Sample records for pathogen rhodococcus equi

  1. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    PubMed

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Rhodococcus equi.

    PubMed

    Meijer, Wim G; Prescott, John F

    2004-01-01

    Rhodococcus equi is an important cause of subacute or chronic abscessating bronchopneumonia of foals up to 3-5 months of age. It shares the lipid-rich cell wall envelope characteristic of the mycolata, including Mycobacterium tuberculosis, as well as the ability of pathogenic members of this group to survive within macrophages. The possession of a large virulence plasmid in isolates recovered from pneumonic foals is crucial for virulence. The plasmid contains an 27 kb pathogenicity island (PI) that encodes seven related virulence-associated proteins (Vaps), including the immunodominant surface-expressed protein, VapA. Only PI genes are differentially expressed when the organism is grown in macrophages in vitro. Ten of the PI genes, including six Vap genes, have signal sequences, suggesting that they are exported from the cell to interact with the macrophage. Different PI genes are regulated by temperature, pH, iron, oxidative stress and probably also by magnesium, all environmental changes encountered after environmental R. equi are inhaled in dust and are ingested into macrophages in the lung. The basis of pathogenicity of R. equi is its ability to multiply in and eventually to destroy alveolar macrophages. Infectivity is largely or exclusively limited to cells of the monocyte-macrophage lineage. Current evidence suggests that infection of foals with virulent R. equi results in some foals in subversion of cell-mediated immunity and development of an ineffective and sometimes lethal Th2-based immune response. Significant progress has been made recently in the development of R. equi-E. coli shuttle vectors, transformation and random and site specific mutagenesis procedures, all of which will be important in molecular dissection of the mechanisms by which R. equi subverts normal macrophage killing mechanisms and cell-mediated immunity.

  3. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vapmore » proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.« less

  4. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised. © 2014 EVJ Ltd.

  5. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length

    PubMed Central

    Sydor, Tobias; Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-01-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  6. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  7. Seroprevalence of Rhodococcus equi in horses in Israel.

    PubMed

    Tirosh-Levy, Sharon; Gürbilek, Sevil E; Tel, Osman Y; Keskin, Oktay; Steinman, Amir

    2017-06-26

    Rhodococcus equi is a common cause of pneumonia in foals and has extensive clinical, economic and possibly zoonotic consequences. This bacterium survives well in the environment and may be considered as normal flora of adult horses. Certain strains of this bacterium are extremely virulent in foals, and early identification and intervention is crucial for prognosis. Rhodococcus equi is endemic in many parts of the world and occasionally isolated in Israel. This study was designed to evaluate R. equi seroprevalence in adult horses in Israel to indirectly indicate the potential level of exposure of susceptible foals. Sera were collected from 144 horses during spring 2011 and from 293 horses during fall 2014, and the presence of antibodies against virulent R. equi was detected by enzyme-linked immunosorbent assay. Equine seroprevalence of R. equi was found to be 7.6% in 2011 and 5.1% in 2014. Only one farm had seropositive horses in 2011, whereas several farms had seropositive horses in 2014. No significant risk factors for seropositivity were found. Rhodococcus equi appears to be endemic in Israel. This is the first survey of R. equi in Israel that provides information on the epidemiology of this important bacterium.

  8. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Rhodococcus equi pneumonia in an HIV+ patient: An uncommon association].

    PubMed

    Esteves, Paula; Mineiro, Ana; Serrado, Margarida; Diniz, António

    2007-01-01

    The human infection by Rhodococcus equi, even in the presence of HIV infection, remains a rare disease. The authors present a case report of pneumonia, occurring in a HIV+ man. After identifying Pneumocystis jiroveci in the BAL, despite proper medication, the patient didn't improve. Another BAL was performed and a Rhodococcus equi isolated. The therapeutic regimen was changed according to this finding and the patient improved. The authors make a review of the literature, focusing on the rarity of this association and the high survival observed.

  10. A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality

    PubMed Central

    van der Geize, R.; de Jong, W.; Hessels, G. I.; Grommen, A. W. F.; Jacobs, A. A. C.; Dijkhuizen, L.

    2008-01-01

    A novel method to efficiently generate unmarked in-frame gene deletions in Rhodococcus equi was developed, exploiting the cytotoxic effect of 5-fluorocytosine (5-FC) by the action of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) enzymes. The opportunistic, intracellular pathogen R. equi is resistant to high concentrations of 5-FC. Introduction of Escherichia coli genes encoding CD and UPRT conferred conditional lethality to R. equi cells incubated with 5-FC. To exemplify the use of the codA::upp cassette as counter-selectable marker, an unmarked in-frame gene deletion mutant of R. equi was constructed. The supA and supB genes, part of a putative cholesterol catabolic gene cluster, were efficiently deleted from the R. equi wild-type genome. Phenotypic analysis of the generated ΔsupAB mutant confirmed that supAB are essential for growth of R. equi on cholesterol. Macrophage survival assays revealed that the ΔsupAB mutant is able to survive and proliferate in macrophages comparable to wild type. Thus, cholesterol metabolism does not appear to be essential for macrophage survival of R. equi. The CD-UPRT based 5-FC counter-selection may become a useful asset in the generation of unmarked in-frame gene deletions in other actinobacteria as well, as actinobacteria generally appear to be 5-FC resistant and 5-FU sensitive. PMID:18984616

  11. [Pulmonary infection from Rhodococcus equi after renal transplantation. Review of the literature].

    PubMed

    Gallen, F; Kernaonet, E; Foulet, A; Goldstein, A; Lebon, P; Babinet, F

    1999-01-01

    Rhodococcus Equi, a strictly aerobic Gram positive coco-bacillus, is a pathogen for horses and foals. It may induce opportunistic infections and is described in AIDS infected patients. We report the case of a 47-year old man, breeder of horses, with kidney transplant who has presented, 8 years after his graft, an impairment of health, a fever and evidence of pulmonary disease. The pulmonary biopsy under scanner guidance and microbiology study, has displayed the diagnosis of Rhodococcus equi infection. The evolution has been favorable with double antibiotherapy (follow-up 27 months). Ten comparable observations have been published after organ transplantation: (kidney: 8; heart: 1; liver: 1). Pulmonary locations are widely predominant. The animal contact is found only in 30% of cases. The presentation of the sickness has been compared to pulmonary tuberculosis or to nocardiosis, pathologies often observed in this context of immunosuppression. The antibiotic treatment is difficult and should required two bactericidal antibiotics. A surgical lobectomy can be envisaged in case of relapse. The mortality is 30%.

  12. Rhodococcus equi pleuropneumonia in an adult horse

    PubMed Central

    Vengust, Modest; Stæmpfli, Henry; Prescott, John F.

    2002-01-01

    A 10-year-old warmblood gelding was evaluated for intermittent pyrexia, dullness, weight loss, and progressive respiratory disease. Multifocal necrotic pneumonia and pleuritis due to Rhodococcus equi infection was diagnosed. Case management is discussed, as well as factors that may have led to this rare cause of pleuropneumonia in an adult horse. PMID:12240529

  13. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection.

    PubMed

    Remuzgo-Martínez, Sara; Pilares-Ortega, Lilian; Alvarez-Rodríguez, Lorena; Aranzamendi-Zaldunbide, Maitane; Padilla, Daniel; Icardo, Jose Manuel; Ramos-Vivas, Jose

    2013-08-01

    Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.

  14. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  15. In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.

    PubMed

    Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F

    2005-09-30

    Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.

  16. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  17. Molecular epidemiology of Rhodococcus equi in slaughtered swine, cattle and horses in Poland.

    PubMed

    Witkowski, Lucjan; Rzewuska, Magdalena; Takai, Shinji; Kizerwetter-Świda, Magdalena; Kita, Jerzy

    2016-05-27

    Rhodococcus equi is an emerging zoonotic presumably foodborne pathogen. Since the data on the worldwide prevalence of R. equi in meat animals are scarce, the present study aimed to investigate the molecular epidemiology of R. equi in swine, cattle and horse carcasses intended for human consumption in Poland. Totally 1028 lymph node samples were examined. R. equi was isolated from 26.6 % (105/395) swine and 1.3 % (3/234) bovine healthy submaxillary lymph nodes. In horses, R. equi was isolated only from 0.5 % (1/198) samples of middle tracheo-branchiales lymph node while no lymphocentrum retropharyngeum sample was positive (0/198). The purulent lesions were observed only in 0.8 % swine submaxillary lymph nodes samples (3/398) and in two of them R. equi was detected. All bovine and most of swine isolates (98.1 %) were vapB-positive. 87.9 % of swine isolates carried 95-kb type 5 plasmid, 3.7 % type 1 and plasmid types: 4, 7, 10, 11, 21, 31 were carried by a single isolate (0.9 %). All bovine isolates carried VAPB type 26. Single horse isolate was vapA-positive and carried plasmid VAPA 85-kb type I. The prevalence of vapB-positive R. equi in investigated healthy swine intended for human consumption was very high. Not only swine, but also even apparently healthy cattle or horse carcasses should be considered as a potential source of R. equi for humans, especially in countries where undercooked or raw beef or horsemeat is traditionally consumed.

  18. Influence of Rhodococcus equi on the respiratory burst of resident alveolar macrophages from horses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbaugh, G.W.

    1986-01-01

    Rhodococcus equi is the etiologic agent of a devastating pneumonia of sporadic incidence in foals. The purpose of this study was to evaluate the influence of R. equi on the superoxide anion production, measured spectrophotometrically as the reduction of cytochrome C, and hexose monophosphate shunt activity, measured by /sup 14/CO/sub 2/ liberation from /sup 14/C-1-D-glucose, of alveolar macrophages from horses. Alveolar macrophages were harvested from 6 anesthetized, healthy, light-breed, adult horses by bronchoalveolar lavage. Following a randomized complete block design, the suspension of cells was divided into aliquots of 10/sup 6/ viable alveolar macrophages which were exposed to 1, 10more » or 100 g. of opsonized R. equi or opsonized zymosan A at 37 C for 2 hours. In this study the respiratory burst of equine alveolar macrophages was only evidenced by the hexose monophosphate shunt activity and superoxide anion was not coincidentally produced. Rhodococcus equi did not adversely affect that response. The insignificant superoxide anion production by the alveolar macrophages suggests that this may not be a significant oxygen metabolite in those cells.« less

  19. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi

    PubMed Central

    Rocha, Joana N.; Cohen, Noah D.; Bordin, Angela I.; Brake, Courtney N.; Giguère, Steeve; Coleman, Michelle C.; Alaniz, Robert C.; Lawhon, Sara D.; Mwangi, Waithaka; Pillai, Suresh D.

    2016-01-01

    There is currently no licensed vaccine that protects foals against Rhodococcus equi–induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective. PMID:26828865

  20. Pulmonary disposition of tilmicosin in foals and in vitro activity against Rhodococcus equi and other common equine bacterial pathogens.

    PubMed

    Womble, A; Giguère, S; Murthy, Y V S N; Cox, C; Obare, E

    2006-12-01

    The objectives of this study were to determine the serum and pulmonary disposition of tilmicosin in foals and to investigate the in vitro activity of the drug against Rhodococcus equi and other common bacterial pathogens of horses. A single dose of a new fatty acid salt formulation of tilmicosin (10 mg/kg of body weight) was administered to seven healthy 5- to 8-week-old foals by the intramuscular route. Concentrations of tilmicosin were measured in serum, lung tissue, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils. Mean peak tilmicosin concentrations were significantly different between sampling sites with highest concentrations measured in blood neutrophils (66.01+/-15.97 microg/mL) followed by BAL cells (20.1+/-5.1 microg/mL), PELF (2.91+/-1.15 microg/mL), lung tissue (1.90+/-0.65 microg/mL), and serum (0.19+/-0.09 microg/mL). Harmonic mean terminal half-life in lung tissue (193.3 h) was significantly longer than that of PELF (73.3 h), bronchoalveolar cells (62.2 h), neutrophils (47.9 h), and serum (18.4 h). The MIC90 of 56 R. equi isolates was 32 microg/mL. Tilmicosin was active in vitro against most streptococci, Staphylococcus spp., Actinobacillus spp., and Pasteurella spp. The drug was not active against Enterococcus spp., Pseudomonas spp., and Enterobacteriaceae.

  1. VapB type 8 plasmids in Rhodococcus equi isolated from the small intestine of pigs and comparison of selective culture media.

    PubMed

    Lara, G H B; Takai, S; Sasaki, Y; Kakuda, T; Listoni, F J P; Risseti, R M; de Morais, A B C; Ribeiro, M G

    2015-09-01

    The virulence-plasmid profile of Rhodococcus equi strains isolated from Suidae and humans is similar. Recent evidence suggests that the consumption of pork products contaminated with faeces might be a potential source of R. equi infections in humans, mainly to patients with rhodococcosis without history of contact with pigs or pig farms. This study investigated the virulence-associated genes (vapA and vapB) and plasmid profiles of R. equi among the 150 samples of small intestinal content obtained from slaughtered pigs. In addition, all samples were subjected to microbiological culture in conventional sheep blood agar and CAZ-NB, TCP and TVP selective media. A total of 40 (26·7%) of the samples recovered R. equi, with two samples recovering isolates harbouring the VapB type 8 plasmid. Among the 150 pigs sampled herein, CAZ-NB was considered the best selective medium for the isolation of R. equi from faeces. Our results provide evidence that the contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, this study is the first description of R. equi strains carrying the VapB plasmid in the gut of pigs. Intermediately virulent (VapB) is a common plasmid-type harboured by R. equi isolated from pigs and humans with AIDS. Curiously, humans with rhodococcosis usually have no history of contact with pigs or pig farms. Virulence-plasmid profile of 40 R. equi isolated among 150 small intestine content samples from pigs revelled two carrying isolates with the VapB type-8 plasmids. Moreover, comparison of three selective culture media shows that CAZ-NB was the best. Our results provide evidence that contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, R. equi carrying VapB type-8 plasmids types are described for the first time in the gut of the pig. © 2015 The Society for Applied

  2. The sensor kinase MprB is required for Rhodococcus equi virulence.

    PubMed

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Acute osteomyelitis of the mandible caused by Rhodococcus equi in an immunocompromised patient: a case report and literature review.

    PubMed

    Rallis, George; Dais, Panayotis; Gkinis, George; Mourouzis, Constantinos; Papaioannou, Vasiliki; Mezitis, Michael

    2012-10-01

    We present the first case of acute osteomyelitis of the mandible caused by Rhodococcus equi in an immunocompromised patient. A 53-year-old Caucasian man was referred to the outpatient clinic, because of a swelling of the left submental and submandibular spaces. The patient was immunocompromised owing to medication against myasthenia gravis and type II diabetes mellitus. The patient underwent surgical debridement under local anesthesia. Histologic examination showed acute osteomyelitis and both blood and pus cultures isolated Rhodococcus equi. The patient was discharged on linezolid 600 mg orally twice a day for 6 months and remains free of the disease 2 years postoperatively. Most patients with Rhodococcus infection are immunocompromised. Infection with this organism is rare and usually causes a distinct clinical syndrome resembling pulmonary tuberculosis. Diagnosis is frequently missed or delayed. Not only clinicians but also laboratory specialists should be aware of this organism, so as to contribute to prompt diagnosis and treatment of such infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    PubMed

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  5. Differences in Rhodococcus equi Infections Based on Immune Status and Antibiotic Susceptibility of Clinical Isolates in a Case Series of 12 Patients and Cases in the Literature

    PubMed Central

    Suzuki, Yasuhiro; Ribes, Julie A.; Thornton, Alice

    2016-01-01

    Rhodococcus equi is an unusual zoonotic pathogen that can cause life-threatening diseases in susceptible hosts. Twelve patients with R. equi infection in Kentucky were compared to 137 cases reported in the literature. Although lungs were the primary sites of infection in immunocompromised patients, extrapulmonary involvement only was more common in immunocompetent patients (P < 0.0001). Mortality in R. equi-infected HIV patients was lower in the HAART era (8%) than in pre-HAART era (56%) (P < 0.0001), suggesting that HAART improves prognosis in these patients. Most (85–100%) of clinical isolates were susceptible to vancomycin, clarithromycin, rifampin, aminoglycosides, ciprofloxacin, and imipenem. Interestingly, there was a marked difference in susceptibility of the isolates to cotrimoxazole between Europe (35/76) and the US (15/15) (P < 0.0001). Empiric treatment of R. equi infection should include a combination of two antibiotics, preferably selected from vancomycin, imipenem, clarithromycin/azithromycin, ciprofloxacin, rifampin, or cotrimoxazole. Local antibiograms should be checked prior to using cotrimoxazole due to developing resistance. PMID:27631004

  6. The Equine Antimicrobial Peptide eCATH1 Is Effective against the Facultative Intracellular Pathogen Rhodococcus equi in Mice

    PubMed Central

    Schlusselhuber, Margot; Torelli, Riccardo; Martini, Cecilia; Leippe, Matthias; Cattoir, Vincent; Leclercq, Roland; Laugier, Claire; Grötzinger, Joachim; Sanguinetti, Maurizio

    2013-01-01

    Rhodococcus equi, the causal agent of rhodococcosis, is a major pathogen of foals and is also responsible for severe infections in immunocompromised humans. Of great concern, strains resistant to currently used antibiotics have emerged. As the number of drugs that are efficient in vivo is limited because of the intracellular localization of the bacterium inside macrophages, new active but cell-permeant drugs will be needed in the near future. In the present study, we evaluated, by in vitro and ex vivo experiments, the ability of the alpha-helical equine antimicrobial peptide eCATH1 to kill intracellular bacterial cells. Moreover, the therapeutic potential of the peptide was assessed in experimental rhodococcosis induced in mice, while the in vivo toxicity was evaluated by behavioral and histopathological analysis. The study revealed that eCATH1 significantly reduced the number of bacteria inside macrophages. Furthermore, the bactericidal potential of the peptide was maintained in vivo at doses that appeared to have no visible deleterious effects for the mice even after 7 days of treatment. Indeed, daily subcutaneous injections of 1 mg/kg body weight of eCATH1 led to a significant reduction of the bacterial load in organs comparable to that obtained after treatment with 10 mg/kg body weight of rifampin. Interestingly, the combination of the peptide with rifampin showed a synergistic interaction in both ex vivo and in vivo experiments. These results emphasize the therapeutic potential that eCATH1 represents in the treatment of rhodococcosis. PMID:23817377

  7. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.

    PubMed

    Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F

    2006-12-20

    To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.

  8. Use of Serial Quantitative PCR of the vapA Gene of Rhodococcus equi in Feces for Early Detection of R. equi Pneumonia in Foals.

    PubMed

    Madrigal, R G; Shaw, S D; Witkowski, L A; Sisson, B E; Blodgett, G P; Chaffin, M K; Cohen, N D

    2016-01-01

    Current screening tests for Rhodococcus equi pneumonia in foals lack adequate accuracy for clinical use. Real-time, quantitative PCR (qPCR) for virulent R. equi in feces has not been systematically evaluated as a screening test. The objective of this study was to evaluate the accuracy of qPCR for vapA in serially collected fecal samples as a screening test for R. equi pneumonia in foals. One hundred and twenty-five foals born in 2011 at a ranch in Texas. Fecal samples were collected concurrently with thoracic ultrasonography (TUS) screening examinations at ages 3, 5, and 7 weeks. Affected (pneumonic) foals (n = 25) were matched by age and date-of-birth to unaffected (n = 25) and subclinical (ie, having thoracic TUS lesions but no clinical signs of pneumonia) foals (n = 75). DNA was extracted from feces using commercial kits and concentration of virulent R. equi in feces was determined by qPCR. Subsequently affected foals had significantly greater concentrations of vapA in feces than foals that did not develop pneumonia (unaffected and subclinical foals) at 5 and 7 weeks of age. Accuracy of fecal qPCR, however, was poor as a screening test to differentiate foals that would develop clinical signs of pneumonia from those that would remain free of clinical signs (including foals with subclinical pulmonary lesions attributed to R. equi) using receiver operating characteristic (ROC) methods. In the population studied, serial qPCR on feces lacked adequate accuracy as a screening test for clinical R. equi foal pneumonia. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.

    1999-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138

  10. Clearance of Virulent but Not Avirulent Rhodococcus equi from the Lungs of Adult Horses Is Associated with Intracytoplasmic Gamma Interferon Production by CD4+ and CD8+ T Lymphocytes

    PubMed Central

    Hines, Stephen A.; Stone, Diana M.; Hines, Melissa T.; Alperin, Debby C.; Knowles, Donald P.; Norton, Linda K.; Hamilton, Mary J.; Davis, William C.; McGuire, Travis C.

    2003-01-01

    Rhodococcus equi is a gram-positive bacterium that infects alveolar macrophages and causes rhodococcal pneumonia in horses and humans. The virulence plasmid of R. equi appears to be required for both pathogenicity in the horse and the induction of protective immunity. An understanding of the mechanisms by which virulent R. equi circumvents protective host responses and by which bacteria are ultimately cleared is important for development of an effective vaccine. Six adult horses were challenged with either virulent R. equi or an avirulent, plasmid-cured derivative. By using a flow cytometric method for intracytoplasmic detection of gamma interferon (IFN-γ) in equine bronchoalveolar lavage fluid (BALF) cells, clearance of the virulent strain was shown to be associated with increased numbers of pulmonary CD4+ and CD8+ T lymphocytes producing IFN-γ. There was no change in IFN-γ-positive cells in peripheral blood, suggesting that a type 1 recall response at the site of challenge was protective. The plasmid-cured strain of R. equi was cleared in horses without a significant increase in IFN-γ-producing T lymphocytes in BALF. In contrast to these data, a previous report in foals suggested an immunomodulating role for R. equi virulence plasmid-encoded products in downregulating IFN-γ expression by equine CD4+ T lymphocytes. Intracytoplasmic detection of IFN-γ provides a method to better determine whether modulation of macrophage-activating cytokines by virulent strains occurs uniquely in neonates and contributes to their susceptibility to rhodococcal pneumonia. PMID:12626444

  11. Seroepidemiological survey of Rhodococcus equi infection in asymptomatic horses and donkeys from southeast Turkey.

    PubMed

    Tel, O Y; Arserim, N B; Keskin, O

    2011-12-01

    In order to assess the level of Rhodococcus equi infection in southeast Turkey, 679 sera from healthy foals and adult horses and 78 sera from donkeys were tested by indirect ELISA using a R. equi reference strain (ATCC 33701) as antigen. Eighty (11.7%) sera from horses and 9 (11.5%) sera from donkeys with titres >0.85 were positive. The prevalence of seropositive horses in Sanliurfa Province was higher than in Diyarbakir Province; 56 (13.9%) horses in Sanliurfa Province and 24 (8.7%) horses in Diyarbakir Province were defined as seropositive. In Sanliurfa Province 14.5% of female (n=343) and 10.1% of male (n = 59) horses tested were defined as seropositive, while in Diyarbakir Province more males (11.4%, n=114) were seropositive than females (6.7%, n=163). Horses 1 to 5 years of age were found to have the highest seropositivity rate in both provinces. A total of 78 sera from donkeys were investigated in Sanliurfa Province, of which 9 (11.5%) were positive by ELISA. Among the 9 positive sera, 6 (12.8%) were from donkeys 1-5 years old and 3 (13.6%) were from donkeys >5 years of age. No positive sera were found in donkeys less than 1 year old. Five (12.5%) sera of females and 4 (10.5%) sera of males tested were positive. These results indicate the existence of R. equi in the horse populations in Sanliurfa and Diyarbakir Provinces. Similar infection rates were found for donkeys in Sanliurfa. This suggests the importance of serological surveys to diagnose R. equi infection in the region and to prevent the zoonotic risk.

  12. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively.more » To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.« less

  13. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    PubMed Central

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  14. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  15. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103

    PubMed Central

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875

  16. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103.

    PubMed

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M; Prescott, John F

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.

  17. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+.

    PubMed

    Pei, Yanlong; Nicholson, Vivian; Woods, Katharine; Prescott, John F

    2007-11-15

    Rhodococcus equi causes fatal granulomatous pneumonia in foals and immunocompromised animals and humans. However, there is no effective vaccine against this infection. In this study, the chromosomal genes isocitrate lyase (icl) and cholesterol oxidase (choE) were chosen as targets for mutation and assessment of the double mutant as an intrabronchial vaccine in 1-week-old foals. Using a modification of a suicide plasmid previously developed in this laboratory, we developed a choE-icl unmarked deletion mutant of R. equi strain 103+. Five 1-week-old foals were infected intrabronchially with the mutant and challenged intrabronchially with the parent, virulent, strain 2 weeks later. Three of the foals were protected against pneumonia caused by the virulent strain, but the other two foals developed pneumonia caused by the mutant strain during the post-challenge period. Since infection of 3-week-old foals by an icl mutant in an earlier study had shown complete attenuation of the strain, we conclude that a proportion of foals in the 1st week or so of life are predisposed to developing R. equi pneumonia because of an inability to mount an effective immune response. This has been suspected previously but this is the first time that this has been demonstrated experimentally.

  18. Identification of Virulence-Associated Plasmids in Rhodococcus equi in Humans with and without Acquired Immunodeficiency Syndrome in Brazil

    PubMed Central

    Ribeiro, Márcio Garcia; Takai, Shinji; de Vargas, Agueda Castagna; Mattos-Guaraldi, Ana Luiza; Ferreira Camello, Thereza Cristina; Ohno, Ryoko; Okano, Hajime; da Silva, Aristeu Vieira

    2011-01-01

    Virulence of Rhodococcus equi strains from 20 humans in Brazil was investigated by using a polymerase chain reaction to characterize isolates as virulent (VapA), intermediately virulent (VapB), and avirulent. Nine isolates were obtained from human immunodeficiency virus (HIV)–positive patients, six from HIV-negative patients, and five from patients of unknown status. Five isolates were VapB positive, four were VapA positive, and eleven were avirulent. Among the nine isolates from HIV-positive patients, five contained VapB plasmids and two contained VapA plasmids. Five VapB-positive isolates had the type 8 virulence plasmid. Eleven of the patients had a history of contact with livestock and/or a farm environment, and none had contact with pigs. PMID:21896813

  19. Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection

    PubMed Central

    Harris, Simon R.; Robinson, Carl; Steward, Karen F.; Webb, Katy S.; Paillot, Romain; Parkhill, Julian; Holden, Matthew T.G.; Waller, Andrew S.

    2015-01-01

    Strangles, the most frequently diagnosed infectious disease of horses worldwide, is caused by Streptococcus equi. Despite its prevalence, the global diversity and mechanisms underlying the evolution of S. equi as a host-restricted pathogen remain poorly understood. Here, we define the global population structure of this important pathogen and reveal a population replacement in the late 19th or early 20th Century. Our data reveal a dynamic genome that continues to mutate and decay, but also to amplify and acquire genes despite the organism having lost its natural competence and become host-restricted. The lifestyle of S. equi within the horse is defined by short-term acute disease, strangles, followed by long-term infection. Population analysis reveals evidence of convergent evolution in isolates from post-acute disease samples as a result of niche adaptation to persistent infection within a host. Mutations that lead to metabolic streamlining and the loss of virulence determinants are more frequently found in persistent isolates, suggesting that the pathogenic potential of S. equi reduces as a consequence of long-term residency within the horse post-acute disease. An example of this is the deletion of the equibactin siderophore locus that is associated with iron acquisition, which occurs exclusively in persistent isolates, and renders S. equi significantly less able to cause acute disease in the natural host. We identify several loci that may similarly be required for the full virulence of S. equi, directing future research toward the development of new vaccines against this host-restricted pathogen. PMID:26160165

  20. Short report: Identification of virulence-associated plasmids in Rhodococcus equi in humans with and without acquired immunodeficiency syndrome in Brazil.

    PubMed

    Ribeiro, Márcio Garcia; Takai, Shinji; de Vargas, Agueda Castagna; Mattos-Guaraldi, Ana Luiza; Ferreira Camello, Thereza Cristina; Ohno, Ryoko; Okano, Hajime; Silva, Aristeu Vieira da

    2011-09-01

    Virulence of Rhodococcus equi strains from 20 humans in Brazil was investigated by using a polymerase chain reaction to characterize isolates as virulent (VapA), intermediately virulent (VapB), and avirulent. Nine isolates were obtained from human immunodeficiency virus (HIV)-positive patients, six from HIV-negative patients, and five from patients of unknown status. Five isolates were VapB positive, four were VapA positive, and eleven were avirulent. Among the nine isolates from HIV-positive patients, five contained VapB plasmids and two contained VapA plasmids. Five VapB-positive isolates had the type 8 virulence plasmid. Eleven of the patients had a history of contact with livestock and/or a farm environment, and none had contact with pigs.

  1. Virulence genes and plasmid profiles in Rhodococcus equi isolates from domestic pigs and wild boars (Sus scrofa) in Brazil.

    PubMed

    Ribeiro, Márcio Garcia; Takai, Shinji; Guazzelli, Alessandro; Lara, Gustavo Henrique Batista; da Silva, Aristeu Vieira; Fernandes, Marta Catarina; Condas, Larissa Anuska Zeni; Siqueira, Amanda Keller; Salerno, Tatiana

    2011-12-01

    The virulence genes and plasmid profiles of 23 Rhodococcus equi isolates from 258 lymph nodes from domestic pigs (129 nodes with lesions and 129 without lesions) and 120 lymph nodes from slaughtered wild boars (60 nodes with lesions and 60 without) were characterized. R. equi was obtained from 19 lymph nodes of domestic pigs, 17 with, and two without lesions, and from four lymph nodes with lesions, from wild boars. The 23 isolates were tested for the presence of vapA and vapB genes, responsible for the 15-17 and 20 kDa virulence-associated proteins, respectively, by PCR in order to characterize as virulent (VapA), intermediately virulent (VapB) and avirulent. Plasmid DNAs were isolated and analyzed by digestion with restriction endonucleases to estimate size and compare their polymorphisms. Of the 19 domestic pigs strains, seven (36.8%) were avirulent and 12 (63.2%) were intermediately virulent, with the intermediately virulent isolates being plasmid types 8 (8 isolates), 10 (2 isolates), 1 (1 isolate) and 29 (1 isolate). The plasmid type of four strains isolated from wild boars was also intermediately virulent type 8. None of the domestic pigs and wild boar isolates showed the vapA gene. These findings demonstrate a high occurrence of plasmid type 8 in isolates from pigs and wild boars, and the similarity of plasmid types in the domestic pigs, wild boars and human isolates in Brazil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: Effect of IL-12, dose, and route

    PubMed Central

    Mealey, R.H.; Stone, D.M.; Hines, M.T.; Alperin, D.C.; Littke, M.H.; Leib, S.R.; Leach, S.E.; Hines, S.A.

    2012-01-01

    Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates. PMID:17889970

  3. Rhodococcus antrifimi sp. nov., isolated from dried bat dung of a cave.

    PubMed

    Ko, Kwan Su; Kim, Youngju; Seong, Chi Nam; Lee, Soon Dong

    2015-11-01

    A Gram-reaction-positive, high DNA G+C content, non-motile actinobacterium, strain D7-21T, was isolated from dried bat dung inside a natural cave and its taxonomic status was examined by using a polyphasic approach. The 16S rRNA gene sequence study showed that the isolate belonged to the genus Rhodococcus and formed a cluster with Rhodococcus defluvii (98.98 % gene similarity), Rhodococcus equi (98.62 %) and Rhodococcus kunmingensis (97.66 %). Whole-cell hydrolysates contained meso-diaminopimelic acid, arabinose and galactose as the diagnostic diamino acid and sugars. MK-8(H2) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phosphoglycolipid and an unknown glycolipid. Mycolic acids were present. The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0. The DNA G+C content was 70.1 mol%. A battery of phenotypic features and DNA-DNA relatedness data support that strain D7-21T ( = KCTC 29469T = DSM 46727T) represents a novel species of the genus Rhodococcus, for which Rhodococcus antrifimi sp. nov. is proposed.

  4. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    USDA-ARS?s Scientific Manuscript database

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  5. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  6. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.

    PubMed

    Herrero, O Marisa; Moncalián, Gabriel; Alvarez, Héctor M

    2016-02-01

    We analysed the ability of five different rhodococcal species to grow and produce triacylglycerols (TAGs) from glycerol, the main byproduct of biodiesel production. Rhodococcus fascians and Rhodococcus erythropolis grew fast on glycerol, whereas Rhodococcus opacus and Rhodococcus jostii exhibited a prolonged lag phase of several days before growing. Rhodococcus equi only exhibited poor growth on glycerol. R. erythropolis DSMZ 43060 and R. fascians F7 produced 3.9-4.3 g cell biomass l(-1) and 28.4-44.6% cellular dry weight (CDW) of TAGs after 6 days of incubation; whereas R. opacus PD630 and R. jostii RHA1 produced 2.5-3.8 g cell biomass l(-1) and 28.3-38.4% CDW of TAGs after 17 days of growth on glycerol. Genomic analyses revealed two different sets of genes for glycerol uptake and degradation (here named clusters 1 and 2) amongst rhodococci. Those species that possessed cluster 1 (glpFK1D1) (R. fascians and R. erythropolis) exhibited fast growth and lipid accumulation, whereas those that possessed cluster 2 (glpK2D2) (R. opacus, R. jostii and R. equi) exhibited delayed growth and lipid accumulation during cultivation on glycerol. Three glycerol-negative strains were complemented for their ability to grow and produce TAGs by heterologous expression of glpK2 from R. opacus PD630. In addition, we significantly reduced the extension of the lag phase and improved glycerol assimilation and oil production of R. opacus PD630 when expressing glpK1D1 from R. fascians. The results demonstrated that rhodococci are a flexible and amenable biological system for further biotechnological applications based on the reutilization of glycerol.

  7. Enteric Pathogens and Coinfections in Foals with and without Diarrhea

    PubMed Central

    Olivo, Giovane; Lucas, Thays Mizuki; Borges, Alexandre Secorun; Silva, Rodrigo Otávio Silveira; Lobato, Francisco Carlos Faria; Siqueira, Amanda Keller; da Silva Leite, Domingos; Brandão, Paulo Eduardo; de Oliveira-Filho, José Paes

    2016-01-01

    Diarrhea is a major clinical problem affecting foals up to 3 months of age. The aim of this study was to identify enteric microorganisms involved in monoinfections and coinfections and the associated virulence factors in healthy and diarrheic foals. Diarrheic (D) (n = 56) and nondiarrheic (ND) foals (n = 60) up to three months of age were studied. Fecal samples were analyzed for identification of infectious agents (microbiological culturing, molecular techniques, and microscopic analyses). Escherichia coli fimH (30% versus 25%), Salmonella spp. (25% versus 7%), Strongyloides westeri (25% versus 25%), Clostridium perfringens type A (21% versus 10%), E. coli ag43 (20% versus 35%), Strongylus (11% versus 18%), and vapA-positive Rhodococcus equi (5% versus 2%) were the most frequent enteric pathogens detected in D and ND foals, respectively. The frequency of toxin A-positive C. perfringens was significantly increased in the D (p = 0.033) compared with the ND animals. R. equi strains harboring virulent plasmids were also identified (VapA 85-kb type I and VapA 87-kb type I) in D and ND foals. Coinfections were observed in 46% of the D and 33% of the ND foals. Our results demonstrate the great diversity of enteric pathogens, virulence factors, and coinfections involved in enteric infections of foals. PMID:28116290

  8. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management

    PubMed Central

    Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L

    2017-01-01

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. PMID:29231813

  9. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management.

    PubMed

    Savory, Elizabeth A; Fuller, Skylar L; Weisberg, Alexandra J; Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L; Chang, Jeff H

    2017-12-12

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus , and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.

  10. Development of a live, attenuated, potential vaccine strain of R. equi expressing vapA and the virR operon, and virulence assessment in the mouse.

    PubMed

    Whitehead, Ashley E; Parreira, Valeria R; Hewson, Joanne; Watson, Johanna L; Prescott, John F

    2012-01-15

    Pneumonia caused by Rhodococcus equi remains a significant problem in foals. The objective of this study was to develop a safe and efficacious attenuated strain of R. equi for eventual use in oral immunization of foals. The approach involved expression of vapA in a live, virulence plasmid-negative, strain of R. equi (strain 103-). PCR-amplified fragments of the vapA gene, with and without the upstream genes virR, orf5, vapH, orf7 and orf8 (orf4-8), were cloned into a shuttle vector pNBV1. These plasmids, named pAW48A and pAWVapA respectively, were electroporated into strain 103-. The presence of the recombinant vectors in the attenuated strain (103-) and the integrity of the inserted genes were confirmed, and both constructs expressed VapA. The virulence of the two strains was compared to that of wild type R. equi 103+ and negative controls by their intravenous inoculation into mice, followed by examination of liver clearance 4 days later. Mice inoculated with R. equi 103-, 103-/pAWVapA and 103-/pNBV1 completely cleared infection, whereas strain 103-/pAW48A persisted in 47% of mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.

    PubMed

    Patty, O A; Cursons, R T M

    2014-03-01

    To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.

  12. Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi.

    PubMed

    Da Silveira, Alexandre Welzel; De Oliveira, Gustavo Gomes; Menezes Santos, Leandro; da Silva Azuaga, Lucas Bezerra; Macedo Coutinho, Claudia Regina; Echeverria, Jessica Teles; Antunes, Tamires Ramborger; do Nascimento Ramos, Carlos Alberto; Izabel de Souza, Alda

    2017-04-01

    Theileria equi is a tick-borne piroplasm considered endemic in equines in Brazil. The cohabitation of domestic and wild animals in areas of extensive cattle breeding favors the close contact between different species and the sharing of vectors and, consequently, pathogens. We report the natural infection of a young South American tapir ( Tapirus terrestris ) by T. equi in Mato Grosso do Sul, Brazil. Although it was not possible to associate the clinical and hematologic status of the animal with the infection by the protozoan parasite, our report represents an alert on the sharing of pathogens between domestic and wild animals.

  13. Hygienic characteristics and microbiological hazard identification in horse and donkey raw milk.

    PubMed

    Colavita, Giampaolo; Amadoro, Carmela; Rossi, Franca; Fantuz, Francesco; Salimei, Elisabetta

    2016-01-01

    Today the interest toward horse (Equus caballus) and donkey (Equus asinus) milk for human consumption is receiving a renewed attention because of its particular composition, hypoallergenicity, and nutraceutical properties. The realistic perspective of global use of this aliment in balanced diets, especially for infancy and geriatrics, poses the need for a more in depth knowledge on milk hygiene and on the health status of dairy animals, as a prerequisite of consumers' safety. The aim of this paper was to review the available literature on the health and hygiene parameters as well as on the potential microbiological hazards in horse and donkey milk and the risks related to their consumption. Both microbial contamination and somatic cell count are reasonably low in equine milk and also the presence of pathogens, like Escherichia coli O157, Salmonella spp., Campylobacter spp., Yersinia enterocolitica, Brucella spp., Mycobacterium spp., Bacillus cereus, Cronobacter sakazakii, Streptococcus equi subsp. zooepidemicus, Rhodococcus equi, Streptococcus dysgalactiae subsp. equisimilis, Clostridium difficile and Burkholderia mallei is low. However, in those regions of the world where the prevalence of Brucella spp. and Rhodococcus equi is high, the alimentary risks could increase. Similarly, in areas with higher incidence of immunocompromised people, the increased risks should be warned not only for pathogens but also for opportunistic microbiota.

  14. Lineages of Streptococcus equi ssp. equi in the Irish equine industry.

    PubMed

    Moloney, Emma; Kavanagh, Kerrie S; Buckley, Tom C; Cooney, Jakki C

    2013-01-01

    Streptococcus equi ssp. equi is the causative agent of 'Strangles' in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2-8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are also common in the UK.

  15. Spondylodiskitis secondary to Streptococcus equi subspecies zooepidemicus.

    PubMed

    Bhatia, Ravi; Bhanot, Nitin

    2012-01-01

    Streptococcus equi subspecies zooepidemicus, traditionally classified under Group C Streptococci, is primarily a veterinary pathogen. Rarely, it may cause infections such as bacteremia, meningitis, endocarditis and pneumonia in humans. Musculoskeletal infections secondary to this pathogen are very uncommon. The authors present the first case of osteomyelitis due to S. zooepidemicus in a farmer who had close contact with a dead horse. The authors review all cases of osteoarticular infections secondary to this microbe, in addition to providing an overview of clinical manifestations, treatment and outcome of this infection.

  16. Lineages of Streptococcus equi ssp. equi in the Irish equine industry

    PubMed Central

    2013-01-01

    Background Streptococcus equi ssp. equi is the causative agent of ‘Strangles’ in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. Results Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2–8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. Conclusions The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are

  17. Diagnosis and prevalence of Theileria equi horses in western Mexico by nested PCR.

    PubMed

    Ayala-Valdovinos, Miguel Angel; Lemus-Flores, Clemente; Galindo-García, Jorge; Bañuelos-Pineda, Jacinto; Rodríguez-Carpena, Javier Germán; Sánchez-Chiprés, David; Duifhuis-Rivera, Theodor

    2017-02-01

    Theileria equi infection prevalence was calculated from 1000 blood samples obtained from apparently healthy horses in western Mexico. Samples were sent to the Animal Biotechnology Laboratory of the University of Guadalajara (Mexico) for T. equi diagnosis. Nested polymerase chain reaction (nPCR) was used as a diagnostic method to detect pathogen DNA. Using primers for the merozoite antigen-1 (EMA-1) gene, 19.70±2.47% of the horses (95% CI, 17.23-22.17%) tested positive for T. equi. There was no significant association between gender and T. equi infection. However, prevalence was higher among stabled horses (25.81%) than that among grazing horses (15.02%). The positivity rate was also higher among Quarter Horse (24.70%), Lusitano (35.90%), and Costa Rican Saddle Horse (47.37%) breeds than that among the other seven breeds investigated in this study. The percentage of T. equi infection was higher among adult horses (≥ 4years old, 25.05%) than that among colts and fillies (2-4years old, 15.48%), yearlings (1-2years old, 10.49%), and foals (<1year old, 10.34%). This is the first study of T. equi infection prevalence among horses in Mexico by nPCR . The results indicate that the equine piroplasmosis (EP) caused by T. equi is enzootic in western Mexico. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Control of Bovicola Equi (Phthiraptera: Trichodectidae) with Dimilin and Permethrin

    USDA-ARS?s Scientific Manuscript database

    Lice are wingless ectoparasitic insects that can irritate and injure their hosts and transmit pathogens. Horses and ponies can be infested with a chewing louse, Bovicola equi (Denny) (Phthiraptera: Trichodectidae) that irritates the animals, creates skin lesions, causes hair loss, and generally redu...

  19. Re-Emergence of the Apicomplexan Theileria equi in the United States: Elimination of Persistent Infection and Transmission Risk

    PubMed Central

    Ueti, Massaro W.; Mealey, Robert H.; Kappmeyer, Lowell S.; White, Stephen N.; Kumpula-McWhirter, Nancy; Pelzel, Angela M.; Grause, Juanita F.; Bunn, Thomas O.; Schwartz, Andy; Traub-Dargatz, Josie L.; Hendrickson, Amy; Espy, Benjamin; Guthrie, Alan J.; Fowler, W. Kent; Knowles, Donald P.

    2012-01-01

    Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 104.9 organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions. PMID:22970295

  20. Diversity of seM in Streptococcus equi subsp. equi isolated from strangles outbreaks.

    PubMed

    Libardoni, Felipe; Vielmo, Andréia; Farias, Luana; Matter, Letícia Beatriz; Pötter, Luciana; Spilki, Fernando Rosado; de Vargas, Agueda Castagna

    2013-03-23

    Strangles is the main upper respiratory tract disease of horses. There are currently no studies on the changes in alleles of the M protein gene (seM) in Brazilian isolates of Streptococcus equi ssp. equi (S. equi). This study aimed to analyze and differentiate molecularly S. equi isolates from equine clinical specimens from southern Brazil, between 1994 and 2010. seM alleles were analyzed in 47 isolates of S. equi obtained from clinical cases of strangles (15 Thoroughbred horses, 29 Crioulo breed horses and three Brasileiro de Hipismo--BH). seM alleles characterization was performed by comparing variable region sequences of the seM gene. The alleles were also phylogenetically grouped by Neighbor-joining analysis, which demonstrated the geographic distribution of those in properties from southern Brazil. Fifteen alleles of the gene seM were found among the 47 S. equi isolates analyzed. Among these, only one allele (seM-61), which was identified in seven isolates (14.9%), was found in the database PubMLST-seM. Within the new alleles, allele seM-115 was the most prevalent, having been found in 13 isolates (27.7%), followed by allele seM-117 in 10 isolates (21.3%). In the Brazilian horse population studied, there is greater diversity of M protein alleles in S. equi isolates compared to worldwide data deposited in PubMLST-seM. Among the 15 seM alleles identified, only one allele sequence was previously published. The alleles identification is important to control the disease by guiding selection of strains for the manufacture of commercial and autogenous vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

    PubMed Central

    Dhandapani, Pragatheswari; Song, Jiancheng; Novak, Ondrej

    2017-01-01

    Background and Aims Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians, we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source–sink activity within the cotyledons during and following germination. Methods Bacterial spread was monitored microscopically, and real-time reverse transcription–quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET, SUT, CWINV and AAP genes – gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined. Key Results The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT, RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET, PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons. Conclusions The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots. PMID:27864224

  2. Transcriptome Reprogramming by Plasmid-Encoded Transcriptional Regulators Is Required for Host Niche Adaption of a Macrophage Pathogen

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.

    2015-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  3. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    PubMed

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  4. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    PubMed

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  5. Comparison of sampling sites and laboratory diagnostic tests for S. equi subsp. equi in horses from confirmed strangles outbreaks.

    PubMed

    Lindahl, S; Båverud, V; Egenvall, A; Aspán, A; Pringle, J

    2013-01-01

    Strangles is a contagious equine-specific disease caused by Streptococcus equi subsp. equi. Unfortunately, detection of S. equi can fail in up to 40% of horses with strangles. Whereas recent molecular biologic methods and sampling techniques have improved recovery of S. equi optimal sampling methods and laboratory analyses remain ill-defined. To determine the yield of S. equi from horses with acute strangles in confirmed outbreaks by field-sampling methods subjected to culture and biochemical identification, and real-time PCR directly and after culture. Fifty-seven horses of varying breeds and ages from 8 strangles outbreaks. Prospective study. Culture with biochemical identification and real-time PCR directly, and from culture, were performed on nasal swabs, nasopharyngeal swabs, and nasopharyngeal lavages. Real-time PCR directly from samples identified the highest number of infected horses, with 45/57 nasal swabs, 41/57 nasopharyngeal swabs, and 48/57 nasopharyngeal lavages S. equi positive. Biochemical identification (highest positives 22/57) was inferior to real-time PCR for S. equi recovery regardless of sampling method. Real-time PCR of nasopharyngeal lavage directly and after culture yielded 52/57 positives whereas direct real-time PCR of nasopharyngeal lavage combined with either nasopharyngeal swabs or nasal swabs yielded 53/57 positives. Three horses were negative on all samples. Nasopharyngeal lavage analyzed by a combination of real-time PCR directly and after culture or, alternatively, real-time PCR directly on a nasopharyngeal lavage and a nasal/nasopharyngeal swab can identify S. equi in over 90% of acute strangles cases. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  6. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, W.R.; Singer, M.E.

    1990-08-28

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors. 2 figs.

  7. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, William R.; Singer, Mary E.

    1990-01-01

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors.

  8. Comparative genomic analysis and phylogenetic position of Theileria equi

    PubMed Central

    2012-01-01

    Background Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. Results The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. Conclusions The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the

  9. [Respiratory infections caused by slow-growing bacteria: Nocardia, Actinomyces, Rhodococcus].

    PubMed

    Eschapasse, E; Hussenet, C; Bergeron, A; Lebeaux, D

    2017-06-01

    Pneumonia caused by slow-growing bacteria is rare but sometimes severe. These infections share many similarities such as several differential diagnoses, difficulties to identify the pathogen, the importance of involving the microbiologist in the diagnostic investigation and the need for prolonged antibiotic treatment. However, major differences distinguish them: Nocardia and Rhodococcus infect mainly immunocompromised patients while actinomycosis also concerns immunocompetent patients; the severity of nocardioses is related to their hematogenous spread while locoregional extension by contiguity makes the gravity of actinomycosis. For these diseases, molecular diagnostic tools are essential, either to obtain a species identification and guide treatment in the case of nocardiosis or to confirm the diagnosis from a biological sample. Treatment of these infections is complex due to: (1) the limited data in the literature; (2) the need for prolonged treatment of several months; (3) the management of toxicities and drug interactions for the treatment of Nocardia and Rhodococcus. Close cooperation between pneumonologists, infectious disease specialists and microbiologists is essential for the management of these patients. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. Successful therapeutic management of concurrent subclinical Eimeria leukarti and Babesia (Theileria) equi infection in a mare.

    PubMed

    Sudan, Vikrant; Sharma, R L; Gupta, S R; Borah, M K

    2013-10-01

    The occurrence of Eimeria leukarti infection in equine is being sporadically documented despite its cosmopolitan prevalence. A Marwari mare, aged 3 years and 6 months and owned by a socio-economically weaker class of labourer of royal families, was suffering from non specific enteric disorders. Detailed systemic clinical examination of mare confirmed subclinical enteric infection with E. leukarti and piroplasms of Babesia (Theileria) equi in the circulating erythrocytes. She was therapeutically managed with synchronous administration of specific and supportive therapy with success. Non specific clinical manifestations of the disease in equines, its debatable pathogenic significance, predisposing immunosuppressive impact of concurrent B. (T.) equi in circulating erythrocytes and probable reasons for under reporting of the disease in equines, etc. have been discussed.

  11. Efficacy of a Parapoxvirus ovis-based immunomodulator against equine herpesvirus type 1 and Streptococcus equi equi infections in horses.

    PubMed

    Ons, Ellen; Van Brussel, Leen; Lane, Stephen; King, Vickie; Cullinane, Ann; Kenna, Rachel; Lyons, Pamela; Hammond, Toni-Ann; Salt, Jeremy; Raue, Rudiger

    2014-10-10

    The efficacy of Zylexis®, an immunomodulator in horses based on inactivated Parapoxvirus ovis (iPPVO), was assessed using an equine herpesvirus type 1 (EHV-1) challenge model in the presence of a natural infection with Streptococcus equi equi (S. equi). Eleven horses were treated with iPPVO and twelve were kept as controls. Six horses were challenged with EHV-1 and commingled with the horses on study. Animals were dosed on Days -2, 0 (just before commingling) and Day 7. On Day 11 significantly less nasal discharge, enlarged lymph nodes, EHV-1 shedding and lower rectal temperatures were observed in the iPPVO-treated group. In addition, iPPVO-treated horses showed significantly fewer enlarged lymph nodes on Days 17 and 19, significantly less lower jaw swelling on Day 3 and significantly lower rectal temperatures on Days 12 and 13. Dyspnoea, depression and anorexia were only recorded for the control group. Following challenge seven out of 11 horses in the iPPVO treated group shed EHV-1 but on Days 11, 12, 13, 14, 15 and 16 quantitative virus detection in this group was significantly lower as compared to the controls. All animals shed S. equi but the percentage of animals with positive bacterial detection was lower in the iPPVO group than in the control group from Day 14 through Day 28. This difference was significant on Day 24. No injection site reactions or adverse events were observed. In conclusion, Zylexis administration is safe and reduced clinical signs and shedding related to both EHV-1 and S. equi infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. First detection of diffuse and cerebral theileria equi infection in neonatal filly

    USDA-ARS?s Scientific Manuscript database

    Theileria equi is a tick borne hemoparasite that may cause severe illness in equids. Intrauterine transmission of T. equi can occurs and may result in abortion, still birth or neonatal piroplasmosis of foals. Theileria equi and Babesia caballi infection are present in Israel and sub-clinical infecti...

  13. Combining two serological assays optimises sensitivity and specificity for the identification of Streptococcus equi subsp. equi exposure.

    PubMed

    Robinson, Carl; Steward, Karen F; Potts, Nicola; Barker, Colin; Hammond, Toni-ann; Pierce, Karen; Gunnarsson, Eggert; Svansson, Vilhjálmur; Slater, Josh; Newton, J Richard; Waller, Andrew S

    2013-08-01

    The detection of anti-Streptococcus equi antibodies in the blood serum of horses can assist with the identification of apparently healthy persistently infected carriers and the prevention of strangles outbreaks. The aim of the current study was to use genome sequencing data to develop an indirect enzyme linked immunosorbent assay (iELISA) that targets two S. equi-specific protein fragments. The sensitivity and specificity of the antigen A and antigen C iELISAs were compared to an SeM-based iELISA marketed by IDvet - diagnostic Vétérinaire (IDvet). Individually, each assay compromised specificity in order to achieve sufficient sensitivity (SeM iELISA had a sensitivity of 89.9%, but a specificity of only 77.0%) or sensitivity to achieve high specificity. However, combining the results of the antigen A and antigen C iELISAs permitted optimisation of both sensitivity (93.3%) and specificity (99.3%), providing a robust assay for the identification of horses exposed to S. equi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. EquiX-A Search and Query Language for XML.

    ERIC Educational Resources Information Center

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  15. Prophage Lysin Ply30 Protects Mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus Infections

    PubMed Central

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping

    2015-01-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. PMID:26253669

  16. Prophage lysin Ply30 protects mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus infections.

    PubMed

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping; Dai, Jianjun

    2015-11-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry.

    PubMed

    Møretrø, Trond; Sharifzadeh, Shahab; Langsrud, Solveig; Heir, Even; Rickard, Alexander H

    2015-07-01

    In this study, coaggregation interactions between Rhodococcus and Acinetobacter strains isolated from food-processing surfaces were characterized. Rhodococcus sp. strain MF3727 formed intrageneric coaggregates with Rhodococcus sp. strain MF3803 and intergeneric coaggregates with 2 strains of Acinetobacter calcoaceticus (MF3293, MF3627). Stronger coaggregation between A. calcoaceticus MF3727 and Rhodococcus sp. MF3293 was observed after growth in batch culture at 30 °C than at 20 °C, after growth in tryptic soy broth than in liquid R2A medium, and between cells in exponential and early stationary phases than cells in late stationary phase. The coaggregation ability of Rhodococcus sp. MF3727 was maintained even after heat and Proteinase K treatment, suggesting its ability to coaggregate was protein independent whereas the coaggregation determinants of the other strains involved proteinaceous cell-surface-associated polymers. Coaggregation was stable at pH 5-9. The mechanisms of coaggregation among Acinetobacter and Rhodococcus strains bare similarity to those displayed by coaggregating bacteria of oral and freshwater origin, with respect to binding between proteinaceous and nonproteinaceous determinants and the effect of environmental factors on coaggregation. Coaggregation may contribute to biofilm formation on industrial food surfaces, protecting bacteria against cleaning and disinfection.

  18. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus.

    PubMed

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H

    2017-08-09

    Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.

  19. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry.

    PubMed

    Homklin, Supreeda; Ong, Say Kee; Limpiyakorn, Tawan

    2012-06-30

    17α-Methyltestosterone (MT), a synthetic anabolic androgenic steroid, is widely used in aquafarming for the production of an all male fish population such as Nile tilapia. This study isolated, identified and characterized MT-degrading bacteria in the sediment and water from a masculinizing pond of Nile tilapia fry. Based on the phylogeny, physiological properties and cell morphology, the three isolated MT-degrading bacteria were related closely to Rhodococcus equi, Nocardioides aromaticivorans, and Nocardioides nitrophenolicus. Growth of the three isolated strains was found to be inhibited for MT concentrations in the range of 1.0-10mg/L. The inhibition of cell growth was found to be modeled using the Haldane's substrate inhibition model. The kinetic constants ranged from 0.13 to 0.19h(-1) for μ(max), 0.7-24.8mg/L for K(s) and 19.6-76.2mg/L for K(i). Androgenic activity using β-galactosidase assay showed that all strains degraded MT to the products with no androgenic potency. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Molecular and serological detection of tick-borne pathogens in donkeys (Equus asinus) in Italy.

    PubMed

    Veronesi, Fabrizia; Morganti, Giulia; Ravagnan, Silvia; Laus, Fulvio; Spaterna, Andrea; Diaferia, Manuela; Moretti, Annabella; Fioretti, Daniela Piergili; Capelli, Gioia

    2014-10-10

    Donkeys, owing to the frequent outdoor activity, are exposed to a high risk of infection with tick-borne pathogens. This work aimed to detect exposure to Theileria equi, Babesia caballi, Anaplasma phagocytophilum and Borrelia burgdorferi s.l. of donkeys reared in Central Italy. For this purpose 122 adult donkeys were selected within 11 herds and submitted to blood collection. IgG antibodies to T. equi, B. caballi, A. phagocytophilum and B. burgdorferi s.l. were detected by IFAT. Conventional PCRs targeting the genes MSP2 and the flagellin were used for the detection of A. phagocytophilum and B. burgdorferi s.l. respectively and a Real Time PCR Sybr Green was used to detect Babesia/Theileria spp…. The species identity was determined by amplicons sequencing. Forty eight (39.3%) and 58 (47.5%) animals tested positive for T. equi and B. caballi antibodies, respectively; nine animals (7.4%) were found positive for antibodies against A. phagocytophilum whereas negative results were obtained for B. burgdorferi s.l. Twenty-six (21.3%) animals showed antibodies for both T. equi and B. caballi. Twenty-three (18.8%) donkeys were positive to Babesia/Theileria spp. PCR assay. Out of 21 sequenced amplicons, 20 were identified as T. equi, belonging to three main groups designated A, B and D and one as B. caballi group A. Neither A. phagocytophilum nor B. burgdorferi PCR results were positive. The study showed a high exposure of donkeys to tick-borne pathogens and provides information on the genetic identity of the T. equi strains circulating in Central Italy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].

    PubMed

    Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan

    2015-04-01

    To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.

  2. Infections by Babesia caballi and Theileria equi in Jordanian equids: epidemiology and genetic diversity.

    PubMed

    Qablan, Moneeb A; Oborník, Miroslav; Petrželková, Klára J; Sloboda, Michal; Shudiefat, Mustafa F; Hořín, Petr; Lukeš, Julius; Modrý, David

    2013-08-01

    Microscopic diagnosis of equine piroplasmoses, caused by Theileria equi and Babesia caballi, is hindered by low parasitaemia during the latent phase of the infections. However, this constraint can be overcome by the application of PCR followed by sequencing. Out of 288 animals examined, the piroplasmid DNA was detected in 78 (27·1%). Multiplex PCR indicated that T. equi (18·8%) was more prevalent than B. caballi (7·3%), while mixed infections were conspicuously absent. Sequences of 69 PCR amplicons obtained by the 'catch-all' PCR were in concordance with those amplified by the multiplex strategy. Computed minimal adequate model analyses for both equine piroplasmid species separately showed a significant effect of host species and age in the case of T. equi, while in the B. caballi infections only the correlation with host sex was significant. Phylogenetic analyses inferred the occurrence of three genotypes of T. equi and B. caballi. Moreover, a novel genotype C of B. caballi was identified. The dendrogram based on obtained sequences of T. equi revealed possible speciation events. The infections with T. equi and B. caballi are enzootic in all ecozones of Jordan and different genotypes circulate wherever dense horse population exists.

  3. Purulent pericarditis and pneumonia caused by Streptococcus equi subsp. zooepidemicus.

    PubMed

    Held, Jürgen; Schmitz, Roland; van der Linden, Mark; Nührenberg, Thomas; Häcker, Georg; Neumann, Franz-Josef

    2014-02-01

    Purulent pericarditis is a life-threatening disease that usually manifests following bacteraemia or through spreading from an intrathoracic focus. Only a few cases of this disease have been reported with Lancefield group C streptococci as aetiological agents, and the primary focus in these infections remains unknown. We report a case of purulent pericarditis with septic and cardiogenic shock, caused by Streptococcus equi subsp. zooepidemicus (group C) in a 51-year-old patient. The pathogen was possibly contracted through contact with horses. Most probably, it caused initially pneumonia before spreading to the pericardium, either directly or via the bloodstream. A combined therapeutic approach, consisting of antibiotic therapy and repeated pericardial drainage, was necessary to ensure a clinical cure. After discharge, long-term follow-up for development of constrictive pericarditis is considered mandatory.

  4. Epidemiologic studies on Theileria equi infections for grazing horses in Ili of Xinjiang province.

    PubMed

    Zhang, Yang; Chahan, Bayin; Liu, Shifang; Song, Ruiqi; Li, Yongchang; Huercha; Guo, Qingyong; Wu, Hui; Zhu, Yutao

    2017-09-15

    In order to found the epidemiological situation of T. equi in the horse herds in Ili Prefecture of Xinjiang Province, 723 blood samples collected from 4 counties and districts were test for T. equi through microscopic detection and Polymerase chain Reaction (PCR). In the result, we found that the 295 of 723 blood samples (40.8%) were positive for T. equi infection. The results showed that the choosed counties have a varying degrees infection. To our knowledge, this is the first time that we detected T. equi infection using the molecular techniques from Ili in Xinjiang Uygur Autonomous region. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Efficacy of imidocarb dipropionate in eliminating Theileria equi from experimentally infected horses.

    PubMed

    Grause, Juanita F; Ueti, Massaro W; Nelson, Jeffrey T; Knowles, Donald P; Kappmeyer, Lowell S; Bunn, Thomas O

    2013-06-01

    Theileria equi, one of the causative agents of equine piroplasmosis, is endemic in many regions of the world but is considered a 'foreign' animal disease in the USA. In an effort to prevent the importation of T. equi, stringent serological screening of horses is practiced prior to entry to the USA. Current regulatory options available where horses are found to be infected include permanent quarantine with or without chemotherapy, repatriation, or euthanasia. Chemotherapeutics that eliminate infection and subsequently transmission risk are critical in the management of infected horses. In this study, the efficacy of the drug imidocarb dipropionate against experimental T. equi infection was assessed. Of nine horses experimentally inoculated with T. equi isolated from an animal previously imported from Peru, six were treated with imidocarb dipropionate after the resolution of the acute phase of the disease. Elimination of the parasite was demonstrated in 5/6 by nested PCR, blood transfusions to naïve horses, and reversion to seronegative status. The findings support the use of this drug as a potential treatment option in controlling outbreaks of T. equi, and also suggest that 'combination testing' using both serological and PCR detection methods are necessary to demonstrate clearance of infection. Published by Elsevier Ltd.

  6. Amblyomma cajennense is an intrastadial biological vector of Theileria equi.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2013-10-23

    The apicomplexan hemoprotozoan parasite Theileria equi is one of the etiologic agents causing equine piroplasmosis, a disease of equines that is endemic throughout large parts of the world. Before 2009 the United States had been considered to be free of this parasite. Occasional cases had occurred but there was no evidence for endemic vector-borne transmission in the U.S. until a 2009 outbreak in Texas in which Dermacentor variabilis and Amblyomma cajennense were implicated as vectors. Although D. variabilis has previously been shown to be a competent laboratory vector, studies suggested A. cajennense was not a competent transstadial vector, even though the presence of this tick species on horses in South American is epidemiologicaly correlated with higher a prevalence of infection. In this study we tested the transstadial and intrastadial vector competence of D. variabilis and A. cajennense for T. equi. A tick passaged T. equi strain from the Texas outbreak and ticks colonized from engorged females collected off horses on the outbreak ranch in Texas were used for these studies. Nymph or adult ticks were fed on infected horses and transmission fed on naïve horses. Infections were tracked with PCR and serology, dissected tick tissues were tested with PCR. A. cajennense transmitted T. equi intrastadially when adult ticks acquired infection by feeding on an infected horse, and transmitted to a naïve host on subsequent reattachment and feeding. D. variabilis failed to transmit in the same experiment. Transstadial transmission was not successful for either tick species. PCR on DNA isolated from eggs of females that had fed on an infected horse suggests that there is no transovarial passage of this parasite by either tick species. This work confirms that ticks from the Texas population of A. cajennense are competent intrastadial vectors of T. equi. We propose that the most likely natural mode of transmission for this parasite/vector combination in the Texas outbreak

  7. Seroprevalence and Risk Factors for Theileria equi Infection in Equines from Khyber Pakhtunkhwa Province, Pakistan

    PubMed Central

    AFRIDI, Muhammad Jamal Khan; MIAN, Abdul Hafeez; SAQIB, Muhammad; ABBAS, Ghazanfar; ALI, Javid; MANSOOR, Muhammad Khalid; SIAL, Awais ur Rahman; RASHEED, Imaad; HUSSAIN, Muhammad Hammad

    2017-01-01

    Background: Theileria equi is a tick borne protozoan parasite which causes piroplasmosis among equines worldwide. The present study was aimed to determine seroprevalence of T. equi in donkeys, horses, and mules from two equine populated districts (Peshawar and Charsadda) of Khyber Pakhtunkhwa (KPK), Pakistan. Methods: A total of 393 equine (195 horses, 194 donkeys and 4 mules) serum samples were collected from five and four randomly selected localities in Charsadda (n = 193) and Peshawar (n = 200), respectively. The presence of antibodies to T. equi was determined using a commercially available competitive enzyme-linked immunosorbent assay. Results: An overall seroprevalence of 38.2% (n=150) was observed among all the tested animals suggesting a higher seropositivity among equids belonging to Charsada (50.3%) as compared to Peshawar (27.5%). Binary logistic regression analysis revealed that being a donkey (OR 2.94), having tick infestation (OR 4.32), history of voiding red (i.e., blood containing) urine (OR 3.97) and anemia (OR 2.1) were the factors significantly associated with the seroprevalence of T. equi. For animals with higher anti-T. equi antibody titers, a strong association of seroprevalence for T. equi was recorded with species, age, sex, tick infestation, anemia and history of hematuria. Conclusion: The present study indicates a high level of exposure of working equids to T. equi in KPK region, Pakistan. Future studies should focus on tick vector identification and other factors responsible for spread of the disease. PMID:29317885

  8. Molecular surveillance of Theileria equi and Anaplasma phagocytophilum infections in horses from Ukraine, Poland and Slovakia.

    PubMed

    Slivinska, Kateryna; Víchová, Bronislava; Werszko, Joanna; Szewczyk, Tomasz; Wróblewski, Zbigniew; Peťko, Branislav; Ragač, Ondrej; Demeshkant, Vitaliy; Karbowiak, Grzegorz

    2016-01-15

    A survey was undertaken to assess the prevalence of Theileria equi and Anaplasma phagocytophilum in some regions of Ukraine, Poland and Slovakia. Using a specific PCR assays, blood samples from 215 horses were tested. The prevalence of T. equi and A. phagocytophilum infection was 13.95% and 1.4%, respectively. BLAST analysis showed the isolates closest to the T. equi 18S rRNA and A. phagocytophilum msp4 gene sequences in GenBank with a similarity of ≥99%. No significant association was found between the T. equi PCR positivity and the age or sex of the horses. There was a significant association between the origin of horses and T. equi-PCR positivity. No significant association was found between the A. phagocytophilum-PCR positivity and the age, sex or origin. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Characterization of Theileria equi genotypes in horses in Israel, the Palestinian Authority and Jordan.

    PubMed

    Ketter-Ratzon, Dafna; Tirosh-Levy, Sharon; Nachum-Biala, Yaarit; Saar, Tal; Qura'n, Lara; Zivotofsky, Doni; Abdeen, Ziad; Baneth, Gad; Steinman, Amir

    2017-06-01

    Equine theileriosis caused by Theileria equi is endemic in the Middle East, where it causes a severe disease as well as widespread subclinical infection. The aim of this study was to evaluate the diversity of T. equi genotypes in Israel and the neighboring Palestinian Authority and Jordan. Blood samples from 355 horses from Israel, the Palestinian Authority and Jordan were tested for the prevalence of T. equi DNA. Two hundred and fourteen (60%) were found positive for T. equi infection by PCR. Of those, the 18S rRNA (1458bp) and the EMA-1 (745bp) genes of T. equi were sequenced from 15 horse samples that represent Israel's geographical distribution together with four samples from the Palestinian Authority and two from Jordan. The results were used for genotype characterization and phylogenetic analysis of T. equi in the equine population in Israel and its surroundings. Three 18S rRNA genotype clades were found in Israel (A, C and D) with clade D being the most prevalent and included all four isolates from the PA. In contrast, the EMA-1 gene showed little diversity with all sequences clustering in the same clade apart from one Jordanian sequence. Results suggest that although the Israeli horse population is small and relatively confined geographically, it is probable that the genetic variability, which was found among Israeli horses, is a result of introduction of horses from other countries. It also suggests that the EMA-1 gene is probably not a good target for the evaluation of variance in T. equi populations. Characterization of the different genotypes prevalent in a certain region is important in order to map out the intra-species sequence heterogeneity of the parasite, which is needed in order to develop new diagnostic tools and vaccines. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Pseudo-membranes on internal organs associated with Rhodococcus qingshengii infection in Atlantic salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Rubén; Balboa, Sabela; Doce, Alejandra; Ilardi, Pedro; Lovera, Pablo; Toranzo, Alicia E; Romalde, Jesús L

    2011-01-10

    This paper describes a pathological condition in intensive reared Atlantic salmon (Salmo salar), restricted to the appearance of pseudo-membranes covering internal organs (i.e. spleen, liver, heart and others) associated with the presence of large numbers of a Gram-positive bacteria. Isolate 79043-3, obtained as pure culture from affected fish, was subjected to a polyphasic taxonomic study in order to determine its exact taxonomic position, as well as to experimental challenges leading to determine its pathogenic potential for cultured fish. Based on this characterization, we report the first isolation of Rhodococcus qingshengii, from a farmed population of Atlantic salmon in Chile. Virulence studies demonstrated that the isolate fulfilled the Koch's postulates, suggesting that this bacterial species could be considered as an opportunistic pathogen for Atlantic salmon. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    PubMed Central

    Holder, Jason W.; Ulrich, Jil C.; DeBono, Anthony C.; Godfrey, Paul A.; Desjardins, Christopher A.; Zucker, Jeremy; Zeng, Qiandong; Leach, Alex L. B.; Ghiviriga, Ion; Dancel, Christine; Abeel, Thomas; Gevers, Dirk; Kodira, Chinnappa D.; Desany, Brian; Affourtit, Jason P.; Birren, Bruce W.; Sinskey, Anthony J.

    2011-01-01

    The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy. PMID:21931557

  12. Prevalence and molecular characterization of Theileria equi and Babesia caballi in jereed horses in Erzurum, Turkey.

    PubMed

    Guven, Esin; Avcioglu, Hamza; Deniz, Ahmet; Balkaya, İbrahim; Abay, Ugur; Yavuz, Şevki; Akyüz, Muzaffer

    2017-03-01

    Equine piroplasmosis (EP) is a hemoprotozoan tick-borne disease with worldwide distribution that is caused by Theileria equi and Babesia caballi. There are studies reporting the presence of equine piroplasmosis in Turkey but the situation in Erzurum is unknown. The aim of the current study was to determine the situation of equine piroplasmosis in jeered horses in Erzurum. Between April and August 2015, a total of 125 Arabian horse were examined and blood samples were collected. At the time of sampling, animals were also examined for tick infestations and clinical signs. Besides microscopic examination of Giemsastained blood smears, multiplex PCR performed with species specific primers partially amplifying the 18S rRNA gene of B. caballi and T. equi. During the microscopic examination of blood smears, T. equi piroplasms were found in 6 (4.8%) samples. In total, 11 (8.8%) T. equi DNA were detected with multiplex PCR. B. caballi piroplasms or DNA were not obtained. BLAST analysis of the sequenced T. equi samples (GenBank: KU921661-KU921667) indicated 98.8-100% identity to each other, and 100% similarity to T. equi isolates in South Africa, Iran, China, Sudan, India, Mongolia, Trinidad, Kenya, Spain, Serbia, Bosnia and Herzegovina and Turkey (Bursa). The results of our study indicate that T. equi occurs more frequently than B. caballi in the study area. To the authors' knowledge, this is the first report of the molecular detection of equine piroplasmosis in jeered horses in Erzurum, Turkey.

  13. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.

    PubMed

    Inoue, Daisuke; Tsunoda, Tsubasa; Sawada, Kazuko; Yamamoto, Norifumi; Saito, Yuji; Sei, Kazunari; Ike, Michihiko

    2016-11-01

    In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855 T , which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343 T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707 T and Pseudonocardia asaccharolytica JCM 10410 T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.

  14. The Antiphagocytic Activity of SeM of Streptococcus equi Requires Capsule.

    PubMed

    Timoney, John F; Suther, Pranav; Velineni, Sridhar; Artiushin, Sergey C

    2014-01-01

    Resistance to phagocytosis is a crucial virulence property of Streptococcus equi (Streptococcus equi subsp. equi; Se), the cause of equine strangles. The contribution and interdependence of capsule and SeM to killing in equine blood and neutrophils were investigated in naturally occurring strains of Se. Strains CF32, SF463 were capsule and SeM positive, strains Lex90, Lex93 were capsule negative and SeM positive and strains Se19, Se1-8 were capsule positive and SeM deficient. Phagocytosis and killing of Se19, Se1-8, Lex90 and Lex93 in equine blood and by neutrophils suspended in serum were significantly (P ≤ 0.02) greater compared to CF32 and SF463. The results indicate capsule and SeM are both required for resistance to phagocytosis and killing and that the anti-phagocytic property of SeM is greatly reduced in the absence of capsule.

  15. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. Zooepidemicus.

    PubMed

    Liang, Huihuang; Tang, Bin; Zhao, Pengpeng; Deng, Mingyong; Yan, Lili; Zhai, Pan; Wei, Zigong

    2018-02-01

    Streptococcus equi ssp. zooepidemicus (SEZ) is an important pathogen of swine streptococcal diseases and can infect a wide range of animals as well as human beings. The absence of effective vaccine confounds the control of SEZ infection. Sec_205, a novel protein identified in the previous study, was inducibly over-expressed in Escherichia coli in the present study. The purified recombinant protein could elicit a significant humoral antibody response and provide efficient protection against lethal challenge of SEZ C55138 in mouse model. The protection against SEZ infection was mediated by specific antibodies to Sec_205 to some extent and was identified by the passive protection assay. The Sec_205 was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the inhibition assay. These suggest that Sec_205 may play a vital role in pathogenicity and serve as a new vaccine candidate against SEZ infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Threats and opportunities of plant pathogenic bacteria.

    PubMed

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Mutation of the Maturase Lipoprotein Attenuates the Virulence of Streptococcus equi to a Greater Extent than Does Loss of General Lipoprotein Lipidation▿

    PubMed Central

    Hamilton, Andrea; Robinson, Carl; Sutcliffe, Iain C.; Slater, Josh; Maskell, Duncan J.; Davis-Poynter, Nick; Smith, Ken; Waller, Andrew; Harrington, Dean J.

    2006-01-01

    Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (ΔprtM138-213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Δlgt190-685). Moreover, mucus production was significantly greater in both wild-type-infected and Δlgt190-685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Δlgt190-685 mutant did still exhibit signs of disease. In contrast, only the ΔprtM138-213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Δlgt190-685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted. PMID:17015455

  18. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016.

    PubMed

    Maniyam, Maegala Nallapan; Ibrahim, Abdul Latif; Cass, Anthony E G

    2018-06-20

    In the present study, locally isolated Rhodococcus strains were attempted as biological tools for methyl red removal, a mutagenic azo dye posing threat to the environment if left untreated. Rhodococcus strain UCC 0016 demonstrated superior methyl red-decolourizing activity of 100% after 24 hours at static condition in comparison to Rhodococcus strain UCC 0008 which recorded 65% decolourization after 72 hours. Optimization of physicochemical parameters at 30 °C, pH 7 and supplementing glucose as the carbon source resulted in improved methyl red-decolourizing activity at static condition and reduced the time taken to achieve complete decolourization by 80%. Higher concentration of methyl red (5 g/L) was able to be decolourized completely within 10 hours by adopting the technology of immobilization. The encapsulated cells of Rhodococcus strain UCC 0016 demonstrated higher substrate affinity (K m =0.6995 g/L) and accelerated rate of disappearance of methyl red (V max = 0.3203 g/L/h) compared to the free cells. Furthermore, the gellan gum beads could be reused up to 9 batches without substantial loss in the catalytic activity indicating the economic importance of this protocol. Analysis of methyl red degradation products revealed no germination inhibition on Triticum aestivum and Vigna radiata demonstrating complete toxicity removal of the parent dye after biological treatment. The occurrence of new and altered peaks (UV-Vis and FTIR) further supported the notion that the removal of methyl red by Rhodococcus strain UCC 0016 was indeed through biodegradation. Therefore, this strain has a huge potential as a candidate for efficient bioremediation of wastewater containing methyl red.

  19. Evaluation of Veterinary-Specific Interpretive Criteria for Susceptibility Testing of Streptococcus equi Subspecies with Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfadiazine

    PubMed Central

    Kanellos, Theo; Guardabassi, Luca; Boucher, Joseph

    2016-01-01

    ABSTRACT Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim-sulfamethoxazole and/or trimethoprim-sulfadiazine with S. equi. This study indicates trimethoprim-sulfamethoxazole as an acceptable surrogate for trimethoprim-sulfadiazine with S. equi. PMID:27847375

  20. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata.

    PubMed

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C; Brassinga, Ann Karen C; Anderson, W Gary

    2016-09-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. Copyright © 2016 Wiens et al.

  1. Evaluation of Veterinary-Specific Interpretive Criteria for Susceptibility Testing of Streptococcus equi Subspecies with Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfadiazine.

    PubMed

    Sadaka, Carmen; Kanellos, Theo; Guardabassi, Luca; Boucher, Joseph; Watts, Jeffrey L

    2017-01-01

    Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim-sulfamethoxazole and/or trimethoprim-sulfadiazine with S. equi This study indicates trimethoprim-sulfamethoxazole as an acceptable surrogate for trimethoprim-sulfadiazine with S. equi. Copyright © 2016 Sadaka et al.

  2. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    PubMed

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains.

    PubMed

    Castorena, Gladys; Suárez, Claudia; Valdez, Idania; Amador, Guadalupe; Fernández, Luis; Le Borgne, Sylvie

    2002-09-24

    New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment.

  4. Seroprevalence of Babesia caballi and Theileria equi in five draught equine populated metropolises of Punjab, Pakistan.

    PubMed

    Hussain, Muhammad Hammad; Saqib, Muhammad; Raza, Fahad; Muhammad, Ghulam; Asi, Muhammad Nadeem; Mansoor, Muhammad Khalid; Saleem, Muhammad; Jabbar, Abdul

    2014-05-28

    Equine piroplasmosis (EP) caused by intraerythrocytic parasites (Theileria equi and Babesia caballi) is an emerging equine disease of world-wide distribution. In Pakistan, the prevalence and incidence of EP are unknown. In order to obtain the first insights into the prevalence of the disease, a total of 430 equids, including 33 mules, 65 horses and 332 donkeys, aging from ≤ 5 to ≥ 10 years of either sex, from five metropolises of Punjab, Pakistan, were serologically tested for the presence of antibodies directed against B. caballi and T. equi, using a competitive enzyme-linked immunosorbent assay (cELISA). Out of 430 equid serum samples tested, 226 (52.6%, 95% CI 47.7-57.4) were found cELISA positive for EP (T. equi and/or B. caballi infections). The overall seroprevalence of EP was 41.2% (95% CI 36.5-46.0) for T. equi and 21.6% (95% CI 17.8-25.8) for B. caballi. A small proportion of equids (10.2%, 95% CI 7.5-13.5) was seropositive for both T. equi and B. caballi. Seroprevalence of T. equi was significantly higher (P<0.01) in equines from the metropolis of Lahore (66.7%, 95% CI 54.3-77.6) and in horses (56.9%, 95% CI 44.0-69.2). Multivariable logistic regression model analysis indicated that factors associated with prevalence of EP were being an equine species kept in metropolis Lahore (OR=4.24, 95% CI 2.28-7.90), horse (OR=2.82, 95% CI 1.53-5.20) and male equids (OR=1.81, 95% CI 1.15-2.86). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Unusual Outbreak of Clinical Mastitis in Dairy Sheep Caused by Streptococcus equi subsp. zooepidemicus

    PubMed Central

    Las Heras, Alfonso; Vela, Ana I.; Fernández, Elena; Legaz, Emilio; Domínguez, Lucas; Fernández-Garayzábal, Jose F.

    2002-01-01

    This work describes an outbreak of clinical mastitis affecting 13 of 58 lactating ewes due to Streptococcus equi subsp. zooepidemicus. S. equi subsp. zooepidemicus was isolated in pure culture from all milk samples. All the clinical isolates had identical biochemical profiles and antimicrobial susceptibility patterns and also exhibited indistinguishable macrorestriction patterns by pulsed-field gel electrophoresis, indicating that all cases of mastitis were produced by a single strain. PMID:11880454

  6. Serological and molecular detection of Theileria equi in sport horses of northeastern Brazil.

    PubMed

    Ferreira, Edlainne P; Vidotto, Odilon; Almeida, Jonatas C; Ribeiro, Luana P S; Borges, Marcos V; Pequeno, Walter H C; Stipp, Danilo T; de Oliveira, Celso J B; Biondo, Alexander W; Vieira, Thállitha S W J; Vieira, Rafael F C

    2016-08-01

    Theileriosis is a worldwide protozoal tick-borne disease caused by Theileria equi, which may produce a variety of clinical signs and turn infected horses into lifetime carriers. This study has aimed to perform a serological and molecular detection of T. equi and associated factors in sports horses from six areas of northeastern Brazil. In overall, 59.6% horses were positive by indirect immunofluorescence assay and 50.4% by polymerase chain reaction. No significant association was found when presence of ticks, age, gender, anemia or total plasma proteins was analyzed with seropositivity and molecular techniques. Although a significant association of infection was found in two cities. Thus, local risk factors other than presence of ticks, horse age, gender, anemia and total plasmatic proteins may dictate prevalence of T. equi infection in sports horses, even in highly endemic areas with no control of infection prior to horse competitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Characterization of the Basic Replicon of Rhodococcus Plasmid pSOX and Development of a Rhodococcus-Escherichia coli Shuttle Vector†

    PubMed Central

    Denis-Larose, Claude; Bergeron, Hélène; Labbé, Diane; Greer, Charles W.; Hawari, Jalal; Grossman, Matthew J.; Sankey, Bruce M.; Lau, Peter C. K.

    1998-01-01

    The replication region of a 100-kb desulfurization plasmid (pSOX) from Rhodococcus sp. strain X309 was localized to a 4-kb KpnI fragment, and its sequence was determined. The amino acid sequence of one of the predicted open reading frames (ORFs) was related to the putative replication (Rep) protein sequences of the mycobacterial pLR7 family of plasmids. Three of the five predicted ORF products were identified by radiolabelling with the Escherichia coli T7 polymerase/promoter system. In E. coli, the Rep protein of pSOX was apparently synthesized in a shortened form, 21.3 kDa instead of the predicted 41.3 kDa, as a result of an internal initiation. This situation is reminescent of that for some bacterial Rep proteins. A shuttle plasmid was constructed with the pSOX origin, pBluescript II KS−, and the chloramphenicol resistance (Cmr) gene from pRF29. This new shuttle plasmid was used to demonstrate expression of the Bacillus subtilis sacB gene in a strain of Rhodococcus, rendering it sensitive to the presence of sucrose. PMID:9797291

  8. An outbreak of Streptococcus equi subspecies zooepidemicus associated with consumption of fresh goat cheese

    PubMed Central

    Kuusi, Markku; Lahti, Elina; Virolainen, Anni; Hatakka, Maija; Vuento, Risto; Rantala, Leila; Vuopio-Varkila, Jaana; Seuna, Eija; Karppelin, Matti; Hakkinen, Marjaana; Takkinen, Johanna; Gindonis, Veera; Siponen, Kyosti; Huotari, Kaisa

    2006-01-01

    Background Streptococcus equi subspecies zooepidemicus is a rare infection in humans associated with contact with horses or consumption of unpasteurized milk products. On October 23, 2003, the National Public Health Institute was alerted that within one week three persons had been admitted to Tampere University Central Hospital (TaYS) because of S. equi subsp. zooepidemicus septicaemia. All had consumed fresh goat cheese produced in a small-scale dairy located on a farm. We conducted an investigation to determine the source and the extent of the outbreak. Methods Cases were identified from the National Infectious Disease Register. Cases were persons with S. equi subsp. zooepidemicus isolated from a normally sterile site who had illness onset 15.9-31.10.2003. All cases were telephone interviewed by using a standard questionnaire and clinical information was extracted from patient charts. Environmental and food specimens included throat swabs from two persons working in the dairy, milk from goats and raw milk tank, cheeses made of unpasteurized milk, vaginal samples of goats, and borehole well water. The isolates were characterized by ribotyping and pulsed-field gel electrophoresis (PFGE). Results Seven persons met the case definition; six had septicaemia and one had purulent arthritis. Five were women; the median age was 70 years (range 54–93). None of the cases were immunocompromized and none died. Six cases were identified in TaYS, and one in another university hospital in southern Finland. All had eaten goat cheese produced on the implicated farm. S. equi subsp. zooepidemicus was isolated from throat swabs, fresh goat cheese, milk tank, and vaginal samples of one goat. All human and environmental strains were indistinguishable by ribotyping and PFGE. Conclusion The outbreak was caused by goat cheese produced from unpasteurized milk. Outbreaks caused by S. equi subsp. zooepidemicus may not be detected if streptococcal strains are only typed to the group level. S

  9. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    PubMed

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Assessment of Draxxin® (tulathromycin) as an inhibitor of in vitro growth of Babesia bovis, Babesia bigemina and Theileria equi.

    PubMed

    Silva, Marta G; Villarino, Nicolas F; Knowles, Donald P; Suarez, Carlos E

    2018-04-17

    Babesia bovis, Babesia bigemina and Theileria equi are worldwide tick-borne hemoprotozoan that cause diseases characterized by fever, anemia, weight loss and abortion. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the host for life, and becoming a reservoir for tick transmission. The live-attenuated vaccines for B. bovis and B. bigemina are not available for worldwide use due to legal restrictions and other concerns such as potential erythrocyte antigen and pathogen contamination, and a vaccine for T. equi is not available. The use of chemotherapeutics is essential to treat and control these diseases, but several studies have shown the development of drug-resistance by these parasites, and safe and effective alternative drugs are needed. Tulathromycin, a macrolide antibiotic, has proven to be effective against a vast range of bacteria and Plasmodium yoelli, a Babesia and Theileria related intra-erythrocytic apicomplexan. Draxxin ® (tulathromycin) is currently licensed to treat infections that cause respiratory diseases in cattle in several countries. In this study, the activity of Draxxin ® was tested in vitro on cultured B. bovis, B. bigemina and T. equi. Addition of the drug to in vitro cultures resulted in cessation of parasite replication of the three species tested, B. bovis, B. bigemina and T. equi, with estimated IC 50 of 16.7 ± 0.6 nM; 6.2 ± 0.2 nM and 2.4 ± 0.1 nM, respectively, at 72 h. Furthermore, neither parasites nor parasite DNA were detectable in cultures treated with IC 100 , suggesting Draxxin ® is a highly effective anti-Babesia/Theileria drug. Importantly, the IC 50 calculated for Draxxin ® for the Babesia/Theileria parasites tested is lower that the IC 50 calculated for some drugs currently in use to control these parasites. Collectively, the data strongly support in vivo testing of Draxxin ® for the treatment of bovine babesiosis and equine

  11. Lymphocytes and Macrophages Are Infected by Theileria equi, but T Cells and B Cells Are Not Required to Establish Infection In Vivo

    PubMed Central

    Ramsay, Joshua D.; Ueti, Massaro W.; Johnson, Wendell C.; Scoles, Glen A.; Knowles, Donald P.; Mealey, Robert H.

    2013-01-01

    Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed

  12. Lymphocytes and macrophages are infected by Theileria equi, but T cells and B cells are not required to establish infection in vivo.

    PubMed

    Ramsay, Joshua D; Ueti, Massaro W; Johnson, Wendell C; Scoles, Glen A; Knowles, Donald P; Mealey, Robert H

    2013-01-01

    Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed

  13. Microscopic and Molecular Detection of Theileria (Babesia) Equi Infection in Equids of Kurdistan Province, Iran.

    PubMed

    Habibi, Gholamreza; Esmaeilnia, Kasra; Hablolvarid, Mohammad Hasan; Afshari, Asghar; Zamen, Mohsen; Bozorgi, Soghra

    2016-01-01

    Equine piroplasmosis (EP) is the cause of persistent tick-borne infection with no symptoms, but the most important problem of EP is due to the persistent carrier state. Carrier animals to Babesia (Theileria) equi (Laveran 1901) and B. caballi (Nuttall, 1910) infestation could be identified by extremely sensitive PCR-based method. The purpose of this study was to identify the causative agents of equine piroplasmosis based on molecular and microscopic assays in equids from Kurdistan Province, Iran. Thirty one horse and mule blood samples were used with history of living in Kurdistan Province of Iran. The blood specimens were utilized for T. equi and B. caballi DNA identification by PCR and Giemsa stained smears for microscopic observation. The results clearly showed the presence of B. (Theileria) equi DNA in 30 of 31 blood samples (96.77%), but the microscopic examination revealed the 3 of 31 positive Babesia like organisms in the red blood cells (9.67%). The obtained results demonstrated the presence of hidden B. (Theileria) equi infection in horses with previous habitance in Kurdistan Province of Iran. The carrier animals became a main source of infection and can transmit the disease. Therefore, hidden infection might be considered as a health threatening and limiting factor in animals used in therapeutic antisera research and production centers.

  14. Assessment of Theileria equi and Babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches.

    PubMed

    Mahmoud, Mona S; El-Ezz, Nadia T Abu; Abdel-Shafy, Sobhy; Nassar, Somia A; El Namaky, Amira H; Khalil, Wagdy K B; Knowles, Don; Kappmeyer, Lowell; Silva, Marta G; Suarez, Carlos E

    2016-05-04

    Equine piroplasmosis (EP) caused by Theileria equi, Babesia caballi, or both, contributes to significant economic loss in the equine industry and remains uncontrolled in Egypt. This study focuses on surveying T. equi and B. caballi infections and hematological disorders in equine populations in Egypt. Theileria equi and B. caballi infections were assessed in blood from 88 horses and 51 donkeys in Egypt using light microscopy, indirect immunofluorescent antibody test (IFAT), nested PCR (nPCR), and competitive-ELISA (cELISA) assays. PCR products were examined for specificity by DNA sequencing. Hematological alterations were evaluated using a standard cell counter. Microscopic analysis revealed EP infection in 11.4% and 17.8% of horses and donkeys respectively. IFAT detected 23.9% and 17.0% infection of T. equi and B. caballi, respectively, in horses, and 31.4% of T. equi and B. caballi in donkeys. T. equi cELISA detected 14.8% and 23.5% positive horses and donkeys, respectively, but the B. caballi RAP-1-based cELISA failed to detect any positives, a result hypothesized to be caused by sequence polymorphism found in the rap-1 genes. Nested-PCR analysis identified 36.4% and 43.1% positive horses and donkeys, respectively for T. equi and it also identified 19.3% and 15.7% positive horses and donkeys, respectively for B. caballi. The overall EP incidence found in the population under study was relatively high and comparable regardless of the diagnostic method used (56.8% using nPCR and 48.9% using IFAT). Hematologic analysis revealed macrocytic hypochromic anemia and thrombocytopenia in all piroplasma-infected horses. The data confirm relatively high levels of EP, likely causing hematological abnormalities in equines in Egypt, and also suggest the need for an improved serological test to diagnose B. caballi infection in this region.

  15. Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp.

    PubMed

    Wang, Hui; Hu, Jinxing; Xu, Kai; Tang, Xianjin; Xu, Xinhua; Shen, Chaofeng

    2018-02-01

    Two biphenyl-degrading bacterial strains, SS1 and SS2, were isolated from polychlorinated biphenyl (PCB)-contaminated soil. They were identified as Rhodococcus ruber and Rhodococcus pyridinivorans based on the 16S rRNA gene sequence, as well as morphological, physiological and biochemical characteristics. SS1 and SS2 exhibited tolerance to 2000 and 3000 mg/L of biphenyl. And they could degrade 83.2 and 71.5% of 1300 mg/L biphenyl within 84 h, respectively. In the case of low-chlorinated PCB congeners, benzoate and 3-chlorobenzoate, the degradation activities of SS1 and SS2 were also significant. In addition, these two strains exhibited chemotactic response toward TCA-cycle intermediates, benzoate, biphenyl and 2-chlorobenzoate. This study indicated that, like the flagellated bacteria, non-flagellated Rhodococcus spp. might actively seek substrates through the process of chemotaxis once the substrates are depleted in their surroundings. Together, these data provide supporting evidence that SS1 and SS2 might be good candidates for restoring biphenyl/PCB-polluted environments.

  16. Differential Expression of Three Members of the Multidomain Adhesion CCp Family in Babesia bigemina, Babesia bovis and Theileria equi

    PubMed Central

    Bastos, Reginaldo G.; Suarez, Carlos E.; Laughery, Jacob M.; Johnson, Wendell C.; Ueti, Massaro W.; Knowles, Donald P.

    2013-01-01

    Members of the CCp protein family have been previously described to be expressed on gametocytes of apicomplexan Plasmodium parasites. Knocking out Plasmodium CCp genes blocks the development of the parasite in the mosquito vector, making the CCp proteins potential targets for the development of a transmission-blocking vaccine. Apicomplexans Babesia bovis and Babesia bigemina are the causative agents of bovine babesiosis, and apicomplexan Theileria equi causes equine piroplasmosis. Bovine babesiosis and equine piroplasmosis are the most economically important parasite diseases that affect worldwide cattle and equine industries, respectively. The recent sequencing of the B. bovis and T. equi genomes has provided the opportunity to identify novel genes involved in parasite biology. Here we characterize three members of the CCp family, named CCp1, CCp2 and CCp3, in B. bigemina, B. bovis and T. equi. Using B. bigemina as an in vitro model, expression of all three CCp genes and proteins was demonstrated in temperature-induced sexual stages. Transcripts for all three CCp genes were found in vivo in blood stages of T. equi, and transcripts for CCp3 were detected in vivo in blood stages of B. bovis. However, no protein expression was detected in T. equi blood stages or B. bovis blood stages or B. bovis tick stages. Collectively, the data demonstrated a differential pattern of expression of three orthologous genes of the multidomain adhesion CCp family by B. bigemina, B. bovis and T. equi. The novel CCp members represent potential targets for innovative approaches to control bovine babesiosis and equine piroplasmosis. PMID:23844089

  17. [Antimicrobial effect on some zoonotic bacteria, of the cell-free fermentation fluid and purified peptide fraction of the entomopathogenic bacterium, Xenorhabdus budapestensis].

    PubMed

    Burgettiné Böszörményi, Erzsébet; Barcs, István; Domján, Gyula; Bélafiné Bakó, Katalin; Fodor, András; Makrai, László; Vozik, Dávid

    2015-11-01

    Many multi-resistant patogens appear continuously resulting in a permanent need for the development of novel antibiotics. A large number of antibiotics introduced in clinical and veterinary practices are not effective. Antibacterial peptides with unusual mode of action may represent a promising option against multi-resistant pathogens. The entomopathogenic Xenorhabdus budapestensis bacteria produce several different antimicrobial peptides compounds such as bicornutin-A and fabclavin. The aim of the authors was to evaluate the in vitro antibacterial effect of Xenorhabdus budapestensis using zoonotic patogen bacteria. Cell-free conditioned media and purified peptide fractions of Xenorhabdus budapestensis were tested on Gram-positive (Rhodococcus equi, Erysipelothrix rhusiopathia, Staphylococcus aureus, Streptococcus equi, Corynebacterium pseudotuberculosis, Listeria monocytagenes) and Gram-negative bacteria (Salmonella gallinarum, Salmonella derbi, Bordatella bronchoseptica, Escherichia coli, Pasteurella multocida, Aeromonas hydrophila) using agar diffusion test on blood agar plates. It was found that Xenorhabdus budapestensis bacteria produced compounds with strong and dose-dependent effects on the tested organisms. Purified peptid fraction exerted a more marked effect than cell free conditioned media. Gram-positive bacteria were more sensitive to this antibacterial effect than Gram-negative bacteria. Antibacterial peptide compound from Xenorhabdus budapestensis exert marked antibacterial effect on zoonotic patogen bacteria and they should be further evaluated in future for their potential use in the control or prevention of zoonoses.

  18. Microscopic and Molecular Detection of Theileria (Babesia) Equi Infection in Equids of Kurdistan Province, Iran

    PubMed Central

    HABIBI, Gholamreza; ESMAEILNIA, Kasra; HABLOLVARID, Mohammad Hasan; AFSHARI, Asghar; ZAMEN, Mohsen; BOZORGI, Soghra

    2016-01-01

    Background: Equine piroplasmosis (EP) is the cause of persistent tick-borne infection with no symptoms, but the most important problem of EP is due to the persistent carrier state. Carrier animals to Babesia (Theileria) equi (Laveran 1901) and B. caballi (Nuttall, 1910) infestation could be identified by extremely sensitive PCR-based method. The purpose of this study was to identify the causative agents of equine piroplasmosis based on molecular and microscopic assays in equids from Kurdistan Province, Iran. Methods: Thirty one horse and mule blood samples were used with history of living in Kurdistan Province of Iran. The blood specimens were utilized for T. equi and B. caballi DNA identification by PCR and Giemsa stained smears for microscopic observation. Results: The results clearly showed the presence of B. (Theileria) equi DNA in 30 of 31 blood samples (96.77%), but the microscopic examination revealed the 3 of 31 positive Babesia like organisms in the red blood cells (9.67%). Conclusion: The obtained results demonstrated the presence of hidden B. (Theileria) equi infection in horses with previous habitance in Kurdistan Province of Iran. The carrier animals became a main source of infection and can transmit the disease. Therefore, hidden infection might be considered as a health threatening and limiting factor in animals used in therapeutic antisera research and production centers. PMID:27095973

  19. Assessment of theileria equi and babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches

    USDA-ARS?s Scientific Manuscript database

    Background: Equine piroplasmosis caused by Theileria equi, Babesia caballi, or both, cause significant economic losses in the equine industry and remains uncontrolled in Egypt. Methods: T. equi and B. caballi infections were assessed in blood from 88 horses and 51 donkeys from different localities ...

  20. Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.

    2014-03-01

    Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.

  1. Analysis of equi-intensity curves and NU distribution of EAS

    NASA Technical Reports Server (NTRS)

    Tanahashi, G.

    1985-01-01

    The distribution of the number of muons in extensive air showers (EAS) and the equi-intensity curves of EAS are analyzed on the basis of Monte Carlo simulation of various cosmic ray composition and the interaction models. Problems in the two best combined models are discussed.

  2. Implementing the EQUiPPED Medication Management Program at 5 VA Emergency Departments.

    PubMed

    Vandenberg, Ann E; Stevens, Melissa; Echt, Katharina V; Hastings, S Nicole; Powers, James; Markland, Alayne; Hwang, Ula; Hung, William; Belbis, Stephanie; Vaughan, Camille P

    2016-04-01

    The Enhancing Quality of Prescribing Practices for Older Veterans Discharged From the Emergency Department (EQUiPPED) program aimed to reduce potentially inappropriate medication prescribing to older adults at 5 VAMCs.

  3. Seroprevalence of Theileria equi and Babesia caballi in horses in Spain

    PubMed Central

    Montes Cortés, Maria Guadalupe; Fernández-García, José Luis; Habela Martínez-Estéllez, Miguel Ángel

    2017-01-01

    Equine piroplasmoses are enzootic parasitic diseases distributed worldwide with high incidence in tropical and subtropical regions. In Spain, there is insufficient epidemiological data about equine piroplasmoses. The main aim of the present study was therefore to estimate the prevalence of Theileria equi and Babesia caballi in five regions and obtain information about the risk factors. This study was conducted in the central and south-western regions of Spain, using indirect fluorescence antibody testing (IFAT) in 3,100 sera samples from apparently healthy horses of different ages, breeds, coat colours, genders and geographical locations. The overall seroprevalence was 52%, consisting of 44% seropositive for T. equi and 21% for B. caballi. There was a significant association between age (p < 0.0001), breed (p < 0.004), geographical location (p < 0.0001) and the seroprevalence, but neither the coat colour nor the gender was significantly associated with prevalence. In addition, it was proved that most of the geographic areas showed a moderate to high prevalence. The statistical κ value was used to compare the results obtained by the IFAT and the competitive enzyme-linked immunosorbent assay (cELISA) utilised to test some samples (n = 108) and showed a higher concordance for T. equi (κ = 0.68) than for B. caballi (κ = 0.22). Consequently, this revealed the importance of developing an appropriate technique to detect each haemoparasite. PMID:28497743

  4. Frequency of shedding of respiratory pathogens in horses recently imported to the United States.

    PubMed

    Smith, Fauna Leah; Watson, Johanna L; Spier, Sharon J; Kilcoyne, Isabelle; Mapes, Samantha; Sonder, Claudia; Pusterla, Nicola

    2018-05-15

    Imported horses that have undergone recent long distance transport might represent a serious risk for spreading infectious respiratory pathogens into populations of horses. To investigate the frequency of shedding of respiratory pathogens in recently imported horses. All imported horses with signed owner consent (n = 167) entering a USDA quarantine for contagious equine metritis from October 2014 to June 2016 were enrolled in the study. Prospective observational study. Enrolled horses had a physical examination performed and nasal secretions collected at the time of entry and subsequently if any horse developed signs of respiratory disease during quarantine. Samples were assayed for equine influenza virus (EIV), equine herpesvirus type-1, -2, -4, and -5 (EHV-1, -2, -4, -5), equine rhinitis virus A (ERAV), and B (ERBV) and Streptococcus equi subspecies equi (S. equi) using quantitative PCR (qPCR). Equine herpesviruses were detected by qPCR in 52% of the study horses including EHV-2 (28.7%), EHV-5 (40.7%), EHV-1 (1.2%), and EHV-4 (3.0%). Clinical signs were not correlated with being qPCR-positive for EHV-4, EHV-2, or EHV-5. None of the samples were qPCR-positive for EIV, ERAV, ERBV, and S. equi. The qPCR assay failed quality control for RNA viruses in 25% (46/167) of samples. Clinical signs of respiratory disease were poorly correlated with qPCR positive status for EHV-2, -4, and -5. The importance of γ-herpesviruses (EHV-2 and 5) in respiratory disease is poorly understood. Equine herpesvirus type-1 or 4 (EHV-1 or EHV-4) were detected in 4.2% of horses, which could have serious consequences if shedding animals entered a population of susceptible horses. Biosecurity measures are important when introducing recently imported horses into resident US populations of horses. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Implementing the EQUiPPED Medication Management Program at 5 VA Emergency Departments

    PubMed Central

    Vandenberg, Ann E.; Stevens, Melissa; Echt, Katharina V.; Hastings, S. Nicole; Powers, James; Markland, Alayne; Hwang, Ula; Hung, William; Belbis, Stephanie; Vaughan, Camille P.

    2016-01-01

    The Enhancing Quality of Prescribing Practices for Older Veterans Discharged From the Emergency Department (EQUiPPED) program aimed to reduce potentially inappropriate medication prescribing to older adults at 5 VAMCs. PMID:27773986

  6. Purulent meningoventriculitis caused by Streptococcus equi subspecies zooepidemicus in a snow leopard (Panthera uncia).

    PubMed

    Yamaguchi, R; Nakamura, S; Hori, H; Kato, Y; Une, Y

    2012-01-01

    Streptococcus equi subspecies zooepidemicus (SEZ) is a zoonotic pathogen that causes respiratory tract infections in man and animals. SEZ infections are very rare in felids. This report describes purulent meningoventriculitis caused by SEZ in an approximately 16-year-old male snow leopard (Panthera uncia). The animal exhibited neurological signs and died 1 month after their onset. On necropsy examination, the surface blood vessels of the brain were swollen and there was an increased volume and turbidity of cerebrospinal fluid (CSF). Microscopically, suppurative inflammation accompanied by gram-positive cocci was observed in the meninges and near the ventricles. SEZ was isolated from the brain tissue and CSF. This is the first report of infection with SEZ in a felid other than a domestic cat. This animal had not had direct contact with horses, but it had been fed horse flesh that may have been the source of infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    PubMed

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Seroprevalence and risk factors associated with Babesia caballi and Theileria equi infections in donkeys from Southern Italy.

    PubMed

    Piantedosi, D; D'Alessio, N; Di Loria, A; Di Prisco, F; Mariani, U; Neola, B; Santoro, M; Montagnaro, S; Capelli, G; Veneziano, V

    2014-12-01

    Equine piroplasmosis (EP) has been frequently described in donkeys in subtropical and tropical regions, but published data reflecting large scale surveys are very limited in Europe. The seroprevalence of Babesia caballi and Theileria equi was determined in a donkey population from Campania Region in Southern Italy using a commercial indirect fluorescent antibody test (IFAT), and the risk factors associated with the occurrence of the infection were assessed. Of 203 samples, the overall seroprevalence for EP was 57.1% (116/203), with 35.5% (72/203) for B. caballi and 44.3% (90/203) for T. equi. Co-infection was detected in 46 donkeys (22.6%). The distribution of IFAT antibody titres to B. caballi was: 1:80 (n= 67), 1:160 (n= 2), 1:320 (n= 3); while the distribution of IFAT antibody titres to T. equi was: 1:80 (n= 25), 1:160 (n= 42), 1:320 (n= 12), 1:640 (n= 8), 1:1280 (n= 3). All examined donkeys were asymptomatic, except one adult male (with a titre of 1:640 against T. equi) that showed clinical signs corresponding to the acute stage of EP, reported for the first time in Italy. The unique risk factor associated with a higher B. caballi seroprevalence was the presence of horses in the farms, while risk factors associated with a higher T. equi seroprevalence were poor body condition, presence of ruminants in the farms and milk production. The results indicate a high level of exposure in donkeys living in Southern Italy and suggest that donkeys may be an important reservoir of EP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A molecular and haematological study of Theileria equi in Balkan donkeys.

    PubMed

    Davitkov, Dajana; Davitkov, Darko; Vucicevic, Milos; Stanisic, Ljubodrag; Radakovic, Milena; Glavinic, Uros; Stanimirovic, Zoran

    2017-06-01

    Equine piroplasmosis in donkeys has been recognised as a serious problem of major economic importance. The present molecular study is the first investigation of the presence of Theileria equi and Babesia caballi in Balkan donkeys and of the possible haematological alterations related to it. A total of 70 apparently healthy donkeys from Serbia were included in this study. The overall prevalence of T. equi infection in donkeys tested with multiplex PCR was 50%. There was no B. caballi-positive sample. Infections in donkeys included in this study seem to be associated with decreased red blood cell count, haemoglobin concentration, haematocrit and platelet count, and with increased white blood cell count, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Altered haematological parameters in donkeys can lead to a decrease in working capacity and production performance. Further molecular research and long-term monitoring of equine piroplasmosis is needed in Serbia and throughout Europe.

  10. Peritonitis in a llama caused by Streptococcus equi subsp. zooepidemicus.

    PubMed Central

    Hewson, J; Cebra, C K

    2001-01-01

    A 7-month-old, male llama was diagnosed with peritonitis caused by Streptococcus equi subsp. zooepidemicus. Clinical findings, medical treatment, and case outcome are described. Hematogenous dissemination from suspected pneumonia is proposed as the route of infection in this case. Possible transmission of the organism through contact with horses is discussed. PMID:11424579

  11. Recovering data from historical collections: stratigraphic and spatial reconstruction of the outstanding carnivoran record from the Late Pleistocene Equi cave (Apuane Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Ghezzo, Elena; Palchetti, Alessandro; Rook, Lorenzo

    2014-07-01

    Equi Terme is a hamlet located in northern Tuscany, in Apuan Alps regional Park. An outstanding fossil vertebrate collection housed in Florence is the result of excavations in the Equi cave and shelter during the period 1911-1919. This faunal assemblage (associated with Mousterian artefacts) may be correlated with the middle of MIS 3. All of the specimens recovered at Equi early in the last century were collected with attention to their stratigraphical positions. Detailed field annotation for nearly every specimen allowed us to organize them and attempt a stratigraphical and spatial reconstruction of the fossiliferous deposits. We present the results of the study of the spatial and stratigraphic distribution of the carnivoran species in the Equi cave and shelter, and re-evaluate the taphonomic agents of accumulation and the fossil distribution within the stratigraphic record. In particular, we evaluated the distribution of Panthera pardus, which, unusually for Europe, is abundant in the Equi cave assemblage. This analysis highlights the importance of the re-evaluation of historical collections and allows for future comparisons with data from more recent excavations at the Equi site. The analysis also provides an account of the distribution of carnivorans throughout the stratigraphic record. The constant presence and the predominance of leopards and wolves over lions and smaller carnivorans, allow for evaluations of their ethology and may be related to a short period of sediment accumulation.

  12. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  13. Detection of Babesia caballi and Theileria equi in Blood from Equines from Four Indigenous Communities in Costa Rica.

    PubMed

    Posada-Guzmán, María Fernanda; Dolz, Gaby; Romero-Zúñiga, Juan José; Jiménez-Rocha, Ana Eugenia

    2015-01-01

    A cross-sectional study was carried out in four indigenous communities of Costa Rica to detect presence and prevalence of Babesia caballi and Theileria equi and to investigate factors associated with presence of these hemoparasites. General condition of horses (n = 285) was evaluated, and hematocrits and hemoglobin were determined from blood samples of 130 horses, which were also analyzed using blood smears, nested polymerase chain reaction (PCR), and immunosorbent assay (c-ELISA). The general condition of the horses (n = 285) in terms of their body and coat was between regular and poor, and hematocrit and hemoglobin average values were low (19% and 10.65 g/dL, resp.). Erythrocyte inclusions were observed in 32 (24.6%) of the samples. Twenty-six samples (20.0%) gave positive results for B. caballi and 60 (46.2%) for T. equi; 10 horses (7.7%) showed mixed infection, when analyzed by PCR. Using c-ELISA, it was found that 90 (69.2%) horses had antibodies against B. caballi and 115 (88.5%) against T. equi, while 81 (62.3%) showed mixed reactions. There were no factors associated with the presence of B. caballi and T. equi. These results contrast with results previously obtained in equines in the Central Valley of Costa Rica.

  14. Detection of Babesia caballi and Theileria equi in Blood from Equines from Four Indigenous Communities in Costa Rica

    PubMed Central

    Posada-Guzmán, María Fernanda; Romero-Zúñiga, Juan José; Jiménez-Rocha, Ana Eugenia

    2015-01-01

    A cross-sectional study was carried out in four indigenous communities of Costa Rica to detect presence and prevalence of Babesia caballi and Theileria equi and to investigate factors associated with presence of these hemoparasites. General condition of horses (n = 285) was evaluated, and hematocrits and hemoglobin were determined from blood samples of 130 horses, which were also analyzed using blood smears, nested polymerase chain reaction (PCR), and immunosorbent assay (c-ELISA). The general condition of the horses (n = 285) in terms of their body and coat was between regular and poor, and hematocrit and hemoglobin average values were low (19% and 10.65 g/dL, resp.). Erythrocyte inclusions were observed in 32 (24.6%) of the samples. Twenty-six samples (20.0%) gave positive results for B. caballi and 60 (46.2%) for T. equi; 10 horses (7.7%) showed mixed infection, when analyzed by PCR. Using c-ELISA, it was found that 90 (69.2%) horses had antibodies against B. caballi and 115 (88.5%) against T. equi, while 81 (62.3%) showed mixed reactions. There were no factors associated with the presence of B. caballi and T. equi. These results contrast with results previously obtained in equines in the Central Valley of Costa Rica. PMID:26649225

  15. In-vitro effect of edta-tris-lysozyme solutions on selected pathogenic bacteria.

    PubMed

    Wooley, R E; Blue, J L

    1975-02-01

    The in-vitro effect of EDTA-Tris-lysozyme solution on 16 pathogenic bacteria of medical or veterinary importance was determined. Marked decreases in bacterial count occurred with Pseudomonas aeruginosa, Escherichia coli, Moraxella osloensis and Campylobacter fetus, and smaller decreses with Salmonella typhimurium, Shigella boydii, Aeromonas hydrophila, proteus mirabilis, Listeria monocytogenes and Erysipelothrix insidiosa. The test solution had no effect on Klebsiella ozaenae, Brucella canis, Cornynebacterium pyogenes, Coryne, renale, Streptococcus equi and staphylococcus aureus.

  16. Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

    PubMed

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-07-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.

  17. Novel description of force of infection and risk factors associated with Theileria equi in horses in Israel and in The Palestinian Authority.

    PubMed

    Aharonson-Raz, Karin; Rapoport, Adi; Hawari, Ibrahim M; Lensky, Itamar M; Berlin, Dalia; Zivotofsky, Doni; Klement, Eyal; Steinman, Amir

    2014-06-01

    The objectives of this study were to determine the force of infection (FOI) for Theileria equi in horses in Israel and to evaluate risk factors associated with seroprevalence a decade after it was last determined by PCR, in 2002. Using a commercial cELISA kit, we demonstrated a widespread and constant exposure to T. equi in Israel (110/216; 50.9%) and the Palestinian Authority (32/108; 29.6%). Owing to the paired samples collected from the same horses approximately one year apart, we were able to determine the FOI rate with which susceptible individuals become infected. Out of the 75 naïve horses in the first collection, four seroconverted during 10-16 months, demonstrating an FOI of 5% for that period. Similar results were obtained by calculating FOI using age-specific seroprevalence (4.2% per year). Housing management type was significantly associated with T. equi seroprevalence with 87.9% seropositivity in horses on pasture and 32.6% seropositivity in horses in stalls/yards. This strong association and the very high seroprevalence found in horses held on pasture, prompted stratification of data accordingly. Geographical location of horses in Israel showed a strong association with seroprevalence to T. equi ranging from 34.5% in central Israel to 80.8% in the northern part of the country. However, when analyzing this association only in horses held in stalls/yards, the lower seroprevalence was noted in the north. In addition, age was significantly associated with seroprevalence for T. equi only in horses held in stalls/yards (R(2)=0.94). Environmental variables were not found to be associated with seroprevalence for T. equi. Here, we report for the first time the FOI for T. equi in horses and highlight the influence housing management type has on the evaluation of risk factors associated with a vector-borne disease, perhaps leading to the discrepancies observed between studies throughout the world. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  19. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  20. Effects of dihydroorotate dehydrogenase (DHODH) inhibitors on the growth of Theileria equi and Babesia caballi in vitro.

    PubMed

    Kamyingkird, Ketsarin; Cao, Shinuo; Tuvshintulga, Bumduuren; Salama, Akram; Mousa, Ahmed Abdelmoniem; Efstratiou, Artemis; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Igarashi, Ikuo; Xuan, Xuenan

    2017-05-01

    Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), which affects equine production in various parts of the world. However, a safe and effective drug is not currently available for treatment of EP. Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine synthesis pathway and has been known as a novel drug target for several apicomplexan protozoan parasites. In this study, we evaluated four DHODH inhibitors; atovaquone (ATV), leflunomide (LFN), brequinar (Breq), and 7-hydroxy-5-[1,2,4] triazolo [1,5,a] pyrimidine (TAZ) on the growth of T. equi and B. caballi in vitro and compared them to diminacene aceturate (Di) as the control drug. The growth of T. equi and B. caballi was significantly hindered by all inhibitors except TAZ. The half maximal inhibitory concentration (IC 50 ) of ATV, LFN, Breq and Di against T. equi was approximately 0.028, 109, 11 and 40 μM, respectively, whereas the IC 50 of ATV, LFN, Breq and Di against B. caballi was approximately 0.128, 193, 5.2 and 16.2 μM, respectively. Using bioinformatics and Western blot analysis, we showed that TeDHODH was similar to other Babesia parasite DHODHs, and confirmed that targeting DHODHs could be useful for the development of novel chemotherapeutics for treatment of EP. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  3. De Novo Genome Project for the Aromatic Degrader Rhodococcus pyridinivorans Strain AK37

    PubMed Central

    Kriszt, Balázs; Táncsics, András; Cserháti, Mátyás; Tóth, Ákos; Nagy, István; Horváth, Balázs; Nagy, István; Tamura, Tomohiro; Szoboszlay, Sándor

    2012-01-01

    Here, we present the complete genome sequence of Rhodococcus pyridinivorans AK37 strain NCAIM PB1376, which was isolated from an oil-polluted site in Hungary. R. pyridinivorans AK37 is an aerobic, nonsporulating, nonmotile, Gram-positive bacterium with remarkable aromatic-decomposing activity. PMID:22328750

  4. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil

    PubMed Central

    Rodrigues, Edmo M.; Pylro, Victor S.; Dobbler, Priscila T.; Victoria, Filipe

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  5. [Expression of acylamidase gene in Rhodococcus erythropolis strains].

    PubMed

    Lavrov, K V; Novikov, A D; Riabchenko, L E; Ianenko, A S

    2014-09-01

    The expression of a new acylamidase gene from R. erythropolis 37 was studied in Rhodococcus erythropolis strains. This acylamidase, as a result of its unique substrate specificity, can hydrolyse N-substituted amides (4'-nitroacetanilide, N-isopropylacrylamide, N'N-dimethylaminopropylacrylamide). A new expression system based on the use of the promoter region of nitrilhydratase genes from R. rhodochrous M8 was created to achieve constitutive synthesis of acylamidase in R. erythropolis cells. A fourfold improvement in the acylamidase activity of recombinant R. erythropolis cells as compared with the parent wild-type strain was obtained through the use of the new expression system.

  6. A-equi-2 influenza in horses in the Republic of South Africa.

    PubMed

    Rogers, A L

    1988-06-01

    In early December 1986 A-equi-2 influenza virus was isolated for the first time in the Republic of South Africa. All horses were susceptible to the highly contagious aerosol-borne orthomyxovirus resulting in widespread outbreaks of equine influenza with typical primary respiratory symptoms. Treatment consisted of rest, anti-inflammatory drugs, antibiotics and good nursing. Future protection can be obtained by vaccination.

  7. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    PubMed Central

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-01-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin-or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  8. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica.

    PubMed

    Gesheva, Victoria; Stackebrandt, Erko; Vasileva-Tonkova, Evgenia

    2010-08-01

    Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell-hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod-coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.

  9. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid.

    PubMed

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-03-28

    Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.

  10. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil.

    PubMed

    Rodrigues, Edmo M; Pylro, Victor S; Dobbler, Priscila T; Victoria, Filipe; Roesch, Luiz F W; Tótola, Marcos R

    2016-03-03

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. Copyright © 2016 Rodrigues et al.

  11. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    PubMed

    Lavrov, K V; Ianenko, A S

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.

  12. Interaction between M-Like Protein and Macrophage Thioredoxin Facilitates Antiphagocytosis for Streptococcus equi ssp. zooepidemicus

    PubMed Central

    Ma, Zhe; Zhang, Hui; Zheng, Junxi; Li, Yue; Yi, Li; Fan, Hongjie; Lu, Chengping

    2012-01-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis. PMID:22384152

  13. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    PubMed

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Rapid microbiochemical identification of Corynebacterium diphtheriae and other medically important corynebacteria.

    PubMed Central

    Thompson, J S; Gates-Davis, D R; Yong, D C

    1983-01-01

    A rapid biochemical method based on the fermentation of carbohydrates, the hydrolysis of urea, and the reduction of nitrate was used to identify Corynebacterium diphtheriae, C. ulcerans, C. pseudodiphtheriticum, C. haemolyticum, C. pseudotuberculosis, C. pyogenes, C. ovis, the Centers for Disease Control JK group, and Rhodococcus (Corynebacterium) equi. With this procedure identification was confirmed for 133 stock cultures and clinical isolates of corynebacteria. Most were identified within 1 h and all were identified within 4 h after inoculation into the test substrates. PMID:6355166

  15. A field survey for the seroprevalence of Theileria equi and Babesia caballi in donkeys from Nuu Division, Kenya.

    PubMed

    Oduori, David O; Onyango, Solomon C; Kimari, Joseph N; MacLeod, Ewan T

    2015-07-01

    Equine piroplasmosis is one of the most significant tick-borne disease of equids. The prevalence of this disease in donkeys of semi-arid Kenya remains largely unexplored. The primary objective of this study was to demonstrate the extent to which donkeys in Nuu division, Kenya have been exposed to the haemoprotozoans Babesia caballi and Theileria equi, the causative agents of equine piroplasmosis. The study also assessed the effect of age and sex on seroprevalence. A stratified sampling approach was used and three hundred and fourteen donkeys were sampled across nine sub-locations in Nuu division, Mwingi district. Serodiagnosis was via competitive inhibition enzyme linked immunosorbent assays (cELISA). The seroprevalence of T. equi was 81.2% (95% CI: 76.4-85.4). There was no significant difference in sub-location seropositivity, gender seropositivity or age related seropositivity. Antibodies against B. caballi were not detected (95% CI: 0-1.2). Findings from this study suggest that T. equi infection is endemic in Nuu division, Mwingi where it exists in a state of endemic stability. Existence of the infection should be communicated to animal health practitioners and donkey owning communities in the area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].

    PubMed

    Lavrov, K V; Karpova, I Yu; Epremyan, A S; Yanenko, A S

    2014-10-01

    A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.

  17. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation

    PubMed Central

    Liu, Rui; Zhang, Ping; Su, Yiqi; Lin, Huixing; Zhang, Hui; Yu, Lei; Ma, Zhe; Fan, Hongjie

    2016-01-01

    The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis. PMID:27256117

  18. An outbreak of fatal hemorrhagic pneumonia caused by Streptococcus equi subsp. zooepidemicus in shelter dogs.

    PubMed

    Byun, Jae Won; Yoon, Soon Seek; Woo, Gye-Hyeong; Jung, Byeong Yeal; Joo, Yi-Seok

    2009-09-01

    An outbreak of fatal hemorrhagic pneumonia with 70-90% morbidity and 50% mortality occurred in an animal shelter in Yangju, Gyeonggi Province, Korea. Clinically, the affected dogs showed severe respiratory distress within 48 h after arriving in the shelter. The dead were found mainly with nasal bleeding and hematemesis. At necropsy, hemothorax and hemorrhagic pneumonia along with severe pulmonary consolidation was observed, though histopathological analysis showed mainly hemorrhagic bronchopneumonia. Lymphoid depletion was inconsistently seen in the spleen, tonsil and bronchial lymph node. Gram-positive colonies were shown in blood vessels or parenchyma of cerebrum, lung, liver, spleen, and kidney. Also, Streptococcus (S.) equi subsp. zooepidemicus was isolated from the various organs in which the bacterium was microscopically and histologically detected. In addition, approximately 0.9 Kb specific amplicon, antiphagocytic factor H binding protein, was amplified in the bacterial isolates. In this study, we reported an outbreak of canine hemorrhagic bronchopneumonia caused by S. equi subsp. zooepidemicus in an animal shelter in Yangju, Korea.

  19. An outbreak of fatal hemorrhagic pneumonia caused by Streptococcus equi subsp. zooepidemicus in shelter dogs

    PubMed Central

    Yoon, Soon-Seek; Woo, Gye-Hyeong; Jung, Byeong Yeal; Joo, Yi-Seok

    2009-01-01

    An outbreak of fatal hemorrhagic pneumonia with 70~90% morbidity and 50% mortality occurred in an animal shelter in Yangju, Gyeonggi Province, Korea. Clinically, the affected dogs showed severe respiratory distress within 48 h after arriving in the shelter. The dead were found mainly with nasal bleeding and hematemesis. At necropsy, hemothorax and hemorrhagic pneumonia along with severe pulmonary consolidation was observed, though histopathological analysis showed mainly hemorrhagic bronchopneumonia. Lymphoid depletion was inconsistently seen in the spleen, tonsil and bronchial lymph node. Gram-positive colonies were shown in blood vessels or parenchyma of cerebrum, lung, liver, spleen, and kidney. Also, Streptococcus (S.) equi subsp. zooepidemicus was isolated from the various organs in which the bacterium was microscopically and histologically detected. In addition, approximately 0.9 Kb specific amplicon, antiphagocytic factor H binding protein, was amplified in the bacterial isolates. In this study, we reported an outbreak of canine hemorrhagic bronchopneumonia caused by S. equi subsp. zooepidemicus in an animal shelter in Yangju, Korea. PMID:19687630

  20. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  1. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014.

    PubMed

    Fernández de Las Heras, Laura; Mascaraque, Victoria; García Fernández, Esther; Navarro-Llorens, Juana María; Perera, Julián; Drzyzga, Oliver

    2011-07-20

    Cholesterol catabolism has been reported in different bacteria and particularly in several Rhodococcus species, but the genetic of this complex pathway is not yet very well defined. In this work we report the isolation and sequencing of a 9.8 kb DNA fragment of Rhodococcus sp. strain CECT3014, a bacterial strain that we here identify as a Rhodococcus erythropolis strain. In this DNA fragment we found several ORF that are probably involved in steroid catabolism, and choG, a gene encoding a putative cholesterol oxidase whose functional characterization we here report. ChoG protein is a class II cholesterol oxidase with all the structural features of the enzymes of this group. The disruption of the choG gene does not alter the ability of strain CECT3014 cells to grow on cholesterol, but it abolishes the production of extracellular cholesterol oxidase. This later effect is reverted when the mutant cells are transformed with a plasmid expressing choG. We conclude that choG is the gene responsible for the inducible extracellular cholesterol oxidase activity of strain CECT3014. This activity distributes between the cellular membrane and the culture supernatant in a way that suggests it is produced by the same ChoG protein that occurs in two different locations. RT-PCR transcript analysis showed a dual scheme of choG expression: a low constitutive independent transcription, plus a cholesterol induced transcription of choG into a polycistronic kstD-hsd4B-choG mRNA. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone.

    PubMed

    Ye, Xueying; Wang, Hui; Kan, Jie; Li, Jin; Huang, Tongwang; Xiong, Guangming; Hu, Zhong

    2017-10-01

    17β-hydroxysteroid dehydrogenases (17β-HSD) are a group of oxidoreductase enzymes that exhibit high specificity for 17C reduction/oxidation. However, the mechanism of 17β-HSD in oxidizing steroid hormone 17β-estradiol to estrone in bacterium is still unclear. In this work, a functional bacterium Rhodococcus sp. P14 was identified having rapid ability to oxidize estradiol into estrone in mineral salt medium (MSM) within 6 h. The functional genes encoding NADH-dependent oxidoreductase were successfully detected with the help of bioinformatics, and it was identified that it contained two consensus regions affiliated to the short-chain dehydrogenase/reductase (SDR) superfamily. Expression of 17β-HSD could be induced by estradiol in strain P14. The 17β-HSD gene from Rhodococcus sp. P14 was expressed in Escherichia coli strain BL21. Furthermore, recombinant 17β-HSD-expressing BL21 cells showed a high transformation rate, they are capable of transforming estradiol to estrone up to 94%. The purified His-17β-HSD protein also exhibited high catalyzing efficiency. In conclusion, this study provides the first evidence that a novel 17β-HSD in Rhodococcus sp. P14 can catalyze the oxidation of estradiol. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Update on bacterial pneumonia in the foal and weanling.

    PubMed

    Reuss, Sarah M; Cohen, Noah D

    2015-04-01

    Bacterial pneumonia is a common cause of disease in both neonatal and weanling foals. The causal organism or organisms differ with the age of the foal, should be identified via microbiologic culture, and will ultimately dictate appropriate treatment. Initial treatment in neonates should be broad spectrum and bactericidal, whereas weanling age foals may receive more targeted treatment. The combination of a macrolide antibiotic and rifampin remains the gold standard for treatment of Rhodococcus equi pneumonia; however, resistance to these antimicrobials is a concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Experimental vizualization of 2D photonic crystal equi-frequency contours

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej

    2017-12-01

    Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.

  5. Clinical investigation on Theileria equi and Babesia caballi infections in Italian donkeys.

    PubMed

    Laus, Fulvio; Spaterna, Andrea; Faillace, Vanessa; Veronesi, Fabrizia; Ravagnan, Silvia; Beribé, Francesca; Cerquetella, Matteo; Meligrana, Marina; Tesei, Beniamino

    2015-04-28

    Interest in the welfare and diseases of donkeys is constantly increasing in several countries. Despite this, clinical research into donkeys needs to be in continual development since they show different reactions compared to horses in many conditions, including infectious diseases, and need specific clinical and therapeutic approaches. No reports are currently available on clinical and clinical pathology data regarding donkeys with natural piroplasms infection. Venous blood samples were taken from one hundred and thirty eight donkeys and underwent indirect fluorescent antibody test (IFAT) to detect IgG antibodies against Theileria equi and Babesia caballi and real-time polimerase chain reaction (PCR) to detect Babesia spp. and Theileria spp. Clinical examinations, haematological analyses and serum bilirubin evaluation were also performed and compared with positive or negative status. A seroprevalence of 40.6% and 47.8% was found for T. equi and B. caballi, respectively; double positivity was detected in 19.6% of the animals. PCR results showed that 17.4% of the animals tested positive for T.equi and 3.6% for B. caballi with no double positivity. Twelve donkeys (8.7%) had clinical signs consistent with chronic forms of the disease and no acute forms were detected. Fifty-eight donkeys had haematological and serum bilirubin alterations and 56 (96.6%) of them were IFAT and/or PCR positive. Changes in erythrocyte number, packed cell volume, hemoglobin concentration, mean corpuscular hemoglobin, platelets number and total bilirubin were significantly associated with positive and symptomatic animals. Nonspecific clinical presentation seems to be very common in donkeys and several clinical pathology alterations persist after natural infection. Therefore, apparently healthy donkeys can have masked but severe clinical pathology alterations. Acute forms are very seldom observed in donkeys. Clinical monitoring of chronically infected donkeys is recommended since such animals

  6. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  7. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  8. Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069

    DOE PAGES

    Wells, Jr., Tyrone; Wei, Zhen; Ragauskas, Arthur J.

    2014-11-26

    Rhodococcus opacus DSM 1069 utilized pine organosolv pretreatment effluent as a sole carbon and energy source for 120 h at 1.5 w/v% solids concentration and accumulated a maximum of 26.99 ± 2.88% of its cellular dry weight in oils composed of oleic, palmitic, and stearic fatty acids. Here, these results establish the potential for lignocellulosic pretreatment effluent as a feedstock for microbial biodiesel production via oleaginous R. opacus and an interesting route for biorefinery waste stream optimization.

  9. 75 FR 25234 - EquiPower Resources Management, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ..., please e-mail [email protected] . or call (866) 208-3676 (toll free). For TTY, call (202) 502... Resources Management, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of EquiPower Resources Management, LLC's application for market-based rate authority, with an...

  10. 75 FR 36456 - Channel America Television Network, Inc., EquiMed, Inc., Kore Holdings, Inc., Robotic Vision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Channel America Television Network, Inc., EquiMed, Inc., Kore Holdings, Inc., Robotic Vision Systems, Inc. (n/k/a Acuity Cimatrix, Inc.), Security... information concerning the securities of Channel America Television Network, Inc. because it has not filed any...

  11. Diagnosis of theileria equi infections in horses in the Azores using cELISA and nested PCR

    USDA-ARS?s Scientific Manuscript database

    Equine piroplasmosis is a tick-borne disease of equids that is often caused by the parasite Theileria equi. We applied competitive ELISA (cELISA) and nested PCR diagnostic methods to detect this parasite in horses by screening 162 samples from mainland Portugal where the parasite is endemic, and 143...

  12. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Method and Apparatus for Precisely Applying Large Planar Equi-Biaxial Strains to a Circular Membrane

    DTIC Science & Technology

    2013-04-01

    potential future Army applications. Electronic properties, such as dielectric strength , capacitance, resistance, and inductance, vary significantly and... dielectric strength and resistance are primarily determined by inherent bulk material properties, including microstructure, while shifts in inductance...less and a nominal thickness up to ~1 mm. 15. SUBJECT TERMS large planar equi-biaxial strain, membrane, dielectric elastomers, electromechanical

  14. A survey of canine respiratory pathogens in New Zealand dogs.

    PubMed

    Sowman, H R; Cave, N J; Dunowska, M

    2018-06-20

    To determine which of the common canine respiratory pathogens circulate among selected populations of healthy and diseased dogs in New Zealand. Coagulated blood samples for serology and oropharyngeal swabs for virology were collected from healthy dogs (n=47) and from dogs with acute respiratory disease (n=49). For diseased dogs a convalescent blood sample was also collected 3-4 weeks later. Oropharyngeal swabs were subjected to virus isolation and tested for canine parainfluenza virus (CPIV), canine adenovirus (CAdV) 2, canine herpesvirus (CHV), canine respiratory coronavirus (CRCoV), canine influenza virus (CIV), canine distemper virus (CDV), Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, and Mycoplasma cynos nucleic acids by quantitative PCR (qPCR). Sera were tested for CRCoV antibody using competitive ELISA and results expressed as percent of inhibition (POI). The mean age of diseased dogs (2.71, min <0.5, max 8.5 years) was lower than the mean age of healthy dogs (5.31, min <0.5, max 17 years) (p<0.001). In total, 20/94 (21%) of dogs were positive for at least one agent by qPCR. Diseased dogs were most commonly positive for M. cynos (8/47, 17%), followed by CPIV (3/47, 6%) and B. bronchiseptica (3/47, 6%), while healthy dogs were most commonly positive for CAdV-2 (6/47, 13%), followed by M. cynos (2/47, 4%). All samples were negative for CIV, CRCoV, CDV and S. equi subsp. zooepidemicus. Viruses were not isolated from any of the samples tested. In total, 47/93 (50%) of dogs were seropositive for CRCoV on at least one sampling occasion. Samples from diseased dogs were more frequently seropositive to CRCoV, with higher POI, than samples from healthy dogs. We showed that CAdV-2, CPIV, CHV, CRCoV, B. bronchiseptica and M. cynos circulated among sampled dogs. The convenience sampling methodology, with a poor match between the populations of diseased and healthy dogs in terms of age, breed and use, together with the relatively small sample size

  15. CD44 deficiency enhanced Streptococcus equi ssp. zooepidemicus dissemination and inflammation response in a mouse model.

    PubMed

    Fu, Qiang; Xiao, Pingping; Chen, Yaosheng; Wei, Zigong; Liu, Xiaohong

    2017-12-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for peritonitis, septicemia, meningitis, arthritis and several other serious diseases in various species. Recent studies have demonstrated that CD44 is implicated in the process of host defense against pathogenic microorganisms. In the present study, the role of CD44 in the host response to S. zooepidemicus infection was investigated in a mouse model. Upon intraperitoneal infection with S. zooepidemicus, the expression of CD44 on the peritoneal exudate cells from wild-type (WT) mice was increased. CD44 deficiency accelerated mortality, which was accompanied by increased peritoneal bacterial growth and dissemination to distant body sites. CD44 knock-out (KO) mice showed enhanced early inflammatory cell recruitment into the peritoneal fluid on S. zooepidemicus infection. In line with this, the expression of proinflammatory cytokines, chemokines in peritoneal exudate cells and peritoneal macrophages of CD44 KO mice were increased compared with those of WT mice. In addition, CD44 deficiency was associated with reduced expression of A20, a negative regulator in TLR signaling. Overall, the present study suggests that CD44 plays a protective role in antibacterial defense against S. zooepidemicus in mice. Copyright © 2017. Published by Elsevier Ltd.

  16. Comparative Bioinformatics Analysis of Transcription Factor Genes Indicates Conservation of Key Regulatory Domains among Babesia bovis, Babesia microti, and Theileria equi.

    PubMed

    Alzan, Heba F; Knowles, Donald P; Suarez, Carlos E

    2016-11-01

    Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.

  17. Algicidal activity of a dibenzofuran-degrader Rhodococcus sp.

    PubMed

    Wang, Meng-Hui; Peng, Peng; Liu, Yu-Mei; Jia, Rui-Bao; Li, Li

    2013-02-01

    Rhodococcus sp. strain p52, a previously isolated dibenzofuran degrader, could effectively inhibit the growth of cyanobacteria, including species of Microcystis, Anabaena, and Nodularia. When strain p52 was inoculated at the concentration of 7.7×10(7) CFU/ml, 93.5% of exponentially growing Microcystis aeruginosa (7.3×10(6) cells/ml initially) was inhibited after 4 day. The threshold concentration for its algicidal activity against M. aeruginosa was 7.7×10(6) CFU/ml. Strain p52 exerted algicidal effect by synthesizing extracellular substances, which were identified as trans-3-indoleacrylic acid, DL-pipecolic acid, and L-pyroglutamic acid. The effective concentrations of trans-3-indoleacrylic acid and DL-pipecolic acid against M. aeruginosa were tested to be 0.5 mg/l and 5 mg/l, respectively.

  18. Novel Genes Encoding Hexadecanoic Acid Δ6-Desaturase Activity in a Rhodococcus sp.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Tsujino, Yukiharu; Ozaki, Katsuya

    2016-11-01

    cis-6-Hexadecenoic acid, a major component of human sebaceous lipids, is involved in the defense mechanism against Staphylococcus aureus infection in healthy skin and closely related to atopic dermatitis. Previously, Koike et al. (Biosci Biotechnol Biochem 64:1064-1066, 2000) reported that a mutant strain of Rhodococcus sp. produced cis-6-hexadecenoate derivatives from palmitate alkyl esters. From the mutant Rhodococcus strain, we identified and sequenced two open reading frames present in an amplified 5.7-kb region; these open reading frames encoded tandemly repeated Δ6-desaturase-like genes, Rdes1 and Rdes2. A phylogenetic tree indicated that Rdes1 and Rdes2 were different from previously known Δ6-desaturase genes, and that they formed a new cluster. Rdes1 and Rdes2 were each introduced into vectors and then expressed separately in Escherichia coli, and the fatty acid composition of the transformed cells was analyzed by gas chromatography and mass spectrometry. The amount of cis-6-hexadecenoic acid was significantly higher in Rdes1- or Rdes2-transformed E. coli cells (twofold and threefold, respectively) than in vector-only control cells. These results showed that cis-6-hexadecenoic acid was produced in E. coli cells by the rhodococcal Δ6-desaturase-like proteins.

  19. Coexistence of antibodies to tick-borne pathogens of babesiosis, ehrlichiosis, and Lyme borreliosis in human sera.

    PubMed

    Magnarelli, L A; Dumler, J S; Anderson, J F; Johnson, R C; Fikrig, E

    1995-11-01

    Serum specimens from persons with or without Lyme borreliosis were analyzed by indirect fluorescent antibody staining methods for total immunoglobulins to Babesia microti, Ehrlichia chaffeensis (Arkansas strain), and Ehrlichia equi (MRK strain). There was serologic evidence of human exposure to multiple tick-borne agents in 15 (6.6%) of 227 serum samples obtained in Connecticut and Minnesota. Of these, 10 serum samples were from Connecticut patients who had erythema migrans and antibodies to Borrelia burgdorferi (range, 1:160 to 1:40, 960). A maximal antibody titer of 1:640 was noted for a B. microti infection, whereas titration end points of 1:640 and 1:1,280 were recorded for E. chaffeensis and E. equi seropositives, respectively. In specificity tests, there was no cross-reactivity among the antisera and antigens tested for the four tick-borne pathogens. On the basis of serologic testing, a small group of persons who had Lyme borreliosis had been exposed to one or more other tick-borne agents, but there was no clinical diagnosis of babesiosis or ehrlichiosis. Therefore, if the clinical picture is unclear or multiple tick-associated illnesses are suspected, more extensive laboratory testing is suggested.

  20. On the Variation of Hardness Due to Uniaxial and Equi-Biaxial Residual Surface Stresses at Elastic-Plastic Indentation

    NASA Astrophysics Data System (ADS)

    Larsson, Per-Lennart

    2018-05-01

    It is established long since that the material hardness is independent of residual stresses at predominantly plastic deformation close to the contact region at indentation. Recently though, it has been shown that when elastic and plastic deformations are of equal magnitude this invariance is lost. For materials such as ceramics and polymers, this will complicate residual stress determination but can also, if properly understood, provide additional important information for performing such a task. Indeed, when the residual stresses are equi-biaxial, the situation is quite well understood, but additional efforts have to be made to understand the mechanical behavior in other loading states. Presently therefore, the variation of hardness, due to residual stresses, is examined at a uniaxial stress state. Correlation with global indentation quantities is analyzed, discussed and compared to corresponding equi-biaxial results. Cone indentation of elastic-perfectly plastic materials is considered.

  1. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.

    PubMed

    Matsuoka, Tomohiro; Yoshida, Nobuyuki

    2018-06-03

    Rhodococcus erythropolis N9T-4 grows on an inorganic solid-state medium with no additional carbon and energy sources; however, it is unable to grow well in a liquid culture medium under the oligotrophic conditions. We examined submerged cultivations of N9T-4 using a polyurethane foam sponge to achieve approximately 10 times of the oligotrophic growth of the bacterium in the liquid culture medium.

  2. Inhibition of the in vitro growth of babesia bigemina, babesia caballi and theileria equi parasites by trifluralin analogues

    USDA-ARS?s Scientific Manuscript database

    Background: Bovine and equine babesiosis caused by Babesia bovis, B. bigemina and B. caballi, and equine theileriosis caused by Theileria equi are global tick borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition f...

  3. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  4. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment.

    PubMed

    Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H

    2018-02-01

    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions.

    PubMed

    Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida

    2018-02-01

    Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.

  6. Genetic diversity of Streptococcus equi subsp. zooepidemicus and doxycycline resistance in kennelled dogs.

    PubMed

    Chalker, Victoria J; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe; Erles, Kerstin

    2012-06-01

    The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010.

  7. Streptococcus equi subsp zooepidemicus pleuropneumonia and peritonitis in a dromedary camel (Camelus dromedarius) calf in North America.

    PubMed

    Stoughton, William B; Gold, Jenifer

    2015-08-01

    A 12-week-old female dromedary camel (Camelus dromedarius) calf was evaluated because of acute (< 24 hours) inappetence and lethargy. The calf was being bottle-fed because of maternal rejection. Physical examination revealed decreased bronchovesicular sounds and absent borborygmi. The rectal temperature was 38.9°C (102.0°F). A CBC indicated leukopenia with a degenerative left shift suggestive of a systemic infection. Results of abdominal and thoracic ultrasonography showed severe bicavitary effusion, peripheral lung consolidation, and intestinal hypomotility. Pleural and peritoneal fluid analysis confirmed a diagnosis of septic pleuritis and peritonitis. Results of aerobic bacterial culture of venous blood, peritoneal fluid, and pleural fluid samples indicated Streptococcus equi subsp zooepidemicus septicemia as the etiology for the polyserositis (ie, alpaca fever). Treatment with IV broad-spectrum antimicrobials, an NSAID, and pleural drainage was initiated. Clinical signs of pleuropneumonia, peritonitis, and systemic infection improved rapidly 24 hours after initiation of medical treatment. The calf was discharged from the hospital after 11 days, and antimicrobial treatment continued for 2 weeks after discharge. At follow-up approximately 4 weeks after hospital discharge (6 weeks after the initial examination), there were no clinical signs suggestive of relapse or any reported complications. S equi subsp zooepidemicus may cause polyserositis in Old World camelids (eg, dromedary camels) with signs similar to those seen in New World camelids (eg, alpaca and llama). The rapid response to medical treatment for the patient described suggested that S equi subsp zooepidemicus-induced polyserositis (alpaca fever) in dromedary camels may respond favorably to appropriate treatment. Reducing stress, reducing overcrowding, and separate housing of equids and camelids are suggested. Further studies are needed to better assess the epidemiology of alpaca fever in dromedary

  8. Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous.

    PubMed

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-10-01

    Aminopolycarboxylic acids are ubiquitous in natural waters and wastewaters. They have the ability to form very stable water-soluble complexes with many metallic di- or trivalent ions. The iron complex nitrilotriacetic acid-Fe(III) (FeNTA) has been previously shown to increase drastically the rate of photo- and biodegradation of 2-aminobenzothiazole, an organic pollutant, by Rhodococcus rhodochrous. For this paper, the fate of FeNTA was investigated during these degradation processes. First, it was shown, using in situ (1)H nuclear magnetic resonance, that the complex FeNTA was biodegraded by Rhodococcus rhodochrous cells, but the ligand (NTA) alone was not. This result indicates that FeNTA was transported and biotransformed inside the cell. The same products, including iminodiacetic acid, glycine, and formate, were obtained during the photo- and biodegradation processes of FeNTA, likely because they both involve oxidoreduction mechanisms. When the results of the different experiments are compared, the soluble iron, measured by spectrophotometry, was decreasing when microbial cells were present. About 20% of the initial iron was found inside the cells. These results allowed us to propose detailed mechanistic schemes for FeNTA degradation by solar light and by R. rhodochrous.

  9. Fate of the Nitrilotriacetic Acid-Fe(III) Complex during Photodegradation and Biodegradation by Rhodococcus rhodochrous▿

    PubMed Central

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-01-01

    Aminopolycarboxylic acids are ubiquitous in natural waters and wastewaters. They have the ability to form very stable water-soluble complexes with many metallic di- or trivalent ions. The iron complex nitrilotriacetic acid-Fe(III) (FeNTA) has been previously shown to increase drastically the rate of photo- and biodegradation of 2-aminobenzothiazole, an organic pollutant, by Rhodococcus rhodochrous. For this paper, the fate of FeNTA was investigated during these degradation processes. First, it was shown, using in situ 1H nuclear magnetic resonance, that the complex FeNTA was biodegraded by Rhodococcus rhodochrous cells, but the ligand (NTA) alone was not. This result indicates that FeNTA was transported and biotransformed inside the cell. The same products, including iminodiacetic acid, glycine, and formate, were obtained during the photo- and biodegradation processes of FeNTA, likely because they both involve oxidoreduction mechanisms. When the results of the different experiments are compared, the soluble iron, measured by spectrophotometry, was decreasing when microbial cells were present. About 20% of the initial iron was found inside the cells. These results allowed us to propose detailed mechanistic schemes for FeNTA degradation by solar light and by R. rhodochrous. PMID:18757580

  10. Novel Allylic Oxidation of α-Cedrene to sec-Cedrenol by a Rhodococcus Strain

    PubMed Central

    Takigawa, Hirofumi; Kubota, Hiromi; Sonohara, Hiroshi; Okuda, Mitsuyoshi; Tanaka, Shigeyoshi; Fujikura, Yoshiaki; Ito, Susumu

    1993-01-01

    A bacterial strain, designated KSM-7358, that can use α-cedrene for growth was isolated. The strain was identified as a member of the genus Rhodococcus and catalyzed the novel allylic oxidation of α-cedrene regiospecifically to produce (R)-10-hydroxycedrene (sec-cedrenol) with a very high yield. α-Curcumene was also produced as a possible metabolite of sec-cedrenol. A possible pathway for the microbial conversion of α-cedrene to sec-cedrenol and α-curcumene is proposed. PMID:16348930

  11. Genetic Diversity of Streptococcus equi subsp. zooepidemicus and Doxycycline Resistance in Kennelled Dogs

    PubMed Central

    Chalker, Victoria J.; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe

    2012-01-01

    The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010. PMID:22495558

  12. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  13. Theileria equi isolates vary in susceptibility to imidocarb dipropionate but demonstrate uniform in vitro susceptibility to a bumped kinase inhibitor

    USDA-ARS?s Scientific Manuscript database

    The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variat...

  14. Genetic characterization of theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions

    USDA-ARS?s Scientific Manuscript database

    Theileria equi is a tick-borne Apicomplexan hemoparasite that causes equine piroplasmosis (EP). This parasite has a worldwide distribution, but until recent outbreaks the United States has been considered to be free of EP. Maximum parsimony analysis of 18S rRNA gene sequences of North American T. eq...

  15. Initial transformations in the biodegradation of benzothiazoles by Rhodococcus isolates.

    PubMed

    De Wever, H; Vereecken, K; Stolz, A; Verachtert, H

    1998-09-01

    Benzothiazole-2-sulfonate (BTSO3) is one of the side products occurring in 2-mercaptobenzothiazole (MBT) production wastewater. We are the first to isolate an axenic culture capable of BTSO3 degradation. The isolate was identified as a Rhodococcus erythropolis strain and also degraded 2-hydroxybenzothiazole (OBT) and benzothiazole (BT), but not MBT, which was found to inhibit the biodegradation of OBT, BT, and BTSO3. In anaerobic resting cell assays, BTSO3 was transformed into OBT in stoichiometric amounts. Under aerobic conditions, OBT was observed as an intermediate in BT breakdown and an unknown compound transiently accumulated in several assays. This product was identified as a dihydroxybenzothiazole. Benzothiazole degradation pathways seem to converge into OBT, which is then transformed further into the dihydroxy derivative.

  16. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.; ...

    2018-01-24

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  17. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  18. Comparative bioinformatics analysis of transcription factor genes indicates conservation of key regulatory domains among babesia bovis, babesia microti and theileria equi.

    USDA-ARS?s Scientific Manuscript database

    Apicomplexa tick borne hemoparasites including B. bovis, B. microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis respectively. These neglected parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate a...

  19. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.

    PubMed

    Fatahi, A; Sadeghi, S

    2017-05-01

    A new biodesulphurization (BDS) method has been considered using Rhodococcus erythropolis supported on polyvinyl alcohol (PVA) for BDS of thiophene as a gasoline sulphur model compound in n-hexane as the solvent, subsequently this biocatalyst has been applied to BDS of gasoline samples. The obtained results according to UV-Spectrophotometer analysis at 240 nm showed that 97·41% of thiophene at the optimum condition of primary concentration 80 mg l -1 , pH = 7, by 0·1 g of biocatalyst in 30°C and after 20 h of contact time has been degraded. These optimum conditions have been applied to gasoline BDS and the biodegradation of gasoline thiophenic compounds have been investigated by gas chromatography-mass spectrometry (GC-MS). According to GC-MS, thiophene and its 2-methyl, 3-methyl and 2- ethyl derivatives had acceptable biodegradation efficiencies of about 26·67, 21·03, 23·62% respectively. Also, benzothiophene that has been detected in a gasoline sample had 38·89% biodegradation efficiency at optimum conditions, so biomodification of PVA by R. erythropolis produces biocatalysts with an active metabolism that facilitates the interaction of bacterial strain with gasoline thiophenic compounds. The morphology and surface functional groups of supported R. erythropolis on PVA have been investigated by scanning electron microscope (SEM) and FT-IR spectroscopy respectively. SEM images suggest some regular layered shape for the supported bacteria. FT-IR spectra indicate a desirable interaction between bacterial cells and polymer supports. Also, the recovery of biocatalyst has been investigated and after three times of using in BDS activity, its biocatalytic ability had no significant decreases. The biomodification of polyvinyl alcohol by Rhodococcus erythropolis described herein produces a new biocatalyst which can be used for significantly reducing the thiophenic compounds of gasoline and other fossil fuels. The immobilization process is to increase the

  20. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  1. Policies and Processes for Social Inclusion: Using EquiFrame and EquIPP for Policy Dialogue Comment on "Are Sexual and Reproductive Health Policies Designed for All? Vulnerable Groups in Policy Documents of Four European Countries and Their Involvement in Policy Development".

    PubMed

    MacLachlan, Malcolm; Mannan, Hasheem; Huss, Tessy; Munthali, Alister; Amin, Mutamad

    2015-11-16

    The application of EquiFrame in the analysis of sexual and reproductive health policies by Ivanova et al to a new thematic area, their selection of only some of the Core Concepts of human rights in health service provision and the addition of new vulnerable groups relevant to the purpose of their analysis, are all very welcome developments. We also applaud their application of EquiFrame to policies in countries where it has not previously been used, along with their use of interviews with policy-makers to produce a deeper understanding of policy processes. We argue that clear justification for the inclusion of additional, or replacement of some exiting vulnerable groups within EquiFrame should be accompanied by clear definitions of such groups, along with the evidence-base that justifies their classification as a vulnerable or marginalised group. To illustrate the versatility of EquiFrame, we summarise a range of ways in which it has been used across a number of regions; including a brief Case Study of its use to develop the National Health Policy of Malawi. While EquiFrame focuses on policy content, we preview a new policy analysis tool - Equity and Inclusion in Policy Processes (EquIPP) - which assesses the extent of equity and inclusion in broader policy processes. Together, EquiFrame and EquIPP can be used to help governments and civil society ensure that policies are addressing the much stronger emphasis on social inclusion, now apparent in the Sustainable Development Goals (SDGs). © 2016 by Kerman University of Medical Sciences.

  2. Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. [Janthinobacterium sp. Rhodococcus sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.K.; Gier, M.J.

    1990-09-01

    Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same twomore » species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.« less

  3. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.

    PubMed Central

    Lenke, H; Knackmuss, H J

    1992-01-01

    Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid. PMID:1444408

  4. Lymphocytes and macrophages are infected by theileria equi, but T cells and B cells are not required to establish infection in vivo

    USDA-ARS?s Scientific Manuscript database

    Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte s...

  5. Strangles: a pathogenic legacy of the war horse.

    PubMed

    Waller, Andrew S

    2016-01-23

    Strangles, characterised by pyrexia followed by abscessation of the lymph nodes of the head and neck, was first described in 1251 (Rufus 1251) and the causative agent, Streptococcus equi, was identified in 1888 (Schutz 1888). However, despite more than a century of research into this disease, strangles remains the most frequently diagnosed infection of horses with over 600 outbreaks being identified in the UK alone each year (Parkinson and others 2011). Here, Andrew Waller reviews some of the recent advances in the understanding of the evolution of S equi and puts this into the context of preventing and resolving outbreaks of infection. British Veterinary Association.

  6. Prevalence of Theileria equi and Babesia caballi as well as the identification of associated ticks in sympatric Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya.

    PubMed

    Hawkins, Elaine; Kock, Richard; McKeever, Declan; Gakuya, Francis; Musyoki, Charles; Chege, Stephen M; Mutinda, Mathew; Kariuki, Edward; Davidson, Zeke; Low, Belinda; Skilton, Robert A; Njahira, Moses N; Wamalwa, Mark; Maina, Elsie

    2015-01-01

    The role of equine piroplasmosis as a factor in the population decline of the Grevy's zebra is not known. We determined the prevalence of Babesia caballi and Theileria equi in cograzing Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya and identified the associated tick vectors. Blood samples were taken from 71 donkeys and 16 Grevy's zebras from March to May 2011. A nested PCR reaction using 18s ribosomal (r)RNA primers on 87 blood spots showed 72% (51/71; 95% confidence interval [CI] 60.4-81.0%) of donkeys and 100% (16/16; 95% CI, 77.3-100%) of Grevy's zebras were T. equi positive. No samples were positive for B. caballi. Sequence comparison using the National Center for Biotechnology Information's basic local alignment search tool identified homologous 18s rRNA sequences with a global geographic spread. The T. equi-derived sequences were evaluated using Bayesian approaches with independent Metropolis-coupled Markov chain Monte Carlo runs. The sequences clustered with those found in Sudan, Croatia, Mongolia, and the US, with statistical support greater than 80% for the two main clades. Hyalomma tick species were found on both donkeys and Grevy's zebras, whereas Rhipicephalus pulchellus was found exclusively on Grevy's zebras and Hyalomma marginatum rupfipes on donkeys. The prevalence of T. equi was 100% in Grevy's zebras and 72% in donkeys with common tick vectors identified. Our results suggest that donkeys and Grevy's zebras can be asymptomatic carriers and that piroplasmosis is endemic in the study area.

  7. Inhibition of the in vitro growth of Babesia bigemina, Babesia caballi and Theileria equi parasites by trifluralin analogues.

    PubMed

    G Silva, Marta; Knowles, Donald P; Antunes, Sandra; Domingos, Ana; Esteves, Maria A; Suarez, Carlos E

    2017-06-01

    Bovine and equine babesiosis caused by Babesia bovis, Babesia bigemina and Babesia caballi, along with equine theileriosis caused by Theileria equi are global tick-borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the hosts for life. Antiprotozoal drugs are important for managing infection and disease. Previous research demonstrated that trifluralin analogues, designated (TFLAs) 1-15, which specifically bind to regions of alpha-tubulin protein in plants and protozoan parasites, have the ability to inhibit the in vitro growth of B. bovis. The inhibitory activity of TFLAs 1-15 minus TFLA 5 was tested in vitro against cultured B. bigemina, B. caballi and T. equi. The four TFLAs with greatest inhibitory activity were then analyzed for hemolytic activity and toxicity against erythrocytes. All TFLAs tested in the study showed inhibitory effects against the three parasite species. TFLA 2, TFLA 11, TFLA 13 and TFLA 14 were the most effective inhibitors for the three species tested, with estimated IC 50 between 5.1 and 10.1μM at 72h. The drug's solvent (DMSO/ethanol) did not statistically affect the growth of the parasites nor cause hemolysis. Also, TFLA 2, 13 and 14 did not cause statistically significant hemolytic activity on bovine and equine erythrocytes at 15μM, and TFLA 2, 11 and 13 had no detectable toxic effects on bovine and equine erythrocytes at 15μM, suggesting that these drugs do not compromise erythrocyte viability. The demonstrated ability of the trifluralin analogues to inhibit in vitro growth of Babesia spp. and Theileria equi, and their lack of toxic effects on erythrocytes supports further in vivo testing and eventually their development as novel alternatives for the treatment of babesiosis and theileriosis. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.

    PubMed

    Khairy, Heba; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2015-12-01

    Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A.

    PubMed

    Koma, Daisuke; Sakashita, Yuichi; Kubota, Kenzo; Fujii, Yoshihide; Hasumi, Fumihiko; Chung, Seon-Yong; Kubo, Motoki

    2003-07-01

    Two microorganisms (NDKK48 and NDKY76A) that degrade long-chain cyclic alkanes (c-alkanes) were isolated from soil samples. Strains NDKK48 and NDKY76A were identified as Rhodococcus sp. and Gordonia sp., respectively. Both strains used not only normal alkane (n-alkane) but also c-alkane as a sole carbon and energy source, and the strains degraded more than 27% of car engine base oil (1% addition).

  10. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  11. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    PubMed

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  12. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression.

    PubMed

    Jiao, Song; Yu, Huimin; Shen, Zhongyao

    2018-09-25

    To satisfy the urgent demand for promoter engineering that can accurately regulate the metabolic circuits and expression of specific genes in the Rhodococcus microbial platform, a promoter-ribosome binding site (RBS) coupled mini-pool with fine-tuning of different activity levels was successfully established. Transcriptome analyses of R. ruber TH revealed several representative promoters with different activity levels, e.g., Pami, Pcs, Pnh, P50sl36, PcbiM, PgroE and Pniami. β-Galactosidase (LacZ) reporter measurement demonstrated that different gene expression levels could be obtained with these natural promoters combined with an optimal RBS of ami. Further use of these promoters to overexpress the nitrile hydratase (NHase) gene with RBSami in R. ruber THdAdN produced different expression levels consistent with the transcription analyses. The -35 and -10 core elements of different promoters were further analyzed, and the conserved sequences were revealed to be TTGNNN and (T/C)GNNA(A/C)AAT. By mutating the core elements of the strong promoters, Pnh and Pami, into the above consensus sequence, two even stronger promoters, PnhM and PamiM, were obtained with 2.2-fold and 7.7-fold improvements in transcription, respectively. Integrating several strategies, including transcriptome promoter screening, -35 and -10 core element identification, core element point-mutation, RBS optimization and diverse reporter verification, a fine-tuning promoter-RBS combination mini-pool with different activity levels in Rhodococcus strains was successfully established. This development is significant for broad applications of the Rhodococcus genus as a microbial platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Assessment of alkaline cholesterol oxidase purified from Rhodococcus sp. PKPD-CL for its halo tolerance, detergent and organic solvent stability.

    PubMed

    Kasabe, Pramod J; Mali, Geetanjali T; Dandge, Padma B

    2015-12-01

    The novel bacterium, Rhodococcus sp. PKPD-CL was isolated and identified from the 'Chilika Lake' located at Odisha state of India, which is a largest brackish water habitat in Asia. Rhodococcus sp. PKPD-CL produces extracellular halo tolerant, detergent and organic solvent stable alkaline cholesterol oxidase. It has apparent molecular weight of 60 kDa and was purified 59 fold by using 60% saturated ammonium sulfate fractionation, anion exchange followed by size exclusion chromatographic techniques with 37% recovery. It showed substrate specificity for 3β-hydroxysteroids with Km of 1.1 × 10(-4)M for cholesterol. The pH, 8.0 and the temperature, 37 °C were required for its optimum activity. Enzyme is considerably stable at pH 6.0-8.5 and temperature up to 50 °C. At 4 and 30 °C it maintained its 100% activity up to 60 days. The isoelectric point of the enzyme was 9.5. It showed 80% residual activity with 20% NaCl (3.42 M) and 83% relative activity with 12% NaCl (2.05 M) concentration. The metal ions like Zn(2+), Cu(2+), Ag+, Fe(3+), Ba(2+) inhibited the enzyme activity >60% while Hg(2+) served a potent inhibitor whereas Mg(2+) found to be a good enhancer for it. The enzyme was stable in presence of chemical reagents (NaN3, EDTA), detergents (Tween-80, Tween-20, Triton X-100, sodium cholate) and various organic solvents (isopropanol, ethanol, benzene, chloroform, methanol, toluene, ethyl acetate, butanol and dimethylsulfoxide). Such a multi stress tolerant and versatile enzyme produced by Rhodococcus sp. PKPD-CL may serve as a good choice for industrial applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    PubMed

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.

    PubMed

    Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B

    2009-07-01

    This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly.

  16. Cloning and Expression of the Benzoate Dioxygenase Genes from Rhodococcus sp. Strain 19070

    PubMed Central

    Haddad, Sandra; Eby, D. Matthew; Neidle, Ellen L.

    2001-01-01

    The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences. PMID:11375157

  17. Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.

    PubMed Central

    Khairy, Heba; Wübbeler, Jan Hendrik

    2015-01-01

    Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888

  18. Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus.

    PubMed

    Le, Rosemary K; Das, Parthapratim; Mahan, Kristina M; Anderson, Seth A; Wells, Tyrone; Yuan, Joshua S; Ragauskas, Arthur J

    2017-09-29

    Use of oleaginous microorganisms as "micro-factories" for accumulation of single cell oils for biofuel production has increased significantly to mitigate growing energy demands, resulting in efforts to upgrade industrial waste, such as second-generation lignocellulosic residues, into potential feedstocks. Dilute-acid pretreatment (DAP) is commonly used to alter the physicochemical properties of lignocellulosic materials and is typically coupled with simultaneous saccharification and fermentation (SSF) for conversion of sugars into ethanol. The resulting DAP residues are usually processed as a waste stream, e.g. burned for power, but this provides minimal value. Alternatively, these wastes can be utilized as feedstock to generate lipids, which can be converted to biofuel. DAP-SSF residues were generated from pine, poplar, and switchgrass. High performance liquid chromatography revealed less than 0.13% monomeric sugars in the dry residue. Fourier transform infrared spectroscopy was indicative of the presence of lignin and polysaccharides. Gel permeation chromatography suggested the bacterial strains preferred molecules with molecular weight ~ 400-500 g/mol. DAP-SSF residues were used as the sole carbon source for lipid production by Rhodococcus opacus DSM 1069 and PD630 in batch fermentations. Depending on the strain of Rhodococcus employed, 9-11 lipids for PD630 and DSM 1069 were observed, at a final concentration of ~ 15 mg/L fatty acid methyl esters (FAME) detected. Though the DAP-SSF substrate resulted in low FAME titers, novel analysis of solid-state fermentations was investigated, which determined that DAP-SSF residues could be a viable feedstock for lipid generation.

  19. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8.

    PubMed Central

    Li, M Z; Squires, C H; Monticello, D J; Childs, J D

    1996-01-01

    The dsz gene cluster of Rhodococcus erythropolis IGTS8 comprises three genes, dszA, dszB, and dszC, whose products are involved in the conversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl and sulfite. This organism can use DBT as the sole sulfur source but not as a carbon source. Dsz activity is repressed by methionine, cysteine, Casamino Acids, and sulfate but not by DBT or dimethyl sulfoxide. We cloned 385 bp of the DNA immediately 5' to dszA in front of the reporter gene lacZ of Escherichia coli. We showed that this region contains a Rhodococcus promoter and at least three dsz regulatory regions. After hydrazine mutagenesis of this DNA, colonies that were able to express beta-galactosidase in the presence of Casamino Acids were isolated. Sequencing of these mutants revealed two possible regulatory regions. One is at -263 to -244, and the other is at -93 to -38, where -1 is the base preceding the A of the initiation codon ATG of dszA. An S1 nuclease protection assay showed that the start of the dsz promoter is the G at -46 and that transcription is repressed by sulfate and cysteine but not by dimethyl sulfoxide. The promoter encompasses a region of potential diad symmetry that may contain an operator. Immediately upstream of the promoter is a protein-binding domain between -146 and -121. Deletion of this region did not affect repression, but promoter activity appeared to be reduced by threefold. Thus, it could be an activator binding site or an enhancer region. PMID:8932295

  20. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].

    PubMed

    Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira

    2012-01-01

    The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.

  1. Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae

    PubMed Central

    Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370

  2. Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease.

    PubMed

    Decaro, Nicola; Mari, Viviana; Larocca, Vittorio; Losurdo, Michele; Lanave, Gianvito; Lucente, Maria Stella; Corrente, Marialaura; Catella, Cristiana; Bo, Stefano; Elia, Gabriella; Torre, Giorgio; Grandolfo, Erika; Martella, Vito; Buonavoglia, Canio

    2016-08-30

    A molecular survey for traditional and emerging pathogens associated with canine infectious respiratory disease (CIRD) was conducted in Italy between 2011 and 2013 on a total of 138 dogs, including 78 early acute clinically ill CIRD animals, 22 non-clinical but exposed to clinically ill CIRD dogs and 38 CIRD convalescent dogs. The results showed that canine parainfluenza virus (CPIV) was the most commonly detected CIRD pathogen, followed by canine respiratory coronavirus (CRCoV), Bordetella bronchiseptica, Mycoplasma cynos, Mycoplasma canis and canine pneumovirus (CnPnV). Some classical CIRD agents, such as canine adenoviruses, canine distemper virus and canid herpesvirus 1, were not detected at all, as were not other emerging respiratory viruses (canine influenza virus, canine hepacivirus) and bacteria (Streptococcus equi subsp. zooepidemicus). Most severe forms of respiratory disease were observed in the presence of CPIV, CRCoV and M. cynos alone or in combination with other pathogens, whereas single CnPnV or M. canis infections were detected in dogs with no or very mild respiratory signs. Interestingly, only the association of M. cynos (alone or in combination with either CRCoV or M. canis) with severe clinical forms was statistically significant. The study, while confirming CPIV as the main responsible for CIRD occurrence, highlights the increasing role of recently discovered viruses, such as CRCoV and CnPnV, for which effective vaccines are not available in the market. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Prince, Roger C.; Grossman, Matthew J.

    2003-01-01

    The range of sulfur compounds in fuel oil and the substrate range and preference of the biocatalytic system determine the maximum extent to which sulfur can be removed by biodesulfurization. We show that the biodesulfurization apparatus in Rhodococcus sp. strain ECRD-1 is able to attack all isomers of dibenzothiophene including those with at least four pendant carbons, with a slight preference for those substituted in the α-position. With somewhat less avidity, this apparatus is also able to attack substituted benzothiophenes with between two and seven pendant carbons. Some compounds containing sulfidic sulfur are also susceptible to desulfurization, although we have not yet been able to determine their molecular identities. PMID:14532032

  4. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  5. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE PAGES

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...

    2017-06-29

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  6. Horses infected by Piroplasms different from Babesia caballi and Theileria equi: species identification and risk factors analysis in Italy.

    PubMed

    Zanet, Stefania; Bassano, Marina; Trisciuoglio, Anna; Taricco, Ivo; Ferroglio, Ezio

    2017-03-15

    Equine Piroplasmosis (EP) caused by Theileria equi and Babesia caballi is a disease affecting the health and the international movement of horses. In order to assess prevalence of Piroplasmid infection in the Northwestern part of Italy and to evaluate the associated risk factors, whole blood was collected from 135 horses from 7 different stables across the study area. PCR and sequencing were used to assess prevalence of infection and to identify detected Piroplasms to species level. A total of 23 horses (P=17.04%; CI95%: 10.70-23.38%) was found to be infected with Piroplasms and T. equi was the most prevalent species, found in 18 animals (P=13.33%; CI95%: 7.60%-19.07%). Although B. caballi was never detected, the presence of parasites belonging to the genus Babesia was confirmed by sequencing in 5 horses, 3 of which were infected with B. canis (P=2.22%; CI95% 0.76%-6.33%), and 2 with B. capreoli (P=1.48%; CI95% 0.41%-5.24%). The natural reservoir hosts of B. canis and B. capreoli are the domestic dog and roe deer Capreolus capreolus respectively. These findings pose attention to the need of considering in future epidemiological and clinical studies, other Apicomplexan species as able to infect horses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Aromatic Compounds on Cellular Fatty Acid Composition of Rhodococcus opacus

    PubMed Central

    Tsitko, Irina V.; Zaitsev, Gennadi M.; Lobanok, Anatoli G.; Salkinoja-Salonen, Mirja S.

    1999-01-01

    In cells of Rhodococcus opacus GM-14, GM-29, and 1CP, the contents of branched (10-methyl) fatty acids increased from 3% to 15 to 34% of the total fatty acids when the cells were grown on benzene, phenol, 4-chlorophenol, chlorobenzene, or toluene as the sole source of carbon and energy, in comparison with cells grown on fructose. In addition, the content of trans-hexadecenoic acid increased from 5% to 8 to 18% with phenol or chlorophenol as the carbon source. The 10-methyl branched fatty acid content of R. opacus GM-14 cells increased in a dose-related manner following exposure to phenol or toluene when toluene was not utilized as the growth substrate. The results suggest that 10-methyl branched fatty acids may participate in the adaptation of R. opacus to lipophilic aromatic compounds. PMID:9925629

  8. Tetramethylpyrazine-Inducible Promoter Region from Rhodococcus jostii TMP1.

    PubMed

    Stanislauskienė, Rūta; Kutanovas, Simonas; Kalinienė, Laura; Bratchikov, Maksim; Meškys, Rolandas

    2018-06-25

    An inducible promoter region, P TTMP (tetramethylpyrazine [TTMP]), has been identified upstream of the tpdABC operon, which contains the genes required for the initial degradation of 2,3,5,6-tetramethylpyrazine in Rhodococcus jostii TMP1 bacteria. In this work, the promoter region was fused with the gene for the enhanced green fluorescent protein (EGFP) to investigate the activity of P TTMP by measuring the fluorescence of bacteria. The highest promoter activity was observed when bacteria were grown in a nutrient broth (NB) medium supplemented with 5 mM 2,3,5,6-tetramethylpyrazine for 48 h. Using a primer extension reaction, two transcriptional start sites for tpdA were identified, and the putative −35 and −10 promoter motifs were determined. The minimal promoter along with two 15 bp long direct repeats and two 7 bp inverted sequences were identified. Also, the influence of the promoter elements on the activity of P TTMP were determined using site-directed mutagenesis. Furthermore, P TTMP was shown to be induced by pyrazine derivatives containing methyl groups in the 2- and 5-positions of the heterocyclic ring, in the presence of the LuxR family transcriptional activator TpdR.

  9. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives.

    PubMed

    Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara

    2016-10-01

    Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.

  10. Members of the Genera Paenibacillus and Rhodococcus Harbor Genes Homologous to Enterococcal Glycopeptide Resistance Genes vanA and vanB

    PubMed Central

    Guardabassi, L.; Christensen, H.; Hasman, H.; Dalsgaard, A.

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative d-Ala:d-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons. PMID:15561881

  11. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB.

    PubMed

    Guardabassi, L; Christensen, H; Hasman, H; Dalsgaard, A

    2004-12-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.

  12. Production of single cell protein from agro-waste using Rhodococcus opacus.

    PubMed

    Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J

    2018-06-18

    Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.

  13. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Henson, William R.; Moon, Tae Seok

    2017-07-26

    Rhodococcus opacus PD630 is a non-model, gram positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: 1) six fluorescent reporters for quantifying promoter output, 2) three chemically inducible promoters for variable gene expression, and 3) two classes of metabolite sensors derived from native R.more » opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.« less

  14. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.

    PubMed

    DeLorenzo, Drew M; Henson, William R; Moon, Tae Seok

    2017-10-20

    Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.

  15. Biodegradation kinetics of picric acid by Rhodococcus sp.NJUST16 in batch reactors.

    PubMed

    Shen, Jinyou; He, Rui; Wang, Lianjun; Zhang, Jianfa; Zuo, Yi; Li, Yanchun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing

    2009-08-15

    Biological degradation of 2,4,6-trinitrophenol (TNP) by Rhodococcus sp.NJUST16 in mineral salt medium was investigated in shake-flask experiments at pH of 7.0 and 30 degrees C, over a wide range of initial TNP concentration (20-800 mgl(-1)). The TNP was observed to be the inhibitory compound. For the studied concentration range, Haldane's model could be fitted to the growth kinetics data well with the kinetic constants mu(max)=0.2362 h(-1), K(s)=9.9131 mgl(-1) and K(i)=362.7411 mgl(-1). Further, the variation of observed yield coefficient Y with initial TNP concentration and the decay coefficient were investigated. It is our view that the above information would be useful for modeling and designing the units treating TNP-containing wastewaters.

  16. Characterization of SeseC_01411 as a surface protective antigen of Streptococcus equi ssp. zooepidemicus.

    PubMed

    Xie, Honglin; Wei, Zigong; Ma, Chunquan; Li, Shun; Liu, Xiaohong; Fu, Qiang

    2018-06-01

    Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is a commensal bacterium related to opportunistic infections of many species, including humans, dogs, cats, and pigs. SeseC_01411 has been proven to be immunogenic. However, its protective efficacy remained to be evaluated. In the present study, the purified recombinant SeseC_01411 could elicit a strong humoral antibody response and protect against lethal challenge with virulent SEZ in mice. Our finding confirmed that SeseC_01411 distributes on the surface of SEZ. In addition, the hyperimmune sera against SeseC_01411 could efficiently kill the bacteria in the phagocytosis test. The present study identified the immunogenic protein, SeseC_01411, as a novel surface protective antigen of SEZ. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253.

    PubMed

    Cornelison, Christopher T; Keel, M Kevin; Gabriel, Kyle T; Barlament, Courtney K; Tucker, Trudy A; Pierce, George E; Crow, Sidney A

    2014-09-26

    The recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity. Conidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia. The identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen.

  18. Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhen; Zeng, Guangming; Kosa, Matyas

    2014-11-07

    Light oil from pyrolysis, which accounts for ~10 % carbon yield of the starting biomass, is a complex aqueous product that is difficult to utilize and usually discarded. This work presents the feasibility of light oil as a sole carbon source to support the growth of Rhodococcus opacus (R. opacus) that in turn accumulate triacylglycerols as biodiesel feedstock. Two types of bacteria (R. opacus PD630 and DSM 1069) were selected in this study. Research results showed that after short adaption periods both strains can grow well on this complex carbon source, as proved by the consumption of oligomers and monomersmore » in light oil. Lipid content by R. opacus PD630 and DSM 1069 was observed up to 25.8 % and 22.0 % of cell dry weight, respectively. Palmitic and stearic acids were found to be the predominant fatty acids in these bacterial cells. In addition, the light oil-based lipid production can be enhanced by reducing the pH value from 7 to 4, especially in case of DSM 1069.« less

  19. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Spatial distribution, risk factors and haemato-biochemical alterations associated with Theileria equi infected equids of Punjab (India) diagnosed by indirect ELISA and nested PCR.

    PubMed

    Sumbria, Deepak; Singla, L D; Kumar, Sanjay; Sharma, Amrita; Dahiya, Rajesh K; Setia, Raj

    2016-03-01

    Equine piroplasmosis is a febrile, tick-borne disease of equids predominately caused by obligatory intra-erythrocytic protozoa Theileria equi in the Indian sub-continent. A cross-sectional study was carried out on 464 equids (426 horses and 38 donkeys/mules) in Punjab, India to assess the level of exposure to equine piroplasmosis by 18S rRNA gene nested polymerase chain reaction (nPCR) and equine merozoite antigen-2 (EMA2) indirect-ELISA (enzyme linked immunosorbent assay), to investigate risk factors and haemato-biochemical alterations associated with the infection. The endemicity of the disease was confirmed by positive PCR amplification in 21.77% and positive antibody titers in 49.78% equid samples. There was a fair agreement between these two diagnostic techniques (Kappa coefficient=0.326). The spatial distribution analysis revealed an increasing trend of T. equi prevalence from north-eastern to south-western region of Punjab by both the techniques correspondingly, which proffered a direct relation with temperature and inverse with humidity variables. The relatively prominent risk factor associated with sero-positivity was the presence of other domestic animals in the herd, while the propensity of finding a positive PCR amplification was higher in donkeys/mules, animal kept at unorganised farm or those used for commercial purposes as compared to their counterparts. There was a significant increase in globulins, gamma glutamyl-transferase, total bilirubin, direct bilirubin, indirect bilirubin, glucose levels and decrease in total erythrocyte count, haemoglobin, packed cell volume by animals, which were revealed positive by nPCR (may or may not positive by indirect-ELISA) and increase in creatinine, total bilirubin, direct bilirubin, glucose and decrease in total erythrocytes count by animals, which were revealed positive by indirect-ELISA (alone). To our knowledge, this study, for the first time, brings out a comprehensive report on the status on spatial

  1. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid.

    PubMed

    Lee, M; Kim, M K; Singleton, I; Goodfellow, M; Lee, S-T

    2006-02-01

    The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.

  2. Novel Kombucha Beverage from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, with Antibacterial and Antioxidant Effects.

    PubMed

    Sknepnek, Aleksandra; Pantić, Milena; Matijašević, Danka; Miletić, Dunja; Lević, Steva; Nedović, Viktor; Niksic, Miomir

    2018-01-01

    Kombucha is a nonalcoholic beverage traditionally made by fermenting black tea using a combination of yeast and acetic acid bacteria (AAB) cultures. Ganoderma lucidum hot water extract (HWE) was used-to our knowledge for the first time-to prepare a novel, health-promoting kombucha product. During the 11-day fermentation, pH, total acidity, and the numbers of yeasts and AAB were monitored. It was found that sweetened G. lucidum HWE was a good medium for yeast and AAB growth. The desired acidity for the beverage was reached on the second day (3 g/L) of the fermentation process; the maximum established acidity was 22.8 ± 0.42 g/L. Fourier transform infrared analysis revealed that the vacuum-dried beverage is a mixture of various compounds such as polysaccharides, phenols, proteins, and lipids. Total phenolic content of the liquid sample was 4.91 ± 0.2338 mg gallic acid equivalents/g, whereas the vacuum-dried sample had a smaller amount of phenolics (2.107 ± 0.228 mg gallic acid equivalents/g). Established half-maximal effective concentrations for DPPH scavenging activity and reducing power were 22.8 ± 0.17 and 10.61 ± 0.34 mg/mL, respectively. The antibacterial testing revealed that activity does not originate solely from synthesized acetic acid. The liquid G. lucidum beverage was the most effective against the tested bacteria, with the lowest minimum inhibitory concentration (0.04 mg/mL) against Staphylococcus epidermidis and Rhodococcus equi, and a minimum bactericidal concentration (0.16 mg/mL) against Bacillus spizizenii, B. cereus, and R. equi. The vacuum-dried sample was less effective, with the lowest minimum bactericidal concentration against the Gram-positive bacteria R. equi (1.875 mg/mL) and against the Gram-negative bacteria Proteus hauseri (30 mg/mL).

  3. Heterologous Expression of Bacterial Epoxyalkane:Coenzyme M Transferase and Inducible Coenzyme M Biosynthesis in Xanthobacter Strain Py2 and Rhodococcus rhodochrous B276

    PubMed Central

    Krum, Jonathan G.; Ensign, Scott A.

    2000-01-01

    Coenzyme M (CoM) (2-mercaptoethanesulfonic acid) biosynthesis is shown to be coordinately regulated with the expression of the enzymes of alkene and epoxide metabolism in the propylene-oxidizing bacteria Xanthobacter strain Py2 and Rhodococcus rhodochrous strain B276. These results provide the first evidence for the involvement of CoM in propylene metabolism by R. rhodochrous and demonstrate for the first time the inducible nature of eubacterial CoM biosynthesis. PMID:10762269

  4. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents

    PubMed Central

    Stancu, Mihaela Marilena

    2015-01-01

    Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  5. Comparison of equi-minimum alveolar concentration of sevoflurane and isoflurane on bispectral index values during both wash in and wash out phases: A prospective randomised study

    PubMed Central

    Gupta, Madhu; Shri, Iti; Sakia, Prashant; Govil, Deepika

    2015-01-01

    Background and Aims: At equal minimum alveolar concentration (MAC), volatile agents may produce different bispectral index (BIS) values especially at low BIS levels when the effect is volatile agent specific. The present study was performed to compare the BIS values produced by sevoflurane and isoflurane at equal MAC and thereby assessing which is a better hypnotic agent. Methods: Sixty American Society of Anaesthesiologists I and II patients undergoing elective mastoidectomy were divided into groups receiving either isoflurane or sevoflurane, and at equi-MAC. BIS value was measured during both wash in and wash out phase, keeping other parameters same. Statistical analysis was performed using the Friedman two-way analysis and Mann-Whitney U-test. A P < 0.05 was considered significant. Results: BIS value was significantly lower with sevoflurane at all MAC values as compared to isoflurane, except in the beginning and at MAC awake. However, both the drugs proved to be cardiostable. Conclusion: At equi-MAC sevoflurane produces lower BIS values during wash in as well as wash out phase as compared to isoflurane, reflecting probably an agent specific effect and a deficiency in BIS algorithm for certain agents and their interplay. PMID:25788739

  6. Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress.

    PubMed

    Belfiore, Carolina; Curia, María V; Farías, María E

    2017-11-24

    Lithium (Li) is widely distributed in nature and has several industrial applications. The largest reserves of Li (over 85%) are in the so-called "triangle of lithium" that includes the Salar de Atacama in Chile, Salar de Uyuni in Bolivia and Salar del Hombre Muerto in Argentina. Recently, the use of microorganisms in metal recovery such as copper has increased; however, there is little information about the recovery of lithium. The strain Rhodococcus sp. A5 wh used in this work was previously isolated from Laguna Azul. The assays revealed that this strain was able to accumulate Li (39.52% of Li/g microbial cells in 180min) and that it was able to grow in its presence up to 1M. In order to understand the mechanisms implicated in Li tolerance, a proteomic approach was conducted. Comparative proteomic analyses of strain A5 wh exposed and unexposed to Li reveal that 17 spots were differentially expressed. The identification of proteins was performed by MALDI-TOF/MS, and the obtained results showed that proteins involved in stress response, transcription, translations, and metabolism were expressed under Li stress. This knowledge constitutes the first proteomic approach to elucidate the strategy followed by Rhodococcus to adapt to Li. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Characteristics of wettedness and equi-skin temperature line in the evaporative regulation region

    NASA Astrophysics Data System (ADS)

    Mochida, T.

    1983-07-01

    As a result of the analysis of physiological experimental data, the characteristics of the wettedness were clarified, i.e., the value of the wettedness is not constant but differs in accordance with the environmental humidity even when the skin temperature is the same, and it was shown that the evaporative heat loss from the skin surface is inversely proportional to the wetttedness. Based on the properties of the wetedness observed, a new thermal sensation chart in the evaporative regulation region was proposed as an index for evaluating the warmth or the coldness in the environment. The feature of the present chart is that the locus of the equal skin temperature appears as a curved line on the psychrometric chart and that the wettedness on the equi-skin temperature line is not constant but takes varying values. The curved equal skin temperature line means that the influence of the environmental humidity on thermal sensation becomes smaller as the humidity of the environmental humidity on thermal sensation becomes smaller as the humidity of the environment is lowered.

  8. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    PubMed

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    PubMed

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Targeted thrombolysis of tissue plasminogen activator and streptokinase with extracellular biosynthesis nanoparticles using optimized Streptococcus equi supernatant.

    PubMed

    Tadayon, Ateke; Jamshidi, Reza; Esmaeili, Akbar

    2016-03-30

    Extracellular biosynthesis of nanoparticles have many important advantages such as well dispersed in aqueous solutions, low energy requirements, ecofriendly, non-toxic, low-costs and non-flocculate. This technique have shown significant promise as targeted drug delivery applications. In this investigation, for the first time, we examine the efficacy of targeted therapeutic delivery with t-PA and SK immobilized to biosynthesis of nanoparticles (CuNP) by using Streptococcus equi strains isolated from the horses of Iran and their ability to produce metallic nanoparticles. Also we compared them with their chemical synthesis. The S. equi was screened for its ability to produce MNPs. The minimum size and shapes (23-89 nm) are presented in the formation with good dispersion and high stability. Response Surface methodology was applied for the optimized production of biological CuNPs. The growth factors like pH, temperature and incubation time was changed. The optimum conditions to obtain CuNPs were found with the culture conditions of pH 7.5 in 120 h at 35 °C. To determine some of MNPs structural properties UV-vis absorption spectrophotometer, FTIR, XRD and SEM has characterized. The results provided some parameters may impact on the formation of biological MNPs. Lastly, these MNPs were conjugated with t-PA and SK, as a drug carrier. In addition, effective thrombolysis with magnet-guided SiO2CuNPs-tPA-SK is demonstrated in rat embolism model where 18.6% of the regular t-PA dose and 15.78% of SK dose restored and 15-25 min reductions in blood clot lysis time were observed compared with runs with free t-PA and without magnet-guided and using the same drug dosage. The comparison between CuNPs with MNPs shows that thrombolysis had not been directed to the type of magnetic carrier under the magnetic guide. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lag phase and biomass determination of Rhodococcus pyridinivorans GM3 for degradation of phenol

    NASA Astrophysics Data System (ADS)

    Al-Defiery, M. E. J.; Reddy, G.

    2018-05-01

    Among various techniques available for removal of phenol, biodegradation is an eco-friendly and cost effective method. Thus, it is required to understand the process of biodegradation of phenol, such as investigate on lag phase and biomass concentration. Phenol degrading bacteria were isolated from soil samples of industrial sites in enriched mineral salts medium (MSM) with phenol as a sole source of energy and carbon. One isolate of potential phenol degradation from consortium for phenol degrading studies was identified as Rhodococcus pyridinivorans GM3. Lag phase and biomass determination of R. pyridinivorans GM3 was studied with different phenol concentrations under pH 8.5 at temperature 32 Co and 200 rpm. Microbial biomass was directly proportional to increasing phenol concentration between 1.0 to 2.0 g/L with a maximum dry biomass of 1.745 g/L was noted after complete degradation of 2.0 g/L phenol in 48 hours.

  12. Degradation of Chloronitrobenzenes by a Coculture of Pseudomonas putida and a Rhodococcus sp.

    PubMed Central

    Park, Hee-Sung; Lim, Sung-Jin; Chang, Young Keun; Livingston, Andrew G.; Kim, Hak-Sung

    1999-01-01

    A single microorganism able to mineralize chloronitrobenzenes (CNBs) has not been reported, and degradation of CNBs by coculture of two microbial strains was attempted. Pseudomonas putida HS12 was first isolated by analogue enrichment culture using nitrobenzene (NB) as the substrate, and this strain was observed to possess a partial reductive pathway for the degradation of NB. From high-performance liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance analyses, NB-grown cells of P. putida HS12 were found to convert 3- and 4-CNBs to the corresponding 5- and 4-chloro-2-hydroxyacetanilides, respectively, by partial reduction and subsequent acetylation. For the degradation of CNBs, Rhodococcus sp. strain HS51, which degrades 4- and 5-chloro-2-hydroxyacetanilides, was isolated and combined with P. putida HS12 to give a coculture. This coculture was confirmed to mineralize 3- and 4-CNBs in the presence of an additional carbon source. A degradation pathway for 3- and 4-CNBs by the two isolated strains was also proposed. PMID:10049867

  13. Hyperproduction of sebaceous cis-6-hexadecenoic acid by esterase-reduced mutant of Rhodococcus sp. strain.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Kotani, Nobuharu; Tsujino, Yukiharu; Koike, Kenzo; Kawai, Shuji; Ozaki, Katsuya; Ito, Susumu

    2007-10-01

    cis-6-Hexadecenoic acid is a major component of human sebaceous lipids that is involved in skin self-sterilization and atopic dermatitis amelioration. It can be prepared by hydrolysis of isopropyl cis-6-hexadecenoate produced by resting cells of Rhodococcus sp. strain KSM-MT66. To devise an economical industrial-scale process for the production of this rare fatty acid, we optimized the conditions for growing rhodococcal cells. Mg(2+) and Fe(2+) ions are essential for the efficient production of isopropyl cis-6-hexadecenoate. To further increase the production of isopropyl cis-6-hexadecenoate, we created a mutant strain (T64) with reduced esterase activity by random mutagenesis using UV irradiation of MT66. Under an optimized condition, the mutant T64 produced more than 60 g l(-1) isopropyl cis-6-hexadecenoate in a 4-d cultivation, corresponding to about 52 g l(-1)cis-6-hexadecenoate.

  14. Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl Degrader Rhodococcus sp. Strain RHA1

    PubMed Central

    Kitagawa, Wataru; Miyauchi, Keisuke; Masai, Eiji; Fukuda, Masao

    2001-01-01

    Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC. PMID:11673430

  15. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  16. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.

    PubMed

    Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng

    2012-03-14

    A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.

  17. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1.

    PubMed

    Atago, Yuki; Shimodaira, Jun; Araki, Naoto; Bin Othman, Nor'azizi; Zakaria, Zuriati; Fukuda, Masao; Futami, Junichiro; Hara, Hirofumi

    2016-05-01

    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.

  18. Serum antibodies from a subset of horses positive for babesia caballi by competitive enzyme-linked immunosorbent assay demonstrate a protein recognition pattern that is not consistent with infection

    USDA-ARS?s Scientific Manuscript database

    Tick-borne pathogens that cause persistent infection are of major concern to the livestock industry because of transmission risk from persistently infected animals and the potential economic losses they pose. The recent re-emergence of Theileria equi in the U.S. prompted widespread national surveill...

  19. Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425▿

    PubMed Central

    Fournier, Diane; Hawari, Jalal; Halasz, Annamaria; Streger, Sheryl H.; McClay, Kevin R.; Masuda, Hisako; Hatzinger, Paul B.

    2009-01-01

    The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation. PMID:19542346

  20. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  1. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources

    PubMed Central

    Presentato, Alessandro; Cappelletti, Martina; Sansone, Anna; Ferreri, Carla; Piacenza, Elena; Demeter, Marc A.; Crognale, Silvia; Petruccioli, Maurizio; Milazzo, Giorgio; Fedi, Stefano; Steinbüchel, Alexander; Turner, Raymond J.; Zannoni, Davide

    2018-01-01

    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first

  2. Vehicle Charging on the 29.036 and 29.037 Rockets of the EQUIS II Campaign.

    NASA Astrophysics Data System (ADS)

    Barjatya, A.; Swenson, C.; Fish, C.; Hummel, A.; Hysell, D.

    2004-12-01

    The rocket investigation "Scattering Layer in the Bottomside Equatorial F-region Ionosphere", was part of the NASA EQUIS II campaign. Two salvos of sounding rockets were launched from Roi Namur in Kwajalein on August 7th and 15th of 2004. The project's mission was to investigate the thin scattering layers in the post sunset equatorial F region ionosphere that act as precursors to a fully developed equatorial spread F. Each of the salvos consisted of one instrumented and two chemical release payloads. The instrumented rockets were launched westward into equatorial spread F precursor that was first observed from ground using the Altair radar. The instrumented rockets reached an apogee of ~450 km. The instruments consisted of a Sweeping Langmuir Probe (SLP), a fixed bias DC Probe (DCP), a Plasma Impedance Probe consisting of a Plasma Frequency Probe and a Plasma Sweeping Probe built at Utah State University. The instrument suite also included an Electric Field Probe built by Penn State University. This poster presents observations of vehicle charging and preliminary data from the SLP and DCP.

  3. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    PubMed

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dependence of Actuation Strain of Dielectric Elastomer on Equi-biaxial, Pure Shear and Uniaxial Modes of Pre-stretching

    NASA Astrophysics Data System (ADS)

    Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali

    2018-02-01

    A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.

  5. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    PubMed

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-09-15

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC 50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  6. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.

    PubMed

    Inoue, Daisuke; Tsunoda, Tsubasa; Yamamoto, Norifumi; Ike, Michihiko; Sei, Kazunari

    2018-06-01

    Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.

  7. Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628

    NASA Astrophysics Data System (ADS)

    Egorova, D. O.; Farafonova, V. V.; Shestakova, E. A.; Andreyev, D. N.; Maksimov, A. S.; Vasyanin, A. N.; Buzmakov, S. A.; Plotnikova, E. G.

    2017-10-01

    The concentration of dichlorodiphenyltrichloroethane (DDT) was determined in a sandy soil of specially Protected Natural Area Osinskaya Lesnaya Dacha (Perm region) 45 years after the last application of the insecticide in this area. The concentration of DDT in the soil exceeded the maximum permissible concentration by 250 times and reached 25.05 mg/kg of soil. Under the conditions of model experiment, efficient decontamination of the soil was recorded in the system with the introduced strain Rhodococcus wratislaviensis Ch628; the DDT concentration decreased by 99.7% and equaled 0.07 mg/kg. The process of DDT degradation proceeded slower in the model soil system with autochthonous microbial complex. In this case, 58.2% DDT degraded in 70 days, and the final concentration was 10.47 mg/kg. The soil lost its toxicity for animal and plant test objects by the end of the experiment only in the model system containing the R. wratislaviensis Ch628 strain.

  8. The horse pinworm (Oxyuris equi) in archaeology during the Holocene: Review of past records and new data.

    PubMed

    Dufour, Benjamin; Hugot, Jean-Pierre; Lepetz, Sébastien; Le Bailly, Matthieu

    2015-07-01

    This paper focuses on the horse pinworm, Oxyuris equi, in archaeology during the Holocene period, and presents an overview of past published occurrences, early mentions in texts, and new data from our paleoparasitology research. This original compilation shows that the most ancient record of the horse pinworm dates to ca. 2500 years before present (ybp) in Central Asia and to ca. 2020 ybp in Western Europe. It also shows that the parasite is not detected on the American continent until contemporary periods. The role of European migrations from 1492 (Christopher Columbus) is discussed to explain the transfer of the horse pinworm from the Old World to the Americas. The absence of any record of this parasite before ca. 2500 ybp in Eurasia could be explained by parasite ecology, unfavorable sampling and scarcity of horse archeological remains. For the Americas, the absence of horse for long periods can be an additional explanation for the absence of the parasite. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Production of isopropyl cis-6-hexadecenoate by regiospecific desaturation of isopropyl palmitate by a double mutant of a Rhodococcus strain.

    PubMed

    Koike, K; Takaiwa, M; Ara, K; Inoue, S; Kimura, Y; Ito, S

    2000-02-01

    Resting cells of a double mutant noted as KSM-MT66, derived from Rhodococcus sp. strain KSM-B-3 by UV irradiation, were found to cis-desaturate isopropyl hexadecanoate, yielding isopropyl cis-6-hexadecenoate. Addition of sodium glutamate (1.0%), Mg SO4 (2 mM), and thiamine (2 mM) increased the productivity of the unsaturated product in phosphate buffer. Optimal temperature and pH for the reaction were around 26 degrees C and 7, respectively. Under the optimized conditions, more than 50 g/l of isopropyl cis-6-hexadecenoate was produced after a 3-day incubation by resting cells of the mutant. Thus, cis-6-hexadecenoic acid, the main component of human sebaceous lipids, can be manufactured economically by the rhodococcal bioconversion.

  10. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.

    PubMed

    Lavrov, K V; Zalunin, I A; Kotlova, E K; Yanenko, A S

    2010-08-01

    A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4'-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7-8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K(m)) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

  11. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2015-01-01

    In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Acarologic risk of exposure to emerging tick-borne bacterial pathogens in a semirural community in northern California.

    PubMed

    Lane, R S; Foley, J E; Eisen, L; Lennette, E T; Peot, M A

    2001-01-01

    An acarologic study was conducted in a semirural community in northern California to determine the relative abundance of, and the prevalence of infection with, three emerging bacterial pathogens in the western black-legged tick (Ixodes pacificus). These included the agents causing Lyme disease (Borrelia burgdorferi), human granulocytic ehrlichiosis [Ehrlichia phagocytophila (formerly Ehrlichia equi)], and human monocytic ehrlichiosis (Ehrlichia chaffeensis). The study area in Sonoma County consisted of two properties each with four residents and an uninhabited adjacent comparison area. Six of the eight residents had been either physician-diagnosed or serodiagnosed previously with Lyme disease, and, of these, one also had been serodiagnosed with human monocytic ehrlichiosis. Direct immunofluorescent/culture assays and bacterial species-specific polymerase chain reaction assays were used to test whole ticks individually for presence of B. burgdorferi and Ehrlichia spp., respectively. Overall, 6.5% of the nymphal (n = 589) and 1.6% of the adult ticks (n = 318) from the same generational cohort were found to contain B. burgdorferi. In contrast, none of 465 nymphs and 9.9% of 202 adults were infected with E. phagocytophila. Excised tissues from another 95 adult ticks yielded a comparable E. phagocytophila infection prevalence of 13.7%. E. chaffeensis was not detected in either nymphal or adult ticks. Using a combination of culture and polymerase chain reaction assays, coinfection of I. pacificus adults with B. burgdorferi and E. phagocytophila was demonstrated for the first time. The marked disparity in the infection prevalence of these pathogens in nymphal and adult ticks suggests that their maintenance cycles are inherently different.

  14. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    PubMed

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  15. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    PubMed

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  16. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.

    PubMed

    Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui

    2009-04-30

    A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.

  17. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium.

    PubMed

    Vaneechoutte, M; Riegel, P; de Briel, D; Monteil, H; Verschraegen, G; De Rouck, A; Claeys, G

    1995-10-01

    The 16S rRNA genes (rDNA) of 50 strains belonging to 26 different coryneform bacterial species and genomospecies and of the type strain of Rhodococcus equi were enzymatically amplified. Amplified rDNA restriction analysis (ARDRA) with the enzymes AluI, CfoI and RsaI was carried out. The combination of the ARDRA patterns obtained after restriction with these three different enzymes enabled the differentiation between the following species: Corynebacterium accolens (number of strains = 2), C. afermentans subsp. afermentans (2), C. afermentans subsp. lipophilum (2), C. amycolatum (3), CDC coryneform group ANF-1-like (1), CDC coryneform group ANF-3-like (1), C. cystitidis (1), C. diphtheriae (4), C. jeikeium (3), C. macginleyi (2), C. minutissimum (1), C. pilosum (1), C. pseudotuberculosis (2), C. renale (2), C. striatum (2), C. urealyticum (3), C. xerosis (1), CDC coryneform groups B-1 (2), B-3 (2), F-1, genomospecies 1 and 2 (6), G, genomospecies 1 (1) and G, genomospecies 2 (2). The following strains or species could not be differentiated from each other: C. pseudodiphtheriticum (2) from C. propinquum (former CDC coryneform group ANF-3) (2), CDC coryneform group F-1, genomospecies 1 (4) from genomospecies 2 (2) and C. jeikeium genomospecies A (1) from genomospecies C (2). ARDRA may represent a possible alternative for identification of coryneforms, since this technique enabled the identification of most coryneforms tested and since DNA extraction (i.e. cell lysis by boiling), amplification, restriction and electrophoresis can be carried out within 8 hours. This might allow quick identification of C. diphtheriae and other possible pathogens of the genus Corynebacterium.

  18. Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains

    PubMed Central

    Hetzler, Stephan; Bröker, Daniel

    2013-01-01

    The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step. PMID:23793636

  19. Transformation of Rhodococcus fascians by High-Voltage Electroporation and Development of R. fascians Cloning Vectors

    PubMed Central

    Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van

    1990-01-01

    The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290

  20. Bromate Reduction by Rhodococcus sp. Br-6 in the Presence of Multiple Redox Mediators.

    PubMed

    Tamai, Naoko; Ishii, Takahiro; Sato, Yusuke; Fujiya, Hiroko; Muramatsu, Yasuyuki; Okabe, Nobuaki; Amachi, Seigo

    2016-10-04

    A bromate (BrO 3 - )-reducing bacterium, designated Rhodococcus sp. strain Br-6, was isolated from soil. The strain reduced 250 μM bromate completely within 4 days under growth conditions transitioning from aerobic to anaerobic conditions, while no reduction was observed under aerobic and anaerobic growth conditions. Bromate was reduced to bromide (Br - ) stoichiometrically, and acetate was required as an electron donor. Interestingly, bromate reduction by strain Br-6 was significantly dependent on both ferric iron and a redox dye 2,6-dichloroindophenol (DCIP). Cell free extract of strain Br-6 showed a dicumarol-sensitive diaphorase activity, which catalyzes the reduction of DCIP in the presence of NADH. Following abiotic experiments showed that the reduced form of DCIP was reoxidized by ferric iron, and that the resulting ferrous iron reduced bromate abiotically. Furthermore, activity staining of the cell free extract revealed that one of diaphorase isoforms possessed a bromate-reducing activity. Our results demonstrate that strain Br-6 utilizes multiple redox mediators, that is, DCIP and ferric iron, for bromate reduction. Since the apparent rate of bromate reduction by this strain (60 μM day -1 ) was 3 orders of magnitude higher than that of known bromate-reducing bacteria, it could be applicable to removal of this probable human carcinogen from drinking water.

  1. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster.

    PubMed

    Kasuga, Kano; Sasaki, Akira; Matsuo, Takashi; Yamamoto, Chika; Minato, Yuiko; Kuwahara, Naoya; Fujii, Chikako; Kobayashi, Masayuki; Agematu, Hitosi; Tamura, Tomohiro; Komatsu, Mamoru; Ishikawa, Jun; Ikeda, Haruo; Kojima, Ikuo

    2017-05-01

    Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.

  2. Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis

    PubMed Central

    Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim

    1999-01-01

    Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345

  3. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.

    PubMed

    Zhang, Ke; Liu, Yihao; Chen, Qiang; Luo, Hongbing; Zhu, Zhanyuan; Chen, Wei; Chen, Jia; Mo, You

    2018-04-01

    Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway. Accordingly, Phthalate 3,4-dioxygenase genes (phtA) responsible for PA degradation were successfully detected in Arthrobacter sp. SLG-4 by real-time quantitative PCR (q-PCR). q-PCR analysis demonstrated that the quantity of phthalate 3,4-dioxygenase was positively correlated to DOP degradation in SBRs. Bioaugmentation by inoculating DOP-degrading bacteria effectively shortened the start-up of SBRs and significantly enhanced DOP degradation in bioreactors. More than 91% of DOP (500 mg L -1 ) was removed in SBR bioaugmented with bacterial consortium, which was double of the control SBR. This study suggests bioaugmentation is an effective and feasible technique for DOP bioremediation in practical engineering.

  4. A clonal outbreak of acute fatal hemorrhagic pneumonia in intensively housed (shelter) dogs caused by Streptococcus equi subsp. zooepidemicus.

    PubMed

    Pesavento, P A; Hurley, K F; Bannasch, M J; Artiushin, S; Timoney, J F

    2008-01-01

    An outbreak of acute, fatal, hemorrhagic pneumonia was observed in more than 1,000 mixed breed dogs in a single animal shelter. The Department of Anatomic Pathology at the University of California at Davis School of Veterinary Medicine performed necropsies on dogs that were found moribund in acute respiratory distress or found dead with evidence of nasal bleeding. All dogs had hemothorax and an acute, fibrinosuppurative pneumonia. Large numbers of gram-positive cocci were observed within the lungs of all dogs and within septic thromboemboli of remote organs in about 50% of cases. Bacterial cultures from the dogs and their environment revealed widespread beta-hemolytic Streptococus equi subspecies zooepidemicus (Lancefield Group C). Extensive diagnostic testing failed to reveal the consistent presence of copathogens in individual cases. The clinical, epidemiologic, molecular biologic, and pathologic data indicate that a single clone of S. zooepidemicus was the cause of an acutely fatal respiratory infection in these dogs.

  5. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.

    PubMed

    Lee, Eun-Hee; Cho, Kyung-Suk

    2009-08-15

    It was examined the substrate interactions of benzene (B), tolulene (T), ethylbenzene (E), xylene (X), and methyl tert-butyl ether (M) in binary, ternary, quaternary, and quinary mixtures by Rhodococcus sp. EH831 that could aerobically degrade all of five single components. The specific degradation rates (SDRs) of B, T, E, X, and M were 234, 913, 131, 184 and 139 micromol g-dry cell weight (DCW)(-1)h(-1), respectively. In binary, ternary, quaternary, and quinary mixtures of them, ethylbenzene was the strongest inhibitor for the other substrates, and methyl tert-butyl ether was the weakest inhibitor. Interestingly, no degradation of benzene and methyl tert-butyl ether was found in the coexistence of ethylbenzene. The degradation of benzene followed only after toluene became exhausted when both was present. Ethylbenzene was least inhibited by methyl tert-butyl ether and most inhibited by toluene.

  6. Production and Properties of Bacteriocin-Like Inhibitory Substances from the Swine Pathogen Streptococcus suis Serotype 2

    PubMed Central

    Mélançon, D.; Grenier, D.

    2003-01-01

    Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2. PMID:12902232

  7. An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. Strain RHA1▿

    PubMed Central

    Sharp, Jonathan O.; Sales, Christopher M.; LeBlanc, Justin C.; Liu, Jie; Wood, Thomas K.; Eltis, Lindsay D.; Mohn, William W.; Alvarez-Cohen, Lisa

    2007-01-01

    Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. PMID:17873074

  8. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.

    PubMed

    Khairy, H; Wübbeler, J H; Steinbüchel, A

    2016-12-01

    The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as Nox MI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that Nox MI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active Nox MI2 . Nox MI2 showed a maximum specific activity (V max ) of 3·36 μmol min -1  mg -1 corresponding to a k cat of 2·5 s -1 and an apparent substrate K m of 0·6 mmol l -1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, Nox MI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of Nox MI2 revealed the presence of the cofactor FMN. Based on results obtained, Nox MI2 adds a new physiological substrate and mode of action to OYE members. It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (Nox MI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. Nox MI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor. © 2016 The Society for Applied Microbiology.

  9. Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest.

    PubMed

    Cimini, Donatella; Iacono, Ileana Dello; Carlino, Elisabetta; Finamore, Rosario; Restaino, Odile F; Diana, Paola; Bedini, Emiliano; Schiraldi, Chiara

    2017-12-01

    Glycosaminoglycans, such as hyaluronic acid and chondroitin sulphate, are not only more and more required as main ingredients in cosmeceutical and nutraceutical preparations, but also as active principles in medical devices and pharmaceutical products. However, while biotechnological production of hyaluronic acid is industrially established through fermentation of Streptococcus spp. and recently Bacillus subtilis, biotechnological chondroitin is not yet on the market. A non-hemolytic and hyaluronidase negative S. equi subsp. zooepidemicus mutant strain was engineered in this work by the addition of two E. coli K4 genes, namely kfoA and kfoC, involved in the biosynthesis of chondroitin-like polysaccharide. Chondroitin is the precursor of chondroitin sulphate, a nutraceutical present on the market as anti-arthritic drug, that is lately being studied for its intrinsic bioactivity. In small scale bioreactor batch experiments the production of about 1.46 ± 0.38 g/L hyaluronic acid and 300 ± 28 mg/L of chondroitin with an average molecular weight of 1750 and 25 kDa, respectively, was demonstrated, providing an approach to the concurrent production of both biopolymers in a single fermentation.

  10. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    PubMed Central

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  11. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  12. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    PubMed

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  13. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    PubMed Central

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria. PMID:10217764

  14. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    PubMed

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  15. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  16. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGES

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; ...

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  17. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    PubMed

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  19. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species.

    PubMed

    Hsueh, Po-Ren; Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-07-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥ 2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species

    PubMed Central

    Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-01-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. PMID:24759706

  1. Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.

    2014-12-01

    Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.

  2. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions.

    PubMed

    Presentato, Alessandro; Piacenza, Elena; Anikovskiy, Max; Cappelletti, Martina; Zannoni, Davide; Turner, Raymond J

    2016-12-15

    Tellurite (TeO 3 2- ) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO 3 2- into the less toxic and available form of elemental Tellurium (Te 0 ), producing Te-deposits or Te-nanostructures. The use of TeO 3 2- -reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO 3 2- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically grown BCP1 cells showed high tolerance towards TeO 3 2- with a minimal inhibitory concentration (MIC) of 2800 μg/mL (11.2 mM). TeO 3 2- consumption has been evaluated exposing the BCP1 strain to either 100 or 500 μg/mL of K 2 TeO 3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K 2 TeO 3 (conditioned growth). A complete consumption of TeO 3 2- at 100 μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO 3 2- at 500 μg/mL. However, a greater TeO 3 2- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO 3 2- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 μg/mL of K 2 TeO 3 ) or the growth conditions (unconditioned or conditioned grown cells). Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO 3 2- during its growth under aerobic conditions. Moreover, compared to unconditioned

  3. Defining the ABC of gene essentiality in streptococci.

    PubMed

    Charbonneau, Amelia R L; Forman, Oliver P; Cain, Amy K; Newland, Graham; Robinson, Carl; Boursnell, Mike; Parkhill, Julian; Leigh, James A; Maskell, Duncan J; Waller, Andrew S

    2017-05-31

    Utilising next generation sequencing to interrogate saturated bacterial mutant libraries provides unprecedented information for the assignment of genome-wide gene essentiality. Exposure of saturated mutant libraries to specific conditions and subsequent sequencing can be exploited to uncover gene essentiality relevant to the condition. Here we present a barcoded transposon directed insertion-site sequencing (TraDIS) system to define an essential gene list for Streptococcus equi subsp. equi, the causative agent of strangles in horses, for the first time. The gene essentiality data for this group C Streptococcus was compared to that of group A and B streptococci. Six barcoded variants of pGh9:ISS1 were designed and used to generate mutant libraries containing between 33,000-66,000 unique mutants. TraDIS was performed on DNA extracted from each library and data were analysed separately and as a combined master pool. Gene essentiality determined that 19.5% of the S. equi genome was essential. Gene essentialities were compared to those of group A and group B streptococci, identifying concordances of 90.2% and 89.4%, respectively and an overall concordance of 83.7% between the three species. The use of barcoded pGh9:ISS1 to generate mutant libraries provides a highly useful tool for the assignment of gene function in S. equi and other streptococci. The shared essential gene set of group A, B and C streptococci provides further evidence of the close genetic relationships between these important pathogenic bacteria. Therefore, the ABC of gene essentiality reported here provides a solid foundation towards reporting the functional genome of streptococci.

  4. RETRACTED: Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48.

    PubMed

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-06-15

    An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO₂ substituent) and deamination (release of NH₂ substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC-MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  6. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water.

    PubMed

    Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2017-01-01

    A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.

    PubMed

    Moreno Horn, Marcus; Garbe, Leif-Alexander; Tressl, Roland; Adrian, Lorenz; Görisch, Helmut

    2003-04-01

    Rhodococcus sp. strain DTB (DSM 44534) grows on bis(1-chloro-2-propyl) ether (DDE) as sole source of carbon and energy. The non-chlorinated diisopropyl ether and bis(1-hydroxy-2-propyl) ether, however, did not serve as substrates. In ether degradation experiments with dense cell suspensions, 1-chloro-2-propanol and chloroacetone were formed, which indicated that scission of the ether bond is the first step while dehalogenation of the chlorinated C(3)-compounds occurs at a later stage of the degradation pathway. Inhibition of ether scission by methimazole suggested that the first step in degradation is catalyzed by a flavin-dependent enzyme activity. The non-chlorinated compounds 1,2-propanediol, hydroxyacetone, lactate, pyruvate, 1-propanol, propanal, and propionate also supported growth, which suggested that the intermediates 1,2-propanediol and hydroxyacetone are converted to pyruvate or to propionate, which can be channeled into the citric acid cycle by a number of routes. Total release of chloride and growth-yield experiments with DDE and non-chlorinated C(3)-compounds suggested complete biodegradation of the chlorinated ether.

  8. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    PubMed Central

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  9. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodococcus species AN-22: production, purification, characterization and gene analysis of CatA, CatB and CatC

    PubMed Central

    Matsumura, Eitaro; Sakai, Masashi; Hayashi, Katsuaki; Murakami, Shuichiro; Takenaka, Shinji; Aoki, Kenji

    2005-01-01

    The aniline-assimilating bacterium Rhodococcus sp. AN-22 was found to constitutively synthesize CatB (cis,cis-muconate cycloisomerase) and CatC (muconolactone isomerase) in its cells growing on non-aromatic substrates, in addition to the previously reported CatA (catechol 1,2-dioxygenase). The bacterium maintained the specific activity of the three enzymes at an almost equal level during cultivation on succinate. CatB and CatC were purified to homogeneity and characterized. CatB was a monomer with a molecular mass of 44 kDa. The enzyme was activated by Mn2+, Co2+ and Mg2+. Native CatC was a homo-octamer with a molecular mass of 100 kDa. The enzyme was stable between pH 7.0 and 10.5 and was resistant to heating up to 90 °C. Genes coding for CatA, CatB and CatC were cloned and named catA, catB and catC respectively. The catABC genes were transcribed as one operon. The deduced amino acid sequences of CatA, CatB and CatC showed high identities with those from other Gram-positive micro-organisms. A regulator gene such as catR encoding a regulatory protein was not observed around the cat gene cluster of Rhodococcus sp. AN-22, but a possible relic of catR was found in the upstream region of catA. Reverse transcriptase-PCR and primer extension analyses showed that the transcriptional start site of the cat gene cluster was located 891 bp upstream of the catA initiation codon in the AN-22 strain growing on both aniline and succinate. Based on these data, we concluded that the bacterium constitutively transcribed the catABC genes and translated its mRNA into CatA, CatB and CatC. PMID:16156722

  10. Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants

    PubMed Central

    Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew

    2017-01-01

    Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773

  11. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    PubMed

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  12. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  13. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  14. Pathogen Phytosensing: Plants to Report Plant Pathogens

    PubMed Central

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M. Reza; Stewart, C. Neal

    2008-01-01

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  15. 2-DE Compared with iTRAQ-based Proteomic Analysis of the Functional Regulation of Proteins in Rhodococcus sp. BAP-1 Response to Fluoranthene

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Hongqi; Kong, Dekang

    2018-01-01

    Although the degradation pathways of Polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in many bacteria, the variations in the expression levels of the key functional regulation of proteins during catabolism are still not quantitatively understood. In this study, we compared two proteomic methods, that one is two-dimensional gel electrophoresis (2-DE), a traditional widely used way and the other is isobaric tags for relative and absolute quantization (iTRAQ), an innovative approach, in order to analyze the functional regulation at the protein level in high effective fluoranthene-degrading bacteria named Rhodococcus sp. BAP-1. The number of differentially expressed proteins identified using iTRAQ is much larger than employing 2-DE. Response to fluoranthene, the key over expressed proteins in BAP-1 were NADPH-dependent FMN reductase, 30S ribosomal protein S2, S-ribosylhomocysteinase, etc.; the significant down-regulated proteins were cytochrome ubiquinol oxidase subunit, NAD(P) transhydrogenase subunit alpha, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, et al.

  16. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production

    PubMed Central

    2013-01-01

    Background There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effective bioprocesses to fuels. Rhodococcus opacus PD630, an oleaginous bacterium, accumulates large amounts of triacylglycerols (TAGs), which can be processed into advanced liquid fuels. However, R. opacus PD630 does not metabolize xylose. Results We generated DNA libraries from a Streptomyces bacterium capable of utilizing xylose and introduced them into R. opacus PD630. Xsp8, one of the engineered strains, was capable of growing on up to 180 g L-1 of xylose. Xsp8 grown in batch-cultures derived from unbleached kraft hardwood pulp hydrolysate containing 70 g L-1 total sugars was able to completely and simultaneously utilize xylose and glucose present in the lignocellulosic feedstock, and yielded 11.0 g L-1 of TAGs as fatty acids, corresponding to 45.8% of the cell dry weight. The yield of total fatty acids per gram of sugars consumed was 0.178 g, which consisted primarily of palmitic acid and oleic acid. The engineered strain Xsp8 was introduced with two heterologous genes from Streptomyces: xylA, encoding xylose isomerase, and xylB, encoding xylulokinase. We further demonstrated that in addition to the introduction and the concomitant expression of heterologous xylA and xylB genes, there is another molecular target in the R. opacus genome which fully enables the functionality of xylA and xylB genes to generate the robust xylose-fermenting strain capable of efficiently producing TAGs at high xylose concentrations. Conclusion We successfully engineered a R. opacus strain that is capable of completely utilizing high concentrations of xylose or mixed xylose/glucose simultaneously, and substantiated its suitability for TAG production. This study demonstrates

  17. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.

    PubMed

    Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary

    2016-08-01

    Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.

  18. PATHOGENS: VIEWS OF EPA'S PATHOGEN EQUIVALENCY COMMITTEE

    EPA Science Inventory

    This presentation reviews the pathogenic microorganisms that may be found in municipal sewage sludge and the commonly employed Class A and B processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with their application. Pre...

  19. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    PubMed

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  1. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    NASA Astrophysics Data System (ADS)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  2. AMPK in Pathogens.

    PubMed

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  3. Enantioselective Metabolism of Chiral 3-Phenylbutyric Acid, an Intermediate of Linear Alkylbenzene Degradation, by Rhodococcus rhodochrous PB1

    PubMed Central

    Simoni, S.; Klinke, S.; Zipper, C.; Angst, W.; Kohler, H. E.

    1996-01-01

    Rhodococcus rhodochrous PB1 was isolated from compost soil by selective culture with racemic 3-phenylbutyric acid as the sole carbon and energy source. Growth experiments with the single pure enantiomers as well as with the racemate showed that only one of the two enantiomers, (R)-3-phenylbutyric acid, supported growth of strain PB1. Nevertheless, (S)-3-phenylbutyric acid was cometabolically transformed to, presumably, (S)-3-(2,3-dihydroxyphenyl)butyric acid (the absolute configuration at the C-3 atom is not known yet) by (R)-3-phenylbutyric acid-grown cells of strain PB1, as shown by (sup1)H nuclear magnetic resonance spectroscopy of the partially purified compound and gas chromatography-mass spectrometry analysis of the trimethylsilyl derivative. Oxygen uptake rates suggest that either 3-phenylpropionic acid or cinnamic acid (trans-3-phenyl-2-propenoic acid) is the substrate for aromatic ring hydroxylation. This view is substantiated by the fact that 3-(2,3-dihydroxyphenyl)propionic acid was a substrate for meta cleavage in cell extracts of (R)-3-phenylbutyric acid-grown cells of strain PB1. Gas chromatography-mass spectrometry analysis of trimethylsilane-treated ethyl acetate extracts of incubation mixtures showed that both the meta-cleavage product, 2-hydroxy-6-oxo-2,4-nonadiene-1,9-dicarboxylic acid, and succinate, a hydrolysis product thereof, were formed during such incubations. PMID:16535265

  4. Pathogen inactivation techniques.

    PubMed

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  5. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  6. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria.

    PubMed

    Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph

    2017-03-01

    Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.

  7. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  8. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    PubMed

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  9. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites

    PubMed Central

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam

    2017-01-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  10. Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei

    PubMed Central

    Pasricha, Shivani; MacRae, James I.; Chua, Hwa H.; Chambers, Jenny; Boyce, Kylie J.; McConville, Malcolm J.; Andrianopoulos, Alex

    2017-01-01

    Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast. PMID:28861398

  11. Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei.

    PubMed

    Pasricha, Shivani; MacRae, James I; Chua, Hwa H; Chambers, Jenny; Boyce, Kylie J; McConville, Malcolm J; Andrianopoulos, Alex

    2017-01-01

    Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13 C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo -inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.

  12. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  13. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  14. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude andmore » patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.« less

  15. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  16. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.

    PubMed

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-09-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†

    PubMed Central

    Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.

    2006-01-01

    Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245

  18. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System.

    PubMed

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.

  19. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System

    PubMed Central

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. PMID:25733914

  20. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.

    PubMed

    Kurosawa, Kazuhiko; Boccazzi, Paolo; de Almeida, Naomi M; Sinskey, Anthony J

    2010-06-01

    Biodiesel, monoalkyl esters of long-chain fatty acids with short-chain alcohols derived from triacylglycerols (TAGs), can be produced from renewable biomass sources. Recently, there has been interest in producing microbial oils from oleaginous microorganisms. Rhodococcus opacus PD630 is known to accumulate large amounts of TAGs. Following on these earlier works we demonstrate that R. opacus PD630 has the uncommon capacity to grow in defined media supplemented with glucose at a concentration of 300 g l(-1) during batch-culture fermentations. We found that we could significantly increase concentrations of both glucose and (NH4)2SO4 in the production medium resulting in a dramatic increase in fatty acid production when pH was controlled. We describe the experimental design protocol used to achieve the culture conditions necessary to obtain both high-cell-density and TAG accumulation; specifically, we describe the importance of the C/N ratio of the medium composition. Our bioprocess results demonstrate that R. opacus PD630 grown in batch-culture with an optimal production medium containing 240 g l(-1) glucose and 13.45 g l(-1) (NH4)2SO4 (C/N of 17.8) yields 77.6 g l(-1) of cell dry weight composed of approximately 38% TAGs indicating that this strain holds great potential as a future source of industrial biodiesel on starchy cellulosic feedstocks that are glucose polymers. 2010 Elsevier B.V. All rights reserved.

  1. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum

    PubMed Central

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-01-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase–PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  2. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber.

    PubMed Central

    Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.

    1994-01-01

    The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220

  3. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    PubMed

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zebrafish (Danio rerio) as a screen for attenuation of Lancefield group C streptococci and a model for streptococcal pathogenesis.

    PubMed

    Borst, L B; Patterson, S K; Lanka, S; Suyemoto, M M; Maddox, C W

    2013-05-01

    Group C streptococci are highly contagious pyogenic bacteria responsible for respiratory tract, lymph node, urogenital tract, and wound infections. Wild-type strains of Streptococcus equi ssp equi (S. equi) and Streptococcus equi ssp zooepidemicus (S. zoo) as well as a commercially available modified live vaccine strain of S. equi were evaluated for virulence in zebrafish. Survival times, histologic lesions, and relative gene expression were compared among groups. Based on the intramuscular route of infection, significantly shorter survival times were observed in fish infected with wild-type strain when compared to modified live vaccine and S. zoo strains. Histologically, S. zoo-infected fish demonstrated a marked increase in inflammatory infiltrates (predominantly macrophages) at the site of infection, as well as increased cellularity in the spleen and renal interstitium. In contrast, minimal cellular immune response was observed in S. equi-injected fish with local tissue necrosis and edema predominating. Based on whole comparative genomic hybridization, increased transcription of positive acute-phase proteins, coagulation factors, and antimicrobial peptides were observed in S. equi-injected fish relative to S. zoo-injected fish, while mediators of cellular inflammation, including CXC chemokines and granulin, were upregulated in S. zoo-injected fish relative to S. equi-injected fish. In a screen of 11 clinical isolates, S. equi strains with a single nucleotide deletion in the upstream region of szp, a known virulence factor of streptococci, were found to be significantly attenuated in zebrafish. These collective findings underscore the value of the zebrafish as a model of streptococcal pathogenesis.

  5. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  6. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  7. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101

    PubMed Central

    Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi

    2004-01-01

    p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926

  8. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages.

    PubMed

    Bruns, Emily; Carson, Martin; May, Georgiana

    2012-08-02

    Adaptation of pathogens to their hosts depends critically on factors affecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the host are not well understood. Untangling these contributions allows us to identify traits with sufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa). We show that both pathogen and host genotype significantly affect total spore production but do so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity. In addition, host genotype affected the relationship between pathogen density and the later life-history traits of latent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions. Our results illustrate mechanisms by which variation in host populations will affect the evolution of pathogen life history. Results show that different pathogen life-history stages have the potential to respond differently to selection by host or pathogen genotype and suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt to host genotypes through increased infection efficiency while their plant hosts may adapt by limiting the later stages of pathogen growth and spore production within the host.

  9. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    USGS Publications Warehouse

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  10. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

    PubMed

    Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus

    2014-07-01

    Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

  11. Host-pathogen dynamics under sterilizing pathogens and fecundity-longevity trade-off in hosts.

    PubMed

    Janoušková, Eva; Berec, Luděk

    2018-08-07

    Infectious diseases are known to regulate population dynamics, an observation that underlies the use of pathogens as control agents of unwanted populations. Sterilizing rather than lethal pathogens are often suggested so as to avoid unnecessary suffering of the infected hosts. Until recently, models used to assess plausibility of pathogens as potential pest control agents have not included a possibility that reduced fecundity of the infected individuals may save their energy expenditure on reproduction and thus increase their longevity relative to the susceptible ones. Here, we develop a model of host-pathogen interaction that builds on this idea. We analyze the model for a variety of infection transmission functions, revealing that the indirect effect of sterilizing pathogens on mortality of the infected hosts, mediated by a fecundity-longevity trade-off, may cause hosts at endemic equilibria to attain densities higher than when there is no effect of pathogens on host mortality. On the other hand, an opposite outcome occurs when the fecundity-longevity trade-off is concave or when the degree of fecundity reduction by the pathogen is high enough. This points to a possibility that using sterilizing pathogens as agents of pest control may actually be less effective than previously thought, the more so since we also suggest that if sexual selection acts on the host species then the presence of sterilizing pathogens may even enhance host densities above the levels achieved without infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    PubMed

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  13. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil.

    PubMed

    Yang, Ting; Ren, Lei; Jia, Yang; Fan, Shuanghu; Wang, Junhuan; Wang, Jiayi; Nahurira, Ruth; Wang, Haisheng; Yan, Yanchun

    2018-05-11

    Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0⁻12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C). According to high-performance liquid chromatography⁻mass spectrometry (HPLC-MS) analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA) via mono (2-ethylehxyl) phthalate (MEHP), then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH) so that 79.7⁻95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments.

  14. Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in Rhodococcus jostii RHA1▿ †

    PubMed Central

    Patrauchan, Marianna A.; Florizone, Christine; Eapen, Shawn; Gómez-Gil, Leticia; Sethuraman, Bhanu; Fukuda, Masao; Davies, Julian; Mohn, William W.; Eltis, Lindsay D.

    2008-01-01

    Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling. PMID:17965160

  15. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil

    PubMed Central

    Yang, Ting; Jia, Yang; Fan, Shuanghu; Wang, Junhuan; Wang, Jiayi; Nahurira, Ruth; Wang, Haisheng; Yan, Yanchun

    2018-01-01

    Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0–12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C). According to high-performance liquid chromatography–mass spectrometry (HPLC-MS) analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA) via mono (2-ethylehxyl) phthalate (MEHP), then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH) so that 79.7–95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments. PMID:29751654

  16. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    PubMed Central

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  17. A novel vaccine against Porcine circovirus type 2 (PCV2) and Streptococcus equi ssp. zooepidemicus (SEZ) co-infection.

    PubMed

    Lin, Hui-xing; Ma, Zhe; Yang, Xu-qiu; Fan, Hong-jie; Lu, Cheng-ping

    2014-06-25

    To develop a vaccine against Porcine circovirus type 2 (PCV2) and Streptococcus equi ssp. zooepidemicus (SEZ) co-infection, the genes of porcine IL-18, capsid protein (Cap) of PCV2 and M-like protein (SzP) of SEZ were inserted into the swinepox virus (SPV) genome by homologous recombination. The recombinant swinepox virus rSPV-ICS was verified by PCR and indirect immunofluorescence assays. To evaluate the immunogenicity of rSPV-ICS, 28 PCV2 and SEZ seronegative Bama minipigs were immunized with rSPV-ICS (n=8), commercial PCV2 vaccine and SEZ vaccine (n=8) or wild type SPV (n=8). The results showed that SzP-specific antibody and PCV2 neutralizing antibody of the rSPV-ICS immunized group increased significantly compared to the wild type SPV treated group after vaccination and increased continuously over time. The levels of IL-4 and IFN-γ in the rSPV-ICS immunized group were significantly higher than the other three groups, respectively. After been co-challenged with PCV2 and SEZ, 87.5% piglets in rSPV-ICS immunized group were survived. Significant reductions in gross lung lesion score, histopathological lung lesion score, and lymph node lesion score were noticed in the rSPV-ICS immunized group compared with the wtSPV treated group. The results suggested that the recombinant rSPV-ICS provided piglets with significant protection against PCV2-SEZ co-infection; thus, it offers proof-of-principle for the development of a vaccine for the prevention of these swine diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparative evaluation of the sensitivity of LAMP, PCR and in vitro culture methods for the diagnosis of equine piroplasmosis.

    PubMed

    Alhassan, Andy; Govind, Yadav; Tam, Nguyen Thanh; Thekisoe, Oriel M M; Yokoyama, Naoaki; Inoue, Noboru; Igarashi, Ikuo

    2007-04-01

    The sensitivity of LAMP, PCR and in vitro culture methods for the detection of Theileria equi and Babesia caballi was evaluated using tenfold serially diluted culture parasites. On day 1 post-culture, both T. equi and B. caballi parasites could only be observed at 1% parasite dilution from the in vitro culture method, whereas LAMP could detect up to 1 x 10(-3)% of both T. equi and B. caballi parasite dilutions, whilst PCR could detect 1 x 10(-3)% T. equi and 1 x 10(-1)% B. caballi parasite dilutions. On day 7 post-culture, the detection limit for T. equi and B. caballi in the in vitro culture increased up to 1 x 10(-6)%, whereas LAMP detection limit increased to 1 x 10(-10)% for both parasites, whilst the PCR detection limit increased to 1 x 10(-10)% and 1 x 10(-6)% for T. equi and B. caballi, respectively. Furthermore, LAMP and PCR amplified the T. equi DNA extracted from the organs of an experimentally infected horse. This study further validates LAMP as an alternative molecular diagnostic tool, which can be used in the diagnosis of early infections of equine piroplasmosis and together with PCR can also be used as supplementary methods during post-mortems.

  19. Autophagy in plant pathogenic fungi.

    PubMed

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development and validation of a duplex real-time PCR assay for the diagnosis of equine piroplasmosis.

    PubMed

    Lobanov, Vladislav A; Peckle, Maristela; Massard, Carlos L; Brad Scandrett, W; Gajadhar, Alvin A

    2018-03-02

    .0-90.2%) of the horses, respectively. The B. caballi prevalence estimates were 9.3% (95% CI: 6.9-12.4%) by the duplex qPCR and 7.9% (95% CI: 5.7-10.9%) by the respective single-target qPCR assay. These values were markedly lower compared to the seroprevalence of 58.6% (95% CI: 53.9-63.2%) obtained by B. caballi-specific cELISA. The relative diagnostic sensitivity of the duplex qPCR for T. equi was 95.5%, as 359 of the 376 horses with exposure to T. equi confirmed by cELISA had parasitemia levels above the detection limit of the molecular assay. In contrast, only 39 (15.5%) of the 252 horses with detectable B. caballi-specific antibodies were positive for this piroplasm species by the duplex qPCR. The duplex qPCR described here performed comparably to the existing single-target qPCR assays for T. equi and B. caballi and will be more cost-effective in terms of results turnaround time and reagent costs when both pathogens are being targeted for disease control and epidemiological investigations. These validation data also support the reliability of the ema-1 gene-specific oligonucleotides developed in this study for confirmatory testing of non-negative serological test results for T. equi by qPCR. However, the B. caballi-specific qPCR cannot be similarly recommended as a confirmatory assay for routine regulatory testing due to the low level of agreement with serological test results demonstrated in this study. Further studies are needed to determine the transmission risk posed by PCR-negative equines with detectable antibodies to B. caballi.

  1. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications.

    PubMed

    Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M

    2018-05-05

    Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage

    NASA Astrophysics Data System (ADS)

    Fang, Hua; Xu, Tianheng; Cao, Duantao; Cheng, Longyin; Yu, Yunlong

    2016-08-01

    A novel bacterium capable of utilizing metamitron as the sole source of carbon and energy was isolated from contaminated soil and identified as Rhodococcus sp. MET based on its morphological characteristics, BIOLOG GP2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate MET showed a 6,340,880 bp genome with a 62.47% GC content and 5,987 protein-coding genes. In total, 5,907 genes were annotated with the COG, GO, KEGG, Pfam, Swiss-Prot, TrEMBL, and nr databases. The degradation rate of metamitron by the isolate MET obviously increased with increasing substrate concentrations from 1 to 10 mg/l and subsequently decreased at 100 mg/l. The optimal pH and temperature for metamitron biodegradation were 7.0 and 20-30 °C, respectively. Based on genome annotation of the metamitron degradation genes and the metabolites detected by HPLC-MS/MS, the following metamitron biodegradation pathways were proposed: 1) Metamitron was transformed into 2-(3-hydrazinyl-2-ethyl)-hydrazono-2-phenylacetic acid by triazinone ring cleavage and further mineralization; 2) Metamitron was converted into 3-methyl-4-amino-6(2-hydroxy-muconic acid)-1,2,4-triazine-5(4H)-one by phenyl ring cleavage and further mineralization. The coexistence of diverse mineralization pathways indicates that our isolate may effectively bioremediate triazinone herbicide-contaminated soils.

  3. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    PubMed

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.

    PubMed

    Prieto, M B; Hidalgo, A; Rodríguez-Fernández, C; Serra, J L; Llama, M J

    2002-05-01

    Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions. Phenol-acclimated cells were adsorbed on diatomaceous earth, where they grew actively forming a biofilm of short filaments. Immobilization protected cells against phenol and resulted in a remarkable enhancement of their respiratory activity and a shorter lag phase preceding active phenol degradation. Under optimum operation conditions in a laboratory-scale air-stirred reactor, the immobilized cells were able to completely degrade phenol in synthetic wastewater at a volumetric productivity of 11.5 kg phenol m(-3) day(-1). Phenol biodegradation was also tested in two different industrial wastewaters (WW1 and WW2) obtained from local resin manufacturing companies, which contained both phenols and formaldehyde. In this case, after wastewater conditioning (i.e., dilution, pH, nitrogen and phosphorous sources and micronutrient amendments) the immobilized cells were able to completely remove the formaldehyde present in both waters. Moreover, they biodegraded phenols completely at a rate of 0.5 kg phenol m(-3) day(-1) in the case of WW1 and partially (but at concentrations lower than 50 mg l(-1)) at 0.1 and 1.0 kg phenol m(-3) day(-1) in the cases of WW2 and WW1, respectively.

  5. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.

    PubMed

    Dávila Costa, José Sebastián; Silva, Roxana A; Leichert, Lars; Alvarez, Héctor M

    2017-03-01

    Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.

  6. Pathogen evolution and the immunological niche

    PubMed Central

    Cobey, Sarah

    2014-01-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible–infected–recovered (SIR) model. However, there is growing evidence that the complexity of many host–pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161

  7. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  8. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  9. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  10. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  11. Compositions and methods for pathogen transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Etr, Sahar; Farquar, George R.

    This disclosure provides a method for transporting a pathogen under ambient conditions, by culturing the pathogen with an amoeba under conditions that favor the incorporation of the pathogen into a trophozoite, starving the amoeba until it encysts, then culturing under conditions that favor conversion of the amoeba back to a trophozoite. In one aspect, the conditions that favor incorporation of the pathogen into the cyst of the amoeba comprises contacting the pathogen with the amoeba in an iron rich environment. Virus and/or bacteria are pathogens that can be transported by the disclosed method. Amoeba that are useful in the disclosedmore » methods include, without limitation Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria gruberi. The disclosed methods have utility in: transporting pathogens from military field hospitals and clinics to the laboratory; transporting pathogens from global satellite laboratories to clinical laboratories; long term storage of pathogens; enriching contaminated patient samples for pathogens of interest; biosurveillance and detection efforts.« less

  12. Risk factors for drug-resistant pathogens in immunocompetent patients with pneumonia: Evaluation of PES pathogens.

    PubMed

    Ishida, Tadashi; Ito, Akihiro; Washio, Yasuyoshi; Yamazaki, Akio; Noyama, Maki; Tokioka, Fumiaki; Arita, Machiko

    2017-01-01

    The new acronym, PES pathogens (Pseudomonas aeruginosa, Enterobacteriaceae extended-spectrum beta-lactamase-positive, and methicillin-resistant Staphylococcus aureus), was recently proposed to identify drug-resistant pathogens associated with community-acquired pneumonia. To evaluate the risk factors for antimicrobial-resistant pathogens in immunocompetent patients with pneumonia and to validate the role of PES pathogens. A retrospective analysis of a prospective observational study of immunocompetent patients with pneumonia between March 2009 and June 2015 was conducted. We clarified the risk factors for PES pathogens. Of the total 1559 patients, an etiological diagnosis was made in 705 (45.2%) patients. PES pathogens were identified in 51 (7.2%) patients, with 53 PES pathogens (P. aeruginosa, 34; ESBL-positive Enterobacteriaceae, 6; and MRSA, 13). Patients with PES pathogens had tendencies toward initial treatment failure, readmission within 30 days, and a prolonged hospital stay. Using multivariate analysis, female sex (adjusted odds ratio [AOR] 1.998, 95% confidence interval [CI] 1.047-3.810), admission within 90 days (AOR 2.827, 95% CI 1.250-6.397), poor performance status (AOR 2.380, 95% CI 1.047-5.413), and enteral feeding (AOR 5.808, 95% CI 1.813-18.613) were independent risk factors for infection with PES pathogens. The area under the receiver operating characteristics curve for the risk factors was 0.66 (95% CI 0.577-0.744). We believe the definition of PES pathogens is an appropriate description of drug-resistant pathogens associated with pneumonia in immunocompetent patients. The frequency of PES pathogens is quite low. However, recognition is critical because they can cause refractory pneumonia and different antimicrobial treatment is required. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. AquaPathogen X--A template database for tracking field isolates of aquatic pathogens

    USGS Publications Warehouse

    Emmenegger, Evi; Kurath, Gael

    2012-01-01

    AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).

  14. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  15. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    PubMed Central

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932

  16. Emerging foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    The emergence of new foodborne pathogens is due to a number of factors. An important factor is the globalization of the food supply with the possibility of the introduction of foodborne pathogens from other countries. Animal husbandry, food production, food processing, and food distribution system...

  17. Marine Viral Pathogens.

    DTIC Science & Technology

    1998-05-13

    coccolithophorid Emiliania huxleyi. Experiments are continuing to determine whether the pathogens are viral. We have continued the development of PCR primers... Emiliania huxleyi; further work will be required to determine if the pathogen is viral. We have also continued methodological work to improve our ability

  18. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-07

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate. © 2015 The Author(s).

  19. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  1. Distribution of a Nocardia brasiliensis catalase gene fragment in members of the genera Nocardia, Gordona, and Rhodococcus.

    PubMed

    Vera-Cabrera, L; Johnson, W M; Welsh, O; Resendiz-Uresti, F L; Salinas-Carmona, M C

    1999-06-01

    An immunodominant protein from Nocardia brasiliensis, P61, was subjected to amino-terminal and internal sequence analysis. Three sequences of 22, 17, and 38 residues, respectively, were obtained and compared with the protein database from GenBank by using the BLAST system. The sequences showed homology to some eukaryotic catalases and to a bromoperoxidase-catalase from Streptomyces violaceus. Its identity as a catalase was confirmed by analysis of its enzymatic activity on H2O2 and by a double-staining method on a nondenaturing polyacrylamide gel with 3,3'-diaminobenzidine and ferricyanide; the result showed only catalase activity, but no peroxidase. By using one of the internal amino acid sequences and a consensus catalase motif (VGNNTP), we were able to design a PCR assay that generated a 500-bp PCR product. The amplicon was analyzed, and the nucleotide sequence was compared to the GenBank database with the observation of high homology to other bacterial and eukaryotic catalases. A PCR assay based on this target sequence was performed with primers NB10 and NB11 to confirm the presence of the NB10-NB11 gene fragment in several N. brasiliensis strains isolated from mycetoma. The same assay was used to determine whether there were homologous sequences in several type strains from the genera Nocardia, Rhodococcus, Gordona, and Streptomyces. All of the N. brasiliensis strains presented a positive result but only some of the actinomycetes species tested were positive in the PCR assay. In order to confirm these findings, genomic DNA was subjected to Southern blot analysis. A 1.7-kbp band was observed in the N. brasiliensis strains, and bands of different molecular weight were observed in cross-reacting actinomycetes. Sequence analysis of the amplicons of selected actinomycetes showed high homology in this catalase fragment, thus demonstrating that this protein is highly conserved in this group of bacteria.

  2. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    PubMed Central

    Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842

  3. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.

    PubMed

    Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  4. Pathogen evolution and the immunological niche.

    PubMed

    Cobey, Sarah

    2014-07-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  5. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.

    PubMed

    Yano, Takanori; Yoshida, Nobuyuki; Yu, Fujio; Wakamatsu, Miki; Takagi, Hiroshi

    2015-07-01

    Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth requiring atmospheric CO2 and forms its colonies on an inorganic basal medium (BM) without any additional carbon source. Screening of a random mutation library constructed by a unique genome deletion method that we established indicated that the aceA, aceB, and pckG genes encoding isocitrate lyase, malate synthase, and phosphoenolpyruvate carboxykinase, respectively, were requisite for survival on BM plates. The aceA- and aceB deletion mutants and the pckG deletion mutant grew well on BM plates containing L-malate and D-glucose, respectively, suggesting that the glyoxylate (GO) shunt and gluconeogenesis are essential for the oligotrophic growth of N9T-4. Interestingly, most of the enzyme activities in the TCA cycle were observed in the cell-free extract of N9T-4, with perhaps the most important exception being α-ketoglutarate dehydrogenase (KGDH) activity. Instead of the KGDH activity, we detected a remarkable level of α-ketoglutarate decarboxylase (KGD) activity, which is the activity exhibited by the E1 component of the KGDH complex in Mycobacterium tuberculosis. The recombinant KGD of N9T-4 catalyzed the decarboxylation of α-ketoglutarate to form succinic semialdehyde (SSA) in a time-dependent manner. Since N9T-4 also showed a detectable SSA dehydrogenase activity, we concluded that N9T-4 possesses a variant TCA cycle, which uses SSA rather than succinyl-CoA. These results suggest that oligotrophic N9T-4 cells utilize the GO shunt to avoid the loss of carbons as CO2 and to conserve CoA units in the TCA cycle.

  6. Host pathogen relations: exploring animal models for fungal pathogens.

    PubMed

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  7. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    PubMed Central

    Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana

    2015-01-01

    Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033

  8. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species

    PubMed Central

    Oliveira, Alberto; Oliveira, Leticia C.; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B.; Silva, Arthur; Figueiredo, Henrique C. P.; Ghosh, Preetam; Portela, Ricardo W.; De Carvalho Azevedo, Vasco A.; Wattam, Alice R.

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field. PMID:29075239

  9. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.

    PubMed

    Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

  10. Pathogens: raft hijackers.

    PubMed

    Mañes, Santos; del Real, Gustavo; Martínez-A, Carlos

    2003-07-01

    Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.

  11. In Silico identification of pathogenic strains of Cronobacter from Biochemical data reveals association of inositol fermentation with pathogenicity.

    PubMed

    Hamby, Stephen E; Joseph, Susan; Forsythe, Stephen J; Chuzhanova, Nadia

    2011-09-20

    Cronobacter, formerly known as Enterobacter sakazakii, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of Cronobacter do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between Cronobacter isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators. Here we report the use of Expectation Maximization clustering to categorise 98 strains of Cronobacter as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of Cronobacter sakazakii and C. turicensis revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of Cronobacter. We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of Cronobacter. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of Cronobacter species.

  12. Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery.

    PubMed

    Tengs, Torstein; Rimstad, Espen

    2017-10-01

    The use of large scale DNA/RNA sequencing has become an integral part of biomedical research. Reduced sequencing costs and the availability of efficient computational resources has led to a revolution in how problems concerning genomics and transcriptomics are addressed. Sequencing-based pathogen discovery represents one example of how genetic data can now be used in ways that were previously considered infeasible. Emerging pathogens affect both human and animal health due to a multitude of factors, including globalization, a shifting environment and an increasing human population. Fish farming represents a relevant, interesting and challenging system to study emerging pathogens. This review summarizes recent progress in pathogen discovery using sequence data, with particular emphasis on viruses in Atlantic salmon (Salmo salar). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    PubMed

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  14. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  15. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  16. SAM Pathogen Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.

  17. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    USDA-ARS?s Scientific Manuscript database

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  18. Viral pathogen discovery

    PubMed Central

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  19. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  20. Transient virulence of emerging pathogens

    PubMed Central

    Bolker, Benjamin M.; Nanda, Arjun; Shah, Dharmini

    2010-01-01

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution. PMID:19864267

  1. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    PubMed

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  2. Verb bias and verb-specific competition effects on sentence production

    PubMed Central

    Thothathiri, Malathi; Evans, Daniel G.; Poudel, Sonali

    2017-01-01

    How do speakers choose between structural options for expressing a given meaning? Overall preference for some structures over others as well as prior statistical association between specific verbs and sentence structures (“verb bias”) are known to broadly influence language use. However, the effects of prior statistical experience on the planning and execution of utterances and the mechanisms that facilitate structural choice for verbs with different biases have not been fully explored. In this study, we manipulated verb bias for English double-object (DO) and prepositional-object (PO) dative structures: some verbs appeared solely in the DO structure (DO-only), others solely in PO (PO-only) and yet others equally in both (Equi). Structural choices during subsequent free-choice sentence production revealed the expected dispreference for DO overall but critically also a reliable linear trend in DO production that was consistent with verb bias (DO-only > Equi > PO-only). Going beyond the general verb bias effect, three results suggested that Equi verbs, which were associated equally with the two structures, engendered verb-specific competition and required additional resources for choosing the dispreferred DO structure. First, DO production with Equi verbs but not the other verbs correlated with participants’ inhibition ability. Second, utterance duration prior to the choice of a DO structure showed a quadratic trend (DO-only < Equi > PO-only) with the longest durations for Equi verbs. Third, eye movements consistent with reimagining the event also showed a quadratic trend (DO-only < Equi > PO-only) prior to choosing DO, suggesting that participants used such recall particularly for Equi verbs. Together, these analyses of structural choices, utterance durations, eye movements and individual differences in executive functions shed light on the effects of verb bias and verb-specific competition on sentence production and the role of different executive functions

  3. Prevalence of potentially pathogenic bacteria as genital pathogens in dairy cattle.

    PubMed

    Petit, T; Spergser, J; Rosengarten, R; Aurich, J

    2009-02-01

    Bacteria on the genital mucosa have been studied less in healthy, non-puerperal cows than in cows with puerperal endometritis. We have thus analysed bacteria in swabs from the vagina and cervix of post-puerperal cattle (n = 644). Out of the animals, 6.8% had aborted within the last 12 months, 2.6% and 11.6% showed signs of vaginitis and endometritis, respectively. In 17.2% of cervical swabs pathogenic gram-positive and in 11.5% pathogenic gram-negative bacteria were found. Arcanobacterium pyogenes was isolated from 41.3% of cows with endometritis and from 3.5% without endometritis (p < 0.05). From 12.5% of cows with abortion but from no cow without abortion, Staphylococcus aureus was recovered (p < 0.05). Out of 383 vaginal swabs, 88.3% were positive. In 3.4% of swabs pathogenic gram-positive and in 16.7% pathogenic gram-negative microorganisms were found. The percentage of positive vaginal swabs did not differ between pregnant and non-pregnant animals. In the genital tract, the percentage of swabs positive for normal mucosal bacteria decreased from caudally to cranially (p < 0.05). Pathogenic bacteria were found more often in cervical than in vaginal swabs (p < 0.05). In conclusion, bacteria on the vaginal and cervical mucosa in cattle involve a wide range of species. In animals without endometritis or vaginitis, colonization of the mucosa rather than infection has to be assumed.

  4. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1.

    PubMed

    Maia, Alexandra S; Tiritan, Maria Elizabeth; Castro, Paula M L

    2018-07-15

    Fluoroquinolones are a class of antibiotics widely prescribed in both human and veterinary medicine of high environmental concern and characterized as environmental micropollutants due to their ecotoxicity and persistence and antibacterial resistance potential. Ofloxacin and levofloxacin are chiral fluoroquinolones commercialized as racemate and in enantiomerically pure form, respectively. Since the pharmacological properties and toxicity of the enantiomers may be very different, understanding the stereochemistry of these compounds should be a priority in environmental monitoring. This work presents the biodegradation of racemic ofloxacin and its (S)-enantiomer levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 at a laboratory-scale microcosm following the removal and the behavior of the enantiomers. Strain F11 could degrade both antibiotics almost completely when acetate was supplied regularly to the cultures. Enrichment of the (R)-enantiomer was observed in FP1 and F11 cultures supplied with ofloxacin. Racemization was observed in the biodegradation of the pure (S)-ofloxacin (levofloxacin) by strain F11, which was confirmed by liquid chromatography - exact mass spectrometry. Biodegradation of ofloxacin at 450 µg L -1 by both bacterial strains expressed good linear fits (R 2 > 0.98) according to the Rayleigh equation. The enantiomeric enrichment factors were comprised between - 22.5% to - 9.1%, and - 18.7% to - 9.0% in the biodegradation of ofloxacin by strains F11 and FP1, respectively, with no significant differences for the two bacteria under the same conditions. This is the first time that enantioselective biodegradation of ofloxacin and levofloxacin by single bacteria is reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  6. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  7. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  8. The Reaction Kinetics of 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Provide an Understanding of the para-Hydroxylation Enzyme Catalytic Cycle*

    PubMed Central

    Sucharitakul, Jeerus; Tongsook, Chanakan; Pakotiprapha, Danaya; van Berkel, Willem J. H.; Chaiyen, Pimchai

    2013-01-01

    3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover. PMID:24129570

  9. Genetic diversity of piroplasmids species in equids from island of São Luís, northeastern Brazil.

    PubMed

    Braga, Maria do Socorro Costa de Oliveira; Costa, Francisca Neide; Gomes, Débora Regina Maia; Xavier, Daniele Rosa; André, Marcos Rogério; Gonçalves, Luiz Ricardo; Freschi, Carla Roberta; Machado, Rosangela Zacarias

    2017-01-01

    Equine piroplasmosisis, a tick-borne disease caused by the intra-erythrocytic protozoans Babesia caballi and Theileria equi, has economic importance due to the international trade and the increased movement of horses all over the world. The goal of this study was to evaluate the occurrence of phylogenetic diversity of T. equi and B. caballi genotypes among infected equids from São Luís Island, state of Maranhão, northeastern Brazil. Between December of 2011 and June of 2012, EDTA-blood and serum samples were collected from 139 equids (90 donkeys, 39 horses and 10 mules). From 139 serum samples submitted to ELISA assay, IgG antibodies to T. equi and B. caballi were detected in 19.4% (27/139) and 25.2% (35/139), respectively. Among sampled animals, 21.6% (30/139) and 55.4% (77/139) were positive for cPCR assays for T. equi and B. caballi, based on ema-1 and rap-1 genes, respectively. Overall, the T. equi sequences (n=7) submitted to Maximum Likelihood analysis (based on a 18S rRNA fragment of 1700 bp after alignment) grouped into three main groups, which were subdivided in eight clusters. The present work showed that different genotypes of T. equi and B. caballi circulate among equids in Brazil.

  10. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    PubMed

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  11. Pathogen metadata platform: software for accessing and analyzing pathogen strain information.

    PubMed

    Chang, Wenling E; Peterson, Matthew W; Garay, Christopher D; Korves, Tonia

    2016-09-15

    Pathogen metadata includes information about where and when a pathogen was collected and the type of environment it came from. Along with genomic nucleotide sequence data, this metadata is growing rapidly and becoming a valuable resource not only for research but for biosurveillance and public health. However, current freely available tools for analyzing this data are geared towards bioinformaticians and/or do not provide summaries and visualizations needed to readily interpret results. We designed a platform to easily access and summarize data about pathogen samples. The software includes a PostgreSQL database that captures metadata useful for disease outbreak investigations, and scripts for downloading and parsing data from NCBI BioSample and BioProject into the database. The software provides a user interface to query metadata and obtain standardized results in an exportable, tab-delimited format. To visually summarize results, the user interface provides a 2D histogram for user-selected metadata types and mapping of geolocated entries. The software is built on the LabKey data platform, an open-source data management platform, which enables developers to add functionalities. We demonstrate the use of the software in querying for a pathogen serovar and for genome sequence identifiers. This software enables users to create a local database for pathogen metadata, populate it with data from NCBI, easily query the data, and obtain visual summaries. Some of the components, such as the database, are modular and can be incorporated into other data platforms. The source code is freely available for download at https://github.com/wchangmitre/bioattribution .

  12. Mucosal immunity to pathogenic intestinal bacteria.

    PubMed

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  13. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    PubMed

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  14. Highly pathogenic avian influenza.

    PubMed

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  15. Interaction of pathogens with host cholesterol metabolism.

    PubMed

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  16. Foodborne pathogen detection using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...

  17. Gene expression systems in corynebacteria.

    PubMed

    Srivastava, Preeti; Deb, J K

    2005-04-01

    Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.

  18. Modulation of eukaryotic cell apoptosis by members of the bacterial order Actinomycetales.

    PubMed

    Barry, Daniel P; Beaman, Blaine L

    2006-10-01

    Apoptosis, or programmed cell death, is normally responsible for the orderly elimination of aged or damaged cells, and is a necessary part of the homeostasis and development of multicellular organisms. Some pathogenic bacteria can disrupt this process by triggering excess apoptosis or by preventing it when appropriate. Either event can lead to disease. There has been extensive research into the modulation of host cell death by microorganisms, and several reviews have been published on the phenomenon. Rather than covering the entire field, this review focuses on the dysregulation of host cell apoptosis by members of the order Actinomycetales, containing the genera Corynebacterium, Mycobacterium, Rhodococcus, and Nocardia.

  19. Foodborne pathogens and their toxins.

    PubMed

    Martinović, Tamara; Andjelković, Uroš; Gajdošik, Martina Šrajer; Rešetar, Dina; Josić, Djuro

    2016-09-16

    Foodborne pathogens, mostly bacteria and fungi, but also some viruses, prions and protozoa, contaminate food during production and processing, but also during storage and transport before consuming. During their growth these microorganisms can secrete different components, including toxins, into the extracellular environment. Other harmful substances can be also liberated and can contaminate food after disintegration of food pathogens. Some bacterial and fungal toxins can be resistant to inactivation, and can survive harsh treatment during food processing. Many of these molecules are involved in cellular processes and can indicate different mechanisms of pathogenesis of foodborne organisms. More knowledge about food contaminants can also help understand their inactivation. In the present review the use of proteomics, peptidomics and metabolomics, in addition to other foodomic methods for the detection of foodborne pathogenic fungi and bacteria, is overviewed. Furthermore, it is discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin. Comprehensive and comparative view into the genome and proteome of foodborne pathogens of bacterial or fungal origin and foodomic, mostly proteomic, peptidomic and metabolomic investigation of their toxin production and their mechanism of action is necessary in order to get further information about their virulence, pathogenicity and survival under stress conditions. Furthermore, these data pave the way for identification of biomarkers to trace sources of contamination with food-borne microorganisms and their endo- and exotoxins in order to ensure food safety and prevent the outbreak of food-borne diseases. Therefore, detection of pathogens and their toxins during production, transport and before consume of food produce, as well as protection against

  20. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR.

    PubMed

    Infanzón, Belén; Sotelo, Pablo H; Martínez, Josefina; Diaz, Pilar

    2018-01-01

    Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr 110 and Asp 111 , previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr 110 and Asp 111 ), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr 110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp 111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pathogen recognition in the innate immune response.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  2. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    PubMed

    Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P

    2015-12-21

    Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

  3. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.

    PubMed

    Morales, Paulina; Cáceres, Manuel; Scott, Felipe; Díaz-Robles, Luis; Aroca, Germán; Vergara-Fernández, Alberto

    2017-09-01

    Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO 2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO 2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.

  4. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens

    PubMed Central

    Soto-Suárez, Mauricio; Baldrich, Patricia; Weigel, Detlef; Rubio-Somoza, Ignacio; San Segundo, Blanca

    2017-01-01

    MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection. PMID:28332603

  5. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  6. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  7. Network Analyses in Plant Pathogens

    PubMed Central

    Botero, David; Alvarado, Camilo; Bernal, Adriana; Danies, Giovanna; Restrepo, Silvia

    2018-01-01

    Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data. PMID:29441045

  8. Network Analyses in Plant Pathogens.

    PubMed

    Botero, David; Alvarado, Camilo; Bernal, Adriana; Danies, Giovanna; Restrepo, Silvia

    2018-01-01

    Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.

  9. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity

    PubMed Central

    Ogden, Nick H.; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity. PMID:24010124

  10. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity.

    PubMed

    Ogden, Nick H; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R 0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.

  11. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  12. Purification and Characterization of an Inverting Stereo- and Enantioselective sec-Alkylsulfatase from the Gram-Positive Bacterium Rhodococcus ruber DSM 44541

    PubMed Central

    Pogorevc, Mateja; Faber, Kurt

    2003-01-01

    Whole cells of Rhodococcus ruber DSM 44541 were found to hydrolyze (±)-2-octyl sulfate in a stereo- and enantiospecific fashion. When growing on a complex medium, the cells produced two sec-alkylsulfatases and (at least) one prim-alkylsulfatase in the absence of an inducer, such as a sec-alkyl sulfate or a sec-alcohol. From the crude cell-free lysate, two proteins responsible for sulfate ester hydrolysis (designated RS1 and RS2) were separated from each other based on their different hydrophobicities and were subjected to further chromatographic purification. In contrast to sulfatase RS1, enzyme RS2 proved to be reasonably stable and thus could be purified to homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at a molecular mass of 43 kDa. Maximal enzyme activity was observed at 30°C and at pH 7.5. Sulfatase RS2 showed a clear preference for the hydrolysis of linear secondary alkyl sulfates, such as 2-, 3-, or 4-octyl sulfate, with remarkable enantioselectivity (an enantiomeric ratio of up to 21 [23]). Enzymatic hydrolysis of (R)-2-octyl sulfate furnished (S)-2-octanol without racemization, which revealed that the enzymatic hydrolysis proceeded through inversion of the configuration at the stereogenic carbon atom. Screening of a broad palette of potential substrates showed that the enzyme exhibited limited substrate tolerance; while simple linear sec-alkyl sulfates (C7 to C10) were freely accepted, no activity was found with branched and mixed aryl-alkyl sec-sulfates. Due to the fact that prim-sulfates were not accepted, the enzyme was classified as sec-alkylsulfatase (EC 3.1.6.X). PMID:12732552

  13. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Koji; Kawashima, Fujimasa; Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MSmore » and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. -- Highlights: •A novel endosulfan sulfate-degrading bacterium was isolated and named strain S1-1. •Strain S1-1 degraded endosulfan sulfate into a novel metabolite endosulfan diol monosulfate. •Endosulfan diol monosulfate showed higher polarity than other known metabolites of endosulfan. •We proposed the plausible metabolic pathway of endosulfan in terms of organic chemistry.« less

  14. The enemy within: phloem-limited pathogens

    USDA-ARS?s Scientific Manuscript database

    The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that includ...

  15. Intramuscular Administration of a Synthetic CpG-Oligodeoxynucleotide Modulates Functional Responses of Neutrophils of Neonatal Foals

    PubMed Central

    Cohen, Noah D.; Bourquin, Jessica R.; Bordin, Angela I.; Kuskie, Kyle R.; Brake, Courtney N.; Weaver, Kaytee B.; Liu, Mei; Felippe, M. Julia B.; Kogut, Michael H.

    2014-01-01

    Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9) or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS) generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05) increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05) lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination. PMID:25333660

  16. Bloodborne Pathogens Program

    NASA Technical Reports Server (NTRS)

    Blasdell, Sharon

    1993-01-01

    The final rule on the Occupational Exposure to Bloodborne Pathogens was published in the Federal Register on Dec. 6, 1991. This Standard, 29 CFR Part 1910.130, is expected to prevent 8,900 hepatitis B infections and nearly 200 deaths a year in healthcare workers in the U.S. The Occupational Medicine and Environmental Health Services at KSC has been planning to implement this standard for several years. Various aspects of this standard and its Bloodborne Pathogens Program at KSC are discussed.

  17. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improvingmore » our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers

  18. Plasmodesmal regulation during plant-pathogen interactions.

    PubMed

    Cheval, Cecilia; Faulkner, Christine

    2018-01-01

    Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Biosensors for plant pathogen detection.

    PubMed

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnerty, W.R.

    We have sought the structural elucidation of the glycolipid biosurfactant. The extracellular glycolipid consists of 1 major component (>90%) plus 6--7 minor molecular species. The deacylated water-soluble backbone is common to all molecular species of the glycolipid. A complex fatty acid composition characterizes the glycolipid and contributes to its surface active character. The water soluble backbone consists of glycerol, trehalose and 3--5 glucose residues. FTIR spectroscopy has confirmed the presence of these polyhydric components. The next major objective has been to clone the genes for glycolipid biosynthesis in Rhodococcus sp. H13-A. Improvements in the E. coli-Rhodococcus shuttle vector, pMVS301, weremore » made prior to the construction and screening of a genomic library in Rhodococcus. A system is being developed for transpositional mutagenesis in Rhodococcus, using Tn917 containing plasmids used successfully in Bacillus sp. for the isolation and analysis of sporulation and developmental genes. We are also actively assessing the utility of this cloning and transformation system which we have developed for Rhodococcus, for use in mycobacterium, a related Actinomycete for which there exists no systems for plasmid transformation or molecular cloning. 8 refs., 1 fig.« less

  1. Waterborne Pathogens: Detection Methods and Challenges

    PubMed Central

    Ramírez-Castillo, Flor Yazmín; Loera-Muro, Abraham; Jacques, Mario; Garneau, Philippe; Avelar-González, Francisco Javier; Harel, Josée; Guerrero-Barrera, Alma Lilián

    2015-01-01

    Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health. PMID:26011827

  2. Pathogenic ecology: Where have all the pathogens gone? Anthrax: a classic case

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan; Walker, Wes W.; Andrews, Carrie J.; De Los Santos, Amy; Adams, Roy N.; Bucholz, Matthew W.; McBurnett, Shelly D.; Fuentes, Vladimir; Rizner, Karon E.; Blount, Keith W.

    2009-05-01

    Pathogenic ecology is the natural relationship to animate and inanimate components of the environment that support the sustainment of a pathogen in the environment or prohibit its sustainment, or their interactions with an introduced pathogen that allow for the establishment of disease in a new environment. The anthrax bacterium in the spore form has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to determine the environmental reservoir of Bacillus anthracis between outbreaks of anthrax and to examine the potential factors influencing the conversion of the Bacillus anthracis from a quiescent state to the disease causing state. Here we provide environmental and laboratory data for the cycling of Bacillus anthracis in plants to reconcile observations that contradict the soil borne hypothesis of anthrax maintenance in the environment.

  3. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  4. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  5. Common themes in microbial pathogenicity revisited.

    PubMed Central

    Finlay, B B; Falkow, S

    1997-01-01

    Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID

  6. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  7. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids

    PubMed Central

    Llop, Pablo

    2015-01-01

    New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them. PMID:26379649

  8. The Insect Pathogens.

    PubMed

    Lovett, Brian; St Leger, Raymond J

    2017-03-01

    Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.

  9. The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses.

    PubMed

    Day, Brad; Graham, Terry

    2007-10-01

    Perception of pathogens by their hosts is the outcome of a highly coordinated and sophisticated surveillance network, tightly regulated by both host and pathogen elicitors, effectors, and signaling processes. In this article, we focus on two relatively well-studied host-pathogens systems, one involving a bacterial-plant interaction (Pseudomonas syringae-Arabidopsis) and the other involving an oomycete-plant interaction (Phytophthora sojae-soybean). We discuss the status of current research related to events occurring at the host-pathogen interface in these two systems, and how these events influence the organization and activation of resistance responses in the respective hosts. This recent research has revealed that in addition to the previously identified resistance machinery (R-proteins, molecular chaperones, etc.), the dynamics of the cell wall, membrane trafficking, and the actin cytoskeleton are intimately associated with the activation of resistance in plants. Specifically, in Arabidopsis, a possible connection between the actin machinery and R-protein- mediated induction of disease resistance is described. In the case of the P. sojae-soybean interaction, we describe the fact that a classical basal resistance elicitor, the cell wall glucan elicitor from the pathogen, can directly activate host hypersensitive cell death, which is apparently modulated in a race-specific manner by the presence of R genes in the host.

  10. Internalization of fresh produce by foodborne pathogens.

    PubMed

    Erickson, Marilyn C

    2012-01-01

    Recent studies addressing the internalization of fresh produce by foodborne pathogens arose in response to the growing number of recent and high profile outbreaks involving fresh produce. Because chemical sanitizing agents used during harvest and minimal processing are unlikely to reach enteric pathogens residing within plant tissue, it is imperative that paths for pathogen entry be recognized and minimized. Using both microscopy and microbial enumeration tools, enteric pathogens have been shown to enter plant tissues through both natural apertures (stomata, lateral junctions of roots, flowers) and damaged (wounds, cut surfaces) tissue. In studies revealing preharvest internalization via plant roots or leaf stomata, experimental conditions have primarily involved exposure of plants to high pathogen concentrations (≥ 6 log g⁻¹ soil or 6 log ml⁻¹ water), but those pathogens internalized appear to have short-term persistence. Postharvest internalization of pathogens via cut surfaces may be minimized by maintaining effective levels of sanitizing agents in waters during harvesting and minimal processing.

  11. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  12. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    PubMed

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  13. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  14. USEPA PATHOGEN EQUIVALENCY COMMITTEE RETREAT

    EPA Science Inventory

    The Pathogen Equivalency Committee held its retreat from September 20-21, 2005 at Hueston Woods State Park in College Corner, Ohio. This presentation will update the PEC’s membership on emerging pathogens, analytical methods, disinfection techniques, risk analysis, preparat...

  15. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    PubMed

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  16. WATERBORNE PATHOGENS IN URBAN WATERSHEDS

    EPA Science Inventory

    Pathogens are microorganisms that can cause sickness or even death. A serious concern for managers of water resources, pathogens in the urban environment easily enter waters through a number of pathways, including discharge of inadequately treated sewage, stormwater runoff, combi...

  17. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  18. Membrane rafts in host-pathogen interactions.

    PubMed

    Riethmüller, Joachim; Riehle, Andrea; Grassmé, Heike; Gulbins, Erich

    2006-12-01

    Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.

  19. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  20. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    PubMed

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  1. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art.

    PubMed

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Valcke, R

    2013-05-01

    Plants are host to a large amount of pathogenic bacteria. Fire blight, caused by the bacterium Erwinia amylovora, is an important disease in Rosaceae. Pathogenicity of E. amylovora is greatly influenced by the production of exopolysaccharides, such as amylovoran, and the use of the type III secretion system, which enables bacteria to penetrate host tissue and cause disease. When infection takes place, plants have to rely on the ability of each cell to recognize the pathogen and the signals emanating from the infection site in order to generate several defence mechanisms. These mechanisms consist of physical barriers and the production of antimicrobial components, both in a preformed and an inducible manner. Inducible defence responses are activated upon the recognition of elicitor molecules by plant cell receptors, either derived from invading micro-organisms or from pathogen-induced degradation of plant tissue. This recognition event triggers a signal transduction cascade, leading to a range of defence responses [reactive oxygen species (ROS), plant hormones, secondary metabolites, …] and redeployment of cellular energy in a fast, efficient and multiresponsive manner, which prevents further pathogen ingress. This review highlights the research that has been performed during recent years regarding this specific plant-pathogen interaction between Erwinia amylovora and Rosaceae, with a special emphasis on the pathogenicity and the infection strategy of E. amylovora and the possible defence mechanisms of the plant against this disease.

  2. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline.

    PubMed

    Lee, Jung-Bok; Sohn, Ho-Yong; Shin, Kee-Sun; Kim, Jong-Sik; Jo, Min-Sub; Jeon, Chun-Pyo; Jang, Jong-Ok; Kim, Jang-Eok; Kwon, Gi-Seok

    2008-02-01

    Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5- dichloroaniline in a minimal medium containing vinclozolin (200 microg/ml) or 3,5-dichloroaniline (120 microg/ml) were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

  3. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2015-01-01

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism. PMID:26567304

  4. Identification of a Novel Dioxygenase Involved in Metabolism of o-Xylene, Toluene, and Ethylbenzene by Rhodococcus sp. Strain DK17

    PubMed Central

    Kim, Dockyu; Chae, Jong-Chan; Zylstra, Gerben J.; Kim, Young-Soo; Kim, Seong-Ki; Nam, Myung Hee; Kim, Young Min; Kim, Eungbin

    2004-01-01

    Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively. PMID:15574904

  5. Bacterial diversity in soil from geophagic mining sites in the Qwa-Qwa region of South Africa.

    PubMed

    de Smidt, Olga; Smit, Nellie Jacoba; Botes, Elsabe

    2015-01-01

    Geophagia is practised in many parts of the world and can be associated with medicinal treatments, ceremonial events and spiritual behaviours/practices. This is the first report on a systematic investigation and description of the bacterial diversity in soil regularly ingested by geophagic individuals using a culture-independent method. Diversity in 17 different mining sites was investigated using denaturing gradient gel electrophoresis. Genetic material from Pantoea, Stenotrophomonas, Listeria, Rhodococcus and Sphingomonads was present in most of the soil samples. Species from these genera are recognised, potential or immerging human pathogens, and are of special interest in immune-compromised individuals. Other genera able to produce a variety of bacteriocins and antimicrobial/antifungal substances inhibitory towards food borne pathogens (Dactylosporangium and Bacillus) and able to degrade a range of environmental pollutants and toxins (Duganella and Massilia) were also present. These essential insights provide the platform for adjusting culturing strategies to isolate specific bacteria, further phylogenetic studies and microbial mining prospect for bacterial species of possible economic importance.

  6. Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.

    2017-02-01

    An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.

  7. ENVIRONMENTAL QUALITY INFORMATION SYSTEM - EQULS® - ITER

    EPA Science Inventory

    This project consisted of an evaluation of the Environmental Quality Information System (EQuIS) software designed by Earthsoft, Inc. as an environmental data management and analysis platform for monitoring and remediation projects. In consultation with the EQuIS vendor, six pri...

  8. The Pathogenic Potential of a Microbe

    PubMed Central

    2017-01-01

    ABSTRACT Virulence is a microbial property that is realized only in susceptible hosts. There is no absolute measurement for virulence, and consequently it is always measured relative to a standard, usually another microbe or host. This article introduces the concept of pathogenic potential, which provides a new approach to measuring the capacity of microbes for virulence. The pathogenic potential is proportional to the fraction of individuals who become symptomatic after infection with a defined inoculum and can include such attributes as mortality, communicability, and the time from infection to disease. The calculation of the pathogenic potential has significant advantages over the use of the lethal dose that kills 50% of infected individuals (LD50) and allows direct comparisons between individual microbes. An analysis of the pathogenic potential of several microbes for mice reveals a continuum, which in turn supports the view that there is no dividing line between pathogenic and nonpathogenic microbes. PMID:28251180

  9. Deconstructing host-pathogen interactions in Drosophila

    PubMed Central

    Bier, Ethan; Guichard, Annabel

    2012-01-01

    Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host. PMID:21979942

  10. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    USDA-ARS?s Scientific Manuscript database

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  11. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    PubMed

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  12. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  14. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991

  15. Antibody-based vaccine strategies against intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2018-04-25

    Historically, antibody-mediated immunity was considered effective against toxins, extracellular pathogens and viruses, while control of intracellular pathogens was the domain of cellular immunity. However, numerous observations in recent decades have conclusively shown that antibody can protect against intracellular pathogens. This paradigmatic shift has tremendous implications for immunology and vaccine design. For immunology the observation that antibody can protect against intracellular pathogens has led to the discovery of new mechanisms of antibody action. For vaccine design the knowledge that humoral immunity can be effective in protection means that the knowledge acquired in more than a century of antibody studies can be applied to make new vaccines against this class of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host

    PubMed Central

    Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno

    2012-01-01

    Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656

  17. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  18. Experimental evidence of a pathogen invasion threshold

    PubMed Central

    Krkošek, Martin

    2018-01-01

    Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876

  19. Pathogen profiling for disease management and surveillance.

    PubMed

    Sintchenko, Vitali; Iredell, Jonathan R; Gilbert, Gwendolyn L

    2007-06-01

    The usefulness of rapid pathogen genotyping is widely recognized, but its effective interpretation and application requires integration into clinical and public health decision-making. How can pathogen genotyping data best be translated to inform disease management and surveillance? Pathogen profiling integrates microbial genomics data into communicable disease control by consolidating phenotypic identity-based methods with DNA microarrays, proteomics, metabolomics and sequence-based typing. Sharing data on pathogen profiles should facilitate our understanding of transmission patterns and the dynamics of epidemics.

  20. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    PubMed

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  1. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper

    PubMed Central

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-01-01

    Background and Aims Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Methods Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Key Results Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. Conclusions The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent

  2. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  3. Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica

    PubMed Central

    Vercken, Elodie; Fontaine, Michael C.; Gladieux, Pierre; Hood, Michael E.; Jonot, Odile; Giraud, Tatiana

    2010-01-01

    Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization

  4. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  5. Evolution and genome architecture in fungal plant pathogens.

    PubMed

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  6. Host-pathogen interactions: A cholera surveillance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  7. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  8. A really useful pathogen, Agrobacterium tumefaciens.

    PubMed

    Yuan, Ze-Chun; Williams, Mary

    2012-10-01

    Bacteria of the genus Agrobacterium are very useful and unusual plant pathogens. Through a rare inter-kingdom DNA transfer, the bacteria move some of their genes into their host's genome, thereby inducing the host cells to proliferate and produce opines, nutrients sources for the pathogen. Agrobacterium's ability to transfer DNA makes can be adapted to introduce other genes, such as those encoding useful traits, into plant genomes. The development of Agrobacterium as a tool to transform plants is a landmark event in modern plant biology. This lecture provides an introduction to Agrobacterium tumefaciens and related species, focusing on their modes of pathogenicity, their usefulness as tools for plant transformation, and their use as a model for the study of plant-pathogen interactions.

  9. Targeting of the hydrophobic metabolome by pathogens.

    PubMed

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Brain abscesses as a metastatic manifestation of strangles: symptomatology and the use of magnetic resonance imaging as a diagnostic aid.

    PubMed

    Spoormakers, T J P; Ensink, J M; Goehring, L S; Koeman, J P; Ter Braake, F; van der Vlugt-Meijer, R H; van den Belt, A J M

    2003-03-01

    The occurrence of unexpectedly high numbers of horses with neurological signs during two outbreaks of strangles required prompt in-depth researching of these cases, including the exploration of magnetic resonance imaging (MRI) as a possible diagnostic technique. To describe the case series and assess the usefulness of MRI as an imaging modality for cases suspected of space-occupying lesions in the cerebral cavity. Four cases suspected of suffering from cerebral damage due to Streptococcus equi subsp. equi infection were examined clinically, pathologically, bacteriologically, by clinical chemistry (3 cases) and MRI (2 cases). In one case, MRI findings were compared to images acquired using computer tomography (CT). In all cases, cerebral abscesses positive for Streptococcus equi subsp. equi were found, which explained the clinical signs. Although the lesions could be visualised with CT, MRI images were superior in representing the exact anatomic reality of the soft tissue lesions. The diagnosis of bastard strangles characterised by metastatic brain abscesses was confirmed. MRI appeared to be an excellent tool for the imaging of cerebral lesions in the horse. The high incidence of neurological complications could not be explained but possibly indicated a change in virulence of certain strains of Streptococcus equi subsp. equi. MRI images were very detailed, permitting visualisation of much smaller lesions than demonstrated in this study and this could allow prompt clinical intervention in less advanced cases with a better prognosis. Further, MRI could assist in the surgical treatment of brain abscesses, as has been described earlier for CT.

  11. PIML: the Pathogen Information Markup Language.

    PubMed

    He, Yongqun; Vines, Richard R; Wattam, Alice R; Abramochkin, Georgiy V; Dickerman, Allan W; Eckart, J Dana; Sobral, Bruno W S

    2005-01-01

    A vast amount of information about human, animal and plant pathogens has been acquired, stored and displayed in varied formats through different resources, both electronically and otherwise. However, there is no community standard format for organizing this information or agreement on machine-readable format(s) for data exchange, thereby hampering interoperation efforts across information systems harboring such infectious disease data. The Pathogen Information Markup Language (PIML) is a free, open, XML-based format for representing pathogen information. XSLT-based visual presentations of valid PIML documents were developed and can be accessed through the PathInfo website or as part of the interoperable web services federation known as ToolBus/PathPort. Currently, detailed PIML documents are available for 21 pathogens deemed of high priority with regard to public health and national biological defense. A dynamic query system allows simple queries as well as comparisons among these pathogens. Continuing efforts are being taken to include other groups' supporting PIML and to develop more PIML documents. All the PIML-related information is accessible from http://www.vbi.vt.edu/pathport/pathinfo/

  12. Plant pathogen nanodiagnostic techniques: forthcoming changes?

    PubMed Central

    Khiyami, Mohammad A.; Almoammar, Hassan; Awad, Yasser M.; Alghuthaymi, Mousa A.; Abd-Elsalam, Kamel A.

    2014-01-01

    Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens. PMID:26740775

  13. Effector-triggered defence against apoplastic fungal pathogens

    PubMed Central

    Stotz, Henrik U.; Mitrousia, Georgia K.; de Wit, Pierre J.G.M.; Fitt, Bruce D.L.

    2014-01-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  14. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    PubMed

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  15. Intervention of Phytohormone Pathways by Pathogen Effectors[OPEN

    PubMed Central

    Kazan, Kemal; Lyons, Rebecca

    2014-01-01

    The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies. PMID:24920334

  16. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    PubMed

    Pham, Thi Thanh My; Pino Rodriguez, Nancy Johanna; Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  17. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A

    PubMed Central

    Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  18. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    PubMed

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  19. Prediction of molecular mimicry candidates in human pathogenic bacteria

    PubMed Central

    Doxey, Andrew C; McConkey, Brendan J

    2013-01-01

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053

  20. A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.

    PubMed Central

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776