms for offensive purposes. Under these daunting circumstances, a reliable biosurveillance approach that supports a diversity of users could better provide early warnings about the emergence of new pathogens (both natural and manmade), reverse engineer pathogens carrying traits to avoid available countermeasures, and suggest the most appropriate detection, prophylactic, and therapeutic solutions. While impressive in data mining capabilities, real-time content analysis of social media data misses much of the complexity in the factual reality. Quality issues within freeform user-provided hashtags and biased referencing can significantly undermine our confidence in the information obtained to make critical decisions about the natural vs. intentional emergence of a pathogen. At the same time, errors in pathogen genomic records, the narrow scope of most databases, and the lack of standards and interoperability across different detection and diagnostic devices, continue to restrict the multidimensional biothreat assessment. The fragmentation of our biosurveillance efforts into different approaches has stultified attempts to implement any new foundational enterprise that is more reliable, more realistic and that avoids the scenario of the warning that comes too late. This discussion focus on the development of genomic-based decentralized medical intelligence and laboratory system to track emerging and novel microbial health threats in both military and civilian settings and the use of virulence factors for risk assessment. Examples of the use of motif fingerprints for pathogen discrimination are provided. PMID:24152965

  14. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe.

    PubMed

    Xu, Shengnan; Wang, Qinghua; Zhang, Qingyang; Zhang, Leilei; Zuo, Limin; Jiang, Jian-Dong; Hu, Hai-Yu

    2017-10-18

    The identification of bacterial pathogens is the critical first step in conquering infection diseases. A novel turn-on fluorescent probe for the selective sensing of nitroreductase (NTR) activity and its initial applications in rapid, real-time detection and identification of ESKAPE pathogens have been reported.

  15. Hyperspectral imaging using a color camera and its application for pathogen detection

    USDA-ARS?s Scientific Manuscript database

    This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six represe...

  16. Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms.

    PubMed

    Strawn, Laura K; Fortes, Esther D; Bihn, Elizabeth A; Nightingale, Kendra K; Gröhn, Yrjö T; Worobo, Randy W; Wiedmann, Martin; Bergholz, Peter W

    2013-01-01

    Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields.

  17. Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms

    PubMed Central

    Strawn, Laura K.; Fortes, Esther D.; Bihn, Elizabeth A.; Nightingale, Kendra K.; Gröhn, Yrjö T.; Worobo, Randy W.; Wiedmann, Martin

    2013-01-01

    Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields. PMID:23144137

  18. Quantification of carious pathogens in the interdental microbiota of young caries-free adults.

    PubMed

    Bourgeois, Denis; David, Alexandra; Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence

    2017-01-01

    The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Twenty-five caries-free subjects (20-35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene.

  19. Rapid Methods for the Detection of General Fecal Indicators

    EPA Science Inventory

    Specified that EPA should develop: appropriate and effective indicators for improving detection in a timely manner of pathogens in coastal waters appropriate, accurate, expeditious and cost-effective methods for the timely detection of pathogens in coastal waters

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguishmore » infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.« less

  1. Mycoplasmas and Ureaplasmas as Neonatal Pathogens

    PubMed Central

    Waites, Ken B.; Katz, Brenda; Schelonka, Robert L.

    2005-01-01

    The genital mycoplasmas represent a complex and unique group of microorganisms that have been associated with a wide array of infectious diseases in adults and infants. The lack of conclusive knowledge regarding the pathogenic potential of Mycoplasma and Ureaplasma spp. in many conditions is due to a general unfamiliarity of physicians and microbiology laboratories with their fastidious growth requirements, leading to difficulty in their detection; their high prevalence in healthy persons; the poor design of research studies attempting to base association with disease on the mere presence of the organisms in the lower urogenital tract; the failure to consider multifactorial aspects of diseases; and considering these genital mycoplasmas only as a last resort. The situation is now changing because of a greater appreciation of the genital mycoplasmas as perinatal pathogens and improvements in laboratory detection, particularly with regard to the development of powerful molecular nucleic acid amplification tests. This review summarizes the epidemiology of genital mycoplasmas as causes of neonatal infections and premature birth; evidence linking ureaplasmas with bronchopulmonary dysplasia; recent changes in the taxonomy of the genus Ureaplasma; the neonatal host response to mycoplasma and ureaplasma infections; advances in laboratory detection, including molecular methods; and therapeutic considerations for treatment of systemic diseases. PMID:16223956

  2. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    PubMed

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Portable multispectral fluorescence imaging system for food safety applications

    NASA Astrophysics Data System (ADS)

    Lefcourt, Alan M.; Kim, Moon S.; Chen, Yud-Ren

    2004-03-01

    Fluorescence can be a sensitive method for detecting food contaminants. Of particular interest is detection of fecal contamination as feces is the source of many pathogenic organisms. Feces generally contain chlorophyll a and related compounds due to ingestion of plant materials, and these compounds can readily be detected using fluorescence techniques. Described is a fluorescence-imaging system consisting primarily of a UV light source, an intensified camera with a six-position filter wheel, and software for controlling the system and automatically analyzing the resulting images. To validate the system, orchard apples artificially contaminated with dairy feces were used in a "hands-on" public demonstration. The contamination sites were easily identified using automated edge detection and threshold detection algorithms. In addition, by applying feces to apples and then washing sets of apples at hourly intervals, it was determined that five h was the minimum contact time that allowed identification of the contamination site after the apples were washed. There are many potential uses for this system, including studying the efficacy of apple washing systems.

  4. Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens.

    PubMed

    Jeon, Jin-Woo; Kim, Jee-Hyun; Lee, Jong-Mook; Lee, Won-Ho; Lee, Do-Young; Paek, Se-Hwan

    2014-02-15

    To realize an inexpensive, pocket-sized immunosensor system, a rapid test devise based on cross-flow immuno-chromatography was physically combined with a lens-free CMOS image sensor (CIS), which was then applied to the detection of the food-borne pathogen, Salmonella typhimurium (S. typhimurium). Two CISs, each retaining 1.3 mega pixel array, were mounted on a printed circuit board to fabricate a disposable sensing module, being connectable with a signal detection system. For the bacterial analysis, a cellulose membrane-based immunosensing platform, ELISA-on-a-chip (EOC), was employed, being integrated with the CIS module, and the antigen-antibody reaction sites were aligned with the respective sensor. In such sensor construction, the chemiluminescent signals produced from the EOC are transferred directly into the sensors and are converted to electric signals on the detector. The EOC-CIS integrated sensor was capable of detecting a traceable amount of the bacterium (4.22 × 10(3)CFU/mL), nearly comparable to that adopting a sophisticated detector such as cooled-charge-coupled device, while having greatly reduced dimensions and cost. Upon coupling with immuno-magnetic separation, the sensor showed an additional 67-fold enhancement in the detection limit. Furthermore, a real sample test was carried out for fish muscles inoculated with a sample of 3.3CFU S. typhimurium per 10 g, which was able to be detected earlier than 6h after the onset of pre-enrichment by culture. © 2013 Elsevier B.V. All rights reserved.

  5. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    PubMed Central

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-01-01

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit) (50 μL)−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD) of 102 CFU (50 μL)−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens. PMID:28846643

  6. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    PubMed

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens.

  7. Cell biology and immunology lessons taught by Legionella pneumophila.

    PubMed

    Zhu, Wenhan; Luo, Zhao-Qing

    2016-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating within a broad range of hosts. One unique feature of this pathogen is the cohort of ca. 300 virulence factors (effectors) delivered into host cells via its Dot/Icm type IV secretion system. Study of these proteins has produced novel insights into the mechanisms of host function modulation by pathogens, the regulation of essential processes of eukaryotic cells and of immunosurveillance. In this review, we will briefly discuss the roles of some of these effectors in the creation of a niche permissive for bacterial replication in phagocytes and recent advancements in the dissection of the innate immune detection mechanisms by challenging immune cells with L. pneumophila.

  8. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection[OPEN

    PubMed Central

    Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent

    2017-01-01

    To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390

  9. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    PubMed

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P < 0.05). The most common pathogens causing acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  10. Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples.

    PubMed

    Anis, Eman; Hawkins, Ian K; Ilha, Marcia R S; Woldemeskel, Moges W; Saliki, Jeremiah T; Wilkes, Rebecca P

    2018-07-01

    The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle ( C T ) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory. Copyright © 2018 Anis et al.

  11. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection.

    PubMed

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-05-15

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    PubMed

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A High Burden of Asymptomatic Gastrointestinal Infections in Traditional Communities in Papua New Guinea.

    PubMed

    Horwood, Paul F; Soli, Kevin W; Maure, Tobias; Naito, Yuichi I; Morita, Ayako; Natsuhara, Kazumi; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Tomitsuka, Eriko; Igai, Katsura; Larkins, Jo-Ann; Siba, Peter M; Pomat, William; McBryde, Emma S; Umezaki, Masahiro; Greenhill, Andrew R

    2017-12-01

    Stool samples were collected from 148 healthy adults living a traditional subsistence lifestyle in Papua New Guinea and screened for enteric pathogens using real-time RT-PCR/PCR assays. Enteric pathogens were detected in a high proportion (41%) of individuals. Clear differences were observed in the detection of pathogens between highland and lowland communities. In particular, there was a marked difference in detection rates of norovirus GII (20% and 0%, respectively) and Shigella sp. (15% and 0%, respectively). Analysis of the relationship between enteric pathogen carriage and microbial community composition of participants, using box plots to compare specific normal flora population numbers, did not suggest that gut microbial composition was directly associated with pathogen carriage. This study suggests that enteric pathogens are common in healthy individuals in Papua New Guinean highland communities, presumably acting as a reservoir of infection and thus contributing to a high burden of gastrointestinal illnesses.

  14. Immunomagnetic separation for MEMS-based biosensor of waterborne pathogens detection

    NASA Astrophysics Data System (ADS)

    Guo, Jianjiang; Zhang, Rongbiao

    2017-07-01

    Rapid isolation and detection of special pathogens present in environmental drinking water is critical for water quality monitoring. Numerical analysis and experimental investigations on immunomagnetic capture and isolation of waterborne pathogens with magnetic nanoparticles (MNPs) in microfluidic channel are performed. A finite-element COMSOL-based model is established to demonstrate the novel method of on-chip capturing pathogens using MNPs together with periodic pulse magnetic field. Simulation results determine the optimum magnetic pole current and switching frequency for magnetic separation. With the magnetic isolation experiment platform built up, as a pathogen example of Escherichia coli O157:H7, the performance of the method is experimentally verified. Both numerical and experimental results are found to agree reasonably well. Results of these investigations show that the capture efficiency of the immunomagnetic separation method is more than 92%, which could be encouraging for the design and optimization of MEMS-based biosensor of waterborne pathogen detection.

  15. Innate Immune Cells in Liver Inflammation

    PubMed Central

    Liaskou, Evaggelia; Wilson, Daisy V.; Oo, Ye H.

    2012-01-01

    Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair. PMID:22933833

  16. Use of Gnotobiotic Zebrafish to Study Vibrio anguillarum Pathogenicity

    PubMed Central

    Oyarbide, Usua; Iturria, Iñaki; Rainieri, Sandra

    2015-01-01

    Abstract We evaluated the use of the gnotobiotic zebrafish system to study the effects of bacterial infection, and analyzed expression of genes involved in zebrafish innate immunity. Using a GFP-labeled strain of Vibrio anguillarum, we fluorescently monitored colonization of the zebrafish intestinal tract and used gene expression analysis to compare changes in genes involved in innate immunity between nongnotobiotic and gnotobiotic larvae. The experiments performed with the gnotobiotic zebrafish reveal new insights into V. anguillarum pathogenesis. Specifically, an alteration of the host immune system was detected through the suppression of a number of innate immune genes (NFKB, IL1B, TLR4, MPX, and TRF) during the first 3 h post infection. This immunomodulation can be indicative of a “stealth mechanism” of mucus invasion in which the pathogen found a sheltered niche, a typical trait of intracellular pathogens. PMID:25548877

  17. Transcriptome amplification coupled with nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues

    USDA-ARS?s Scientific Manuscript database

    There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...

  18. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  19. Sensitive detection of KIT D816V in patients with mastocytosis.

    PubMed

    Tan, Angela; Westerman, David; McArthur, Grant A; Lynch, Kevin; Waring, Paul; Dobrovic, Alexander

    2006-12-01

    The 2447 A > T pathogenic variation at codon 816 of exon 17 (D816V) in the KIT gene, occurring in systemic mastocytosis (SM), leads to constitutive activation of tyrosine kinase activity and confers resistance to the tyrosine kinase inhibitor imatinib mesylate. Thus detection of this variation in SM patients is important for determining treatment strategy, but because the population of malignant cells carrying this variation is often small relative to the normal cell population, standard molecular detection methods can be unsuccessful. We developed 2 methods for detection of KIT D816V in SM patients. The first uses enriched sequencing of mutant alleles (ESMA) after BsmAI restriction enzyme digestion, and the second uses an allele-specific competitive blocker PCR (ACB-PCR) assay. We used these methods to assess 26 patients undergoing evaluation for SM, 13 of whom had SM meeting WHO classification criteria (before variation testing), and we compared the results with those obtained by direct sequencing. The sensitivities of the ESMA and the ACB-PCR assays were 1% and 0.1%, respectively. According to the ACB-PCR assay results, 65% (17/26) of patients were positive for D816V. Of the 17 positive cases, only 23.5% (4/17) were detected by direct sequencing. ESMA detected 2 additional exon 17 pathogenic variations, D816Y and D816N, but detected only 12 (70.5%) of the 17 D816V-positive cases. Overall, 100% (15/15) of the WHO-classified SM cases were codon 816 pathogenic variation positive. These findings demonstrate that the ACB-PCR assay combined with ESMA is a rapid and highly sensitive approach for detection of KIT D816V in SM patients.

  20. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    PubMed

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  1. Whole-Genome Sequences of Four Strains Closely Related to Members of the Mycobacterium chelonae Group, Isolated from Biofilms in a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome sequences of four Mycobacterium chelonae group strains from biofilms obtained after a ‘chlorine burn’ in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in drinking and hospital water distr...

  2. Label-Free 3D Ag Nanoflower-Based Electrochemical Immunosensor for the Detection of Escherichia coli O157:H7 Pathogens

    NASA Astrophysics Data System (ADS)

    Huang, He; Liu, Minghuan; Wang, Xiangsheng; Zhang, Wenjie; Yang, Da-Peng; Cui, Lianhua; Wang, Xiansong

    2016-11-01

    It is highly desirable to develop a rapid and simple method to detect pathogens. Combining nanomaterials with electrochemical techniques is an efficient way for pathogen detection. Herein, a novel 3D Ag nanoflower was prepared via a biomineralization method by using bovine serum albumin (BSA) as a template. It was adopted as a sensing interface to construct an electrochemical bacteria immunosensor for the rapid detection of foodborne pathogens Escherichia coli ( E. coli) O157:H7. Bacterial antibody was immobilized onto the surface of Ag nanoflowers through covalent conjugation. Electrochemical impedance spectroscopy (EIS) was used to detect and validate the resistance changes, where [Fe(CN)6]3-/4- acted as the redox probe. A linear relation between R et and E. coli concentration was obtained in the E. coli concentration range of 3.0 × 102-3.0 × 108 cfu mL-1. The as-prepared biosensor gave rise to an obvious response to E. coli but had no distinct response to Cronobacter sakazakii, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus albus, Lactobacillus easei, and Shigella flexneri, revealing a high selectivity for the detection of the pathogens down to 100 cfu mL-1 in a short time. We believe that this BSA-conjugated 3D Ag nanoflowers could be used as a powerful interface material with good conductivity and biocompatibility for improving pathogen detection and treatment in the field of medicine, environment, and food safety.

  3. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  4. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  5. Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing.

    PubMed

    Ivy, Morgan I; Thoendel, Matthew J; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Hanssen, Arlen D; Abdel, Matthew P; Chia, Nicholas; Yao, Janet Z; Tande, Aaron J; Mandrekar, Jayawant N; Patel, Robin

    2018-05-30

    Background: Metagenomic shotgun sequencing has the potential to transform how serious infections are diagnosed by offering universal, culture-free pathogen detection. This may be especially advantageous for microbial diagnosis of prosthetic joint infection (PJI) by synovial fluid analysis, since synovial fluid cultures are not universally positive, and synovial fluid is easily obtained pre-operatively. We applied a metagenomics-based approach to synovial fluid in an attempt to detect microorganisms in 168 failed total knee arthroplasties. Results: Genus- and species-level analysis of metagenomic sequencing yielded the known pathogen in 74 (90%) and 68 (83%) of the 82 culture-positive PJIs analyzed, respectively, with testing of two (2%) and three (4%) samples, respectively, yielding additional pathogens not detected by culture. For the 25 culture-negative PJIs tested, genus- and species-level analysis yielded 19 (76%) and 21 (84%) samples with insignificant findings, respectively, and 6 (24%) and 4 (16%) with potential pathogens detected, respectively. Genus- and species-level analysis of the 60 culture-negative aseptic failure cases yielded 53 (88.3%) and 56 (93.3%) cases with insignificant findings, and 7 (11.7%) and 4 (6.7%) with potential clinically-significant organisms detected, respectively. There was one case of aseptic failure with synovial fluid culture growth; metagenomic analysis showed insignificant findings, suggesting possible synovial fluid culture contamination. Conclusion: Metagenomic shotgun sequencing can detect pathogens involved in PJI when applied to synovial fluid and may be particularly useful for culture-negative cases. Copyright © 2018 American Society for Microbiology.

  6. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  7. Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses

    PubMed Central

    Farkas, Kata; Harrison, Christian; Jones, David L.; McCarthy, Alan J.

    2018-01-01

    ABSTRACT Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere’s viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management. PMID:29795788

  8. Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses.

    PubMed

    Adriaenssens, Evelien M; Farkas, Kata; Harrison, Christian; Jones, David L; Allison, Heather E; McCarthy, Alan J

    2018-01-01

    Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere's viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management.

  9. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.

    PubMed

    Hsieh, Kuangwen; Ferguson, B Scott; Eisenstein, Michael; Plaxco, Kevin W; Soh, H Tom

    2015-04-21

    The capacity to achieve rapid, sensitive, specific, quantitative, and multiplexed genetic detection of pathogens via a robust, portable, point-of-care platform could transform many diagnostic applications. And while contemporary technologies have yet to effectively achieve this goal, the advent of microfluidics provides a potentially viable approach to this end by enabling the integration of sophisticated multistep biochemical assays (e.g., sample preparation, genetic amplification, and quantitative detection) in a monolithic, portable device from relatively small biological samples. Integrated electrochemical sensors offer a particularly promising solution to genetic detection because they do not require optical instrumentation and are readily compatible with both integrated circuit and microfluidic technologies. Nevertheless, the development of generalizable microfluidic electrochemical platforms that integrate sample preparation and amplification as well as quantitative and multiplexed detection remains a challenging and unsolved technical problem. Recognizing this unmet need, we have developed a series of microfluidic electrochemical DNA sensors that have progressively evolved to encompass each of these critical functionalities. For DNA detection, our platforms employ label-free, single-step, and sequence-specific electrochemical DNA (E-DNA) sensors, in which an electrode-bound, redox-reporter-modified DNA "probe" generates a current change after undergoing a hybridization-induced conformational change. After successfully integrating E-DNA sensors into a microfluidic chip format, we subsequently incorporated on-chip genetic amplification techniques including polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to enable genetic detection at clinically relevant target concentrations. To maximize the potential point-of-care utility of our platforms, we have further integrated sample preparation via immunomagnetic separation, which allowed the detection of influenza virus directly from throat swabs and developed strategies for the multiplexed detection of related bacterial strains from the blood of septic mice. Finally, we developed an alternative electrochemical detection platform based on real-time LAMP, which not is only capable of detecting across a broad dynamic range of target concentrations, but also greatly simplifies quantitative measurement of nucleic acids. These efforts represent considerable progress toward the development of a true sample-in-answer-out platform for genetic detection of pathogens at the point of care. Given the many advantages of these systems, and the growing interest and innovative contributions from researchers in this field, we are optimistic that iterations of these systems will arrive in clinical settings in the foreseeable future.

  10. Molecular methods for pathogen detection and quantification

    USDA-ARS?s Scientific Manuscript database

    Ongoing interest in convenient, inexpensive, fast, sensitive and accurate techniques for detecting and/or quantifying the presence of soybean pathogens has resulted in increased usage of molecular tools. The method of extracting a molecular target (usually DNA or RNA) for detection depends wholly up...

  11. Molecular assays reveal the presence and diversity of genes encoding pea footrot pathogenicity determinants in Nectria haematococca and in agricultural soils.

    PubMed

    Etebu, E; Osborn, A M

    2009-05-01

    The aim of this study was to develop molecular assays for investigating the presence and diversity of pathogenicity genes from the pea footrot pathogen Nectria haematococca (anamorph Fusarium solani f.sp. pisi) in soils. Polymerase chain reaction (PCR) assays were developed to amplify four N. haematococca pathogenicity genes (PDA, PEP1, PEP3 and PEP5) from isolates and soil-DNA from five agricultural fields with a prior footrot history. A collection of 15 fungi isolated on medium selective for Fusarium spp. exhibited variation in their virulence to peas as assessed via a disease index (DI: 0-5; no virulence to the highest virulence). PCR analyses showed that three isolates in which all four pathogenicity genes were detected resulted in the highest DI (>3.88). All four pathogenicity genes were detected in soil-DNA obtained from all five fields with a footrot disease history, but were not amplified from soils, which had no footrot history. Denaturing gradient gel electrophoresis and/or sequence analysis revealed diversity amongst the pathogenicity genes. The PCR assays developed herein enable the specific detection of pathogenic N. haematococca in soils without recourse to culture. Molecular assays that specifically target pathogenicity genes have the capacity to assess the presence of the footrot-causing pathogen in agricultural soils.

  12. Detection Methodologies for Pathogen and Toxins: A Review.

    PubMed

    Alahi, Md Eshrat E; Mukhopadhyay, Subhas Chandra

    2017-08-16

    Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.

  13. Immunogold Nanoparticles for Rapid Plasmonic Detection of C. sakazakii.

    PubMed

    Aly, Mohamed A; Domig, Konrad J; Kneifel, Wolfgang; Reimhult, Erik

    2018-06-25

    Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii . The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti- C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization.

  14. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; ...

    2016-01-01

    Water-born pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal microfluidic platform (SpinDx) for detection of bacterial pathogens using bead-based immunoassays. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by fluorescence microscopy. Our platform is fast (20 min), sensitive (10 3 CFU/mL), requires minimal sample preparation, and can detect multiple pathogens simultaneously with sensitivitymore » similar to that required by the EPA. We demonstrate detection of a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) at concentrations as low as 10 3 CFU/mL or 30 bacteria per reaction.« less

  15. Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen

    PubMed Central

    Shao, Jonathan; Zhou, Zhe; Davis, Robert E.

    2017-01-01

    Two apple rootstock genotypes G.935 and B.9 were recently demonstrated to exhibit distinct resistance responses following infection by Pythium ultimum. As part of an effort to elucidate the genetic regulation of apple root resistance to soilborne pathogens, preinoculation transcriptome variations in roots of these two apple rootstock genotypes are hypothesized to contribute to the observed disease resistance phenotypes. Results from current comparative transcriptome analysis demonstrated elevated transcript abundance for many genes which function in a system-wide defense response in the root tissue of the resistant genotype of G.935 in comparison with susceptible B.9. Based on the functional annotation, these differentially expressed genes encode proteins that function in several tiers of defense responses, such as pattern recognition receptors for pathogen detection and subsequent signal transduction, defense hormone biosynthesis and signaling, transcription factors with known roles in defense activation, enzymes of secondary metabolism, and various classes of resistance proteins. The data set suggested a more poised status, which is ready to defend pathogen infection, in the root tissues of resistant genotype of G.935, compared to the susceptible B.9. The significance of preformed defense in the absence of a pathogen toward overall resistance phenotypes in apple root and the potential fitness cost due to the overactivated defense system were discussed. PMID:28465679

  16. 'Order from disorder sprung': recognition and regulation in the immune system

    NASA Astrophysics Data System (ADS)

    Mak, Tak W.

    2003-06-01

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.

  17. 'Order from disorder sprung': recognition and regulation in the immune system.

    PubMed

    Mak, Tak W

    2003-06-15

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.

  18. The role of water in healthcare-associated infections.

    PubMed

    Decker, Brooke K; Palmore, Tara N

    2013-08-01

    The aim is to discuss the epidemiology of infections that arise from contaminated water in healthcare settings, including Legionnaires' disease, other Gram-negative pathogens, nontuberculous mycobacteria, and fungi. Legionella can colonize a hospital water system and infect patients despite use of preventive disinfectants. Evidence-based measures are available for secondary prevention. Vulnerable patients can develop healthcare-associated infections with waterborne organisms that are transmitted by colonization of plumbing systems, including sinks and their fixtures. Room humidifiers and decorative fountains have been implicated in serious outbreaks, and pose unwarranted risks in healthcare settings. Design of hospital plumbing must be purposeful and thoughtful to avoid the features that foster growth and dissemination of Legionella and other pathogens. Exposure of patients who have central venous catheters and other invasive devices to tap water poses a risk for infection with waterborne pathogens. Healthcare facilities must conduct aggressive clinical surveillance for Legionnaires' disease and other waterborne infections in order to detect and remediate an outbreak promptly. Hand hygiene is the most important measure to prevent transmission of other Gram-negative waterborne pathogens in the healthcare setting.

  19. The Role of Water in Healthcare-Associated Infections

    PubMed Central

    Decker, Brooke K.; Palmore, Tara N.

    2017-01-01

    Purpose of review The aim is to discuss the epidemiology of infections that arise from contaminated water in healthcare settings, including Legionnaire’s disease, other Gram-negative pathogens, nontuberculous mycobacteria, and fungi. Recent findings Legionella can colonize a hospital water system and infect patients despite use of preventive disinfectants. Evidence-based measures are available for secondary prevention. Vulnerable patients can develop care-associated infections with waterborne organisms that are transmitted by colonization of plumbing systems, including sinks and their fixtures. Room humidifiers and decorative fountains have been implicated in serious outbreaks, and pose unwarranted risks in healthcare settings. Summary Design of hospital plumbing must be purposeful and thoughtful to avoid the features that foster growth and dissemination of Legionella and other pathogens. Exposure of patients who have central venous catheters and other invasive devices to tap water poses a risk for infection with waterborne pathogens. Healthcare facilities must conduct aggressive clinical surveillance for Legionnaire’s disease and other waterborne infections in order to detect and remediate an outbreak promptly. Hand hygiene is the most important measure to prevent transmission of other Gram-negative waterborne pathogens in the healthcare setting. PMID:23806897

  20. Rapid Detection of Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleicmore » acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development and the Perlin lab in sample preparation and testing in animal models.« less

  1. USEPA Approach for the Detection and Quantification of Enterococcus by qPCR

    EPA Science Inventory

    The Beach Act 2000 specified that EPA should develop: Appropriate and effective indicators for improviding detection in a timely manner of pathogens in coastal waters Appropriate, accurate, expeditious and cost-effective methods for the timely detection of pathogens in coas...

  2. The Microbial Detection Array Combined with Random Phi29-Amplification Used as a Diagnostic Tool for Virus Detection in Clinical Samples

    PubMed Central

    Erlandsson, Lena; Rosenstierne, Maiken W.; McLoughlin, Kevin; Jaing, Crystal; Fomsgaard, Anders

    2011-01-01

    A common technique used for sensitive and specific diagnostic virus detection in clinical samples is PCR that can identify one or several viruses in one assay. However, a diagnostic microarray containing probes for all human pathogens could replace hundreds of individual PCR-reactions and remove the need for a clear clinical hypothesis regarding a suspected pathogen. We have established such a diagnostic platform for random amplification and subsequent microarray identification of viral pathogens in clinical samples. We show that Phi29 polymerase-amplification of a diverse set of clinical samples generates enough viral material for successful identification by the Microbial Detection Array, demonstrating the potential of the microarray technique for broad-spectrum pathogen detection. We conclude that this method detects both DNA and RNA virus, present in the same sample, as well as differentiates between different virus subtypes. We propose this assay for diagnostic analysis of viruses in clinical samples. PMID:21853040

  3. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    PubMed

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  4. Prediction of molecular mimicry candidates in human pathogenic bacteria

    PubMed Central

    Doxey, Andrew C; McConkey, Brendan J

    2013-01-01

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053

  5. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    PubMed

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection.

  6. Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds.

    PubMed

    Wilkes, G; Edge, T A; Gannon, V P J; Jokinen, C; Lyautey, E; Neumann, N F; Ruecker, N; Scott, A; Sunohara, M; Topp, E; Lapen, D R

    2011-11-15

    Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥ 2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼ 14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼ 27 mm (62 percentile). During higher water temperatures (>∼ 14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥ 2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥ 2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Harvested rainwater quality before and after treatment in six ...

    EPA Pesticide Factsheets

    Rainwater harvesting (RWH) is an alternative method of providing water for indoor domestic use, but the water quality after treatment and distribution at individual residences is not well documented. In this study, water quality parameters were measured at the cistern and indoor cold-water taps of six residential RWH systems that use various treatment processes. Potential human pathogens (Mycobacterium avium, Mycobacterium intracellulare, Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger) were found frequently in cisterns and in treated rainwater delivered at the tap; Legionella pneumophila was not detected as frequently, but it persisted in a system after its first detection. The observed decreases in bacterial concentrations from the cistern to the tap after filtration/ ultraviolet (UV) treatment and distribution were less than expected; this suggests deficiencies in the effectiveness of the filtration/UV processes employed and/or degradation in water quality in the distribution system due to the absence of a disinfectant residual. Determination of the disinfection efficiency occuring in home treatment processes. Molecular analysis of rainwater before and after treatment. First study to include the monitoring of opportunistic fungal pathogens.

  8. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    USGS Publications Warehouse

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  9. Sensing disease and danger: A survey of vertebrate PRRs and their origins

    USGS Publications Warehouse

    Hansen, John D.; Vojtech, Lucia N.; Laing, Kerry J.

    2011-01-01

    A key facet of the innate immune response lays in its ability to recognize and respond to invading microorganisms and cellular disturbances. Through the use of germ-line encoded PRRs, the innate immune system is capable of detecting invariant pathogen motifs termed pathogen-associated molecular patterns (PAMPS) that are distinct from host encoded proteins or products released from dying cells, which are known as damage-associated molecular patterns (DAMPs). PAMPs and DAMPs include both protein and nucleic acids for the detection and response to pathogens and metabolic "danger" signals. This is by far one of the most active areas of research as recent studies have shown retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) and Toll-like receptors (TLRs) and the recently described AIM-like receptors (ALRs) are responsible for initiating interferon production or the assembly and activation of the inflammasome, ultimately resulting in the release of bioactive IL-1 family members. Overall, the vertebrate PRR recognition machinery consists of seven domains (e.g., Death, NACHT, CARD, TIR, LRR, PYD, helicase), most of which can be traced to the very origins of the deuterostomes. This review is intended to provide an overview of the basic components that are used by vertebrates to detect and respond to pathogens, with an emphasis on these receptors in fish as well as a brief note on their likely origins.

  10. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.

    PubMed

    Mahaffee, Walter F; Stoll, Rob

    2016-05-01

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Richard; Branch, Darren; Edwards, Thayne

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  12. [Etiological surveillance and analysis of infectious diarrhea in Beijing in year 2010].

    PubMed

    Huang, Fang; Deng, Ying; Qu, Mei; Liu, Gui-Rong; Liu, Yuan; Zhang, Xin; Li, Jie; Yan, Han-Qiu; Gao, Zhi-Yong; Liu, Bai-Wei; Li, Xi-Tai; Li, Xin-Yu

    2011-09-01

    To explore the pathogenic form, epidemic features and serotype distribution of the pathogenic bacteria causing infectious diarrhea in Beijing. A total of 2118 samples of rectal swabs and stool specimens of diarrheal patients were collected from 6 surveillant intestinal tract clinics during the period between April and October, 2010. Enteric multiple pathogens including Vibrio cholerae, Vibrio parahaemolyticus, Salmonella, Shigella and diarrheagenic Escherichia coli were detected by the isolation culture, biochemical identification and serotyping methods. The population distribution, temporal distribution and serotype distribution of the above pathogenic bacteria were analyzed by descriptive statistical methods. 478 strains isolated from the total 2118 specimens were positive for pathogen detection, accounting to 22.6%. Among the 478 strains of pathogenic bacteria, Shigella accounting for 40.8% (195/478) was the most frequent pathogen, followed by Vibrio parahaemolyticus accouting for 23.8% (114/478), Salmonella accounting for 19.0% (91/478) and diarrheagenic Escherichia coli accounting for 4.8% (23/478). Enteric pathogenic bacteria spread mainly among adults aging between 20 and 39; and the distribution was different among different age groups, while the highest detected rate was in 30 - 39 age group, accounting for 27.2% (92/338). The detected rate of pathogenic bacteria showed evident seasonal variations, with a peak from July to October, whose detected rates were 23.5% (114/486), 32.8% (176/536), 36.1% (90/249) and 25.9% (29/112) respectively. The detected rates in other months were all under 16.0%. Shigella Sonnei was the dominant serotype, accounting for 83.1% (162/195). O3:K6 was the dominant serotype among Vibrio parahaemolyticus, accounting for 63.2% (72/114). Salmonella Enteritidis and Salmonella Typhimurium were dominant serotypes among Salmonella, accounting for 13.2% (12/91) and 12.1% (11/91) separately. Enterpathogenic Escherichia coli and enterotoxigenic Escherichia coli were the dominant serotypes among Diarrheagenic Escherichia coli, accounting for 69.6% (16/23) and 30.4% (7/23) respectively. The three main pathogenic bacteria causing infectious diarrhea in Beijing are Shigella, Vibrio parahaemolyticus, Salmonella; and there are obvious changes in the serotype distribution of Shigella and Samonella compared to previous years.

  13. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  14. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  15. Application of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment.

    PubMed

    Dileep, V; Kumar, H S; Kumar, Y; Nishibuchi, M; Karunasagar, Indrani; Karunasagar, Iddya

    2003-01-01

    To study the incidence of Vibrio parahaemolyticus in seafoods, water and sediment by molecular techniques vs conventional microbiological methods. Of 86 samples analysed, 28 recorded positive for V. parahaemolyticus by conventional microbiological method, while 53 were positive by the toxR-targeted PCR, performed directly on enrichment broth lysates. While one sample of molluscan shellfish was positive for tdh gene, trh gene was detected in three enrichment broths of molluscan shellfish. Direct application of PCR to enrichment broths will be useful for the rapid and sensitive detection of potentially pathogenic strains of V. parahemolyticus in seafoods. Vibrio parahaemolyticus is an important human pathogen responsible for food-borne gastroenteritis world-wide. As, both pathogenic and non-pathogenic strains of V. parahaemolyticus exist in the seafood, application of PCR specific for the virulence genes (tdh & trh) will help in detection of pathogenic strains of V. parahaemolyticus and consequently reduce the risk of food-borne illness.

  16. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  17. Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2013-2016.

    PubMed

    Marder, Ellyn P; Cieslak, Paul R; Cronquist, Alicia B; Dunn, John; Lathrop, Sarah; Rabatsky-Ehr, Therese; Ryan, Patricia; Smith, Kirk; Tobin-D'Angelo, Melissa; Vugia, Duc J; Zansky, Shelley; Holt, Kristin G; Wolpert, Beverly J; Lynch, Michael; Tauxe, Robert; Geissler, Aimee L

    2017-04-21

    Foodborne diseases represent a substantial public health concern in the United States. CDC's Foodborne Diseases Active Surveillance Network (FoodNet) monitors cases reported from 10 U.S. sites* of laboratory-diagnosed infections caused by nine enteric pathogens commonly transmitted through food. This report describes preliminary surveillance data for 2016 on the nine pathogens and changes in incidences compared with 2013-2015. In 2016, FoodNet identified 24,029 infections, 5,512 hospitalizations, and 98 deaths caused by these pathogens. The use of culture-independent diagnostic tests (CIDTs) by clinical laboratories to detect enteric pathogens has been steadily increasing since FoodNet began surveying clinical laboratories in 2010 (1). CIDTs complicate the interpretation of FoodNet surveillance data because pathogen detection could be affected by changes in health care provider behaviors or laboratory testing practices (2). Health care providers might be more likely to order CIDTs because these tests are quicker and easier to use than traditional culture methods, a circumstance that could increase pathogen detection (3). Similarly, pathogen detection could also be increasing as clinical laboratories adopt DNA-based syndromic panels, which include pathogens not often included in routine stool culture (4,5). In addition, CIDTs do not yield isolates, which public health officials rely on to distinguish pathogen subtypes, determine antimicrobial resistance, monitor trends, and detect outbreaks. To obtain isolates for infections identified by CIDTs, laboratories must perform reflex culture † ; if clinical laboratories do not, the burden of culturing falls to state public health laboratories, which might not be able to absorb that burden as the adoption of these tests increases (2). Strategies are needed to preserve access to bacterial isolates for further characterization and to determine the effect of changing trends in testing practices on surveillance.

  18. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection.

    PubMed

    Altintas, Zeynep; Akgun, Mete; Kokturk, Guzin; Uludag, Yildiz

    2018-02-15

    A fully automated microfluidic-based electrochemical biosensor was designed and manufactured for pathogen detection. The quantification of Escherichia coli was investigated with standard and nanomaterial amplified immunoassays in the concentration ranges of 0.99 × 10 4 3.98 × 10 9 cfu mL -1 and 103.97 × 10 7 cfu mL -1 which resulted in detection limits of 1.99 × 10 4 cfu mL -1 and 50 cfu mL -1 , respectively. The developed methodology was then applied for E. coli quantification in water samples using nanomaterial modified assay. Same detection limit for E. coli was achieved for real sample analysis with a little decrease on the sensor signal. Cross-reactivity studies were conducted by testing Shigella, Salmonella spp., Salmonella typhimurium and Staphylococcus aureus on E. coli specific antibody surface that confirmed the high specificity of the developed immunoassays. The sensor surface could be regenerated multiple times which significantly reduces the cost of the system. Our custom-designed biosensor is capable of detecting bacteria with high sensitivity and specificity, and can serve as a promising tool for pathogen detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Automated biosurveillance data from England and Wales, 1991-2011.

    PubMed

    Enki, Doyo G; Noufaily, Angela; Garthwaite, Paul H; Andrews, Nick J; Charlett, André; Lane, Chris; Farrington, C Paddy

    2013-01-01

    Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991-2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity.

  20. Automated Biosurveillance Data from England and Wales, 1991–2011

    PubMed Central

    Enki, Doyo G.; Noufaily, Angela; Garthwaite, Paul H.; Andrews, Nick J.; Charlett, André; Lane, Chris

    2013-01-01

    Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991–2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity. PMID:23260848

  1. [Plant immune system: the basal immunity].

    PubMed

    Shamraĭ, S N

    2014-01-01

    Plants have an efficient system of innate immunity which is based on the effective detection of potentially harmful microorganisms and rapid induction of defense responses. The first level of plant immunity is the basal immunity which is induced by the conserved molecular structures of microbes such as bacterial flagellins or fungal chitin, or molecules that result from the interaction of plants with pathogens, for example oligosaccharides and peptides ("danger signals"). Plants recognize these inducers through receptors localized to the plasma membrane, represented mainly receptor-like protein kinases or receptor-like proteins. Activation of the receptor by a ligand triggers a complex network of signaling events which eventually cause an array of plant defense responses to prevent further spread of the pathogen.

  2. Microbiological safety of drinking water: United States and global perspectives.

    PubMed Central

    Ford, T E

    1999-01-01

    Waterborne disease statistics only begin to estimate the global burden of infectious diseases from contaminated drinking water. Diarrheal disease is dramatically underreported and etiologies seldom diagnosed. This review examines available data on waterborne disease incidence both in the United States and globally together with its limitations. The waterborne route of transmission is examined for bacterial, protozoal, and viral pathogens that either are frequently associated with drinking water (e.g., Shigella spp.), or for which there is strong evidence implicating the waterborne route of transmission (e.g., Leptospira spp.). In addition, crucial areas of research are discussed, including risks from selection of treatment-resistant pathogens, importance of environmental reservoirs, and new methodologies for pathogen-specific monitoring. To accurately assess risks from waterborne disease, it is necessary to understand pathogen distribution and survival strategies within water distribution systems and to apply methodologies that can detect not only the presence, but also the viability and infectivity of the pathogen. Images Figure 1 Figure 2 PMID:10229718

  3. Environmental Stress and Pathogen Dynamics in the Blue Crab Callinectes sapidus

    NASA Astrophysics Data System (ADS)

    Sullivan, T. J.; Neigel, J.; Gelpi, C. G.

    2016-02-01

    The blue crab Callinectes sapidus is an ecologically and economically valuable species along the Gulf of Mexico and Atlantic coasts of North America. Throughout its range, the blue crab encounters a diverse array of parasitic and pathogenic microorganisms that have episodic and occasionally severe impacts on population numbers and viability. This makes understanding factors that influence pathogen dynamics, such as host stress, an important priority. To explore the role of environmental stress on the susceptibility of blue crabs to pathogens we screened individuals collected during the summers of 2014 and 2015 for a number of infectious agents. We sampled three life stages (megalopae, juvenile, and adult) from multiple marsh and offshore locations in Louisiana. Duration of stressful environmental conditions at each location was quantified from hourly recordings provided by the Louisiana Coastwide Reference Monitoring System. Pathogenic microorganisms were detected in crabs from multiple locations and multiple years. Some of the variability in prevalence of infection can be explained by exposure to stressful extremes of temperature and salinity during summer months.

  4. Diagnostic performance of a multiple real-time PCR assay in patients with suspected sepsis hospitalized in an internal medicine ward.

    PubMed

    Pasqualini, Leonella; Mencacci, Antonella; Leli, Christian; Montagna, Paolo; Cardaccia, Angela; Cenci, Elio; Montecarlo, Ines; Pirro, Matteo; di Filippo, Francesco; Cistaro, Emma; Schillaci, Giuseppe; Bistoni, Francesco; Mannarino, Elmo

    2012-04-01

    Early identification of causative pathogen in sepsis patients is pivotal to improve clinical outcome. SeptiFast (SF), a commercially available system for molecular diagnosis of sepsis based on PCR, has been mostly used in patients hospitalized in hematology and intensive care units. We evaluated the diagnostic accuracy and clinical usefulness of SF, compared to blood culture (BC), in 391 patients with suspected sepsis, hospitalized in a department of internal medicine. A causative pathogen was identified in 85 patients (22%). Sixty pathogens were detected by SF and 57 by BC. No significant differences were found between the two methods in the rates of pathogen detection (P = 0.74), even after excluding 9 pathogens which were isolated by BC and were not included in the SF master list (P = 0.096). The combination of SF and BC significantly improved the diagnostic yield in comparison to BC alone (P < 0.001). Compared to BC, SF showed a significantly lower contamination rate (0 versus 19 cases; P < 0.001) with a higher specificity for pathogen identification (1.00, 95% confidence interval [CI] of 0.99 to 1.00, versus 0.94, 95% CI of 0.90 to 0.96; P = 0.005) and a higher positive predictive value (1.00, 95% CI of 1.00 to 0.92%, versus 0.75, 95% CI of 0.63 to 0.83; P = 0.005). In the subgroup of patients (n = 191) who had been receiving antibiotic treatment for ≥24 h, SF identified more pathogens (16 versus 6; P = 0.049) compared to BC. These results suggest that, in patients with suspected sepsis, hospitalized in an internal medicine ward, SF could be a highly valuable adjunct to conventional BC, particularly in patients under antibiotic treatment.

  5. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    PubMed Central

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate-mediated damage in neural tissues, and renders innate surveillance mediated cell death a plausible common pathogenic pathway responsible for neurodegenerative diseases, in both familial and sporadic forms. Here we have assembled evidence in favor of the hypothesis that neurodegenerative disease is the cumulative result of chronic activation of the innate surveillance pathway, triggered by endogenous or environmental danger or damage associated molecular patterns in a progressively expanding cascade of inflammation, tissue damage and cell death. PMID:27242399

  6. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    PubMed Central

    Tokel, Onur; Yildiz, Umit Hakan; Inci, Fatih; Durmus, Naside Gozde; Ekiz, Okan Oner; Turker, Burak; Cetin, Can; Rao, Shruthi; Sridhar, Kaushik; Natarajan, Nalini; Shafiee, Hadi; Dana, Aykutlu; Demirci, Utkan

    2015-01-01

    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. PMID:25801042

  7. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J

    2013-02-14

    Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  8. Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins

    PubMed Central

    Byrne, Barry; Stack, Edwina; Gilmartin, Niamh; O'Kennedy, Richard

    2009-01-01

    Antibody-based sensors permit the rapid and sensitive analysis of a range of pathogens and associated toxins. A critical assessment of the implementation of such formats is provided, with reference to their principles, problems and potential for ‘on-site’ analysis. Particular emphasis is placed on the detection of foodborne bacterial pathogens, such as Escherichia coli and Listeria monocytogenes, and additional examples relating to the monitoring of fungal pathogens, viruses, mycotoxins, marine toxins and parasites are also provided. PMID:22408533

  9. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  10. Quantification of carious pathogens in the interdental microbiota of young caries-free adults

    PubMed Central

    Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence

    2017-01-01

    Background The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Methods Twenty-five caries-free subjects (20–35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Results Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. Conclusion The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene. PMID:29016613

  11. Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms.

    PubMed

    Modic, Martina; McLeod, Neil P; Sutton, J Mark; Walsh, James L

    2017-03-01

    Mixed-species biofilms reflect the natural environment of many pathogens in clinical settings and are highly resistant to disinfection methods. An indirect cold atmospheric-pressure air-plasma system was evaluated under two different discharge conditions for its ability to kill representative Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) pathogens. Plasma treatment of individual 24-h-old biofilms and mixed-species biofilms that contained additional species (Enterococcus faecalis and Klebsiella pneumoniae) was considered. Under plasma conditions that favoured the production of reactive nitrogen species (RNS), individual P. aeruginosa biofilms containing ca. 5.0 × 10 6 CFU were killed extremely rapidly, with no bacterial survival detected at 15 s of exposure. Staphylococcus aureus survived longer under these conditions, with no detectable growth after 60 s of exposure. In mixed-species biofilms, P. aeruginosa survived longer but all species were killed with no detectable growth at 60 s. Under plasma conditions that favoured the production of reactive oxygen species (ROS), P. aeruginosa showed increased survival, with the lower limit of detection reached by 120 s, and S. aureus was killed in a similar time frame. In the mixed-species model, bacterial kill was biphasic but all pathogens showed viable cells after 240 s of exposure, with P. aeruginosa showing significant survival (ca. 3.6 ± 0.6 × 10 6 CFU). Overall, this study shows the potential of indirect air plasma treatment to achieve significant bacterial kill, but highlights aspects that might affect performance against key pathogens, especially in real-life settings within mixed populations. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. [Double-antigen sandwich ELISA for detecting Aspergillus fumigatus anti-Afmp1cr and Afmp2cr antibodies].

    PubMed

    Yang, Mei; Wang, Zhuoya; Hao, Wei; Wang, Yanfang; Huang, Li; Cai, Jianpiao; Jiang, Lingxiao; Che, Xiaoyan; Zhong, Xiaozhu; Yu, Nan

    2014-05-01

    To establish two double-antigen sandwich ELISA systems to detect anti-Afmp1cr and Afmp2cr antibodies of Aspergillus fumigatus. Recombinant Afmp1cr and Afmp2cr proteins of A.fumigatus expressed in Pichia pastoris were obtained. Double-antigen sandwich ELISA systems for detecting specific anti-Afmp1cr and anti-Afmp2cr antibodies were developed after chessboard titrating to determine the appropriate concentrations of the recombinant proteins and HRP-labeled proteins. The sensitivity of the assay was evaluated using serum samples of rabbits immunized with Afmp1cr and Afmp2cr. The specificity of the assay was evaluated by detecting serum samples from healthy donors and patients with other pathogenic fungal and baterial infections. The performance of the two ELISA kits was furthered evaluated using serum samples from patients with suspected Aspergillus infection. The established ELISA kits were capable of detecting anti-Afmp1cr and anti-Afmp2cr antibodies in immunized rabbit serum at the maximum dilutions of 800 and 3200, respectively. No cross-reactivity was observed in detecting serum from patients with other pathogenic fungal or bactetial infections. Both of the two kits yielded positive results in sera from two established Aspergillus-infected cases and a suspected case. Two antibody-capture ELISA kits were developed for the laboratory diagnosis of A.fumigatus infection and can be potentially useful in the clinical diagnosis of Aspergillosis infections.

  13. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  14. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens

    PubMed Central

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  15. Detection and discrimination of five E. coli pathotypes using a combinatory SYBR® Green qPCR screening system.

    PubMed

    Barbau-Piednoir, Elodie; Denayer, Sarah; Botteldoorn, Nadine; Dierick, Katelijne; De Keersmaecker, Sigrid C J; Roosens, Nancy H

    2018-04-01

    A detection and discrimination system for five Escherichia coli pathotypes, based on a combination of 13 SYBR® Green qPCR, has been developed, i.e., combinatory SYBR® Green qPCR screening system for pathogenic E. coli (CoSYPS Path E. coli). It allows the discrimination on isolates and the screening of potential presence in food of the following pathotypes of E. coli: shigatoxigenic (STEC) (including enterohemorrhagic (EHEC)), enteropathogenic (EPEC), enteroaggregative (EAggEC), enteroaggregative shigatoxigenic (EAggSTEC), and enteroinvasive (EIEC) E. coli. The SYBR® Green qPCR assays target the uidA, ipaH, eae, aggR, aaiC, stx1, and stx2 genes. uidA controls for E. coli presence and all the other genes are specific targets of E. coli pathotypes. For each gene, two primer pairs have been designed to guarantee a sufficient detection even in case of deletion or polymorphisms in the target gene. Moreover, all the qPCR have been designed to be run together in a single analytical PCR plate. This study includes the primer pairs' design, in silico and in situ selectivity, sensitivity, repeatability, and reproducibility evaluation of the 13 SYBR® Green qPCR assays. Each target displayed a selectivity of 100%. The limit of detection of the 13 assays is between 1 and 10 genomic copies. Their repeatability and reproducibility comply with the European requirements. As a preliminary feasibility study on food, the CoSYPS Path E. coli system was subsequently evaluated on four food matrices artificially contaminated with pathogenic E. coli. It allowed the detection of an initial contamination level as low as 2 to 7 cfu of STEC/25 g of food matrix after 24 h of enrichment.

  16. Microbial Quality, Safety, and Pathogen Detection by Using Quantitative PCR of Raw Salad Vegetables Sold in Dhanbad City, India.

    PubMed

    Mritunjay, Sujeet K; Kumar, Vipin

    2017-01-01

    Consumption of ready-to-eat fresh vegetables has increased worldwide, with a consequent increase in outbreaks caused by foodborne pathogens. In the Indian subcontinent, raw fresh vegetables are usually consumed without washing or other decontamination procedures, thereby leading to new food safety threats. In this study, the microbiological quality and pathogenic profile of raw salad vegetables was evaluated through standard protocols. In total, 480 samples (60 each of eight different salad vegetables) of cucumber, tomato, carrot, coriander, cabbage, beetroot, radish, and spinach were collected from different locations in Dhanbad, a city famous for its coal fields and often called the "Coal Capital of India." The samples were analyzed for total plate count, total coliforms, Escherichia coli , E. coli O157:H7, Listeria monocytogenes , and Salmonella spp. Incidences of pathogens were detected through quantitative PCR subsequent to isolation. Results showed that 46.7% (for total plate counts) and 30% (for total coliforms) of samples were unacceptable for consumption per the Food Safety and Standards Authority of India. Pathogenic microorganisms were detected in 3.7% of total samples. E. coli O157:H7 was detected in three samples of spinach (2) and beetroot ( 1 ); L. monocytogenes was detected in 14 samples of spinach ( 8 ), tomato ( 3 ), cucumber ( 2 ), and radish ( 1 ); and Salmonella spp. were detected in 16 samples of spinach ( 7 ), tomato ( 3 ), beetroot ( 2 ), cucumber ( 2 ), carrot ( 1 ), and radish ( 1 ). Pathogens were not detected in any of the cabbage and coriander samples.

  17. A Review of Membrane-Based Biosensors for Pathogen Detection

    PubMed Central

    van den Hurk, Remko; Evoy, Stephane

    2015-01-01

    Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized. PMID:26083229

  18. Prevention of bacterial foodborne disease using nanobiotechnology.

    PubMed

    Billington, Craig; Hudson, J Andrew; D'Sa, Elaine

    2014-01-01

    Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing.

  19. Salivary detection of periodontopathic bacteria and periodontal health status in dental students.

    PubMed

    Leblebicioglu, Binnaz; Kulekci, Guven; Ciftci, Sevgi; Keskin, Fahriye; Badur, Selim

    2009-06-01

    Saliva may become a potential source of contamination through vertical and horizontal transmissions as well as cross-infections. This study aims to use saliva as a screening tool to detect putative periodontal pathogens in a young population with fairly good oral hygiene. Stimulated saliva samples were obtained from 134 dental students (20.5+/-1 years, range 18-22 years). Among those, 77 subjects also completed a periodontal examination including attachment loss, modified dental, gingival and plaque indices (AL, mDI, GI and PI). The test bacteria were identified using a 16S rRNA-based PCR detection method. One or more of the test bacteria was found in 67% of the subjects. Prevotella nigrescens was detected as single bacterium in 16% of the subjects followed by Treponema denticola (4%), Porphyromonas gingivalis (2%), Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans (1%) and Tannerella forsythia (1%). Two or more pathogens were detected in 42% of the subjects. Clinical examination revealed health with no attachment loss (AL) in 84% of the students. In no AL group, 38% of the students were pathogen free while this was 25% for students in localized AL group (p>0.05). There was a statistically significant association between the detection of salivary periodontal pathogen in general and higher PI (p=0.018) and GI (p=0.043). Within the limits of this study, it is possible to detect all six periodontal pathogens in the saliva of dental students. Although a correlation can be observed between the presence of salivary periodontal pathogen and clinical signs of inflammation such as plaque accumulation and gingival bleeding, detection of specific bacteria in saliva is not related to the presence of localized AL based on the presented study population.

  20. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  1. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  2. Development of saliva-based exposure assays for detecting exposure to waterborne pathogens

    EPA Pesticide Factsheets

    Identifying which pathogens we are exposed to can be challenging because many types of pathogens can be found in water and many pathogens have similar symptoms. EPA scientists have developed a simple way to measure human exposure to waterborne pathogens.

  3. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  4. Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs.

    PubMed

    Turner, Wendy C; Kausrud, Kyrre L; Beyer, Wolfgang; Easterday, W Ryan; Barandongo, Zoë R; Blaschke, Elisabeth; Cloete, Claudine C; Lazak, Judith; Van Ert, Matthew N; Ganz, Holly H; Turnbull, Peter C B; Stenseth, Nils Chr; Getz, Wayne M

    2016-06-06

    To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1-2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways.

  5. Pathogenic features and characteristics of food borne pathogens biofilm: Biomass, viability and matrix.

    PubMed

    Lin, Shiqi; Yang, Ling; Chen, Gu; Li, Bing; Chen, Dingqiang; Li, Lin; Xu, Zhenbo

    2017-10-01

    Biofilm is a ubiquitous growth pattern of bacterial species survival but is notorious for its threat on public health and food contamination. Extensive studies of the biofilm structure, formation, quantification, quorum sensing system and underlying control strategies have been reported during the past decades. Insightful elucidation of the pathogenic features and characteristic of bacterial biofilm can facilitate in devising appropriate control strategies for biofilm eradication. Therefore, this review mainly summarized the pathogenic features of biofilms from food borne microorganisms, including the biomass (which could be quantified using crystal violet and fluorogenic dye Syto9 assays), viability (which could be determined by tetrazolium salts, fluorescein diacetate, resazurin staining and alamar blue assays) and matrix (which are commonly detected by dimethyl methylene blue and wheat germ agglutinin assays). In addition, three features were further compared with its particular benefits in specific application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biofilms and the survival of opportunistic pathogens in recycled water

    NASA Technical Reports Server (NTRS)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  7. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of pathogenic Leptospira spp. in marine mammals is challenging: microbiological culture can take 3-6 months and has low sensitivity, immunohistochemical staining of kidney to detect leptospires is invasive and time consuming, and serological methods, such as the microscopic agglutina...

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USDA-ARS?s Scientific Manuscript database

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...

  9. Molecular diagnosis of central nervous system opportunistic infections and mortality in HIV-infected adults in Central China.

    PubMed

    Yang, Rongrong; Zhang, Hong; Xiong, Yong; Gui, Xien; Zhang, Yongxi; Deng, Liping; Gao, Shicheng; Luo, Mingqi; Hou, Wei; Guo, Deyin

    2017-01-01

    CSF PCR is the standard diagnostic technique used in resource-rich settings to detect pathogens of the CNS infection. However, it is not currently used for routine CSF testing in China. Knowledge of CNS opportunistic infections among people living with HIV in China is limited. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral and fungal etiologies. Pathogen-specific primers were used to detect DNA from cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6) and John Cunningham virus (JCV) via real-time polymerase chain reaction (PCR). Cryptococcal meningitis accounted for 63.0% (34 of 54) of all causes of meningitis, 13.0% (7/54) for TB, 9.3% (5/54) for Toxoplasma gondii. Of 54 samples sent for viral PCR, 31.5% (17/54) were positive, 12 (22.2%) for CMV, 2 (3.7%) for VZV, 1 (1.9%) for EBV, 1 (1.9%) for HHV-6 and 1 (1.9%) for JCV. No patient was positive for HSV. Pathogen-based treatment and high GCS score tended to have a lower mortality rate, whereas patients with multiple pathogens infection, seizures or intracranial hypertension showed higher odds of death. CNS OIs are frequent and multiple pathogens often coexist in CSF. Cryptococcal meningitis is the most prevalent CNS disorders among AIDS. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve the diagnosis of AIDS related OIs in resource-limited developing countries, but the cost-efficacy remains to be further evaluated.

  10. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    PubMed

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  11. A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.

    PubMed Central

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776

  12. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    PubMed

    Tann, Cally J; Nkurunziza, Peter; Nakakeeto, Margaret; Oweka, James; Kurinczuk, Jennifer J; Were, Jackson; Nyombi, Natasha; Hughes, Peter; Willey, Barbara A; Elliott, Alison M; Robertson, Nicola J; Klein, Nigel; Harris, Kathryn A

    2014-01-01

    In neonatal encephalopathy (NE), infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda. Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV), herpes simplex virus(HSV) and P. falciparum) were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC) was performed for all cases and unwell controls. Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028) using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae). Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively). This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  13. Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection†

    PubMed Central

    Harwood, Valerie J.; Levine, Audrey D.; Scott, Troy M.; Chivukula, Vasanta; Lukasik, Jerzy; Farrah, Samuel R.; Rose, Joan B.

    2005-01-01

    The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ∼40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study. PMID:15933017

  14. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    PubMed

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  15. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus

    PubMed Central

    Wang, Rongzhi; Zhong, Yanfang; Gu, Xiaosong; Yuan, Jun; Saeed, Abdullah F.; Wang, Shihua

    2015-01-01

    Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection. PMID:25798132

  16. Detection of Norovirus by BD MAX™, Xpert® Norovirus, and xTAG® Gastrointestinal Pathogen Panel in stool and vomit samples.

    PubMed

    McHugh, Martin P; Guerendiain, Daniel; Hardie, Alison; Kenicer, Juliet; MacKenzie, Laura; Templeton, Kate E

    2018-06-08

    Norovirus is a leading cause of infectious gastroenteritis, characterized by outbreaks of diarrhoea and vomiting in closed settings. Nucleic acid amplification tests allow rapid and sensitive laboratory diagnosis of norovirus, with a number of commercial platforms now available. Evaluate the performance of the Becton Dickinson BD-MAX™System, Cepheid Xpert® Norovirus Assay, and Luminex xTAG® Gastrointestinal Pathogen Panel (GPP) for norovirus detection in stool. Assess the performance of the Xpert® Norovirus Assay and BD-MAX™ in vomit samples. 163 diarrhoeal stool samples were tested on four diagnostic systems (laboratory-defined real time RT-PCR (assigned as gold standard), BD MAX™, Xpert® Norovirus Assay, and xTAG® GPP). A further 70 vomit samples were tested on the Xpert and BD MAX platforms. In stool, sensitivity and specificity of the BD-MAX™ was 96.8% and 100%, for Xpert® Norovirus Assay was 91.9% and 100%, and for xTAG® GPP was 79.0% and 87.1%. In vomit samples positive and negative percent agreement was 95.6% and 92.0%, between the BD-MAX™ and Xpert® Norovirus. The BD-MAX™ System with user defined settings and the Xpert® Norovirus Assay showed acceptable sensitivity and specificity for detection of norovirus from stool and vomit. The xTAG GPP assay was less reliable for norovirus detection but can detect a number of other clinically useful enteropathogens. Clinical laboratories must consider skill mix, budget, and sample throughput to determine the best fit for their service. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone.

    PubMed

    Draz, Mohamed Shehata; Lakshminaraasimulu, Nivethitha Kota; Krishnakumar, Sanchana; Battalapalli, Dheerendranath; Vasan, Anish; Kanakasabapathy, Manoj Kumar; Sreeram, Aparna; Kallakuri, Shantanu; Thirumalaraju, Prudhvi; Li, Yudong; Hua, Stephane; Yu, Xu G; Kuritzkes, Daniel R; Shafiee, Hadi

    2018-05-16

    Zika virus (ZIKV) infection is an emerging pandemic threat to humans that can be fatal in newborns. Advances in digital health systems and nanoparticles can facilitate the development of sensitive and portable detection technologies for timely management of emerging viral infections. Here we report a nanomotor-based bead-motion cellphone (NBC) system for the immunological detection of ZIKV. The presence of virus in a testing sample results in the accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion in H 2 O 2 solution. Then the virus concentration is detected in correlation with the change in beads motion. The developed NBC system was capable of detecting ZIKV in samples with virus concentrations as low as 1 particle/μL. The NBC system allowed a highly specific detection of ZIKV in the presence of the closely related dengue virus and other neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus. The NBC platform technology has the potential to be used in the development of point-of-care diagnostics for pathogen detection and disease management in developed and developing countries.

  18. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment.

    PubMed

    Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ragavendar, M S; Schmolke, Susanne; Huang, Yiwei; Gumbrecht, Walter; Mitra, Nivedita

    2016-12-01

    Molecular diagnostics is a promising alternative to culture based methods for the detection of bloodstream infections, notably due to its overall lower turnaround time when starting directly from patient samples. Whole blood is usually the starting diagnostic sample in suspected bloodstream infections. The detection of low concentrations of pathogens in blood using a molecular assay necessitates a fairly high starting volume of blood sample in the range of 5-10mL. This large volume of blood sample has a substantial accompanying human genomic content that interferes with pathogen detection. In this study, we have established a workflow using magnetic beads coated with Apolipoprotein H that makes it possible to concentrate pathogens from a 5.0mL whole blood sample, thereby enriching pathogens from whole blood background and also reducing the sample volume to ~200μL or less. We have also demonstrated that this method of enrichment allows detection of 1CFU/mL of Escherichia coli, Enterococcus gallinarum and Candida tropicalis from 5mL blood using quantitative PCR; a detection limit that is not possible in unenriched samples. The enrichment method demonstrated here took 30min to complete and can be easily integrated with various downstream molecular and microbiological techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Total Count of Salmonella typhimurium Coupled on Water Soluble CdSe Quantum Dots by Fluorescence Detection

    NASA Astrophysics Data System (ADS)

    Feliciano Crespo, Raquel; Perales Perez, Oscar Juan; Ramirez, C.

    2018-05-01

    Health diseases due to the ingestion of water or food contaminated with pathogenic microorganisms are a main health problem around the world. The traditional methods for detecting foodborne pathogens are time-consuming (on the order of days). The development of methods that can help to detect and identify foodborne pathogens with high sensitivity and specificity have been proposed to overcome the limitations of traditional methods. Accordingly, this research is focused on the development of an experimental protocol for a high-sensitivity detection and quantification of bacterial pathogens with reduced detection times. This will lead to the development of a portable and low-cost technology with the opportunity to make onsite detection of pathogenic species. The proposed approach has modified the route reported in the literature; the method proposed is expected to be sensitive enough to detect a low limit of 102 CFU/mL counts of bacteria. The fluorescence-based method was tested in presence of Salmonella typhimurium (ATCC 14020) and Escherichia coli (ATCC 25922). CdSe water-soluble quantum dots (QDs) were synthesized in aqueous phase in presence of thioglycolic acid (TGA) as a capping agent. As-synthesized QDs were characterized by x-ray diffraction, near infrared and Fourier transform infrared spectroscopy, UV-Vis and photoluminescence techniques. Results of the CdSe/TGA-bacteria coupling and the determination of the corresponding quantification profiles (calibration curves) will be presented and discussed.

  20. Rapid and field-deployable biological and chemical Raman-based identification

    NASA Astrophysics Data System (ADS)

    Botonjic-Sehic, Edita; Paxon, Tracy L.; Boudries, Hacene

    2011-06-01

    Pathogen detection using Raman spectroscopy is achieved through the use of a sandwich immunoassay. Antibody-modified magnetic beads are used to capture and concentrate target analytes in solution and surface-enhanced Raman spectroscopy (SERS) tags are conjugated with antibodies and act as labels to enable specific detection of biological pathogens. The rapid detection of biological pathogens is critical to first responders, thus assays to detect E.Coli and Anthrax have been developed and will be reported. The problems associated with pathogen detection resulting from the spectral complexity and variability of microorganisms are overcome through the use of SERS tags, which provide an intense, easily recognizable, and spectrally consistent Raman signal. The developed E. coli assay has been tested with 5 strains of E. coli and shows a low limit of detection, on the order of 10 and 100 c.f.u. per assay. Additionally, the SERS assay utilizes magnetic beads to collect the labeled pathogens into the focal point of the detection laser beam, making the assay robust to commonly encountered white powder interferants such as flour, baking powder, and corn starch. The reagents were also found to be stable at room temperature over extended periods of time with testing conducted over a one year period. Finally, through a specialized software algorithm, the assays are interfaced to the Raman instrument, StreetLab Mobile, for rapid-field-deployable biological identification.

  1. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

    PubMed Central

    2009-01-01

    Background Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. Results We performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. Conclusion Affymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience. PMID:19917086

  2. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system.

    PubMed

    Lu, J; Struewing, I; Vereen, E; Kirby, A E; Levy, K; Moe, C; Ashbolt, N

    2016-02-01

    This study investigated waterborne opportunistic pathogens (OPs) including potential hosts, and evaluated the use of Legionella spp. for indicating microbial water quality for OPs within a full-scale operating drinking water distribution system (DWDS). To investigate the occurrence of specific microbial pathogens within a major city DWDS we examined large volume (90 l drinking water) ultrafiltration (UF) concentrates collected from six sites between February, 2012 and June, 2013. The detection frequency and concentration estimates by qPCR were: Legionella spp. (57%/85 cell equivalent, CE l(-1) ), Mycobacterium spp. (88%/324 CE l(-1) ), Pseudomonas aeruginosa (24%/2 CE l(-1) ), Vermamoeba vermiformis (24%/2 CE l(-1) ) and Acanthamoeba spp. (42%/5 cyst equivalent, CE l(-1) ). There was no detection of the following microorganisms: human faecal indicator Bacteroides (HF183), Salmonella enterica, Campylobacter spp., Escherichia coli O157:H7, Giardia intestinalis, Cryptosporidium spp. or Naegleria fowleri. There were significant correlations between the qPCR signals of Legionella spp. and Mycobacterium spp., and their potential hosts V. vermiformis and Acanthamoeba spp. Sequencing of Legionella spp. demonstrated limited diversity, with most sequences coming from two dominant groups, of which the larger dominant group was an unidentified species. Other known species including Legionella pneumophila were detected, but at low frequency. The densities of Legionella spp. and Mycobacterium spp. were generally higher (17 and 324 folds, respectively) for distal sites relative to the entry point to the DWDS. Legionella spp. occurred, had significant growth and were strongly associated with free-living amoebae (FLA) and Mycobacterium spp., suggesting that Legionella spp. could provide a useful DWDS monitoring role to indicate potential conditions for non-faecal OPs. The results provide insight into microbial pathogen detection that may aid in the monitoring of microbial water quality within DWDS prior to customer exposures. © 2015 The Society for Applied Microbiology.

  3. Multiplex cytokine profiling with highly pathogenic material: use of formalin solution in luminex analysis.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger

    2009-08-31

    Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.

  4. Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Cho, Il-Hoon; Radadia, Adarsh D.; Farrokhzad, Khashayar; Ximenes, Eduardo; Bae, Euiwon; Singh, Atul K.; Oliver, Haley; Ladisch, Michael; Bhunia, Arun; Applegate, Bruce; Mauer, Lisa; Bashir, Rashid; Irudayaraj, Joseph

    2014-06-01

    Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.

  5. xMAP Technology: Applications in Detection of Pathogens

    PubMed Central

    Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr

    2017-01-01

    xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899

  6. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay.

    PubMed

    Iijima, Yoshio; Asako, Nahoko T; Aihara, Masanori; Hayashi, Kozaburo

    2004-07-01

    A rapid laboratory system has been developed and evaluated that can simultaneously identify major diarrhoeagenic bacteria, including Salmonella enterica, Vibrio parahaemolyticus, Campylobacter jejuni and Shiga toxin-producing Escherichia coli, in stool specimens by real-time PCR. Specific identification was achieved by using selective TaqMan probes, detecting two targets in each pathogen. A positive result was scored only when both targets of a pathogen were amplified and the difference between threshold cycles for detection was less than five. Diagnosis of enteric bacterial infections using this highly sensitive method, including DNA extraction and real-time PCR, requires only 3 h. Forty stool specimens related to suspected food poisoning outbreaks were analysed: 16 (40%) of these samples were found to be positive for diarrhoeagenic bacteria using a conventional culture method; 28 (70%) were positive using the real-time PCR assay. Of the 12 PCR-positive but culture-negative cases, 11 patients had consumed pathogen-contaminated or high-risk food. Analysis of faecal samples from 105 outpatients who complained of diarrhoea and/or abdominal pain identified 19 (18%) patients as being positive for diarrhoeagenic bacteria using the culture method. An additional six (6%) patients were found to be positive by PCR analysis.

  7. Exploiting mosquito sugar feeding to detect mosquito-borne pathogens

    PubMed Central

    Hall-Mendelin, Sonja; Ritchie, Scott A.; Johansen, Cheryl A.; Zborowski, Paul; Cortis, Giles; Dandridge, Scott; Hall, Roy A.; van den Hurk, Andrew F.

    2010-01-01

    Arthropod-borne viruses (arboviruses) represent a global public health problem, with dengue viruses causing millions of infections annually, while emerging arboviruses, such as West Nile, Japanese encephalitis, and chikungunya viruses have dramatically expanded their geographical ranges. Surveillance of arboviruses provides vital data regarding their prevalence and distribution that may be utilized for biosecurity measures and the implementation of disease control strategies. However, current surveillance methods that involve detection of virus in mosquito populations or sero-conversion in vertebrate hosts are laborious, expensive, and logistically problematic. We report a unique arbovirus surveillance system to detect arboviruses that exploits the process whereby mosquitoes expectorate virus in their saliva during sugar feeding. In this system, infected mosquitoes captured by CO2-baited updraft box traps are allowed to feed on honey-soaked nucleic acid preservation cards within the trap. The cards are then analyzed for expectorated virus using real-time reverse transcription-PCR. In field trials, this system detected the presence of Ross River and Barmah Forest viruses in multiple traps deployed at two locations in Australia. Viral RNA was preserved for at least seven days on the cards, allowing for long-term placement of traps and continuous collection of data documenting virus presence in mosquito populations. Furthermore no mosquito handling or processing was required and cards were conveniently shipped to the laboratory overnight. The simplicity and efficacy of this approach has the potential to transform current approaches to vector-borne disease surveillance by streamlining the monitoring of pathogens in vector populations. PMID:20534559

  8. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems.

    PubMed

    Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus

    2016-11-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.

  9. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems

    PubMed Central

    Miller, Manuel; Ritter, Bärbel; Zorn, Julia; Brielmeier, Markus

    2016-01-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice. PMID:27931316

  10. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  11. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  12. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    PubMed Central

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  13. Identification of pathogen genomic variants through an integrated pipeline

    PubMed Central

    2014-01-01

    Background Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. Results We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. Conclusions The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package. PMID:24589256

  14. Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring.

    PubMed

    Bisson, Isabelle-Anne; Ssebide, Benard J; Marra, Peter P

    2015-03-01

    Diseases transmitted between animals and people have made up more than 50% of emerging infectious diseases in humans over the last 60 years and have continued to arise in recent months. Yet, public health and animal disease surveillance programs continue to operate independently. Here, we assessed whether recent emerging zoonotic pathogens (n = 143) are known to cause morbidity or mortality in their animal host and if so, whether they were first detected with an animal morbidity/mortality event. We show that although sick or dead animals are often associated with these pathogens (52%), only 9% were first detected from an animal morbidity or mortality event prior to or concurrent with signs of illness in humans. We propose that an animal morbidity and mortality reporting program will improve detection and should be an essential component of early warning systems for zoonotic diseases. With the use of widespread low-cost technology, such a program could engage both the public and professionals and be easily tested and further incorporated as part of surveillance efforts by public health officials.

  15. An investigation of the well-water quality: immunosensor for pathogenic Pseudomonas aeruginosa detection based on antibody-modified poly(pyrrole-3 carboxylic acid) screen-printed carbon electrode.

    PubMed

    Bekir, Karima; Bousimma, Feriel; Barhoumi, Houcine; Fedhila, Kais; Maaref, Abderrazak; Bakhrouf, Amina; Ben Ouada, Hafedh; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Mansour, Hedi

    2015-12-01

    In this report, we describe a new immunosensor designed for the detection and the quantification of Pseudomonas aeruginosa bacteria in water. The developed biosensing system was based on the immobilization of purified polyclonal anti P. aeruginosa antibodies on electropolymerized poly(pyrrole-3-carboxylic acid)/glassy carbon electrode. The building of the immunosensor step by step was evaluated by electrochemical measurements such as cyclic voltammetry (CV) and impedance spectroscopy (EIS). The electrochemical signature of the immunosensor was established by the change of the charge transfer resistance when the bacteria suspended in solution became attached to the immobilized antibodies. As a result, stable and high sensitive impedimetric immunosensor was obtained with a sensitivity of 0.19 kΩ/decade defined in the linear range from 10(1) to 10(7) CFU/mL of cellular concentrations. A low detection limit was obtained for the P. aeruginosa bacteria and a high selectivity when other bacteria were occasioned as well as Escherichia coli. The developed immunosensor was applied in detecting pathogenic P. aeruginosa in well-water.

  16. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    NASA Astrophysics Data System (ADS)

    Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.

    2008-03-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  17. Foodborne pathogen detection using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...

  18. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    PubMed

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  19. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  20. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape.

    PubMed

    Alonso Chavez, Vasthi; Parnell, Stephen; VAN DEN Bosch, Frank

    2016-10-21

    The global increase in the movement of plant products in recent years has triggered an increase in the number of introduced plant pathogens. Plant nurseries importing material from abroad may play an important role in the introduction and spread of diseases such as ash dieback and sudden oak death which are thought to have been introduced through trade. The economic, environmental and social costs associated with the spread of invasive pathogens become considerably larger as the incidence of the pathogen increases. To control the movement of pathogens across the plant trade network it is crucial to develop monitoring programmes at key points of the network such as plant nurseries. By detecting the introduction of invasive pathogens at low incidence, the control and eradication of an epidemic is more likely to be successful. Equally, knowing the likelihood of having sold infected plants once a disease has been detected in a nursery can help designing tracing plans to control the onward spread of the disease. Here, we develop an epidemiological model to detect and track the movement of an invasive plant pathogen into and from a plant nursery. Using statistical methods, we predict the epidemic incidence given that a detection of the pathogen has occurred for the first time, considering that the epidemic has an asymptomatic period between infection and symptom development. Equally, we calculate the probability of having sold at least one infected plant during the period previous to the first disease detection. This analysis can aid stakeholder decisions to determine, when the pathogen is first discovered in a nursery, the need of tracking the disease to other points in the plant trade network in order to control the epidemic. We apply our method to high profile recent introductions including ash dieback and sudden oak death in the UK and citrus canker and Huanglongbing disease in Florida. These results provide new insight for the design of monitoring strategies at key points of the trade network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  2. Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically detect Bacillus anthracis spores and Salmonella typhimurium bacteria. The real-time monitoring of the detection of B. anthracis spores in a flowing system was performed using 2 mm sensors and 1 mm sensors. The detection of S. typhimurium in air has been performed using the pulse based system with both single and grouped sensors. Because grouped sensor detection involves the simultaneous measurement of many sensors, statistical evaluation shows that it can significantly reduce problems encountered with false positive indications. This method has been implemented in an investigation of a method that allows direct detection of S. typhimurium on cantaloupe surfaces. It has been demonstrated that multiple E2 phage based magnetoelastic sensors are able to detect Salmonella directly on fresh cantaloupe surfaces. Confirmation of the spore or bacteria binding to the sensor surfaces was achieved through SEM study of the sensor surfaces.

  3. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    PubMed Central

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  4. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

    PubMed

    Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-04-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.

  5. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.).

    PubMed

    Bahuguna, Rajeev Nayan; Joshi, Rohit; Shukla, Alok; Pandey, Mayank; Kumar, J

    2012-08-01

    A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    PubMed

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  7. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  8. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    PubMed

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Method of Determining Where to Target Surveillance Efforts in Heterogeneous Epidemiological Systems

    USDA-ARS?s Scientific Manuscript database

    The spread of pathogens into new environments poses a considerable threat to health, ecosystems, and agricultural productivity worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and eco...

  10. Partial least squares models for hyperspectral contaminant detection

    USDA-ARS?s Scientific Manuscript database

    The United States of America food supply is one of the safest in the world. However, it is not free of pathogens. For the poultry industry, the Food Safety Inspection Service (FSIS) has regulatory responsiblity for food safety and has established a hazard analysis, critical control point system (HAC...

  11. A systems approach for detecting sources of Phytophthora contamination in nurseries

    Treesearch

    Jennifer L. Parke; Niklaus Grünwald; Carrie Lewis; Val Fieland

    2010-01-01

    Nursery plants are also important long-distance vectors of non-indigenous pathogens such as P. ramorum and P. kernoviae. Pre-shipment inspections have not been adequate to ensure that shipped plants are free from Phytophthora, nor has this method informed growers about sources of contamination in their...

  12. Evaluation of pathogen-specific biomarkers for the diagnosis of tuberculosis in white-tailed deer (Odocoileus virginianus)

    USDA-ARS?s Scientific Manuscript database

    Objective - To develop a noninvasive biomarker based Mycobacterium bovis specific detection system to track infection in domestic and wild animals. Design – Experimental longitudinal study for discovery and cross sectional design for validation Animals - Yearling white-tailed deer fawns (n=8) were ...

  13. Systemic acquired resistance in moss: further evidence for conserved defense mechanisms in plants.

    PubMed

    Winter, Peter S; Bowman, Collin E; Villani, Philip J; Dolan, Thomas E; Hauck, Nathanael R

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6-8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss - pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR in plants.

  14. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction.

    PubMed

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-06-01

    Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.

  15. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction

    PubMed Central

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-01-01

    Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060

  16. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.

    PubMed

    Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum

    2017-05-15

    E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Detection of bacteriuria and pyuria by URISCREEN a rapid enzymatic screening test.

    PubMed Central

    Pezzlo, M T; Amsterdam, D; Anhalt, J P; Lawrence, T; Stratton, N J; Vetter, E A; Peterson, E M; de la Maza, L M

    1992-01-01

    A multicenter study was performed to evaluate the ability of the URISCREEN (Analytab Products, Plainview, N.Y.), a 2-min catalase tube test, to detect bacteriuria and pyuria. This test was compared with the Chemstrip LN (BioDynamics, Division of Boehringer Mannheim Diagnostics, Indianapolis, Ind.), a 2-min enzyme dipstick test; a semiquantitative plate culture method was used as the reference test for bacteriuria, and the Gram stain or a quantitative chamber count method was used as the reference test for pyuria. Each test was evaluated for its ability to detect probable pathogens at greater than or equal to 10(2) CFU/ml and/or greater than or equal to 1 leukocyte per oil immersion field, as determined by the Gram stain method, or greater than 10 leukocytes per microliter, as determined by the quantitative count method. A total of 1,500 urine specimens were included in this evaluation. There were 298 specimens with greater than or equal 10(2) CFU/ml and 451 specimens with pyuria. Of the 298 specimens with probable pathogens isolated at various colony counts, 219 specimens had colony counts of greater than or equal to 10(5) CFU/ml, 51 specimens had between 10(4) and 10(5) CFU/ml, and 28 specimens had between 10(2) and less than 10(4) CFU/ml. Both the URISCREEN and the Chemstrip LN detected 93% (204 of 219) of the specimens with probable pathogens at greater than or equal to 10(5) CFU/ml. For the specimens with probable pathogens at greater than or equal to 10(2) CFU/ml, the sensitivities of the URISCREEN and the Chemstrip LN were 86% (256 of 298) and 81% (241 of 298), respectively. Of the 451 specimens with pyuria, the URISCREEN detected 88% (398 of 451) and Chemstrip LN detected 78% (350 if 451). There were 204 specimens with both greater than or equal to 10(2) CFU/ml and pyuria; the sensitivities of both methods were 95% (193 of 204) for these specimens. Overall, there were 545 specimens with probable pathogens at greater than or equal to 10(2) CFU/ml and/or pyuria. The URISCREEN detected 85% (461 of 545), and the Chemstrip LN detected 73% (398 of 545). A majority (76%) of the false-negative results obtained with either method were for specimens without leukocytes in the urine. There were 955 specimens with no probable pathogens or leukocytes. Of these, 28% (270 of 955) were found positive by the URISCREEN and 13% (122 of 955) were found positive by the Chemstrip LN. A majority of the false-positive results were probably due, in part, to the detection of enzymes present in both bacterial and somatic cells by each of the test systems. Overall, the URISCREEN is rapid, manual, easy-to-perform enzymatic test that yields findings similar to those yielded by the Chemstrip LN for specimens with both greater than or equal to 10(2) CFU/ml and pyuria or for specimens with greater than or equal to 10(5) CFU/ml and with or without pyuria. However, when the data were analyzed for either probable pathogens at less 10(5) CFU/ml or pyuria, the sensitivity of the URISCREEN was higher (P less than 0.05). PMID:1551986

  18. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Exotic mosquito threats require strategic surveillance and response planning.

    PubMed

    Webb, Cameron E; Doggett, Stephen L

    2016-12-14

    Mosquito-borne diseases caused by endemic pathogens such as Ross River, Barmah Forest and Murray Valley encephalitis viruses are an annual concern in New South Wales (NSW), Australia. More than a dozen mosquito species have been implicated in the transmission of these pathogens, with each mosquito occupying a specialised ecological niche that influences their habitat associations, host feeding preferences and the environmental drivers of their abundance. The NSW Arbovirus Surveillance and Mosquito Monitoring Program provides an early warning system for potential outbreaks of mosquito-borne disease by tracking annual activity of these mosquitoes and their associated pathogens. Although the program will effectively track changes in local mosquito populations that may increase with a changing climate, urbanisation and wetland rehabilitation, it will be less effective with current surveillance methodologies at detecting or monitoring changes in exotic mosquito threats, where different surveillance strategies need to be used. Exotic container-inhabiting mosquitoes such as Aedes aegypti and Ae. albopictus pose a threat to NSW because they are nuisance-biting pests and vectors of pathogens such as dengue, chikungunya and Zika viruses. International movement of humans and their belongings have spread these mosquitoes to many regions of the world. In recent years, these two mosquitoes have been detected by the Australian Government Department of Agriculture and Water Resources at local airports and seaports. To target the detection of these exotic mosquitoes, new trapping technologies and networks of surveillance locations are required. Additionally, incursions of these mosquitoes into urban areas of the state will require strategic responses to minimise substantial public health and economic burdens to local communities.

  20. Bio-Functional Au/Si Nanorods for Pathogen Detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabr...

  1. Detection of Waterborne Protozoa, Viruses, and Bacteria in Groundwater and Other Water Samples in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Haramoto, E.

    2018-03-01

    In this study, the prevalence of various waterborne pathogens in water samples collected in the Kathmandu Valley, Nepal, and the applicability of Escherichia coli as an indicator of pathogen contamination in groundwater were assessed. Fifty-three water samples, including shallow groundwater and river water, were analyzed to examine the presence of protozoan (oo)cysts via fluorescence microscopy and that of viral and bacterial genomes via quantitative PCR. At least one of the seven types of pathogens tested (i.e., Cryptosporidium, Giardia, human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, and Vibrio cholerae) was detected in 68% (15/22) of the shallow dug well water samples; groundwater in the shallow dug wells was more contaminated compared with that in shallow tube wells (8/15, 53%). River water and sewage samples were contaminated with extremely high concentrations of multiple pathogens, whereas a tap water sample supplied by a water tanker tested positive for human adenoviruses and V. cholerae. The detection of host-specific Bacteroidales genetic markers revealed the effects of human and animal feces on groundwater contamination. The tested pathogens were sometimes detected even in E. coli-negative groundwater samples, indicative of the limitations of using E. coli as an indicator for waterborne pathogens in groundwater.

  2. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts

    PubMed Central

    Zeng, Lizhang; Zhou, Jun; Li, Bo; Xing, Da

    2015-01-01

    Biotic stressors, especially pathogenic microorganisms, are rather difficult to detect. In plants, one of the earliest cellular responses following pathogen infection is the production of reactive oxygen species (ROS). In this study, a novel optical device for the early monitoring of Pseudomonas attack was developed; this device measures the ROS level via oxidation-sensitive 2′, 7′-dichlorodihydrofluorescein diacetate (H2DCFDA)-mediated fluorescence, which could provide early monitoring of attacks by a range of plant pathogen; ROS bursts were detected in vivo in Arabidopsis thaliana with higher sensitivity and accuracy than those of a commercial luminescence spectrophotometer. Additionally, the DCF fluorescence truly reflected early changes in the ROS level, as indicated by an evaluation of the H2O2 content and the tight association between the ROS and Pseudomonas concentration. Moreover, compared with traditional methods for detecting plant pathogen attacks based on physiological and biochemical measurements, our proposed technique also offers significant advantages, such as low cost, simplicity, convenient operation and quick turnaround. These results therefore suggest that the proposed optical device could be useful for the rapid monitoring of attacks by plant pathogen and yield results considerably earlier than the appearance of visual changes in plant morphology or growth. PMID:25767474

  3. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis

    USGS Publications Warehouse

    Adams, Michael J.; Chelgren, Nathan; Reinitz, David M.; Cole, Rebecca A.; Rachowicz, L.J.; Galvan, Stephanie; Mccreary, Brome; Pearl, Christopher A.; Bailey, Larissa L.; Bettaso, Jamie B.; Bull, Evelyn L.; Leu, Matthias

    2010-01-01

    Batrachochytrium dendrobatidis is a fungal pathogen that is receiving attention around the world for its role in amphibian declines. Study of its occurrence patterns is hampered by false negatives: the failure to detect the pathogen when it is present. Occupancy models are a useful but currently underutilized tool for analyzing detection data when the probability of detecting a species is <1. We use occupancy models to evaluate hypotheses concerning the occurrence and prevalence of B. dendrobatidis and discuss how this application differs from a conventional occupancy approach. We found that the probability of detecting the pathogen, conditional on presence of the pathogen in the anuran population, was related to amphibian development stage, day of the year, elevation, and human activities. Batrachochytrium dendrobatidis was found throughout our study area but was only estimated to occur in 53.4% of 78 populations of native amphibians and 66.4% of 40 populations of nonnative Rana catesbeiana tested. We found little evidence to support any spatial hypotheses concerning the probability that the pathogen occurs in a population, but did find evidence of some taxonomic variation. We discuss the interpretation of occupancy model parameters, when, unlike a conventional occupancy application, the number of potential samples or observations is finite.

  4. Laser diagnostic technology for early detection of pathogen infestation in orange fruits

    NASA Astrophysics Data System (ADS)

    Giubileo, Gianfranco; Lai, Antonella; Piccinelli, Delinda; Puiu, Adriana

    2010-11-01

    Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges ( Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.

  5. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-06-01

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens.

    PubMed

    Bohaychuk, Valerie M; Gensler, Gary E; King, Robin K; Wu, John T; McMullen, Lynn M

    2005-12-01

    Rapid and molecular technologies such as enzyme-linked immunosorbent assay (ELISA), PCR, and lateral flow immunoprecipitation can reduce the time and labor involved in screening food products for the presence of pathogens. These technologies were compared with conventional culture methodology for the detection of Salmonella, Campylobacter, Listeria, and Escherichia coli O157:H7 inoculated in raw and processed meat and poultry products. Recommended protocols were modified so that the same enrichment broths used in the culture methods were also used in the ELISA, PCR, and lateral flow immunoprecipitation assays. The percent agreement between the rapid technologies and culture methods ranged from 80 to 100% depending on the pathogen detected and the method used. ELISA, PCR, and lateral flow immunoprecipitation all performed well, with no statistical difference, compared with the culture method for the detection of E. coli O157:H7. ELISA performed better for the detection of Salmonella, with sensitivity and specificity rates of 100%. PCR performed better for the detection of Campylobacter jejuni, with 100% agreement to the culture method. PCR was highly sensitive for the detection of all the foodborne pathogens tested except Listeria monocytogenes. Although the lateral flow immunoprecipitation tests were statistically different from the culture methods for Salmonella and Listeria because of false-positive results, the tests did not produce any false negatives, indicating that this method would be suitable for screening meat and poultry products for these pathogens.

  7. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor.

    PubMed

    Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa

    2017-10-01

    Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.

  8. Broad-Range Detection of Microorganisms Directly from Bronchoalveolar Lavage Specimens by PCR/Electrospray Ionization-Mass Spectrometry

    PubMed Central

    Ullberg, Måns; Lüthje, Petra; Mölling, Paula; Strålin, Kristoffer

    2017-01-01

    The clinical demand on rapid microbiological diagnostic is constantly increasing. PCR coupled to electrospray ionization-mass spectrometry, PCR/ESI-MS, offers detection and identification of over 750 bacteria and Candida species directly from clinical specimens within 6 hours. In this study, we investigated the clinical performance of the IRIDICA BAC LRT Assay for detection of bacterial pathogens in 121 bronchoalveolar lavage (BAL) samples that were received consecutively at our bacterial laboratory for BAL culture. Commensal or pathogenic microorganisms were detected in 118/121 (98%) BAL samples by PCR/ESI-MS, while in 104/121 (86%) samples by routine culture (P<0.01). Detection of potentially pathogenic microorganisms by PCR/ESI-MS was evaluated in comparison with conventional culture-based or molecular methods. The agreement between positive findings was overall good. Most Staphylococcus aureus-positive PCR/ESI-MS results were confirmed by culture or species-specific PCR (27/33, 82%). The identity of Streptococcus pneumoniae could however be confirmed for only 6/17 (35%) PCR/ESI-MS-positive samples. Non-cultivable and fastidious pathogens, which were not covered by standard culture procedures were readily detected by PCR/ESI-MS, including Legionella pneumophila, Bordetella pertussis, Norcadia species and Mycoplasma pneumoniae. In conclusion, PCR/ESI-MS detected a broad range of potential pathogens with equal or superior sensitivity compared to conventional methods within few hours directly from BAL samples. This novel method might thus provide a relevant tool for diagnostics in critically ill patients. PMID:28085931

  9. Molecular approaches for biosurveillance of the cucurbit downy mildew pathogen, Pseudoperonospora cubensis

    USDA-ARS?s Scientific Manuscript database

    Globalization has allowed for rapid movement of plant pathogens that threaten food security. Successful disease management largely depends in timely and accurate detection of plant pathogens causing epidemics. Thus, biosurveillance of epidemic plant pathogens such as Pseudoperonospora cubensis, the ...

  10. Colonize, evade, flourish

    PubMed Central

    Rubin, Erica J; Trent, M Stephen

    2013-01-01

    Helicobacter pylori is an adapted gastric pathogen that colonizes the human stomach, causing severe gastritis and gastric cancer. A hallmark of infection is the ability of this organism to evade detection by the human immune system. H. pylori has evolved a number of features to achieve this, many of which involve glyco-conjugates including the lipopolysaccharide, peptidoglycan layer, glycoproteins, and glucosylated cholesterol. These major bacterial components possess unique features from those of other gram-negative organisms, including differences in structure, assembly, and modification. These defining characteristics of H. pylori glycobiology help the pathogen establish a long-lived infection by providing camouflage, modulating the host immune response, and promoting virulence mechanisms. In this way, glyco-conjugates are essential for H. pylori pathogenicity and survival, allowing it to carve out a niche in the formidable environment of the human stomach. PMID:23859890

  11. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method.

    PubMed

    Schötta, Anna-Margarita; Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-07-01

    Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia , Rickettsiae , Anaplasma / Ehrlichia (including " Candidatus Neoehrlichia"), Babesia , and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis , Borrelia lusitaniae , and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. " Candidatus Neoehrlichia mikurensis," Babesia spp. ( B. venatorum , B. divergens , B. microti ), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and " Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. Copyright © 2017 American Society for Microbiology.

  12. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method

    PubMed Central

    Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-01-01

    ABSTRACT Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia, Rickettsiae, Anaplasma/Ehrlichia (including “Candidatus Neoehrlichia”), Babesia, and Coxiella. The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis, Borrelia lusitaniae, and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. “Candidatus Neoehrlichia mikurensis,” Babesia spp. (B. venatorum, B. divergens, B. microti), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and “Candidatus Neoehrlichia mikurensis” showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. PMID:28455331

  13. Simultaneous, specific and real-time detection of biothreat and frequently encountered food-borne pathogens

    PubMed Central

    Woubit, Abdela Salah; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-01-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg DNA/µl for F. tularensis. A preliminary test done to detect Shigella organisms in a milk matrix showed that 6–60 colony forming units of the bacterium per milliliter of milk could be detected in about an hour. Therefore, we have developed a platform to simultaneously detect foodborne pathogen and biothreat agents specifically and in real-time. Such a platform could enable rapid detection or confirmation of contamination by these agents. PMID:22488053

  14. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  16. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania.

    PubMed

    Farkas, A; Drăgan-Bularda, M; Ciatarâş, D; Bocoş, B; Tigan, S

    2012-09-01

    Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.

  17. [Molecular detection of sexually transmitted agents in a symptomatic group of men and its relationship with sexual behavior].

    PubMed

    León, Daniela; Retamal, Javier; Silva, Ramón; Ili, Carmen; Mieville, Stephanie; Guzmán, Pablo; Briceño, Gastón; Brebi, Priscilla

    2016-10-01

    Sexually transmitted infections (STIs) affect sexual and reproductive health of millions of men. Pathogens such as human papillomavirus (HPV), herpes simplex virus type 1 and 2 (HSV-1 y HSV-2), Chlamydia trachomatis,Mycoplasmagenitalium,Mycoplasma hominis and Ureaplasma urealyticum are associated with STIs. To detect pathogens associated with STIs in symptomatic men and its relationship with sexual behavior. DNA was obtained from exfoliated cells of penis from 20 symptomatic men. Pathogens were detected using qPCR or PCR followed by reverse line blot. Sexual behavior was evaluated through a survey. Two or more infectious agents were detected in 50% of samples. U. urealyticum was found in 25%, meanwhile C. trachomatis and M. hominis were detected in 15%. VHS-1, VHS-2 andM. genitalium were detected only in 5%. HPV was found in all samples. The most frequent HPV genotypes were VPH 16, 11, 70. There were no statistical link found between sexual behavior and the studied microorganisms Conclusion: Infectious agents associated with STIs were detected in symptomatic men. HPV was the most frequent pathogen and it was detected in multiple genotypes. It is necessary to increase the sample size to associate significantly the sexual behavior with the results.

  18. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Salmonella rarely detected in Mississippi coastal waters and sediment.

    PubMed

    Carr, M R; Wang, S Y; McLean, T I; Flood, C J; Ellender, R D

    2010-12-01

    Standards for the rapid detection of individual pathogens from environmental samples have not been developed, but in their absence, the use of molecular-based detection methods coupled with traditional microbiology techniques allows for rapid and accurate pathogen detection from environmental waters and sediment. The aim of this research was to combine the use of enrichment with PCR for detection of Salmonella in Mississippi coastal waters and sediment and observe if that presence correlated with levels of enterococci and climatological variables. Salmonella were primarily found in samples that underwent nutrient enrichment and were present more frequently in freshwater than marine waters. Salmonella were detected infrequently in marine and freshwater sediments. There was a significant positive correlation between the presence of detectable Salmonella and the average enterococcal count. An inverse relationship, however, was observed between the frequency of detection and the levels of salinity, turbidity and sunlight exposure. Results from this study indicated the presence of Salmonella in Mississippi coastal waters, and sediments are very low with significant differences between freshwater and marine environments. Using pathogenic and novel nonpathogenic molecular markers, Salmonella do not appear to be a significant pathogenic genus along the Mississippi Coast. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  20. Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR

    PubMed Central

    Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru

    2005-01-01

    Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082

  1. PCR Testing of a Ventilated Caging System to Detect Murine Fur Mites

    PubMed Central

    Jensen, Eric S; Allen, Kenneth P; Henderson, Kenneth S; Szabo, Aniko; Thulin, Joseph D

    2013-01-01

    Rodents housed in microisolation caging are commonly monitored for infectious agents by the use of soiled bedding sentinels. This strategy relies on the successful transmission of rodent pathogens from the index rodents via soiled bedding to sentinel cages and the subsequent infection or colonization of sentinel rodents. When the prevalence of a pathogen is low or the target agent is not readily transmitted by soiled bedding, alternative testing methodologies should be used. Given the continued prevalence of institutions self-reporting murine fur mites and with the advent of a new sensitive and specific PCR assay for mites, we sought to determine whether the exhaust system of an individual ventilated caging (IVC) system could be used for monitoring the rack's rodent population for mites rather than relying on the responses of sentinels. We deployed single cages of mice (Mus musculus) that were known to be infested with either Radfordia affinis or Myobia musculi on a 70-cage rack, sampled the horizontal exhaust manifolds weekly, and used the new PCR assay to test these samples for mite DNA. We detected the presence of fur mites at a 94.1% probability of detection within 4 wk of placement. Therefore, we recommend swabbing and testing the shelf exhaust manifolds of IVC racks rather than relying on soiled-bedding sentinels as an indicator of the mite status of the rodents on that rack. PMID:23562030

  2. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.

    PubMed

    Wicklow, Donald T; Jordan, Annalisa M; Gloer, James B

    2009-12-01

    Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several C. graminicola isolates from Michigan and Illinois were found to be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I-III as major components. Monorden and monocillin I displayed in vitro activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alternata, Bipolaris zeicola, and Curvularia lunata. Using LC-HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the C. graminicola disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from C. graminicola, as well as the production of monorden and monocillins by a pathogen of cereals.

  3. PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data

    NASA Astrophysics Data System (ADS)

    Deneke, Carlus; Rentzsch, Robert; Renard, Bernhard Y.

    2017-01-01

    The reliable detection of novel bacterial pathogens from next-generation sequencing data is a key challenge for microbial diagnostics. Current computational tools usually rely on sequence similarity and often fail to detect novel species when closely related genomes are unavailable or missing from the reference database. Here we present the machine learning based approach PaPrBaG (Pathogenicity Prediction for Bacterial Genomes). PaPrBaG overcomes genetic divergence by training on a wide range of species with known pathogenicity phenotype. To that end we compiled a comprehensive list of pathogenic and non-pathogenic bacteria with human host, using various genome metadata in conjunction with a rule-based protocol. A detailed comparative study reveals that PaPrBaG has several advantages over sequence similarity approaches. Most importantly, it always provides a prediction whereas other approaches discard a large number of sequencing reads with low similarity to currently known reference genomes. Furthermore, PaPrBaG remains reliable even at very low genomic coverages. CombiningPaPrBaG with existing approaches further improves prediction results.

  4. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.

    PubMed

    Kwon, S Y; Kim, I S; Bae, J E; Kang, J W; Cho, Y J; Cho, N S; Lee, S W

    2014-10-01

    This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres. © 2014 International Society of Blood Transfusion.

  5. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    PubMed

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  6. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip

    PubMed Central

    KAWAI, Kazuhiro; INADA, Mika; ITO, Keiko; HASHIMOTO, Koji; NIKAIDO, Masaru; HATA, Eiji; KATSUDA, Ken; KIKU, Yoshio; TAGAWA, Yuichi; HAYASHI, Tomohito

    2017-01-01

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program. PMID:29093278

  7. The association between subgingival periodontal pathogens and systemic inflammation.

    PubMed

    Winning, Lewis; Patterson, Christopher C; Cullen, Kathy M; Stevenson, Kathryn A; Lundy, Fionnuala T; Kee, Frank; Linden, Gerard J

    2015-09-01

    To investigate associations between periodontal disease pathogens and levels of systemic inflammation measured by C-reactive protein (CRP). A representative sample of dentate 60-70-year-old men in Northern Ireland had a comprehensive periodontal examination. Men taking statins were excluded. Subgingival plaque samples were analysed by quantitative real time PCR to identify the presence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. High-sensitivity CRP (mg/l) was measured from fasting blood samples. Multiple linear regression analysis was performed using log-transformed CRP concentration as the dependent variable, with the presence of each periodontal pathogen as predictor variables, with adjustment for various potential confounders. A total of 518 men (mean age 63.6 SD 3.0 years) were included in the analysis. Multiple regression analysis showed that body mass index (p < 0.001), current smoking (p < 0.01), the detectable presence of P. gingivalis (p < 0.01) and hypertension (p = 0.01), were independently associated with an increased CRP. The detectable presence of P. gingivalis was associated with a 20% (95% confidence interval 4-35%) increase in CRP (mg/l) after adjustment for all other predictor variables. In these 60-70-year-old dentate men, the presence of P. gingivalis in subgingival plaque was significantly associated with a raised level of C-reactive protein. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  9. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  10. Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems

    PubMed Central

    Feichtmayer, Judith; Deng, Li; Griebler, Christian

    2017-01-01

    Despite the active and intense treatment of wastewater, pathogenic microorganisms and viruses are frequently introduced into the aquatic environment. For most human pathogens, however, this is a rather hostile place, where starvation, continuous inactivation, and decay generally occur, rather than successful reproduction. Nevertheless, a great diversity of the pathogenic microorganisms can be detected, in particular, in the surface waters receiving wastewater. Pathogen survival depends majorly on abiotic factors such as irradiation, changes in water ionic strength, temperature, and redox state. In addition, inactivation is enhanced by the biotic interactions in the environment. Although knowledge of the antagonistic biotic interactions has been available since a long time, certain underlying processes and mechanisms still remain unclear. Others are well-appreciated and increasingly are applied to the present research. Our review compiles and discusses the presently known biotic interactions between autochthonous microbes and pathogens introduced into the aquatic environment, including protozoan grazing, virus-induced bacterial cell lysis, antimicrobial substances, and predatory bacteria. An overview is provided on the present knowledge, as well as on the obvious research gaps. Individual processes that appear promising for future applications in the aquatic environment are presented and discussed. PMID:29184541

  11. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.

    PubMed

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L

    2005-07-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.

  12. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance

    PubMed Central

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L.; Lorito, Matteo; Kubicek, Christian P.; Mach, Robert L.

    2005-01-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens. PMID:16000810

  13. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  14. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens.

    PubMed

    Raja, B; Goux, H J; Marapadaga, A; Rajagopalan, S; Kourentzi, K; Willson, R C

    2017-08-01

    To develop and evaluate the performance of a panel of isothermal real-time recombinase polymerase amplification (RPA) assays for detection of common bacterial urinary tract infection (UTI) pathogens. The panel included RPAs for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterococcus faecalis. All five RPAs required reaction times of under 12 min to reach their lower limit of detection of 100 genomes per reaction or less, and did not cross-react with high concentrations of nontarget bacterial genomic DNA. In a 50-sample retrospective clinical study, the five-RPA assay panel was found to have a specificity of 100% (95% CI, 78-100%) and a sensitivity of 89% (95% CI, 75-96%) for UTI detection. The analytical and clinical validity of RPA for the rapid and sensitive detection of common UTI pathogens was established. Rapid identification of the causative pathogens of UTIs can be valuable in preventing serious complications by helping avoid the empirical treatment necessitated by traditional urine culture's 48-72-h turnaround time. The routine and widespread use of RPA to supplement or replace culture-based methods could profoundly impact UTI management and the emergence of multidrug-resistant pathogens. © 2017 The Society for Applied Microbiology.

  15. Prospective evaluation of a high multiplexing real-time polymerase chain reaction array for the rapid identification and characterization of bacteria causative of nosocomial pneumonia from clinical specimens: a proof-of-concept study.

    PubMed

    Roisin, S; Huang, T-D; de Mendonça, R; Nonhoff, C; Bogaerts, P; Hites, M; Delaere, B; Hamels, S; de Longueville, F; Glupczynski, Y; Denis, O

    2018-01-01

    The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.

  16. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  17. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID:24915446

  18. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  19. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of 0.0001, 0.009 and 0.0001, 0.0001 and 0.001 respectively. Further investigations are required to better understand the clinical roles of the isolated pathogens and their seasonality. PMID:28346512

  20. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks

    PubMed Central

    Walsh, Aaron M.; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C.; Arthur, Cornelius T.; Claesson, Marcus J.; Scott, Karen P.

    2017-01-01

    ABSTRACT The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. PMID:28625983

Top