Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.
2012-01-01
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370
Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A
2013-06-01
Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.
Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China
Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun
2016-01-01
The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065
Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.
2009-01-01
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880
The role of coagulation/fibrinolysis during Streptococcus pyogenes infection
Loof, Torsten G.; Deicke, Christin; Medina, Eva
2014-01-01
The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit. PMID:25309880
The role of coagulation/fibrinolysis during Streptococcus pyogenes infection.
Loof, Torsten G; Deicke, Christin; Medina, Eva
2014-01-01
The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.
Armstrong, Brent D; Herfst, Christine A; Tonial, Nicholas C; Wakabayashi, Adrienne T; Zeppa, Joseph J; McCormick, John K
2016-11-03
Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens.
Armstrong, Brent D.; Herfst, Christine A.; Tonial, Nicholas C.; Wakabayashi, Adrienne T.; Zeppa, Joseph J.; McCormick, John K.
2016-01-01
Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens. PMID:27808235
Zeppa, Joseph J; Wakabayashi, Adrienne T; Kasper, Katherine J; Xu, Stacey X; Haeryfar, S M Mansour; McCormick, John K
2016-01-01
Streptococcus pyogenes is a globally prominent human-specific pathogen that is responsible for an enormous burden of infectious disease. Despite intensive experimental efforts to understand the molecular correlates that contribute to invasive infections, there has been less focus on S. pyogenes carriage and local infection of the nasopharynx. This chapter describes an acute nasopharyngeal infection model in mice that is utilized in our laboratory to study the role of superantigen toxins in the biology of S. pyogenes. We also describe a method to detect superantigen-specific T cell activation in vivo.
Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.
Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha
2015-08-01
The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.
Karlsson, Christofer A Q; Järnum, Sofia; Winstedt, Lena; Kjellman, Christian; Björck, Lars; Linder, Adam; Malmström, Johan A
2018-06-01
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes , with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes.
Siddiqui, Ruqaiyyah; Yee Ong, Timothy Yu; Jung, Suk Yul; Khan, Naveed Ahmed
2017-12-01
Among the genus Streptococcus, S. pyogenes and S. pneumoniae are the major causes of pharyngitis, impetigo, pneumonia and meningitis in humans. Streptococcus spp. are facultative anaerobes that are nutritionally fastidious, yet survive in the environment and target the predisposed population. Antibacterial disinfectants have been partially effective only, indicating the need for novel preventative measures and to understand mechanisms of bacterial resistance. Acanthamoeba is a free-living protist that is known to harbour microbial pathogens, provide shelter, and assist in their transmission to susceptible population. The overall aim of this study was to determine whether S. pyogenes and S. pneumoniae can interact with A. castellanii by associating, invading, and surviving inside trophozoites and cysts. It was observed that both S. pyogenes and S. pneumoniae were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. Notably, S. pyogenes and S. pneumoniae survived the encystation process, avoided phagocytosis, multiplied, and exhibited higher recovery from the mature cysts, compared with the trophozoite stage (approximately 2 bacteria per amoebae ratio for cyst stage versus 0.02 bacteria per amoeba ration for trophozoite stage). As Acanthamoeba cysts are resilient and can disperse through the air, A. castellanii can act as a vector in providing shelter, facilitating growth and possibly genetic exchanges. In addition, these interactions may contribute to S. pyogenes and S. pneumoniae survival in harsh environments, and transmission to susceptible population and possibly affecting their virulence. Future studies will determine the molecular mechanisms associated with Acanthamoeba interactions with Streptococcus and the evolution of pathogenic bacteria and in turn expedite the discovery of novel therapeutic and/or preventative measures. Copyright © 2017 Elsevier Inc. All rights reserved.
Status of research and development of vaccines for Streptococcus pyogenes.
Steer, Andrew C; Carapetis, Jonathan R; Dale, James B; Fraser, John D; Good, Michael F; Guilherme, Luiza; Moreland, Nicole J; Mulholland, E Kim; Schodel, Florian; Smeesters, Pierre R
2016-06-03
Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Streptococcus pyogenes meningitis: report of a case and review of the literature.
Berner, R; Herdeg, S; Gordjani, N; Brandis, M
2000-07-01
Streptococcus pyogenes is a very uncommon cause of bacterial meningitis beyond the neonatal period. A case report and a review of the recent literature is presented. We report on a previously healthy 7-year-old boy who developed S. pyogenes meningitis following a 2-day history of otitis media. A CT scan revealed right-sided mastoiditis as a possible focus of infection. The patient was treated with penicillin G for 14 days. The clinical course was uneventful, and the recovered without sequelae. By means of the polymerase chain reaction, the presence of streptococcal pyrogenic exotoxin (SPE) B and SPE C, but not SPE A genes was discovered from the bacterial DNA. Streptococcus pyogenes is a rare cause of bacterial meningitis but has to be considered as the causative pathogen beyond the neonatal period.
Nguyen, Scott V.; McShan, William M.
2014-01-01
Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5′ end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges. PMID:25161960
Nguyen, Scott V; McShan, William M
2014-01-01
Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.
Babbar, Anshu; Kumar, Venkatesan Naveen; Bergmann, René; Barrantes, Israel; Pieper, Dietmar H; Itzek, Andreas; Nitsche-Schmitz, D Patric
2017-04-01
Conventionally categorized as commensals, the Streptococci of the species S. anginosus are facultative human pathogens that are difficult to diagnose and often overlooked. Furthermore, detailed investigation and diagnosis of S. anginosus infections is hampered by unexplored taxonomy and widely elusive molecular pathogenesis. To explore their pathogenic potential, S. anginosus isolates collected from patients of two geographical locations (Vellore, India and Leipzig, Germany) were subjected to multi-locus sequence analysis (MLSA). This analysis revealed the potential presence of a new distinct clade of the species S. anginosus, tentatively termed here as genomosubspecies vellorensis. A complementary PCR-based screening for S. pyogenes virulence factor as well as antibiotic resistance genes revealed not only the presence of superantigen- and extracellular DNase coding genes identical to corresponding genes of S. pyogenes, but also of erythromycin and tetracycline resistance genes in the genomes of the analyzed S. anginosus isolates, thus posing a matter of significant health concern. Identification of new pathogenic S. anginosus strains capable of causing difficult to treat infections may pose additional challenges to the diagnosis and treatment of Streptococcus based infections. Copyright © 2017 Elsevier GmbH. All rights reserved.
[Streptococcus pyogenes--much more than the aetiological agent of scarlet fever].
Stock, Ingo
2009-11-01
The grampositive bacterium S. pyogenes (beta-haemolytic group A Streptococcus) is a natural colonizer of the human oropharynx mucous membrane and one of the most common agents of infectious diseases in humans. S. pyogenes causes the widest range of disease in humans among all bacterial pathogens. It is responsible for various skin infections such as impetigo contagiosa and erysipelas, and localized mucous membrane infections of the oropharynx (e. g. tonsillitis and pharyngitis). Betahaemolytic group A Streptococcus causes also invasive diseases such as sepses including puerperal sepsis. Additionally, S. pyogenes induces toxin-mediated syndromes, i. e. scarlet fever, streptococcal toxic shock syndrome (STSS) and necrotizing fasciitis (NF). STSS and NF are severe, frequently fatal diseases that have emerged in Europe and Northern America during the last two decades. Finally, some immunpathological diseases such as acute rheumatic fever and glomerulonephritis also result from S. pyogenes infections. Most scientists recommend penicillins (benzylpenicillin, phenoxymethylpenicllin) as drugs of first choice for treatment of Streptococcus tonsillopharyngitis and scarlet fever. Erysipelas and some other skin infections should be treated with benzylpenicillin. Intensive care measurements are needed for treatment of severe toxin-mediated S. pyogenes diseases. These measurements include the elimination of internal bacterial foci, concomitant application of clindamycin and benzylpenicillin and suitable treatment of shock symptoms. Management of immunpathological diseases requires antiphlogistical therapy. Because of the wide distribution of S. pyogenes in the general population and the lack of an effective vaccine, possibilities for prevention allowing a suitable protection for diseases due to S. pyogenes are very limited.
Detection of Streptococcus pyogenes using rapid visual molecular assay.
Zhao, Xiangna; He, Xiaoming; Li, Huan; Zhao, Jiangtao; Huang, Simo; Liu, Wei; Wei, Xiao; Ding, Yiwei; Wang, Zhaoyan; Zou, Dayang; Wang, Xuesong; Dong, Derong; Yang, Zhan; Yan, Xiabei; Huang, Liuyu; Du, Shuangkui; Yuan, Jing
2015-09-01
Streptococcus pyogenes is an increasingly important pathogen in many parts of the world. Rapid and accurate detection of S. pyogenes aids in the control of the infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of S. pyogenes. The assay incorporates two methods: a chromogenic analysis using a calcein/Mn(2+) complex and real-time turbidity monitoring to assess the reaction. Both methods detected the target DNA within 60 min under 64°C isothermal conditions. The assay used specifically designed primers to target spy1258, and correctly identified 111 strains of S. pyogenes and 32 non-S. pyogenes strains, including other species of the genus Streptococcus. Tests using reference strains showed that the LAMP assay was highly specific. The sensitivity of the assay, with a detection limit of 1.49 pg DNA, was 10-fold greater than that of PCR. The LAMP assay established in this study is simple, fast and sensitive, and does not rely upon any special equipment; thus, it could be employed in clinical diagnosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.
Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G
2015-06-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes
Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.
2015-01-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191
Squeglia, Flavia; Bachert, Beth; Romano, Maria; Lukomski, Slawomir; Berisio, Rita
2013-09-01
Streptococcal collagen-like proteins (Scls) are widely expressed by the well recognized human pathogen Streptococcus pyogenes. These surface proteins contain a signature central collagen-like region and an amino-terminal globular domain, termed the variable domain, which is protruded away from the cell surface by the collagen-like domain. Despite their recognized importance in bacterial pathogenicity, no structural information is presently available on proteins of the Scl class. The variable domain of Scl2 from invasive M3-type S. pyogenes has successfully been crystallized using vapour-diffusion methods. The crystals diffracted to 1.5 Å resolution and belonged to space group H32, with unit-cell parameters a = 44.23, b = 44.23, c = 227.83 Å. The crystal structure was solved by single-wavelength anomalous dispersion using anomalous signal from a europium chloride derivative.|
Cardoso-Toset, F; Luque, I; Morales-Partera, A; Galán-Relaño, A; Barrero-Domínguez, B; Hernández, M; Gómez-Laguna, J
2017-02-01
Dry-cured hams, shoulders and loins of Iberian pigs are highly appreciated in national and international markets. Salting, additive addition and dehydration are the main strategies to produce these ready-to-eat products. Although the dry curing process is known to reduce the load of well-known food borne pathogens, studies evaluating the viability of other microorganisms in contaminated pork have not been performed. In this work, the efficacy of the dry curing process to eliminate three swine pathogens associated with pork carcass condemnation, Streptococcus suis, Streptococcus dysgalactiae and Trueperella pyogenes, was evaluated. Results of this study highlight that the dry curing process is a suitable method to obtain safe ready-to-eat products free of these microorganisms. Although salting of dry-cured shoulders had a moderate bactericidal effect, results of this study suggest that drying and ripening were the most important stages to obtain dry-cured products free of these microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.
Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle
2016-01-01
Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.
Sekizuka, Tsuyoshi; Nai, Emina; Yoshida, Tomohiro; Endo, Shota; Hamajima, Emi; Akiyama, Satoka; Ikuta, Yoji; Obana, Natsuko; Kawaguchi, Takahiro; Hayashi, Kenta; Noda, Masahiro; Sumita, Tomoko; Kokaji, Masayuki; Katori, Tatsuo; Hashino, Masanori; Oba, Kunihiro; Kuroda, Makoto
2017-12-18
Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing. A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]), which is similar to iGAS isolates identified in the UK (2013) and Switzerland (2015). We conclude that the global dissemination of emm3/ST15 GAS strain has the potential to cause invasive disease.
Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David
2017-12-01
Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.
Assiri, Abdullah S; El-Gamal, Basiouny A; Hafez, Elsayed E; Haidara, Mohamed A
2014-12-01
To produce an effective recombinant streptokinase (rSK) from pathogenic Streptococcus pyogenes isolate in yeast, and evaluate its potential for thrombolytic therapy. This study was conducted from November 2012 to December 2013 at King Khalid University, Abha, Kingdom of Saudi Arabia (KSA). Throat swabs collected from 45 pharyngitis patients in Asser Central Hospital, Abha, KSA were used to isolate Streptococcus pyogenes. The bacterial DNA was used for amplification of the streptokinase gene (1200 bp). The gene was cloned and in vitro transcribed in an eukaryotic expression vector that was transformed into yeast Pichia pastoris SMD1168, and the rSK protein was purified and tested for its thrombolytic activity. The Streptococcus pyogenes strain was isolated and its DNA nucleotide sequence revealed similarity to other Streptococcus pyogenes in the Gene bank. Sequencing of the amplified gene based on DNA nucleotide sequence revealed a SK gene closely related to other SK genes in the Gene bank. However, based on deduced amino acids sequence, the gene formed a separate cluster different from clusters formed by other examined genes, suggesting a new bacterial isolate and accordingly a new gene. The purified protein showed 82% clot lysis compared to a commercial SK (81%) at an enzyme concentration of 2000 U/ml. The present yeast rSK showed similar thrombolytic activity in vitro as that of a commercial SK, suggesting its potential for thrombolytic therapy and large scale production.
Babbar, Anshu; Itzek, Andreas; Pieper, Dietmar H; Nitsche-Schmitz, D Patric
2018-03-12
Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.
Controlled Human Infection for Vaccination Against Streptococcus Pyogenes
2018-06-26
Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections
Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W
2016-12-01
Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.
Fieber, Christina; Janos, Marton; Koestler, Tina; Gratz, Nina; Li, Xiao-Dong; Castiglia, Virginia; Aberle, Marion; Sauert, Martina; Wegner, Mareike; Alexopoulou, Lena; Kirschning, Carsten J.; Chen, Zhijian J.; von Haeseler, Arndt; Kovarik, Pavel
2015-01-01
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13 −/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms. PMID:25756897
Zheng, Lisa; Khemlani, Adrina; Lorenz, Natalie; Loh, Jacelyn M. S.; Langley, Ries J.; Proft, Thomas
2015-01-01
Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5′-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5′-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg2+, Ca2+, or Mn2+. However, Zn2+ inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5′-nucleotidase activity and immune evasion properties. PMID:26527680
Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula
2016-08-20
Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Min-Je; Lee, Won-Ho; Biotechnology and Genetic Engineering, Korea University, Seoul 136-701
2005-04-01
The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. Themore » asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.« less
Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections
Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges
2016-01-01
Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes
Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle
2016-01-01
ABSTRACT Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233
[Orbital cellulitis complicated by subperiosteal abscess due to Streptococcus pyogenes infection].
Ruíz Carrillo, José Daniel; Vázquez Guerrero, Edwin; Mercado Uribe, Mónica Cecilia
Orbital cellulitis is an infectious disease that is very common in pediatric patients, in which severe complications may develop. Etiological agents related to this disease are Haemophilus influenzae B, Staphylococcus aureus, Streptococcus pneumoniae and Moraxella catarrhalis, which correspond to 95% of cases. Moreover, Streptococcus beta hemolytic and anaerobic microorganisms may also be present corresponding to < 5% of the cases. We present an uncommon case of cellulitis complicated by sub-periosteal abscess caused by Streptococcus pyogenes (Group A beta hemolytic streptococcus). A 9-year-old male patient with a history of deficit disorder and hyperactivity since 5 years of age. His current condition started with erythema in the external edge of the right eye, increase in peri-orbicular volume with limitation of eyelid opening, progression to proptosis, pain with eye movements and conjunctival purulent discharge. Image studies reported subperiosteal abscess and preseptal right with extraocular cellulitis. The patient started with empirical antibiotic treatment, surgical drainage and culture of purulent material from which Streptococcus pyogenes was isolated. Due to the implementation of vaccination schemes against H. influenza and S. pneumoniae since the 90s, the cases by these pathogens have decreased, causing new bacteria to take place as the cause of the infection. The importance of considering S. pyogenes as an etiology of orbital cellulitis is the rapid progression to abscess formation, and the few cases described in the literature. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong
2018-04-20
Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Watanabe, Shinya; Takemoto, Norihiko; Ogura, Kohei; Miyoshi-Akiyama, Tohru
2016-01-01
Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE-B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two-component system, which negatively regulates many virulence factor genes, resulting in a hyper-virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression. © 2015 The Societies and John Wiley & Sons Australia, Ltd.
Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.
2011-01-01
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223
Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats
2014-01-01
Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900
A case of meningitis caused by Streptococcus pyogenes in a previously healthy woman.
Ulug, Mehmet; Ulug, Nuray Can; Celen, Mustafa Kemal; Geyik, Mehmet Faruk; Ayaz, Celal
2009-04-01
Streptococcus pyogenes is a well-known cause of a variety of clinical infections including local symptoms such as tonsillopharyngitis, cervical lymphadenitis, otitis media, cellulites, erysipelas, as well as more severe diseases such as scarlet fever, osteomyelitis, necrotizing fasciitis, sepsis, and toxic shock syndrome. However, acute bacterial meningitis caused by this pathogen is unusual. We report a case of group A streptococcus (GAS) meningitis in a previously healthy woman with a dramatically rapid course and fatal outcome. A 41-year-old previously healthy woman presented a history of fever, headache, vomiting, and sore throat of three days' duration. Neurological examination revealed diminished consciousness and neck rigidity. The cerebrospinal fluid (CSF) was turbid with 10,000 leukocytes/mm(3). Direct examination of CSF showed Gram-positive cocci in chains, and cultures yielded S. pyogenes. Blood cultures yielded growth of S. pyogenes. The patient was treated initially with ceftriaxone (4 g/day) and the control CSF examination was not changed on the third day, so vancomycin (2 g/day) was added to the treatment; however, she died on the fourth day of the treatment. S. pyogenes meningitis is uncommon and the incidence seems to be persistently low; nevertheless, clinicians should be aware that sporadic cases may occur and may have a fulminant course with a relevant neurological sequel.
Novel Regulatory Small RNAs in Streptococcus pyogenes
Tesorero, Rafael A.; Yu, Ning; Wright, Jordan O.; Svencionis, Juan P.; Cheng, Qiang; Kim, Jeong-Ho; Cho, Kyu Hong
2013-01-01
Streptococcus pyogenes (Group A Streptococcus or GAS) is a Gram-positive bacterial pathogen that has shown complex modes of regulation of its virulence factors to cause diverse diseases. Bacterial small RNAs are regarded as novel widespread regulators of gene expression in response to environmental signals. Recent studies have revealed that several small RNAs (sRNAs) have an important role in S. pyogenes physiology and pathogenesis by regulating gene expression at the translational level. To search for new sRNAs in S. pyogenes, we performed a genomewide analysis through computational prediction followed by experimental verification. To overcome the limitation of low accuracy in computational prediction, we employed a combination of three different computational algorithms (sRNAPredict, eQRNA and RNAz). A total of 45 candidates were chosen based on the computational analysis, and their transcription was analyzed by reverse-transcriptase PCR and Northern blot. Through this process, we discovered 7 putative novel trans-acting sRNAs. Their abundance varied between different growth phases, suggesting that their expression is influenced by environmental or internal signals. Further, to screen target mRNAs of an sRNA, we employed differential RNA sequencing analysis. This study provides a significant resource for future study of small RNAs and their roles in physiology and pathogenesis of S. pyogenes. PMID:23762235
Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes
HAMADA, Shigeyuki; KAWABATA, Shigetada; NAKAGAWA, Ichiro
2015-01-01
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85–1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these. PMID:26666305
Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min
2014-01-01
The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.
Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min
2014-01-01
The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774
Gordon, Lily D.; Fang, Zhong; Holder, Robert C.; Reid, Sean D.
2015-01-01
ABSTRACT Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. IMPORTANCE Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. PMID:26013489
Young, Christie A; Gordon, Lily D; Fang, Zhong; Holder, Robert C; Reid, Sean D
2015-08-01
Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Streptococcus pyogenes: an unusual cause of salpingitis. Case report and review of the literature.
Blot, Mathieu; de Curraize, Claire; Salmon-Rousseau, Arnaud; Gehin, Sophie; Bador, Julien; Chavanet, Pascal; Neuwirth, Catherine; Piroth, Lionel; Amoureux, Lucie
2017-10-01
Streptococcus pyogenes can colonize genitourinary tract, but it is a rare cause of salpingitis. We report a case of bilateral salpingitis due to Streptococcus pyogenes in a 34-year-old woman using an intra-uterine device and which occurred following a family history of recurrent S. pyogenes infections. We review 12 other cases reported in the literature, and discuss the pathophysiological mechanisms of this potentially life-threatening disease. It is important to take into account consider Streptococcus pyogenes as a cause of acute salpingitis in the context of recent intra-familial Streptococcus pyogenes infections.
Zheng, Lisa; Khemlani, Adrina; Lorenz, Natalie; Loh, Jacelyn M S; Langley, Ries J; Proft, Thomas
2015-12-25
Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5'-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5'-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg(2+), Ca(2+), or Mn(2+). However, Zn(2+) inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5'-nucleotidase activity and immune evasion properties. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M
2016-05-31
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. Copyright © 2016 Beres et al.
Sakai, Tetsuya; Taniyama, Daisuke; Takahashi, Saeko; Nakamura, Morio; Takahashi, Takashi
2017-01-01
Group A Streptococcus (GAS, Streptococcus pyogenes ) causes invasive infections including streptococcal toxic shock syndrome (STSS) and local infections. To our knowledge, this is the first report of a case of an invasive GAS infection with pneumonia and pleural empyema (PE) followed by STSS (disseminated intravascular coagulation [DIC] and acute renal insufficiency) in a healthy male adult. He received combined supportive therapies of PE drainage, anti-DIC agent, hemodialysis, and antimicrobials and eventually made a clinical recovery. GAS isolated from PE was found to have emm1 / speA genes, suggestive of a pathogenic strain. Clinicians should be aware of the possibility of this disease entity (pneumonia, PE, and STSS) in healthy male adults as well as children and adult women.
Saroj, Sunil D.; Holmer, Linda; Berengueras, Júlia M.; Jonsson, Ann-Beth
2017-01-01
Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence. PMID:28303956
Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth
2017-03-17
Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.
Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats
2014-06-27
Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Zeppa, Joseph J.; Kasper, Katherine J.; Mohorovic, Ivor; Mazzuca, Delfina M.
2017-01-01
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection. PMID:28794279
Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883
Periorbital Necrotizing Fasciitis Secondary to Candida parapsilosis and Streptococcus pyogenes.
Zhang, Matthew; Chelnis, James; Mawn, Louise A
Necrotizing fasciitis is most often caused by either polymicrobial bacterial infections or by Gram-positive organisms, such as Streptococcus or Staphylococcus; however, rare cases of fungal necrotizing fasciitis have been reported. Candida parapsilosis is an emerging fungal pathogen. This fungus grows in either a yeast or pseudohyphal form. C. parapsilosis has been reported to cause keratitis, intraocular infection, and seeding of frontalis slings. C. parapsilosis is a commensal of human skin and can be acquired by nosocomial spread. Necrotizing fasciitis due to Candida has rarely been reported, but to date C. parapsilosis has not been identified as the causative organism in necrotizing fasciitis. This is the first documented case of human periocular soft tissue infection by C. parapsilosis, and also the first report providing evidence of mycotic infection in a necrotizing fasciitis concurrently infected by Streptococcus pyogenes.
Gratz, Nina; Hartweger, Harald; Matt, Ulrich; Kratochvill, Franz; Janos, Marton; Sigel, Stefanie; Drobits, Barbara; Li, Xiao-Dong; Knapp, Sylvia; Kovarik, Pavel
2011-01-01
Streptococcus pyogenes is a Gram-positive human pathogen that is recognized by yet unknown pattern recognition receptors (PRRs). Engagement of these receptor molecules during infection with S. pyogenes, a largely extracellular bacterium with limited capacity for intracellular survival, causes innate immune cells to produce inflammatory mediators such as TNF, but also type I interferon (IFN). Here we show that signaling elicited by type I IFNs is required for successful defense of mice against lethal subcutaneous cellulitis caused by S. pyogenes. Type I IFN signaling was accompanied with reduced neutrophil recruitment to the site of infection. Mechanistic analysis revealed that macrophages and conventional dendritic cells (cDCs) employ different signaling pathways leading to IFN-beta production. Macrophages required IRF3, STING, TBK1 and partially MyD88, whereas in cDCs the IFN-beta production was fully dependent on IRF5 and MyD88. Furthermore, IFN-beta production by macrophages was dependent on the endosomal delivery of streptococcal DNA, while in cDCs streptococcal RNA was identified as the IFN-beta inducer. Despite a role of MyD88 in both cell types, the known IFN-inducing TLRs were individually not required for generation of the IFN-beta response. These results demonstrate that the innate immune system employs several strategies to efficiently recognize S. pyogenes, a pathogenic bacterium that succeeded in avoiding recognition by the standard arsenal of TLRs. PMID:21625574
Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias
2014-01-01
Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984
Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49.
Hering, Silvio; Sieg, Antje; Kreikemeyer, Bernd; Fiedler, Tomas
2013-09-01
Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.
Factors that cause trimethoprim resistance in Streptococcus pyogenes.
Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric
2014-01-01
The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent.
Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes
Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S.
2014-01-01
The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent. PMID:24492367
Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan
2016-11-01
Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Euler, Chad W.; Juncosa, Barbara; Ryan, Patricia A.; Deutsch, Douglas R.; McShan, W. Michael; Fischetti, Vincent A.
2016-01-01
Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and further elucidate how the presence of prophage may affect overall streptococcal survival, pathogenicity, and evolution. PMID:26756207
Okada, N; Liszewski, M K; Atkinson, J P; Caparon, M
1995-03-28
The pathogenic Gram-positive bacterium Streptococcus pyogenes (group A streptococcus) is the causative agent of numerous suppurative diseases of human skin. The M protein of S. pyogenes mediates the adherence of the bacterium to keratinocytes, the most numerous cell type in the epidermis. In this study, we have constructed and analyzed a series of mutant M proteins and have shown that the C repeat domain of the M molecule is responsible for cell recognition. The binding of factor H, a serum regulator of complement activation, to the C repeat region of M protein blocked bacterial adherence. Factor H is a member of a large family of complement regulatory proteins that share a homologous structural motif termed the short consensus repeat. Membrane cofactor protein (MCP), or CD46, is a short consensus repeat-containing protein found on the surface of keratinocytes, and purified MCP could competitively inhibit the adherence of S. pyogenes to these cells. Furthermore, the M protein was found to bind directly to MCP, whereas mutant M proteins that lacked the C repeat domain did not bind MCP, suggesting that recognition of MCP plays an important role in the ability of the streptococcus to adhere to keratinocytes.
Min, Sharon; Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A; Zalacain, Magdalena; Holmes, David J; O'Dwyer, Karen
2015-08-01
The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A.; Zalacain, Magdalena; Holmes, David J.; O'Dwyer, Karen
2015-01-01
The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). PMID:26014938
Molecular Epidemiology and Genomics of Group A Streptococcus
Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé
2014-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818
Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.
Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B
2009-07-01
This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly.
Demerle, Clémence; Ivanov, Vadim; Mercier, Cédric; Costello, Régis; Drancourt, Michel
2015-11-29
Community-acquired meningitis is a monomicrobial infection caused by either viruses or bacteria in the vast majority of patients. We report here one exceptional case of a patient with mixed bacterial meningitis due to Streptococcus pneumoniae and Streptococcus pyogenes. We report the case of a 68-year-old immunocompromised Caucasian man suffering from otitis and then meningitis caused by Streptococcus pneumoniae and Streptococcus pyogenes. Bacteria were undistinguishable by direct microscopic examination of the cerebrospinal fluid. He responded well to treatment with cefotaxime and dexamethasone, with no sequelae observed at the 4-month follow-up. This first reported case of mixed S. pneumoniae and S. pyogenes meningitis illustrates the life-threatening consequences of barotrauma in immunocompromised patients suffering from otorhinolaryngeal infections.
Wenig, Katja; Chatwell, Lorenz; von Pawel-Rammingen, Ulrich; Björck, Lars; Huber, Robert; Sondermann, Peter
2004-12-14
Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic cleavage at the lower hinge of human IgG. This proteolytic degradation promotes inhibition of opsonophagocytosis and interferes with the killing of group A Streptococcus. We have determined the crystal structure of the catalytically inactive mutant IdeS-C94S by x-ray crystallography at 1.9-A resolution. Despite negligible sequence homology to known proteinases, the core of the structure resembles the canonical papain fold although with major insertions and a distinct substrate-binding site. Therefore IdeS belongs to a unique family within the CA clan of cysteine proteinases. Based on analogy with inhibitor complexes of papain-like proteinases, we propose a model for substrate binding by IdeS.
Genetic Manipulation of Streptococcus pyogenes (The Group A Streptococcus, GAS)
Le Breton, Yoann; McIver, Kevin S.
2013-01-01
Streptococcus pyogenes (the group A streptococcus, GAS) is a Gram-positive bacterium responsible for a wide spectrum of diseases ranging from mild superficial infections (pharyngitis, impetigo) to severe often life-threatening invasive diseases (necrotizing fasciitis, streptococcal toxic shock syndrome) in humans. This unit describes molecular techniques for the genetic manipulation of S. pyogenes with detailed protocols for transformation, gene disruption, allelic exchange, transposon mutagenesis, and genetic complementation. PMID:24510894
Non-Invasive Monitoring of Streptococcus pyogenes Vaccine Efficacy Using Biophotonic Imaging
Alam, Faraz M.; Bateman, Colin; Turner, Claire E.; Wiles, Siouxsie; Sriskandan, Shiranee
2013-01-01
Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI) can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 105 bacterial colony forming units (CFU) in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines. PMID:24278474
Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.
Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka
2016-02-01
Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Lefébure, Tristan; Stanhope, Michael J
2007-01-01
Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002
Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris
2016-03-15
Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing. Copyright © 2015 Elsevier Inc. All rights reserved.
Pinho, M. D.; Melo-Cristino, J.; Ramirez, M.
2010-01-01
Quinolone resistance is an emerging problem in Streptococcus pyogenes, and recombination with Streptococcus dysgalactiae DNA has been implicated as a frequent mechanism leading to resistance. We have characterized a collection of S. dysgalactiae subsp. equisimilis isolates responsible for infections in humans (n = 314) and found a high proportion of levofloxacin-resistant isolates (12%). Resistance was associated with multiple emm types and genetic lineages, as determined by pulsed-field gel electrophoretic profiling. Since we could not find evidence for a role of efflux pumps in resistance, we sequenced the quinolone resistance-determining regions of the gyrA and parC genes of representative resistant and susceptible isolates. We found much greater diversity among the parC genes (19 alleles) than among the gyrA genes (5 alleles). While single mutations in either GyrA or ParC were sufficient to raise the MIC so that the strains were classified as intermediately resistant, higher-level resistance was associated with mutations in both GyrA and ParC. Evidence for recombination with S. pyogenes DNA was found in some parC alleles, but this was not exclusively associated with resistance. Our data support the existence of a common reservoir of genes conferring quinolone resistance shared between S. dysgalactiae subsp. equisimilis and S. pyogenes, while no recombination with the animal pathogen S. dysgalactiae subsp. dysgalactiae could be found. PMID:20145082
Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R
2018-03-25
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
The Naval Health Research Center Respiratory Disease Laboratory.
Ryan, M; Gray, G; Hawksworth, A; Malasig, M; Hudspeth, M; Poddar, S
2000-07-01
Concern about emerging and reemerging respiratory pathogens prompted the development of a respiratory disease reference laboratory at the Naval Health Research Center. Professionals working in this laboratory have instituted population-based surveillance for pathogens that affect military trainees and responded to threats of increased respiratory disease among high-risk military groups. Capabilities of this laboratory that are unique within the Department of Defense include adenovirus testing by viral shell culture and microneutralization serotyping, influenza culture and hemagglutination inhibition serotyping, and other special testing for Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumonia, and Chlamydia pneumoniae. Projected capabilities of this laboratory include more advanced testing for these pathogens and testing for other emerging pathogens, including Bordetella pertussis, Legionella pneumoniae, and Haemophilus influenzae type B. Such capabilities make the laboratory a valuable resource for military public health.
Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions.
Wilkening, Reid V; Federle, Michael J
2017-07-01
Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ray, Dipanwita; Banerjee, Surajita; Bhattacharya, Sujata; Sinha, Sukanta; Bandyopadhyay, Debasis; Ghosal, Chaitry; Gupta, Siddhartha; Majumdar, Pallav Kumar; Saha, Somnath; Gupta, Soma; Bhattacharya, Basudev
2010-02-01
Streptococcus pyogenes(group A) is a major pathogen capable of causing a wide range of diseases in different age group of people. In this study 100 patients were selected who presented with the complaint of sore throat. All the patients were divided in four age groups. Streptococcus pyogenes colonies were confirmed on the basis of beta-haemolysis, bacitracin sensitivity test, and latex agglutination test for group A. Out of a total of 100 samples, 42 were confirmed as group A streptococcus. From this study, it has been observed that all age groups, with maximum occurrence in 5-15 years age group, were suffering from group A streptococcal pharyngitis. Therefore every case of sore throat especially affecting children should be investigated to detect the causative agent for initiation of proper therapy so that the more serious outcome like acute rheumatic fever (ARF) and acute glomerulonephritis (AGN) can be prevented.
Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun
2016-09-23
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural Model for Covalent Adhesion of the Streptococcus pyogenes Pilus through a Thioester Bond*
Linke-Winnebeck, Christian; Paterson, Neil G.; Young, Paul G.; Middleditch, Martin J.; Greenwood, David R.; Witte, Gregor; Baker, Edward N.
2014-01-01
The human pathogen Streptococcus pyogenes produces pili that are essential for adhesion to host surface receptors. Cpa, the adhesin at the pilus tip, was recently shown to have a thioester-containing domain. The thioester bond is believed to be important in adhesion, implying a mechanism of covalent attachment analogous to that used by human complement factors. Here, we have characterized a second active thioester-containing domain on Cpa, the N-terminal domain of Cpa (CpaN). Expression of CpaN in Escherichia coli gave covalently linked dimers. These were shown by x-ray crystallography and mass spectrometry to comprise two CpaN molecules cross-linked by the polyamine spermidine following reaction with the thioester bonds. This cross-linked CpaN dimer provides a model for the covalent attachment of Cpa to target receptors and thus the streptococcal pilus to host cells. Similar thioester domains were identified in cell wall proteins of other Gram-positive pathogens, suggesting that thioester domains are more widely used and provide a mechanism of adhesion by covalent bonding to target molecules on host cells that mimics that used by the human complement system to eliminate pathogens. PMID:24220033
High-level fluorescence labeling of gram-positive pathogens.
Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara
2011-01-01
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.
Respiratory Diseases among U.S. Military Personnel: Countering Emerging Threats
Callahan, Johnny D.; Hawksworth, Anthony W.; Fisher, Carol A.; Gaydos, Joel C.
1999-01-01
Emerging respiratory disease agents, increased antibiotic resistance, and the loss of effective vaccines threaten to increase the incidence of respiratory disease in military personnel. We examine six respiratory pathogens (adenoviruses, influenza viruses, Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumoniae, and Bordetella pertussis) and review the impact of the diseases they cause, past efforts to control these diseases in U.S. military personnel, as well as current treatment and surveillance strategies, limitations in diagnostic testing, and vaccine needs. PMID:10341174
Delayed-onset streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation.
Bayraktar, Zerrin; Kapran, Ziya; Bayraktar, Sükrü; Acar, Nur; Unver, Yaprak Banu; Gök, Kemran
2005-01-01
To report a case of delayed-onset Streptococcus pyogenes endophthalmitis following implantation of an Ahmed glaucoma valve. A 10-year-old patient presented with acute endophthalmitis 1 year after Ahmed glaucoma valve implantation. The conjunctiva and Tenon's capsule over the valve plate had been penetrated by one of the polypropylene fixation sutures. The valve was removed, and pars plana vitrectomy was performed. Vitreous specimens and removal of the discharge over the plate revealed Streptococcus pyogenes. This is the first documented case of Streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation. We think the conjunctival buttonhole caused by the polypropylene suture provided an entry site for the infection. (c) Japanese Ophthalmological Society 2005.
Ikebe, Tadayoshi; Matsumura, Takayuki; Nihonmatsu, Hisako; Ohya, Hitomi; Okuno, Rumi; Mitsui, Chieko; Kawahara, Ryuji; Kameyama, Mitsuhiro; Sasaki, Mari; Shimada, Naomi; Ato, Manabu; Ohnishi, Makoto
2016-01-01
Streptococcus pyogenes (group A Streptococcus; GAS) is a widespread human pathogen and causes streptococcal toxic shock syndrome (STSS). STSS isolates have been previously shown to have high frequency mutations in the csrS/csrR (covS/covR) and/or rgg (ropB) genes, which are negative regulators of virulence. However, these mutations were found at somewhat low frequencies in emm1-genotyped isolates, the most prevalent STSS genotype. In this study, we sought to detect causal mutations of enhanced virulence in emm1 isolates lacking mutation(s) in the csrS/csrR and rgg genes. Three mutations associated with elevated virulence were found in the sic (a virulence gene) promoter, the csrR promoter, and the rocA gene (a csrR positive regulator). In vivo contribution of the sic promoter and rocA mutations to pathogenicity and lethality was confirmed in a GAS mouse model. Frequency of the sic promoter mutation was significantly higher in STSS emm1 isolates than in non-invasive STSS isolates; the rocA gene mutation frequency was not significantly different among STSS and non-STSS isolates. STSS emm1 isolates possessed a high frequency mutation in the sic promoter. Thus, this mutation may play a role in the dynamics of virulence and STSS pathogenesis. PMID:27349341
Ikebe, Tadayoshi; Matsumura, Takayuki; Nihonmatsu, Hisako; Ohya, Hitomi; Okuno, Rumi; Mitsui, Chieko; Kawahara, Ryuji; Kameyama, Mitsuhiro; Sasaki, Mari; Shimada, Naomi; Ato, Manabu; Ohnishi, Makoto
2016-06-28
Streptococcus pyogenes (group A Streptococcus; GAS) is a widespread human pathogen and causes streptococcal toxic shock syndrome (STSS). STSS isolates have been previously shown to have high frequency mutations in the csrS/csrR (covS/covR) and/or rgg (ropB) genes, which are negative regulators of virulence. However, these mutations were found at somewhat low frequencies in emm1-genotyped isolates, the most prevalent STSS genotype. In this study, we sought to detect causal mutations of enhanced virulence in emm1 isolates lacking mutation(s) in the csrS/csrR and rgg genes. Three mutations associated with elevated virulence were found in the sic (a virulence gene) promoter, the csrR promoter, and the rocA gene (a csrR positive regulator). In vivo contribution of the sic promoter and rocA mutations to pathogenicity and lethality was confirmed in a GAS mouse model. Frequency of the sic promoter mutation was significantly higher in STSS emm1 isolates than in non-invasive STSS isolates; the rocA gene mutation frequency was not significantly different among STSS and non-STSS isolates. STSS emm1 isolates possessed a high frequency mutation in the sic promoter. Thus, this mutation may play a role in the dynamics of virulence and STSS pathogenesis.
The Cryptic Competence Pathway in Streptococcus pyogenes Is Controlled by a Peptide Pheromone
Mashburn-Warren, Lauren; Morrison, Donald A.
2012-01-01
Horizontal gene transfer is an important means of bacterial evolution that is facilitated by transduction, conjugation, and natural genetic transformation. Transformation occurs after bacterial cells enter a state of competence, where naked DNA is acquired from the extracellular environment. Induction of the competent state relies on signals that activate master regulators, causing the expression of genes involved in DNA uptake, processing, and recombination. All streptococcal species contain the master regulator SigX and SigX-dependent effector genes required for natural genetic transformation; however, not all streptococcal species have been shown to be naturally competent. We recently demonstrated that competence development in Streptococcus mutans requires the type II ComRS quorum-sensing circuit, comprising an Rgg transcriptional activator and a novel peptide pheromone (L. Mashburn-Warren, D. A. Morrison, and M. J. Federle, Mol. Microbiol. 78:589–606, 2010). The type II ComRS system is shared by the pyogenic, mutans, and bovis streptococci, including the clinically relevant pathogen Streptococcus pyogenes. Here, we describe the activation of sigX by a small-peptide pheromone and an Rgg regulator of the type II ComRS class. We confirm previous reports that SigX is functional and able to activate sigX-dependent gene expression within the competence regulon, and that SigX stability is influenced by the cytoplasmic protease ClpP. Genomic analyses of available S. pyogenes genomes revealed the presence of intact genes within the competence regulon. While this is the first report to show natural induction of sigX, S. pyogenes remained nontransformable under laboratory conditions. Using radiolabeled DNA, we demonstrate that transformation is blocked at the stage of DNA uptake. PMID:22730123
Jensen, Anders
2012-01-01
The taxonomic status and structure of Streptococcus dysgalactiae have been the object of much confusion. Bacteria belonging to this species are usually referred to as Lancefield group C or group G streptococci in clinical settings in spite of the fact that these terms lack precision and prevent recognition of the exact clinical relevance of these bacteria. The purpose of this study was to develop an improved basis for delineation and identification of the individual species of the pyogenic group of streptococci in the clinical microbiology laboratory, with a special focus on S. dysgalactiae. We critically reexamined the genetic relationships of the species S. dysgalactiae, Streptococcus pyogenes, Streptococcus canis, and Streptococcus equi, which may share Lancefield group antigens, by phylogenetic reconstruction based on multilocus sequence analysis (MLSA) and 16S rRNA gene sequences and by emm typing combined with phenotypic characterization. Analysis of concatenated sequences of seven genes previously used for examination of viridans streptococci distinguished robust and coherent clusters. S. dysgalactiae consists of two separate clusters consistent with the two recognized subspecies dysgalactiae and equisimilis. Both taxa share alleles with S. pyogenes in several housekeeping genes, which invalidates identification based on single-locus sequencing. S. dysgalactiae, S. canis, and S. pyogenes constitute a closely related branch within the genus Streptococcus indicative of recent descent from a common ancestor, while S. equi is highly divergent from other species of the pyogenic group streptococci. The results provide an improved basis for identification of clinically important pyogenic group streptococci and explain the overlapping spectrum of infections caused by the species associated with humans. PMID:22075580
Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan
2017-01-01
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. PMID:28183813
Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.
2014-01-01
Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688
Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W; Fischetti, Vincent A
2014-06-01
Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Yang, Qiwen; Zhang, Hui; Cheng, Jingwei; Xu, Zhipeng; Hou, Xin; Xu, Yingchun
2015-04-01
The objective of this study was to better understand the in vitro activity of flomoxef against clinical pathogens. A total of 545 clinical isolates, including Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, and Streptococcus pyogenes, were isolated consecutively from clinical specimens from Peking Union Medical College Hospital in 2013. MICs were determined using broth microdilution method. esbl and ampC genes were detected by polymerase chain reaction and sequencing. Flomoxef showed excellent activity against E. coli, K. pneumoniae, and P. mirabilis isolates, with susceptibility rate of 88.8%, 88.3%, and 97.7%, separately. Moreover, flomoxef exhibited great activity against extended-spectrum beta-lactamase (ESBL) producers, with MIC50/MIC90 of 0.125/(0.5-1) μg/mL. Flomoxef showed MIC50/MIC90 of 0.5/0.5 μg/mL against MSSA, 0.125/0.25 μg/mL against S. pyogenes, and 2/16 μg/mL against S. pneumoniae. In conclusion, flomoxef is one of the cephamycins showing excellent activity against ESBL-producing or ESBL-nonproducing E. coli, K. pneumoniae, and P. mirabilis and was also potent against MSSA, S. pyogenes, and S. pneumoniae. Copyright © 2015 Elsevier Inc. All rights reserved.
The incidence of scarlet fever.
Perks, E. M.; Mayon-White, R. T.
1983-01-01
This study attempted to find the incidence of scarlet fever in the Oxford region, including the proportion of patients from whom Streptococcus pyogenes could be isolated. General practitioners collected throat swabs from patients with suspected scarlet fever. The swabs were examined for viral and bacterial pathogens. Children admitted to hospital were used as controls. Twenty-five of 105 patients with suspected scarlet fever grew Str. pyogenes; M type 4 was the commonest type. The clinical diagnosis of scarlet fever was not always confirmed by throat culture. The annual incidence of scarlet fever was estimated to be 0.3 cases per 1000 per year. PMID:6358344
Lu, Binghuai; Fang, Yujie; Fan, Yanyan; Chen, Xingchun; Wang, Junrui; Zeng, Ji; Li, Yi; Zhang, Zhijun; Huang, Lei; Li, Hongxia; Li, Dong; Zhu, Fengxia; Cui, Yanchao; Wang, Duochun
2017-01-01
Streptococcus pyogenes, or group A Streptococcus, is a pathogen responsible for a wide range of clinical manifestations, from mild skin and soft tissue infections and pharyngitis to severe diseases. Its epidemiological characteristics should be comprehensively under surveillance for regulating the national prevention and treatment practice. Herein, a total of 140 S. pyogenes, including 38 invasive and 102 noninvasive isolates, were collected from infected patients in 10 tertiary general hospitals from 7 cities/provinces in China during the years 2009–2016. All strains were characterized by classical and molecular techniques for its emm types/subtypes, virulent factors and antibiotic resistance profiling. Of 140 isolates, 15 distinct emm types and 31 subtypes were detected, dominated by emm12 (60 isolates, 42.9%), emm1(43, 30.7%), and emm89 (10, 7.1%), and 8 new emm variant subtypes were identified. All strains, invasive or not, harbored the superantigenic genes, speB and slo. The other virulence genes, smeZ, speF, and speC accounted for 96.4, 91.4, and 87.1% of collected isolates, respectively. Further multilocus sequence typing (MLST) placed all strains into 22 individual sequence types (STs), including 4 newly-identified STs (11, 7.9%). All isolates were phenotypically susceptible to penicillin, ampicillin, cefotaxime, and vancomycin, whereas 131(93.5%), 132(94.2%), and 121(86.4%) were resistant to erythromycin, clindamycin, and tetracycline, respectively. Our study highlights high genotypic diversity and high prevalence of macrolide resistance of S. pyogenes among clinical isolates circulating in China. PMID:28642756
Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes
Turner, Claire E.; Dryden, Matthew; Holden, Matthew T. G.; Davies, Frances J.; Lawrenson, Richard A.; Farzaneh, Leili; Bentley, Stephen D.; Efstratiou, Androulla
2013-01-01
Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; one was characterized by bacteremia and shock and the other by hemorrhagic pneumonia. The women gave birth within minutes of each other in the same maternity unit 2 days earlier. Seven additional infections in health care and household contacts were subsequently detected and treated. All cluster-associated S. pyogenes isolates were genotype emm1 and were initially indistinguishable from other United Kingdom emm1 isolates. Sequencing of the virulence gene sic revealed that all outbreak isolates had the same unique sic type. Genome sequencing confirmed that the cluster was caused by a unique S. pyogenes clone. Transmission between patients occurred on a single day and was associated with casual contact only. A single isolate from one patient demonstrated a sequence change in sic consistent with longer infection duration. Transmission to health care workers was traced to single clinical contacts with index cases. The last case was detected 18 days after the first case. Following enhanced surveillance, the outbreak isolate was not detected again. Mutations in bacterial regulatory genes played no detectable role in this outbreak, illustrating the intrinsic ability of emm1 S. pyogenes to spread while retaining virulence. This fast-moving outbreak highlights the potential of S. pyogenes to cause a range of diseases in the puerperium with rapid transmission, underlining the importance of immediate recognition and response by clinical infection and occupational health teams. PMID:23616448
Effects of natural honey on polymicrobial culture of various human pathogens
Al-Waili, Faiza S.; Akmal, Mohammed; Ali, Amjed; Salom, Khelod Y.; Al Ghamdi, Ahmad A.
2012-01-01
Introduction Honey has a wide range of antimicrobial activity. All previous studies have considered honey's effect on a single microbe. The present study investigated activity of honey towards a high dose of single or polymicrobial culture. Material and methods 10 µl specimens of Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli) and Candida albicans (C. albicans) were cultured in 10 ml of 10-100% (wt/v) honey diluted in broth. Six types of polymicrobial microbial cultures were prepared by culturing the isolates with each other onto broth (control) and broth containing various concentrations of honey (10-100% wt/v). Microbial growth was assessed on solid plate media after 24 h incubation. Results Honey (30-70%) prevents growth of 10 µl specimens of all the isolates. Greater reduction in growth of E. coli was observed when cultured with S. aureus. Culturing of S. aureus with S. pyogenes, C. albicans, or E. coli increased its sensitivity to honey. S. aureus and S. pyogenes increased sensitivity of C. albicans to honey while E. coli and C. albicans decreased sensitivity of S. pyogenes. Conclusions It might be concluded that honey prevents and inhibits growth of single and polymicrobial pathogenic cultures. Polymicrobial culture affects growth of the isolates and increases their sensitivity to honey. PMID:24904656
Effects of natural honey on polymicrobial culture of various human pathogens.
Al-Waili, Noori S; Al-Waili, Faiza S; Akmal, Mohammed; Ali, Amjed; Salom, Khelod Y; Al Ghamdi, Ahmad A
2014-05-12
Honey has a wide range of antimicrobial activity. All previous studies have considered honey's effect on a single microbe. The present study investigated activity of honey towards a high dose of single or polymicrobial culture. 10 µl specimens of Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli) and Candida albicans (C. albicans) were cultured in 10 ml of 10-100% (wt/v) honey diluted in broth. Six types of polymicrobial microbial cultures were prepared by culturing the isolates with each other onto broth (control) and broth containing various concentrations of honey (10-100% wt/v). Microbial growth was assessed on solid plate media after 24 h incubation. Honey (30-70%) prevents growth of 10 µl specimens of all the isolates. Greater reduction in growth of E. coli was observed when cultured with S. aureus. Culturing of S. aureus with S. pyogenes, C. albicans, or E. coli increased its sensitivity to honey. S. aureus and S. pyogenes increased sensitivity of C. albicans to honey while E. coli and C. albicans decreased sensitivity of S. pyogenes. It might be concluded that honey prevents and inhibits growth of single and polymicrobial pathogenic cultures. Polymicrobial culture affects growth of the isolates and increases their sensitivity to honey.
Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez
2013-11-01
Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.
In-vitro effect of edta-tris-lysozyme solutions on selected pathogenic bacteria.
Wooley, R E; Blue, J L
1975-02-01
The in-vitro effect of EDTA-Tris-lysozyme solution on 16 pathogenic bacteria of medical or veterinary importance was determined. Marked decreases in bacterial count occurred with Pseudomonas aeruginosa, Escherichia coli, Moraxella osloensis and Campylobacter fetus, and smaller decreses with Salmonella typhimurium, Shigella boydii, Aeromonas hydrophila, proteus mirabilis, Listeria monocytogenes and Erysipelothrix insidiosa. The test solution had no effect on Klebsiella ozaenae, Brucella canis, Cornynebacterium pyogenes, Coryne, renale, Streptococcus equi and staphylococcus aureus.
Gebreselassie, Solomon
2002-04-01
Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic resistance susceptibility testing should be performed for the proper management of bacterial infections. This entails the need for national surveillance to monitor antibiotic resistance in bacteria by susceptibility testing using reliable methods.
High-Level Fluorescence Labeling of Gram-Positive Pathogens
Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara
2011-01-01
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607
Imagama, Takashi; Tokushige, Atsunori; Sakka, Akihito; Seki, Kazushige; Taguchi, Toshihiko
2015-06-01
Back and buttock pain during pregnancy and the postpartum period generally improves spontaneously and rarely causes problems. However, such pain is infrequently induced by pyogenic sacroiliitis. We herein present a 37-year-old female patient with no previous medical history who developed pyogenic sacroiliitis with severe right buttock pain 7 days after cesarean delivery. Arthrocentesis was performed, and a culture revealed the presence of methicillin-resistant Staphylococcus aureus (MRSA). After 6 weeks of treatment with intravenous antibiotics, her infection became quiescent. Eight cases of pyogenic sacroiliitis during the postpartum period and seven cases during pregnancy have been reported, but most of the causative pathogens were methicillin-sensitive Staphylococcus or Streptococcus species. This report describes the first case of postpartum pyogenic sacroiliitis caused by MRSA. The frequency of infection with MRSA has recently increased, and community-acquired MRSA, which affects even healthy young people, has also become a problem. Antibiotics for empirical therapy after a diagnosis of pyogenic sacroiliitis, including anti-MRSA antibiotics, should be carefully selected. Copyright © 2015. Published by Elsevier B.V.
The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.
Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja
2017-09-25
Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.
[Streptococcus pyogenes and the brain: living with the enemy].
Dale, R C
Streptococcus pyogenes (or group A beta hemolytic streptococcus) is a pathogenic bacterium that can give rise to a range of invasive and autoimmune diseases, although it is more widely known as the cause of tonsillitis. It is particularly interesting to note that this germ only causes disease in humans. For many years it has been acknowledged that it can cause an autoimmune brain disease (Sydenham s chorea). Yet, the spectrum of post streptococcal brain disorders has recently been extended to include other movement disorders such as tics or dystonia. A number of systematic psychiatric studies have shown that certain emotional disorders generally accompany the movement disorder (particularly, obsessive compulsive disorder). The proposed pathogenetic mechanism is that of a neuronal dysfunction in which antibodies play a mediating role. The antibodies that are produced after the streptococcal infection cross react with neuronal proteins, and more especially so in individuals with a propensity. This represents a possible model of immunological mimicry and its potential importance with respect to certain idiopathic disorders such as Tourette syndrome and obsessive compulsive disorder.
Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A.
2013-01-01
Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci. PMID:23292771
Yoshino, Miho; Murayama, Somay Y.; Sunaoshi, Katsuhiko; Wajima, Takeaki; Takahashi, Miki; Masaki, Junko; Kurokawa, Iku; Ubukata, Kimiko
2010-01-01
Among nonhemolytic Streptococcus pyogenes (group A streptococcus) strains (n = 9) isolated from patients with pharyngitis or acute otitis media, we identified three deletions in the region from the epf gene, encoding the extracellular matrix binding protein, to the sag operon, mediating streptolysin S production. PMID:20018818
Ciszewski, Marcin; Szewczyk, Eligia M
2017-05-01
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.
Skariyachan, Sinosh; Narayan, Naik Sowmyalaxmi; Aggimath, Tejaswini S; Nagaraj, Sushmitha; Reddy, Monika S; Narayanappa, Rajeswari
2014-03-01
Streptococcus pyogenes is a notorious pathogenic bacterium which causes various human diseases ranging from localized infections to life threatening invasive diseases. Streptolysin-O (SLO), pore-forming thiol-activated cytolysin, is the major virulent factor for streptococcal infections. Present therapies against streptococcal infections are limited as most of the strains have developed multi-drug resistance to present generation of drugs. Hence, there is a need for alternative therapeutic substances. Structure based virtual screening is a novel platform to select lead molecules with better pharmacokinetic properties. The 3D structure of SLO (not available in native form), essential for such studies, was computationally generated and this homology model was used as probable drug target. Based on literature survey, several phytoligands from 25 medicinal plants were selected. Out of these, leads from 11 plants showed better pharmacokinetic properties. The best lead molecules were screened based on computer aided drug likeness and pharmacokinetic predictions. The inhibitory properties of selected herbal leads against SLO were studied by molecular docking. An in vitro assay was further carried out and variations observed were found to be significant (p<0.05). Antibiotic sensitivity testing was also performed with the clinical strain of Streptococcus pyogenes with conventional drugs. The clinical strain showed multi-drug resistance to conventional drugs. Our study revealed that numerous phytoligands have better inhibitory properties towards the toxin. We noticed that incorporation of selected herbal extracts in blood agar medium showed significant reduction in hemolysis (MIC 300μl/plate), indicating inhibition of SLO. Furthermore, the butanol extracts of selected herbal preparation based on computer aided screening showed significant inhibitory properties at 250 mcg/disc concentration. We also noticed that selected herbal formulations have better antimicrobial properties at MIC range of 300- 400μl. Hence, our study suggests that these herbal extracts have better inhibitory properties against the toxin as well as drug resistant Streptococcus pyogenes.
Cusumano, Zachary T.; Watson, Michael E.
2014-01-01
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient. PMID:24144727
Cusumano, Zachary T; Caparon, Michael G
2015-04-01
A common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacterium Streptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protect S. pyogenes in a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection. An important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism in Streptococcus pyogenes during a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for bacteria in a low-pH environment. Dissection of these collaborative pathways highlights the complexity of bacterial infections and the contribution of atypical nutrients, such as citrulline, to pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan
2017-04-01
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Rößler, S; Berner, R; Jacobs, E; Toepfner, N
2018-05-03
Prevalence of invasive ß-haemolytic streptococci (BHS) at a tertiary care hospital and molecular diversity of S. pyogenes and S. dysgalactiae was studied. Between 2012 and 2016, all blood culture sets (n = 55,839), CSF (n = 8413) and soft tissue (n = 20,926) samples were analysed for BHS positivity using HYBASE software. Molecular profiles of 99 S. pyogenes and S. dysgalactiae were identified by sequencing of M protein genes (emm types) and multiplex PCR typing of 20 other virulence determinants. Streptococci contributed to 6.2% of blood, 10.7% of CSF and 14.5% of soft tissue isolates, being among the most common invasive isolates. The overall rates of invasive S. pyogenes, S. agalactiae, S. dysgalactiae and S. pneumoniae were 2.4, 4.4, 2.1, and 5.3%. Whereas S. pneumoniae was 1.5% more common in CSF samples, BHS isolates were 2-fold and 11-fold higher in bacteraemia and invasive soft tissue infections. Genetic BHS typing revealed wide molecular diversity of invasive and noninvasive group A and group G BHS, whereas one emm-type (stG62647.0) and no other virulence determinants except scpA were detected in invasive group C BHS. BHS were important invasive pathogens, outpacing S. pneumoniae in bacteraemia and invasive soft tissue infections. The incidence of S. dysgalactiae infections was comparable to that of S. pyogenes even with less diversity of molecular virulence. The results of this study emphasise the need for awareness of BHS invasiveness in humans and the need to develop BHS prevention strategies.
Mixed community-acquired pneumonia in hospitalised patients.
de Roux, A; Ewig, S; García, E; Marcos, M A; Mensa, J; Lode, H; Torres, A
2006-04-01
The role of mixed community-acquired pneumonia (CAP) is controversial. The aim of the present study was to determine the incidence, principal microbial patterns, clinical predictors and course of mixed CAP. The current study included 1,511 consecutive hospitalised patients with CAP. Of these, 610 (40%) patients had an established aetiology. One pathogen was demonstrated in 528 patients and 82 (13%) patients had mixed pneumonia. Cases including CAP, by a pyogenic bacteria and a complete paired serology for "atypicals", revealed that 82 (13%) patients had definite single pyogenic pneumonia and 28 patients (5%) had mixed pyogenic pneumonia. In patients with mixed CAP, Streptococcus pneumoniae was the most prevalent microorganism (44 out of 82; 54%). The most frequent combination was S. pneumoniae with Haemophilus influenzae (17 out of 82; 21%). Influenza virus A and S. pneumoniae (five out of 28; 18%) was the most frequent association in the mixed pyogenic pneumonia group. No clinical predictors for mixed pneumonias could be identified. Patients with mixed pyogenic pneumonia more frequently developed shock when compared with patients with single pyogenic pneumonia (18 versus 4%). In conclusion, mixed pneumonia occurs in >10% of cases with community-acquired pneumonia requiring hospitalisation.
Turner, Andrew G; Ong, Cheryl-Lynn Y; Djoko, Karrera Y; West, Nicholas P; Davies, Mark R; McEwan, Alastair G; Walker, Mark J
2017-06-01
Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA ( P erR-regulated m etal t ransporter A ), a P 1B-4 -type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448Δ pmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448Δ pmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen. Copyright © 2017 American Society for Microbiology.
Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M
2016-11-01
Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment.
In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model.
Davis, Richard W; Eggleston, Heather; Johnson, Frances; Nahrendorf, Matthias; Bock, Paul E; Peterson, Tiffany; Panizzi, Peter
2015-12-01
Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology.
In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model
Davis, Richard W.; Eggleston, Heather; Johnson, Frances; Nahrendorf, Matthias; Bock, Paul E.; Peterson, Tiffany; Panizzi, Peter
2016-01-01
Purpose Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. Procedures Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. Results Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. Conclusions The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology. PMID:25921659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia
2016-01-01
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas
2016-02-01
Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...
2016-10-13
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
Makthal, Nishanth; Nguyen, Kimberly; Do, Hackwon; Gavagan, Maire; Chandrangsu, Pete; Helmann, John D; Olsen, Randall J; Kumaraswami, Muthiah
2017-07-01
Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Zebrafish and Streptococcal Infections.
Saralahti, A; Rämet, M
2015-09-01
Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed. © 2015 The Foundation for the Scandinavian Journal of Immunology.
Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M
2012-08-01
This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Circulating polymerase chain reaction chips utilizing multiple-membrane activation
NASA Astrophysics Data System (ADS)
Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin
2007-02-01
This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.
Thermoregulation of Capsule Production by Streptococcus pyogenes
Kang, Song Ok; Wright, Jordan O.; Tesorero, Rafael A.; Lee, Hyunwoo; Beall, Bernard; Cho, Kyu Hong
2012-01-01
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface. PMID:22615992
Lopardo, Horacio A.; Vidal, Patricia; Sparo, Monica; Jeric, Paola; Centron, Daniela; Facklam, Richard R.; Paganini, Hugo; Pagniez, N. Gaston; Lovgren, Marguerite; Beall, Bernard
2005-01-01
During a 6-month period, 95 invasive infections due to Streptococcus pyogenes and group C or group G Streptococcus dysgalactiae subsp. equisimilis were recorded from 40 centers of 16 cities in Argentina. We describe here epidemiologic data available for 55 and 19 patients, respectively, associated with invasive infections due to S. pyogenes and S. dysgalactiae subsp. equisimilis. The associated isolates and 58 additional pharyngeal isolates were genotyped and subjected to serologic and/or antibiotic susceptibility testing. Group A streptococcal emm type distribution and strain association with toxic shock appeared to differ somewhat from results found within the United States; however, serologic characterization and sof sequence typing suggested that emm types found in both countries are reflective of shared clonal types. PMID:15695683
Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro.
Maddocks, Sarah Elizabeth; Jenkins, Rowena Eleri; Rowlands, Richard Samuel; Purdy, Kevin John; Cooper, Rose Agnes
2013-12-01
To characterize the effect of manuka honey on medically important wound bacteria in vitro, focusing on its antiadhesive properties. Crystal violet biofilm assays, fluorescent microscopy, protein adhesion assay and gentamicin protection assay were used to determine the impact of manuka honey on biofilm formation, human protein binding and adherence to/invasion into human keratinocytes. Manuka honey effectively disrupted and caused extensive cell death in biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Sublethal doses of manuka honey inhibited bacterial adhesion to the fibronectin, fibrinogen and collagen. Manuka honey impaired adhesion of laboratory and clinical isolates of S. aureus, P. aeruginosa and S. pyogenes to human keratinocytes in vitro, and inhibited invasion by S. pyogenes and homogeneous vancomycin intermediate S. aureus. Manuka honey can directly affect bacterial cells embedded in a biofilm and exhibits antiadhesive properties against three common wound pathogens.
Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bogdanovich, Tatiana; Appelbaum, Peter C
2006-02-01
Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus.
Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bogdanovich, Tatiana; Appelbaum, Peter C.
2006-01-01
Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus. PMID:16436741
NASA Astrophysics Data System (ADS)
Masychev, Viktor I.; Risovannaya, Olga N.
2005-03-01
Results of in vivo experiments have shown the maximum effectiveness of combined use of photo sensitizer 0,1% gel Radachlorine simultaneously with continuous and super pulse low energy irradiation of the diode laser with energy density 400 J/cm2, and power 1W. Given parameters have lead to complete elimination of Streptococcus pyogenes from inflammation foci in oral cavity of experimental animals.
Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N
2000-02-29
Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.
Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.
Honda-Ogawa, Mariko; Ogawa, Taiji; Terao, Yutaka; Sumitomo, Tomoko; Nakata, Masanobu; Ikebe, Kazunori; Maeda, Yoshinobu; Kawabata, Shigetada
2013-05-31
Streptococcus pyogenes is an important human pathogen that causes invasive diseases such as necrotizing fasciitis, sepsis, and streptococcal toxic shock syndrome. We investigated the function of a major cysteine protease from S. pyogenes that affects the amount of C1-esterase inhibitor (C1-INH) and other complement factors and aimed to elucidate the mechanism involved in occurrence of streptococcal toxic shock syndrome from the aspect of the complement system. First, we revealed that culture supernatant of a given S. pyogenes strain and recombinant SpeB degraded the C1-INH. Then, we determined the N-terminal sequence of the C1-INH fragment degraded by recombinant SpeB. Interestingly, the region containing one of the identified cleavage sites is not present in patients with C1-INH deficiency. Scanning electron microscopy of the speB mutant incubated in human serum showed the abnormal superficial architecture and irregular oval structure. Furthermore, unlike the wild-type strain, that mutant strain showed lower survival capacity than normal as compared with heat-inactivated serum, whereas it had a significantly higher survival rate in serum without the C1-INH than in normal serum. Also, SpeB degraded multiple complement factors and the membrane attack complex. Flow cytometric analyses revealed deposition of C9, one of the components of membrane the attack complex, in greater amounts on the surface of the speB mutant, whereas lower amounts of C9 were bound to the wild-type strain surface. These results suggest that SpeB can interrupt the human complement system via degrading the C1-INH, thus enabling S. pyogenes to evade eradication in a hostile environment.
Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar
2013-01-01
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608
Onouchi, Takanori; Mizutani, Yasuyoshi; Shiogama, Kazuya; Inada, Ken-ichi; Okada, Tatsuyoshi; Naito, Kensei; Tsutsumi, Yutaka
2015-01-01
Streptococcus pyogenes is the main causative pathogen of recurrent tonsillitis. Histologically, lesions of recurrent tonsillitis contain numerous plasma cells. Strep A is an antigenic carbohydrate molecule on the cell wall of S. pyogenes. As expected, plasma cells in subjects with recurrent tonsillitis secrete antibodies against Strep A. The enzyme-labeled antigen method is a novel histochemical technique that visualizes specific antibody-producing cells in tissue sections by employing a biotin-labeled antigen as a probe. The purpose of the present study was to visualize plasma cells producing antibodies reactive with Strep A in recurrent tonsillitis. Firstly, the lymph nodes of rats immunized with boiled S. pyogenes were paraformaldehyde-fixed and specific plasma cells localized in frozen sections with biotinylated Strep A. Secondly, an enzyme-labeled antigen method was used on human tonsil surgically removed from 12 patients with recurrent tonsillitis. S. pyogenes genomes were PCR-detected in all 12 specimens. The emm genotypes belonged to emm12 in nine specimens and emm1 in three. Plasma cells producing anti-Strep A antibodies were demonstrated in prefixed frozen sections of rat lymph nodes, 8/12 human specimens from patients with recurrent tonsillitis but not in two control tonsils. In human tonsils, Strep A-reactive plasma cells were observed within the reticular squamous mucosa and just below the mucosa, and the specific antibodies belonged to either IgA or IgG classes. Our technique is effective in visualizing immunocytes producing specific antibodies against the bacterial carbohydrate antigen, and is thus a novel histochemical tool for analyzing immune reactions in infectious disorders. © 2014 The Authors. Microbiology and Immunology Published by The Societies and Wiley Publishing Asia Pty Ltd.
Recurrent bacteremia with different strains of Streptococcus pyogenes in an immunocompromised child.
Hattori, Takuya; Minami, Masaaki; Narita, Kotaro; Nakata, Tomohiko; Itomi, Seiko; Kubota, Kinya; Oya, Teruaki; Nishiyama, Hideki; Kato, Hideki; Yuasa, Norihiro
2016-06-01
We report an immunocompromised child who experienced two episodes of bacteremia due to Streptococcus pyogenes. Random amplification of polymorphic DNA profiles, emm genotypes, superantigen profiles, antimicrobial susceptibility, and resistance-related genes were investigated, and the results showed different profiles between the two isolates. This is the first report describing recurrent bacteremia caused by different strains of S. pyogenes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Pritt, Bobbi S; Patel, Robin; Kirn, Thomas J; Thomson, Richard B
2016-10-01
Nucleic acid amplification tests (NAATs) have frequently been the standard diagnostic approach when specific infectious agents are sought in a clinic specimen. They can be applied for specific agents such as S. pyogenes, or commercial multiplex NAATs for detection of a variety of pathogens in gastrointestinal, bloodstream, and respiratory infections may be used. NAATs are both rapid and sensitive. For many years, S. pyogenes testing algorithms used a rapid and specific group A streptococcal antigen test to screen throat specimens, followed, in some clinical settings, by a throat culture for S. pyogenes to increase the sensitivity of its detection. Now S. pyogenes NAATs are being used with increasing frequency. Given their accuracy, rapidity, and ease of use, should they replace antigen detection and culture for the detection of bacterial pharyngitis? Bobbi Pritt and Robin Patel of the Mayo Clinic, where S. pyogenes NAATs have been used for well over a decade with great success, will explain the advantages of this approach, while Richard (Tom) Thomson and Tom Kirn of the NorthShore University HealthSystem will discuss their concerns about this approach to diagnosing bacterial pharyngitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
[Immunization and bacterial pathogens in the oropharynx as risk factors for alopecia areata].
Morales-Sánchez, M A; Domínguez-Gómez, M A; Jurado-Santa Cruz, F; Peralta-Pedrero, M L
2010-06-01
Alopecia areata is an autoimmune inflammatory disease affecting the hair follicles. Researchers are currently interested in whether the presence of bacterial pathogens and/or a history of immunization can trigger an autoimmune response in patients who are genetically predisposed. This study aimed to determine whether there is an association between the development of alopecia areata and throat carriage of bacterial pathogens or a history of immunization. Sixty-five men and women with alopecia areata and 65 control patients with other skin diseases were studied at the Dr Ladislao de la Pascua Dermatology Clinic between September 2008 and February 2009. The patients ranged in age from 18-59 years. Patients with scalp diseases were excluded from the control group. In all cases, the patient was questioned about immunizations received in the previous 6 months, and a throat swab was cultured. A history of immunization (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.6-6.7; P=.001), the presence of bacterial pathogens in the oropharynx (OR, 2.6; 95% CI, 1.1-6.2; P=.033), and being a carrier of Streptococcus pyogenes (OR, 2.1; 95% CI, 1.7-2.5; P=.042) were risk factors for alopecia areata. Klebsiella pneumoniae, S. pyogenes, Pseudomonas aeruginosa, Streptococcus pneumoniae, Serratia marcescens and Escherichia coli were isolated from cultures. This is the first study to show an association between alopecia areata and throat carriage of bacterial pathogens or history of immunization, as risk factors for development of the disease. Given the characteristics of our study population, the association appears valid for patients with less than 25% hair loss and a course of disease under 1 year.
Movert, Elin; Lienard, Julia; Valfridsson, Christine; Johansson-Lindbom, Bengt
2018-01-01
From an evolutionary point of view a pathogen might benefit from regulating the inflammatory response, both in order to facilitate establishment of colonization and to avoid life-threatening host manifestations, such as septic shock. In agreement with this notion Streptococcus pyogenes exploits type I IFN-signaling to limit detrimental inflammation in infected mice, but the host-pathogen interactions and mechanisms responsible for induction of the type I IFN response have remained unknown. Here we used a macrophage infection model and report that S. pyogenes induces anti-inflammatory IL-10 in an M protein-dependent manner, a function that was mapped to the B- and C-repeat regions of the M5 protein. Intriguingly, IL-10 was produced downstream of type I IFN-signaling, and production of type I IFN occurred via M protein-dependent activation of the STING signaling pathway. Activation of STING was independent of the cytosolic double stranded DNA sensor cGAS, and infection did not induce detectable release into the cytosol of either mitochondrial, nuclear or bacterial DNA–indicating DNA-independent activation of the STING pathway in S. pyogenes infected macrophages. These findings provide mechanistic insight concerning how S. pyogenes induces the type I IFN response and identify a previously unrecognized macrophage-modulating role for the streptococcal M protein that may contribute to curb the inflammatory response to infection. PMID:29579113
Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas
2016-01-01
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535
Santagati, Maria; Iannelli, Francesco; Cascone, Carmela; Campanile, Floriana; Oggioni, Marco R; Stefani, Stefania; Pozzi, Gianni
2003-01-01
The macrolide efflux gene mef(A) of the Streptococcus pyogenes clinical strain 2812A was found to be carried by a 52-kb chromosomal genetic element that could be transferred by conjugation to the chromosome of other streptococcal species. The characteristics of this genetic element are typical of conjugative transposons and was named Tn1207.3. The size of Tn1207.3 was established by pulsed-field gel electrophoresis (PFGE), and DNA sequencing analysis showed that the 7,244 bp at the left end of Tn1207.3 were identical to those of the pneumococcal Tn1207.1 element. Tn1207.3-like genetic elements were found to be inserted at a single specific chromosomal site in 12 different clinical isolates S. pyogenes exhibiting the M phenotype of resistance to macrolides and carrying the mef(A) gene. Tn1207.3 was transferred from S. pyogenes 2812A to Streptococcus pneumoniae, and sequence analysis carried out on six independent transconjugants showed that insertion of Tn1207.3 in the pneumococcal genome always occurred at a single specific site as in Tn1207.1. Using MF2, a representative S. pneumoniae transconjugant, as a donor, Tn1207.3 was transferred again by conjugation to S. pyogenes and Streptococcus gordonii. The previously described nonconjugative element Tn1207.1 of S. pneumoniae appears to be a defective element, part of a longer conjugative transposon that carries mef(A) and is found in clinical isolates of S. pyogenes.
PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing.
Wilkening, Reid V; Chang, Jennifer C; Federle, Michael J
2016-01-01
Group A Streptococcus (GAS, Streptococcus pyogenes) is a human-restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two-component system and the Rgg2/3 quorum-sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg(2+) and a fragment of the antimicrobial peptide LL-37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP-type quorum-sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non-virulent GAS lifestyles. © 2015 John Wiley & Sons Ltd.
Streptococcus pyogenes translocates across an epithelial barrier.
Sumitomo, Tomoko
2017-01-01
Streptococcus pyogenes is a β-hemolytic organism responsible for a wide variety of human diseases that commonly occur as self-limiting purulent diseases of the pharynx and skin. Although the occurrence of invasive infections by S. pyogenes is rare, mortality rates remain high even with progressive medical therapy. As a prerequisite for causing the severe invasive disease, S. pyogenes must invade underlying sterile tissues by translocating across the epithelial barrier. In this study, streptolysin S and SpeB were identified as the novel factors that facilitate bacterial translocation via degradation of intercellular junctions. Furthermore, we found that S. pyogenes exploits host plasminogen for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. Here, I would like to show our study on bacterial translocation across the epithelial barrier through paracellular route.
Responses of innate immune cells to group A Streptococcus
Fieber, Christina; Kovarik, Pavel
2014-01-01
Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020
Cutforth, Tyler; DeMille, Mellissa MC; Agalliu, Ilir; Agalliu, Dritan
2016-01-01
Streptococcus pyogenes infections have been associated with two autoimmune diseases of the CNS: Sydenham’s chorea (SC) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS). Despite the high frequency of pharyngeal streptococcus infections among children, only a small fraction develops SC or PANDAS. This suggests that several factors in combination are necessary to trigger autoimmune complications: specific S. pyogenes strains that induce a strong immune response toward the host nervous system; genetic susceptibility that predispose children toward an autoimmune response involving movement or tic symptoms; and multiple infections of the throat or tonsils that lead to a robust Th17 cellular and humoral immune response when untreated. In this review, we summarize the evidence for each factor and propose that all must be met for the requisite neurovascular pathology and behavioral deficits found in SC/PANDAS. PMID:27110222
The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes
Vega, Luis A.; Valdes, Kayla M.; Sundar, Ganesh S.; Belew, Ashton T.; Islam, Emrul; Berge, Jacob; Curry, Patrick; Chen, Steven
2016-01-01
ABSTRACT As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host. PMID:27993974
Plainvert, Céline; Doloy, Alexandra; Joubrel, Caroline; Maataoui, Naouale; Dmytruk, Nicolas; Touak, Gérald; Collobert, Gislène; Fouet, Agnès; Poyart, Claire; Loubinoux, Julien
2016-04-01
Sixty-three cases of Streptococcus pyogenes meningitis in adults were studied. Three predominant emm types were associated with meningitis: emm1 (44%), emm3 (11%), and emm6 (11%). Streptococcal toxic shock syndrome and mortality rates were 40% and 38%, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Yukun; Wang, Xin; Duan, Nuo; Xia, Yu; Wang, Zhouping; Che, Zhenming; Wang, Lijun; Yang, Xiao; Chen, Xianggui
2018-06-15
An aptamer against Streptococcus pyogenes was selected and identified, and a fluorescent method based on the reported aptamer was established to detect S. pyogenes in the cooked chicken. Through a twelve rounds of whole-bacterium SELEX (systematic evolution of ligands by exponential enrichment) selection in vitro, a set of aptamers binding to the whole cell of S. pyogenes were generated, harvesting a low-level dissociation constant (K d ) value of 44 ± 5 nmol L -1 of aptamer S-12. Aptamer-based quantification of S. pyogenes in the cooked chicken sample was implemented in a fluorescence resonance energy transfer-based assay by using graphene oxide, resulting in a limit of detection of 70 cfu mL -1 . The selected aptamer showed affinity and selectivity recognizing S. pyogenes; besides, more biosensors based on the selected aptamer as a molecular recognition element could be developed in the innovative determinations of S. pyogenes. Copyright © 2018 Elsevier Inc. All rights reserved.
Klonoski, Joshua M.; Hurtig, Heather R.; Juber, Brian A.; Schuneman, Margaret J.; Bickett, Thomas E.; Svendsen, Joshua M.; Burum, Brandon; Penfound, Thomas A.; Sereda, Grigoriy; Dale, James B.; Chaussee, Michael S.; Huber, Victor C.
2014-01-01
Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection. PMID:25077423
High prevalence of fluoroquinolone-nonsusceptible Streptococcus pyogenes emm12 in Taiwan.
Lin, Jiun-Nong; Chang, Lin-Li; Lai, Chung-Hsu; Huang, Yi-Han; Chen, Wei-Fang; Yang, Chih-Hui; Hsu, Janine; Lin, Hsi-Hsun; Chen, Yen-Hsu
2015-10-01
Fluoroquinolone-nonsusceptible Streptococcus pyogenes has rapidly emerged in several countries. The aim of this study was to survey the epidemiology and molecular characteristics of fluoroquinolone-nonsusceptible S. pyogenes in Taiwan. A total of 350 consecutive S. pyogenes isolates were collected between January 2005 and December 2012, including 152 (43.4%) invasive and 198 (56.6%) noninvasive isolates. Thirty-nine isolates (11.1%) of S. pyogenes were nonsusceptible to fluoroquinolones, including one emm1/ST28, 4 emm4/ST39, 33 emm12/ST36, and 1 emm87/ST62. Of all the isolates, emm12 (50%) demonstrated the highest prevalence of fluoroquinolone nonsusceptibility. Alterations of Ser79Phe and Ala12Val in ParC were the most frequently mutations in fluoroquinolone-nonsusceptible S. pyogenes isolates. There were no amino acid substitutions in GyrB, and 1 emm87 isolate exhibited 3 nonsynonymous mutations in ParE. Our study reveals the emergence of fluoroquinolone-nonsusceptible S. pyogenes emm12/ST36 in Taiwan. Regular surveillance of fluoroquinolone susceptibility in S. pyogenes is suggested. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammerts van Bueren,A.; Higgins, M.; Wang, D.
2007-01-01
The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basismore » for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.« less
Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H. P.; Whisstock, James C.; Baker, Edward N.; Kreikemeyer, Bernd
2012-01-01
Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain. PMID:22977243
Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H P; Whisstock, James C; Baker, Edward N; Kreikemeyer, Bernd
2012-11-02
Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.
Chen, Z; Mashburn-Warren, L; Merritt, J; Federle, M J; Kreth, J
2017-10-01
The 5' untranslated region (5' UTR) of an mRNA molecule embeds important determinants that modify its stability and translation efficiency. In Streptococcus pyogenes, a strict human pathogen, a gene encoding a secreted protease (speB) has a large 5' UTR with unknown functions. Here we describe that a partial deletion of the speB 5' UTR caused a general accumulation of mRNA in the stationary phase, and that the mRNA accumulation was due to retarded mRNA degradation. The phenotype was observed in several M serotypes harboring the partial deletion of the speB 5' UTR. The phenotype was triggered by the production of the truncated speB 5' UTR, but not by the disruption of the intact speB 5' UTR. RNase Y, a major endoribonuclease, was previously shown to play a central role in bulk mRNA turnover in stationary phase. However, in contrast to our expectations, we observed a weaker interaction between the truncated speB 5' UTR and RNase Y compared with the wild-type, which suggests that other unidentified RNA degrading components are required for the pleiotropic effects observed from the speB UTR truncation. Our study demonstrates how S. pyogenes uses distinct mRNA degradation schemes in exponential and stationary growth phases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Streptococcus iniae beta-hemolysin streptolysin S is a virulence factor in fish infection.
Locke, Jeffrey B; Colvin, Kelly M; Varki, Nissi; Vicknair, Mike R; Nizet, Victor; Buchanan, John T
2007-06-07
Streptococcus iniae is a leading pathogen of intensive aquaculture operations worldwide, although understanding of virulence mechanisms of this pathogen in fish is lacking. S. iniae possesses a homolog of streptolysin S (SLS), a secreted, pore-forming cytotoxin that is a proven virulence factor in the human pathogen S. pyogenes. Here we used allelic exchange mutagenesis of the structural gene for the S. iniae SLS precursor (sagA) to examine the role of SLS in S. iniae pathogenicity using in vitro and in vivo models. The isogenic Delta sagA mutant was less cytotoxic to fish blood cells and cultured epithelial cells, but comparable to wild-type (WT) S. iniae in adherence/invasion of epithelial cell monolayers and resisting phagocytic killing by fish whole blood or macrophages. In a hybrid striped bass infection model, loss of SLS production led to marked virulence attenuation, as injection of the Delta sagA mutant at 1000x the WT lethal dose (LD80) produced only 10% mortality. The neutralization of SLS could represent a novel strategy for control of S. iniae infection in aquaculture.
Palmieri, Claudio; Magi, Gloria; Mingoia, Marina; Bagnarelli, Patrizia; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna
2012-09-01
Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.
You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji; Cui, Yujun; Zhang, Jianzhong
2012-11-01
A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak.
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas
2007-12-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network.
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O.; Podbielski, Andreas
2007-01-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network. PMID:17893125
Bao, Yun-Juan; Liang, Zhong; Mayfield, Jeffrey A; Lee, Shaun W; Ploplis, Victoria A; Castellino, Francis J
2015-10-01
The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. The CovRS system modulates transcription of ∼ 18% of the genes in the Streptococcus pyogenes genome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of an emm23 strain of S. pyogenes (M23ND) and its complemented avirulent variant (CovS(+)). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rush, Jeffrey S; Edgar, Rebecca J; Deng, Pan; Chen, Jing; Zhu, Haining; van Sorge, Nina M; Morris, Andrew J; Korotkov, Konstantin V; Korotkova, Natalia
2017-11-24
In many Lactobacillales species ( i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes , synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N -acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan
2017-09-01
Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.
Macedocin, a Food-Grade Lantibiotic Produced by Streptococcus macedonicus ACA-DC 198
Georgalaki, Marina D.; Van den Berghe, Erika; Kritikos, Dimitrios; Devreese, Bart; Van Beeumen, Jozef; Kalantzopoulos, George; De Vuyst, Luc; Tsakalidou, Effie
2002-01-01
Streptococcus macedonicus ACA-DC 198, a strain isolated from Greek Kasseri cheese, produces a food-grade lantibiotic named macedocin. Macedocin has a molecular mass of 2,794.76 ± 0.42 Da, as determined by electrospray mass spectrometry. Partial N-terminal sequence analysis revealed 22 amino acid residues that correspond with the amino acid sequence of the lantibiotics SA-FF22 and SA-M49, both of which were isolated from the pathogen Streptococcus pyogenes. Macedocin inhibits a broad spectrum of lactic acid bacteria, as well as several food spoilage and pathogenic bacteria, including Clostridium tyrobutyricum. It displays a bactericidal effect towards the most sensitive indicator strain, Lactobacillus sakei subsp. sakei LMG 13558T, while the producer strain itself displays autoinhibition when it is grown under conditions that do not favor bacteriocin production. Macedocin is active at pHs between 4.0 and 9.0, and it retains activity even after incubation for 20 min at 121°C with 1 atm of overpressure. Inhibition of macedocin by proteolytic enzymes is variable. PMID:12450808
Port, Gary C; Cusumano, Zachary T; Tumminello, Paul R; Caparon, Michael G
2017-03-28
SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes , SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1 - mutants were defective for growth under aerobic conditions, while SpxA2 - mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1 - mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2 - mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1 - mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2 - mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1 - attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2 - hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2 - hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue. IMPORTANCE For many pathogens, it is generally assumed that stress resistance is essential for pathogenesis. For Streptococcus pyogenes , environmental stress is also used as a signal to alter toxin expression. The amount of stress likely informs the bacterium of the strength of the host's defense response, allowing it to adjust its toxin expression to produce the ideal amount of tissue damage, balancing between too little damage, which will result in its elimination, and too much damage, which will debilitate the host. Here we identify components of a genetic circuit involved in stress resistance and toxin expression that has a fine-tuning function in tissue damage. The circuit consists of two versions of the protein SpxA that regulate transcription and are highly similar but have opposing effects on the severity of soft tissue damage. These results will help us understand how virulence is fine-tuned in other pathogens that have two SpxA proteins. Copyright © 2017 Port et al.
A Rare Cause of Endocarditis: Streptococcus pyogenes
Yeşilkaya, Ayşegül; Azap, Özlem Kurt; Pirat, Bahar; Gültekin, Bahadır; Arslan, Hande
2012-01-01
Although group A β-hemolytic streptococcus is an uncommon cause of infective endocarditis, an increase in the incidence of invasive group A streptococcus infections including bacteremia has been reported in the last two decades. Herein we report Streptococcus pyogenes endocarditis in a previously healthy adult patient who was hospitalized to investigate the etiology of fever. Because of a suspicion of a new vegetation appeared in the second (aortic) valve in the 14th day of high dose penicillin G treatment, the mitral and aortic valves were replaced by mechanical prosthesis on the 22nd day of treatment. He was discharged from hospital after the 6 week course of antibiotic treatment. PMID:25207027
A Rare Cause of Endocarditis: Streptococcus pyogenes.
Yeşilkaya, Ayşegül; Azap, Ozlem Kurt; Pirat, Bahar; Gültekin, Bahadır; Arslan, Hande
2012-09-01
Although group A β-hemolytic streptococcus is an uncommon cause of infective endocarditis, an increase in the incidence of invasive group A streptococcus infections including bacteremia has been reported in the last two decades. Herein we report Streptococcus pyogenes endocarditis in a previously healthy adult patient who was hospitalized to investigate the etiology of fever. Because of a suspicion of a new vegetation appeared in the second (aortic) valve in the 14(th) day of high dose penicillin G treatment, the mitral and aortic valves were replaced by mechanical prosthesis on the 22(nd) day of treatment. He was discharged from hospital after the 6 week course of antibiotic treatment.
Myosin: A Link between Streptococci and Heart
NASA Astrophysics Data System (ADS)
Krisher, Karen; Cunningham, Madeleine W.
1985-01-01
Murine monoclonal antibodies to Streptococcus pyogenes reacted with skeletal muscle myosin. High molecular weight proteins in extracts of human heart tissue that reacted with an antibody to S. pyogenes also reacted with a monoclonal antibody to ventricular myosin. Adsorption of the antibody to streptococci with S. pyogenes simultaneously removed reactivity of the antibody for either S. pyogenes or myosin. These results indicate that myosin shares immunodeterminants with a component of S. pyogenes.
Inagaki, Yumi; Abe, Masanobu; Inaki, Ryoko; Zong, Liang; Suenaga, Hideyuki; Abe, Takahiro; Hoshi, Kazuto
2017-08-18
Infections in the oral and maxillofacial region can sometimes extend beyond the oral cavity, with serious consequences. Most oral infections are odontogenic, occurring through the root apex of the tooth or the periodontal pocket. It thus makes sense that edentulous patients have a much lower risk of oral bacterial infection. For this reason, while there are many reports on systemic infections caused by oral infections, few of these describe such infections in edentulous patients. We present a case of oral and maxillofacial cellulitis followed by sepsis due to Streptococcus pyogenes infection in an 89-year-old Japanese edentulous woman. S. pyogenes was detected in the wound of left maxilla and the blood sample. S. pyogenes has been reported to be one of the most common and influential aerobic bacteria associated with deep neck infection and subsequent systemic infection. Left maxillary sinusitis was observed, and this could be the origin of the S. pyogenes infection. S. pyogenes derived from the sinusitis and leaked to the oral cavity might have caused systemic infection through wounding of the oral mucosa. Fortunately, intensive antibiotic therapy was effective, and the patient recovered without any surgical procedures. We experienced a rare case of oral and maxillofacial cellulitis followed by sepsis due to a Streptococcus pyogenes infection in an old edentulous woman. This result indicated that, while edentulous patients are considered to have no risk of odontogenic infection, they still carry a risk of bacterial infection.
Pyogenic liver abscess presenting after malignant polypectomy.
Harnik, Ian G
2007-12-01
Streptococcus bovis bacteremia has been linked to the presence of occult colon cancer since 1977. We present a case of pyogenic liver abscess and bacteremia with a different Streptococcus viridans 1 week after colonic adenocarcinoma was removed via polypectomy, discuss the likely etiology and review whether there is evidence to support looking for colon cancer in patients who present similarly but have not already undergone screening.
You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji
2012-01-01
A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak. PMID:23045496
Reglinski, Mark; Gierula, Magdalena; Lynskey, Nicola N.; Edwards, Robert J.; Sriskandan, Shiranee
2015-01-01
Immunity to common bacteria requires the generation of antibodies that promote opsonophagocytosis and neutralise toxins. Pooled human immunoglobulin is widely advocated as an adjunctive treatment for clinical Streptococcus pyogenes infection however, the protein targets of the reagent remain ill defined. Affinity purification of the anti-streptococcal antibodies present within pooled immunoglobulin resulted in the generation of an IgG preparation that promoted opsonophagocytic killing of S. pyogenes in vitro and provided passive immunity in vivo. Isolation of the streptococcal surface proteins recognised by pooled human immunoglobulin permitted identification and ranking of 94 protein antigens, ten of which were reproducibly identified across four contemporary invasive S. pyogenes serotypes (M1, M3, M12 and M89). The data provide novel insight into the action of pooled human immunoglobulin during invasive S. pyogenes infection, and demonstrate a potential route to enhance the efficacy of antibody based therapies. PMID:26508447
Kang, Song Ok; Caparon, Michael G; Cho, Kyu Hong
2010-06-01
Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.
Winterhoff, Nora; Goethe, Ralph; Gruening, Petra; Rohde, Manfred; Kalisz, Henryk; Smith, Hilde E.; Valentin-Weigand, Peter
2002-01-01
The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them. PMID:12446626
Chiang-Ni, Chuan; Zheng, Po-Xing; Wang, Shu-Ying; Tsai, Pei-Jane; Chuang, Woei-Jer; Lin, Yee-Shin; Liu, Ching-Chuan; Wu, Jiunn-Jong
2016-01-01
emm typing is the most widely used molecular typing method for the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). emm typing is based on a small variable region of the emm gene; however, the emm cluster typing system defines GAS types according to the nearly complete sequence of the emm gene. Therefore, emm cluster typing is considered to provide more information regarding the functional and structural properties of M proteins in different emm types of GAS. In the present study, 677 isolates collected between 1994 and 2008 in a hospital in southern Taiwan were analyzed by the emm cluster typing system. emm clusters A-C4, E1, E6, and A-C3 were the most prevalent emm cluster types and accounted for 67.4% of total isolates. emm clusters A-C4 and E1 were associated with noninvasive diseases, whereas E6 was significantly associated with both invasive and noninvasive manifestations. In addition, emm clusters D4, E2, and E3 were significantly associated with invasive manifestations. Furthermore, we found that the functional properties of M protein, including low fibrinogen-binding and high IgG-binding activities, were correlated significantly with invasive manifestations. In summary, the present study provides updated epidemiological information on GAS emm cluster types in southern Taiwan. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Linkage of T3 and Cpa pilins in the Streptococcus pyogenes M3 pilus.
Quigley, Bernard R; Zähner, Dorothea; Hatkoff, Matthew; Thanassi, David G; Scott, June R
2009-06-01
The important human pathogen Streptococcus pyogenes (group A streptococcus, GAS) initiates infection by pilus-mediated attachment to host tissue. Thus, the pilus is an excellent target for design of anti-infective strategies. The T3 pilus of GAS is composed of multiple covalently linked subunits of the T3 protein to which the two minor pilins, Cpa and OrfB, are covalently attached. Because the proteins of GAS pili do not contain either of the motifs required for pilus polymerization in other Gram-positive bacteria, we investigated the residues involved in their linkage. We show that linkage of Cpa to T3 by the sortase family transpeptidase SrtC2 requires the VPPTG motif in the cell wall-sorting signal of Cpa. We also demonstrate that K173 of T3 is required both for T3 polymerization and for attachment of Cpa to T3. Therefore, attachment of Cpa to K173 of a T3 subunit would block further addition of T3 subunits to this end of the growing pilus. This implies that Cpa is located exclusively at the pilus tip, a location supported by immunogold electron microscopy, and suggests that, as for well-studied pili on Gram-negative bacteria, the role of the pilus is to present the adhesin external to the bacterial capsule.
Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro
2010-06-01
Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.
Streptococcus pyogenes outbreak in a long-term care facility.
Harkness, G A; Bentley, D W; Mottley, M; Lee, J
1992-06-01
Although outbreaks involving Streptococcus pyogenes have been uncommon among the elderly population, recent reports suggest that this organism is an important nosocomial pathogen among institutionalized older patients and carries significant morbidity and mortality. An outbreak of S. pyogenes, type M12, T12, occurred in a large long-term care institution serving the ill and chronically disabled. The outbreak involved 14 residents of the intermediate care facility and lasted for 4 months. A prospective epidemiologic investigation was initiated at the onset of the outbreak. Pertinent clinical and demographic information regarding both residents and personnel was obtained by interview, review of medical and surveillance records, and examination of patients for lesions. Cultures were obtained within 24 hours of symptom onset from those with characteristic clinical symptoms. Unpaired convalescent sera were tested for group A streptococcal extracellular antigens by a rapid hemagglutination slide test. Control measures included active surveillance of residents and staff for suspicious clinical syndromes, transfer of high-risk patients, elimination of a common seating area, and improved handwashing and hygiene measures. The attack rate was 7.5%, with 64.3% of these patients residing on one unit. S. pyogenes was isolated from eight residents, 5 residents had a characteristic syndrome and an elevated streptozyme hemagglutination titer of 400, and 1 resident died within hours of having cellulitis of the groin. Clinical syndromes included cellulitis, pharyngitis, bronchitis, pneumonia, and septicemia. Seven residents required acute care; two residents died within 3 weeks of the onset, yielding a case fatality rate of 14.3%. The major means of transmission appeared to be direct contact between residents, although transmission from an infected staff member may have accounted for some cases. The hypothesis of long-term colonization was supported by the extended times between infections. The severity of illness and the apparent transmission through direct contact between residents warrants (1) early detection of infected lesions, (2) recognition of invasive illness, (3) prompt effective treatment, and (4) surveillance for S. pyogenes infections among residents and personnel.
Ikebe, Tadayoshi; Hirasawa, Kyoko; Suzuki, Rieko; Isobe, Junko; Tanaka, Daisuke; Katsukawa, Chihiro; Kawahara, Ryuji; Tomita, Masaaki; Ogata, Kikuyo; Endoh, Miyoko; Okuno, Rumi; Watanabe, Haruo
2005-01-01
We assessed antimicrobial susceptibility against 211 Streptococcus pyogenes strains isolated from patients with severe invasive group A streptococcal infections. Overall, 3.8, 1.4, 1.4, and 0.5% of the isolates were resistant to erythromycin, clindamycin, telithromycin, and ciprofloxacin, respectively, and 10.4% had intermediate resistance to ciprofloxacin. All isolates were susceptible to ampicillin and cefotaxime. PMID:15673769
You, Yuanhai; Kou, Yongjun; Niu, Longfei; Jia, Qiong; Liu, Yahui; Walker, Mark J.; Zhu, Jiaqiang
2018-01-01
ABSTRACT The incidence of scarlet fever cases remains high in China. Here, we report the complete genome sequence of a Streptococcus pyogenes isolate of serotype M12, which has been confirmed as the predominant serotype in recent outbreaks. Genome sequencing was achieved by a combination of Oxford Nanopore MinION and Illumina methodologies. PMID:29724853
Insight into the Evolution of the Histidine Triad Protein (HTP) Family in Streptococcus
Pan, Xiu-Zhen; Wang, Bin; Chen, Jian-Qun
2013-01-01
The Histidine Triad Proteins (HTPs), also known as Pht proteins in Streptococcus pneumoniae, constitute a family of surface-exposed proteins that exist in many pathogenic streptococcal species. Although many studies have revealed the importance of HTPs in streptococcal physiology and pathogenicity, little is known about their origin and evolution. In this study, after identifying all htp homologs from 105 streptococcal genomes representing 38 different species/subspecies, we analyzed their domain structures, positions in genome, and most importantly, their evolutionary histories. By further projecting this information onto the streptococcal phylogeny, we made several major findings. First, htp genes originated earlier than the Streptococcus genus and gene-loss events have occurred among three streptococcal groups, resulting in the absence of the htp gene in the Bovis, Mutans and Salivarius groups. Second, the copy number of htp genes in other groups of Streptococcus is variable, ranging from one to four functional copies. Third, both phylogenetic evidence and domain structure analyses support the division of two htp subfamilies, designated as htp I and htp II. Although present mainly in the pyogenic group and in Streptococcus suis, htp II members are distinct from htp I due to the presence of an additional leucine-rich-repeat domain at the C-terminus. Finally, htp genes exhibit a faster nucleotide substitution rate than do housekeeping genes. Specifically, the regions outside the HTP domains are under strong positive selection. This distinct evolutionary pattern likely helped Streptococcus to easily escape from recognition by host immunity. PMID:23527301
21 CFR 522.1662b - Oxytetracycline hydrochloride with lidocaine injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Hemolytic staphylococcus, Streptococcus spp., Bacterial pulmonary infections caused by Brucella bronchiseptica, Streptococcus pyogenes, Staphylococcus aureus, secondary bacterial infections caused by...
21 CFR 522.1662b - Oxytetracycline hydrochloride with lidocaine injection.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Hemolytic staphylococcus, Streptococcus spp., Bacterial pulmonary infections caused by Brucella bronchiseptica, Streptococcus pyogenes, Staphylococcus aureus, secondary bacterial infections caused by...
21 CFR 522.1662b - Oxytetracycline hydrochloride with lidocaine injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Hemolytic staphylococcus, Streptococcus spp., Bacterial pulmonary infections caused by Brucella bronchiseptica, Streptococcus pyogenes, Staphylococcus aureus, secondary bacterial infections caused by...
21 CFR 522.1662b - Oxytetracycline hydrochloride with lidocaine injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Hemolytic staphylococcus, Streptococcus spp., Bacterial pulmonary infections caused by Brucella bronchiseptica, Streptococcus pyogenes, Staphylococcus aureus, secondary bacterial infections caused by...
You, Yuanhai; Kou, Yongjun; Niu, Longfei; Jia, Qiong; Liu, Yahui; Davies, Mark R; Walker, Mark J; Zhu, Jiaqiang; Zhang, Jianzhong
2018-05-03
The incidence of scarlet fever cases remains high in China. Here, we report the complete genome sequence of a Streptococcus pyogenes isolate of serotype M12, which has been confirmed as the predominant serotype in recent outbreaks. Genome sequencing was achieved by a combination of Oxford Nanopore MinION and Illumina methodologies. Copyright © 2018 You et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linke, Christian, E-mail: clin180@ec.auckland.ac.nz; Caradoc-Davies, Tom T.; Australian Synchrotron, Clayton, Victoria 3168
2008-02-01
The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to themore » monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.« less
Laulajainen-Hongisto, Anu; Saat, Riste; Lempinen, Laura; Aarnisalo, Antti A; Jero, Jussi
2015-09-01
To evaluate the clinical picture and microbiological findings of children hospitalized due to acute otitis media and to analyze how it differs from acute mastoiditis. A retrospective review of the medical records of all children (0-16 years) hospitalized due to acute otitis media in the Department of Otorhinolaryngology at the Helsinki University Hospital, between 2003 and 2012. Comparison with previously published data of children with acute mastoiditis (n=56) from the same institute and period of time. The most common pathogens in the children hospitalized due to acute otitis media (n=44) were Streptococcus pneumoniae (18%), Pseudomonas aeruginosa (16%), Streptococcus pyogenes (14%), and Staphylococcus aureus (14%). One of the most common pathogens of out-patient acute otitis media, Haemophilus influenzae, was absent. Otorrhea was common in infections caused by S. pyogenes and otorrhea via tympanostomy tube in infections caused by P. aeruginosa. In children under 2 years-of-age, the most common pathogens were S. pneumoniae (43%), Moraxella catarrhalis (14%), and S. aureus (7%). S. pyogenes and P. aeruginosa were only found in children over 2 years-of-age. Previous health problems, bilateral infections, and facial nerve paresis were more common in children hospitalized due to acute otitis media, compared with acute mastoiditis, but they also demonstrated lower CRP values and shorter duration of hospital stay. The number of performed tympanostomies and mastoidectomies was also comparatively smaller in the children hospitalized due to acute otitis media. S. aureus was more common and S. pneumoniae, especially its resistant strains, was less common in the children hospitalized due to acute otitis media than acute mastoiditis. Acute otitis media requiring hospitalization and acute mastoiditis compose a continuum of complicated acute otitis media that differs from common out-patient acute otitis media. The bacteriology of children hospitalized due to acute otitis media resembled more the bacteriology of acute mastoiditis than that of out-patient acute otitis media. The children hospitalized due to acute otitis media needed less surgical treatment and a shorter hospitalization than those hospitalized due to acute mastoiditis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Streptococcus pyogenes as the cause of vulvovaginitis and balanitis in children.
Randjelovic, Gordana; Otasevic, Suzana; Mladenovic-Antic, Snezana; Mladenovic, Vesna; Radovanovic-Velickovic, Radmila; Randjelovic, Marina; Bogdanovic, Dragan
2017-04-01
Streptococcus pyogenes (group A Streptococcus) is the etiological agent of perineal infection in children, consisting of perianal infection, vulvovaginitis and balanitis. If it is not properly diagnosed and treated, it can persist for many months and can cause severe complications. Furthermore, treatment with penicillin can be followed by failures and recurrences. We report here the prevalence of S. pyogenes isolates in genital tract specimens from girls (n = 1692) with symptoms of vulvovaginitis and from boys (n = 52) with balanitis in the municipality of Nis, Southeast-Serbia (the Western Balkans) in a 10 year period, and the seasonal distribution, patient age and sensitivity to bacitracin and antimicrobial drugs used in the treatment of streptococcal infection. Streptococcal vulvovaginitis was diagnosed in 2.30% of examinees. Of those cases, 64.10% were detected from April to September, and it was most common (71.79%) in girls aged 3-7 years. Streptococcal balanitis was diagnosed in two instances: in a 4-year-old boy and in a 7-year-old boy. S. pyogenes strains resistant to bacitracin were identified in five girls. Two isolates with M phenotype and five isolates with cMLS B phenotype were identified. Streptococcal vulvovaginitis was diagnosed less often in the present study, but it was still far more common than streptococcal balanitis in childhood. Bacitracin resistance of S. pyogenes strains should be taken into account in routine microbiological identification, and the detection of S. pyogenes isolates resistant to erythromycin requires surveillance in the present geographical territory. © 2016 Japan Pediatric Society.
Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Lee, Hyun; Chlipala, George E.; Ratia, Kiira
2015-01-01
ABSTRACT Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. PMID:25968646
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
Molecular typing of Chinese Streptococcus pyogenes isolates.
You, Yuanhai; Wang, Haibin; Bi, Zhenwang; Walker, Mark; Peng, Xianhui; Hu, Bin; Zhou, Haijian; Song, Yanyan; Tao, Xiaoxia; Kou, Zengqiang; Meng, Fanliang; Zhang, Menghan; Bi, Zhenqiang; Luo, Fengji; Zhang, Jianzhong
2015-06-01
Streptococcus pyogenes causes human infections ranging from mild pharyngitis and impetigo to serious diseases including necrotizing fasciitis and streptococcal toxic shock syndrome. The objective of this study was to compare molecular emm typing and pulsed field gel electrophoresis (PFGE) with multiple-locus variable-number tandem-repeat analysis (MLVA) for genotyping of Chinese S. pyogenes isolates. Molecular emm typing and PFGE were performed using standard protocols. Seven variable number tandem repeat (VNTR) loci reported in a previous study were used to genotype 169 S. pyogenes geographically-diverse isolates from China isolated from a variety of disease syndromes. Multiple-locus variable-number tandem-repeat analysis provided greater discrimination between isolates when compared to emm typing and PFGE. Removal of a single VNTR locus (Spy2) reduced the sensitivity by only 0.7%, which suggests that Spy2 was not informative for the isolates screened. The results presented support the use of MLVA as a powerful epidemiological tool for genotyping S. pyogenes clinical isolates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cloning and characterization of two novel DNases from Streptococcus pyogenes.
Hasegawa, Tadao; Torii, Keizo; Hashikawa, Shinnosuke; Iinuma, Yoshitsugu; Ohta, Michio
2002-06-01
The proteins in the culture supernatant (exoproteins) from Streptococcus pyogenes serotype M1 were separated by two-dimensional gel electrophoresis, and their N-terminal amino acid sequences were determined. The amino acid sequences were compared to sequences in the S. pyogenes genome database. The coding sequence showed similarity to sequences of two genes, mf2-v ( mf2 variant) and mf3, which had sequence similarity to genes encoding mitogenic factor (MF); MF has DNase activity. The recombinant genes were expressed in Escherichia coli and the proteins were synthesized. Mf2-v and Mf3 had DNase activity. The activity of Mf2-v was localized to the C-terminal half of the protein. The mf3 gene was shown to be present in most clinically isolated strains of S. pyogenes tested, and the mf2gene was detected in 20% of the isolates. The products of the mf2 and mf3 genes in clinically isolated S. pyogenes strains were thus shown to be DNases.
Hanski, E; Caparon, M
1992-07-01
Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.
Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G
2018-06-01
Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.
Kim, M A; Labushkina, A V; Simovanian, E N; Kharseeva, G G
2015-11-01
The Rostovskii state medical university of Minzdrav of Russia, 344022 Rostov-on-Don, Russia The analysis is applied concerning significance of laboratory techniques of verification of streptococcus infection (bacteriological analysis, detection of anti-streptolysin O in pair serums) in 148 patients with infectious mononucleosis aged from 3 to 15 years. The content of anti-streptolysin O exceeded standard in 41 ± 4.8% of patients with concomitant in acute period and in 49.5 ± 4.9% during period of re-convalescence. This data differed from analogous indicator in patients with negative result of examination on streptococcus infection independently of period of disease (9.3 ± 2.8%). The exceeding of standard of anti-streptolysin O was detected more frequently (t ≥ 2, P ≥ 95%) in patients with isolation of Streptococcus pyogenes (56.9 ± 5.8%) than in patients with Streptococcus viridans (31.2 ± 6.5%). The concentration of anti-streptolysin 0 in patients with concomitant streptococcus infection varied within limits 200-1800 IE/ml. The minimal level of anti-streptolysin O (C = 200 IE/mI) was detected independently of type of isolated Streptococcus and period of disease. The high levels of anti-streptolysin O were observed exclusively in patients with isolation of Streptococcus pyogenes. In blood serum ofpatient with concomitant streptococcus infection (Streptococcus pyogenes + Streptococcus viridans) increasing of level of anti-streptolysin O was detected in dynamics of diseases from minimal (C = 200 IE/ ml) to moderately high (200 < C < 400 IE/mI). It is demonstrated that to identify streptococcus infection in patients with infectious mononucleosis the anamnesis data is to be considered. The complex bacteriological and serological examination ofpatients is to be implemented This is necessary for early detection ofpatients with streptococcus infection and decreasing risk of formation of streptococcus carrier state.
Miller, Eric W.; Cao, Tram N.; Pflughoeft, Kathryn J.; Sumby, Paul
2014-01-01
RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined. PMID:25091277
Morrow, Becky L; McNatt, Rachel; Joyce, Lindsay; McBride, Shelley; Morgan, Daniel; Tressler, Chelsey; Mellits, Cara
2016-04-01
Two hundred and thirty-four cats removed from an institutionalized hoarding facility (IHF) demonstrated severe, atypical pyogenic infections. The objective of this study was to document the various syndromes and determine the etiology of the infections. All cats were evaluated initially after removal from the IHF and on a daily basis for at least 15 months. Samples were collected and sent for culture/susceptibility and histopathology to commercial laboratories or stored at -20(o)C. PCR was performed using universal bacterial primers to amplify the 16S-23S rRNA intergenic spacer region. PCR products were sequenced to determine the identity of the bacteria. Multiple pyogenic syndromes were documented, including abscesses of the paws and carpal/tarsal regions in 82 cats, acute rhinitis with profuse purulent nasal discharge in 68 cats and cervical lymphadenitis with abscessation unassociated with any wounding in 51 cats. Many cats exhibited septic arthritis with total joint destruction, necrotizing fasciitis, meningitis, otitis and septic shock, often leading to death. These infections appeared to be caused by beta-hemolytic streptococci (BHS) based on initial culture results (n = 10), though speciation was unclear and some samples (n = 6) produced no growth. Based on PCR results (n = 26), Streptococcus canis was the only bacterial species or the dominant species identified in each sample, and was the only species present in all the regions associated with the pyogenic infections. Horizontal gene transfer and loss of the cell wall may account for the discrepancy between the culture and PCR results and the highly pathogenic nature of S canis in this particular population of cats. A large-scale hoarding situation with multiple animal species, overcrowding, stress and mixing of animals from many geographical regions created ideal conditions for these events to occur. The specific virulence factors present may be more useful in predicting the pathophysiology of BHS infections than the species of Streptococcus found in the host per se. © ISFM and AAFP 2015.
Pérez-Trallero, Emilio; Martín-Herrero, Jose E.; Mazón, Ana; García-Delafuente, Celia; Robles, Purificación; Iriarte, Victor; Dal-Ré, Rafael; García-de-Lomas, Juan
2010-01-01
A nationwide multicenter susceptibility surveillance study (Susceptibility to the Antimicrobials Used in the Community in España [SAUCE] project), SAUCE-4, including 2,559 Streptococcus pneumoniae, 2,287 Streptococcus pyogenes, and 2,736 Haemophilus influenzae isolates was carried out from May 2006 to June 2007 in 34 Spanish hospitals. Then, the results from SAUCE-4 were compared to those from all three previous SAUCE studies carried out in 1996-1997, 1998-1999, and 2001-2002 to assess the temporal trends in resistance and the phenotypes of resistance over the 11-year period. In SAUCE-4, on the basis of the CLSI breakpoints, penicillin (parenteral, nonmeningitis breakpoint) and cefotaxime were the antimicrobials that were the most active against S. pneumoniae (99.8% and 99.6%, respectively). Only 0.9% of isolates had a penicillin MIC of ≥2 μg/ml. In S. pyogenes, nonsusceptibility to erythromycin was observed in 19.4% of isolates. Among the H. influenzae isolates, a β-lactamase-positive prevalence of 15.7% was found. A statistically significant temporal decreasing trend over the 11-year period was observed for nonsusceptibility (from 60.0% to 22.9%) and resistance (from 36.5% to 0.9%) to penicillin and for the proportion of erythromycin-resistant isolates of S. pneumoniae of the macrolide-lincosamide-streptogramin B (MLSB) phenotype (from 98.4% to 81.3%). A similar trend was observed for the prevalence of ampicillin resistance (from 37.6% to 16.1%), β-lactamase production (from 25.7% to 15.7%), and β-lactamase-negative ampicillin resistance (BLNAR) in H. influenzae (from 13.5% to 0.7%). Among erythromycin-resistant isolates of S. pyogenes, a significant increasing trend in the prevalence of MLSB was observed (from 7.0% to 35.5%). SAUCE-4 confirms a generalized decline in the resistance of the main respiratory pathogens to the antimicrobials as well as a shift in their resistance phenotypes. PMID:20439616
Ikebe, T; Murai, N; Endo, M; Okuno, R; Murayama, S; Saitoh, K; Yamai, S; Suzuki, R; Isobe, J; Tanaka, D; Katsukawa, C; Tamaru, A; Katayama, A; Fujinaga, Y; Hoashi, K; Ishikawa, J; Watanabe, H
2003-06-01
We surveyed T serotypes and emm genotypes of Streptococcus pyogenes isolates from streptococcal toxic shock-like syndrome (TSLS) patients. T1 (emm1) remained dominant through 1992 to 2000, but the dominant T3 (emm3.1) strains from 1992 to 1995 disappeared during 1996-2000. Strains of several emm genotypes emerged during 1996-2000, indicating alterations in the prevalent strains causing TSLS.
Pathogenesis of group A streptococcal infections.
Henningham, Anna; Barnett, Timothy C; Maamary, Peter G; Walker, Mark J
2012-05-01
Group A Streptococcus (GAS; Streptococcus pyogenes) is a human pathogen which causes significant morbidity and mortality globally. GAS typically infects the throat and skin of the host, causing mild infections such as pharyngitis and impetigo, in addition to life threatening conditions including necrotizing fasciitis, streptococcal toxic shock syndrome (STSS), and bacteremia. Repeated infection with GAS may result in the non-suppurative sequelae, acute rheumatic fever, and acute glomerulonephritis. GAS remains sensitive to the antibiotic penicillin which can be administered as a means to treat infection or as prophylaxis. However, issues with patient compliance and a growing concern over the possible emergence of resistant GAS strains may limit the usefulness of antibiotics in the future. A vaccine capable of preventing GAS infection may be the only effective way to control and eliminate GAS infection and disease.
Potential antibacterial activity of some Saudi Arabia honey
Hegazi, Ahmed G.; Guthami, Faiz M. Al; Gethami, Ahmed F. M. Al; Allah, Fyrouz M. Abd; Saleh, Ashraf A.; Fouad, Ehab A.
2017-01-01
Aim: The aim of this study was to investigate the potential antibacterial activity of some Saudi Arabia honey against selected bacterial strains of medical importance. Materials and Methods: A total of 10 Saudi Arabia honey used to evaluate their antimicrobial activity against some antibiotic-resistant pathogenic bacterial strains. The bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. Results: The antibacterial activity of Saudi honey against five bacterial strains showed different levels of inhibition according to the type of honey. The overall results showed that the potential activity was differing according to the pathogen and honey type. Conclusion: It could be concluded that the Saudi honey inhibit the growth of bacterial strains and that honey can be used as complementary antimicrobial agent against selected pathogenic bacteria. PMID:28344408
Novel Genes Required for the Fitness of Streptococcus pyogenes in Human Saliva
Zhu, Luchang; Charbonneau, Amelia R. L.; Waller, Andrew S.; Olsen, Randall J.; Beres, Stephen B.
2017-01-01
ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) causes 600 million cases of pharyngitis each year. Despite this considerable disease burden, the molecular mechanisms used by GAS to infect, cause clinical pharyngitis, and persist in the human oropharynx are poorly understood. Saliva is ubiquitous in the human oropharynx and is the first material GAS encounters in the upper respiratory tract. Thus, a fuller understanding of how GAS survives and proliferates in saliva may provide valuable insights into the molecular mechanisms at work in the human oropharynx. We generated a highly saturated transposon insertion mutant library in serotype M1 strain MGAS2221, a strain genetically representative of a pandemic clone that arose in the 1980s and spread globally. The transposon mutant library was exposed to human saliva to screen for GAS genes required for wild-type fitness in this clinically relevant fluid. Using transposon-directed insertion site sequencing (TraDIS), we identified 92 genes required for GAS fitness in saliva. The more prevalent categories represented were genes involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. Using six isogenic mutant strains, we confirmed that each of the mutants was significantly impaired for growth or persistence in human saliva ex vivo. Mutants with an inactivated Spy0644 (sptA) or Spy0646 (sptC) gene had especially severe persistence defects. This study is the first to use of TraDIS to study bacterial fitness in human saliva. The new information we obtained will be valuable for future translational maneuvers designed to prevent or treat human GAS infections. IMPORTANCE The human bacterial pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes more than 600 million cases of pharyngitis annually worldwide, 15 million of which occur in the United States. The human oropharynx is the primary anatomic site for GAS colonization and infection, and saliva is the first material encountered. Using a genome-wide transposon mutant screen, we identified 92 GAS genes required for wild-type fitness in human saliva. Many of the identified genes are involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. The new information is potentially valuable for developing novel GAS therapeutics and vaccine research. PMID:29104937
Prevalence of β-hemolytic Streptococcus in children with special health care needs.
Morais, Viviane Martha Santos de; Orsi, Alice Ramos; Maranhão, Fernanda Cristina de Albuquerque; Castro, Therezita Maria Peixoto Patury Galvão; Castro, Karina Cavalcante Beltrão de; Silva, Denise Maria Wanderlei
2012-10-01
Pharyngotonsillitis by β-hemolytic Streptococcus mostly affects children and immunocompromised, being Streptococcus pyogenes (Group A) the most common agent in bacterial pharyngotonsillitis. This work targeted the research of β-hemolytic Streptococcus Group-A (SBHGA) and No-A (SBHGNA) in the oropharynx of individuals with special health needs from the APAE (Maceió-AL). A prospective study with oropharynx samples from patients with Down syndrome and other mental disorders (test) and students from a private school (control) aged 5-15 years. Cultures in blood agar (5%) were identified through Gram/catalase tests and bacitracin/trimethoprim-sulfamethoxazole disk diffusion method, applying the chi-squared statistical analysis. A total of 222 bacterial colonies were isolated in 74 individuals from APAE and 65 in the control group. In the test group, previous episodes of pharyngotonsillitis were reported by 36.49% (27/74) and 9.46% (7/74) were diagnosed with symptoms and/or signs suggestive of oropharynx infection. No positive sample of S. pyogenes was confirmed at APAE, being all samples classified as SBHGNA, with 5 SBHGA in the control group. The early identification of β-hemolytic Streptococcus is important for the fast treatment of pharyngotonsillitis and the absence of S. pyogenes avoid future suppurative or not-suppurative sequels in the group from APAE.
... It's usually caused by one of two bacteria: Staphylococcus aureus or Streptococcus pyogenes (also called group A streptococcus, which also causes strep throat ). Methicillin-resistant Staphylococcus aureus ( MRSA ) is also becoming an important cause of ...
Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka
2018-01-01
Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants.
Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L
2016-01-01
An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis.
Pérez-Trallero, E.; Fernández-Mazarrasa, C.; García-Rey, C.; Bouza, E.; Aguilar, L.; García-de-Lomas, J.; Baquero, F.
2001-01-01
A nationwide multicenter susceptibility surveillance study which included 1,684 Streptococcus pneumoniae and 2,039 S. pyogenes isolates was carried out over 1 year in order to assess the current resistance patterns for the two most important gram-positive microorganisms responsible for community-acquired infections in Spain. Susceptibility testing was done by a broth microdilution method according to National Committee for Clinical Laboratory Standards M100-S10 interpretative criteria. For S. pneumoniae, the prevalences of highly resistant strains were 5% for amoxicillin and amoxicillin-clavulanic acid; 7% for cefotaxime; 22% for penicillin; 31% for cefuroxime; 35% for erythromycin, clarithromycin, and azithromycin; and 42% for cefaclor. For S. pyogenes, the prevalence of erythromycin resistance was 20%. Efflux was encountered in 90% of S. pyogenes and 5% of S. pneumoniae isolates that exhibited erythromycin resistance. Erythromycin resistance was associated with clarithromycin and azithromycin in both species, regardless of phenotype. Despite the different nature of the mechanisms of resistance, a positive correlation (r = 0.612) between the two species in the prevalence of erythromycin resistance was found in site-by-site comparisons, suggesting some kind of link with antibiotic consumption. Regarding ciprofloxacin, the MIC was ≥4 μg/ml for 7% of S. pneumoniae and 3.5% of S. pyogenes isolates. Ciprofloxacin resistance (MIC, ≥4 μg/ml) was significantly (P < 0.05) associated with macrolide resistance in both S. pyogenes and S. pneumoniae and with penicillin nonsusceptibility in S. pneumoniae. PMID:11709305
Streptococcal acute pharyngitis.
Anjos, Lais Martins Moreira; Marcondes, Mariana Barros; Lima, Mariana Ferreira; Mondelli, Alessandro Lia; Okoshi, Marina Politi
2014-07-01
Acute pharyngitis/tonsillitis, which is characterized by inflammation of the posterior pharynx and tonsils, is a common disease. Several viruses and bacteria can cause acute pharyngitis; however, Streptococcus pyogenes (also known as Lancefield group A β-hemolytic streptococci) is the only agent that requires an etiologic diagnosis and specific treatment. S. pyogenes is of major clinical importance because it can trigger post-infection systemic complications, acute rheumatic fever, and post-streptococcal glomerulonephritis. Symptom onset in streptococcal infection is usually abrupt and includes intense sore throat, fever, chills, malaise, headache, tender enlarged anterior cervical lymph nodes, and pharyngeal or tonsillar exudate. Cough, coryza, conjunctivitis, and diarrhea are uncommon, and their presence suggests a viral cause. A diagnosis of pharyngitis is supported by the patient's history and by the physical examination. Throat culture is the gold standard for diagnosing streptococcus pharyngitis. However, it has been underused in public health services because of its low availability and because of the 1- to 2-day delay in obtaining results. Rapid antigen detection tests have been used to detect S. pyogenes directly from throat swabs within minutes. Clinical scoring systems have been developed to predict the risk of S. pyogenes infection. The most commonly used scoring system is the modified Centor score. Acute S. pyogenes pharyngitis is often a self-limiting disease. Penicillins are the first-choice treatment. For patients with penicillin allergy, cephalosporins can be an acceptable alternative, although primary hypersensitivity to cephalosporins can occur. Another drug option is the macrolides. Future perspectives to prevent streptococcal pharyngitis and post-infection systemic complications include the development of an anti-Streptococcus pyogenes vaccine.
Oehmcke, Sonja; Westman, Johannes; Malmström, Johan; Mörgelin, Matthias; Olin, Anders I.; Kreikemeyer, Bernd; Herwald, Heiko
2013-01-01
Previous studies have shown that stimulation of whole blood or peripheral blood mononuclear cells with bacterial virulence factors results in the sequestration of pro-coagulant microvesicles (MVs). These particles explore their clotting activity via the extrinsic and intrinsic pathway of coagulation; however, their pathophysiological role in infectious diseases remains enigmatic. Here we describe that the interaction of pro-coagulant MVs with bacteria of the species Streptococcus pyogenes is part of the early immune response to the invading pathogen. As shown by negative staining electron microscopy and clotting assays, pro-coagulant MVs bind in the presence of plasma to the bacterial surface. Fibrinogen was identified as a linker that, through binding to the M1 protein of S. pyogenes, allows the opsonization of the bacteria by MVs. Surface plasmon resonance analysis revealed a strong interaction between pro-coagulant MVs and fibrinogen with a KD value in the nanomolar range. When performing a mass-spectrometry-based strategy to determine the protein quantity, a significant up-regulation of the fibrinogen-binding integrins CD18 and CD11b on pro-coagulant MVs was recorded. Finally we show that plasma clots induced by pro-coagulant MVs are able to prevent bacterial dissemination and possess antimicrobial activity. These findings were confirmed by in vivo experiments, as local treatment with pro-coagulant MVs dampens bacterial spreading to other organs and improved survival in an invasive streptococcal mouse model of infection. Taken together, our data implicate that pro-coagulant MVs play an important role in the early response of the innate immune system in infectious diseases. PMID:23935504
Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J.
2014-01-01
Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. PMID:24958729
Chalker, Victoria J; Smith, Alyson; Al-Shahib, Ali; Botchway, Stella; Macdonald, Emily; Daniel, Roger; Phillips, Sarah; Platt, Steven; Doumith, Michel; Tewolde, Rediat; Coelho, Juliana; Jolley, Keith A; Underwood, Anthony; McCarthy, Noel D
2016-06-01
Single-strain outbreaks of Streptococcus pyogenes infections are common and often go undetected. In 2013, two clusters of invasive group A Streptococcus (iGAS) infection were identified in independent but closely located care homes in Oxfordshire, United Kingdom. Investigation included visits to each home, chart review, staff survey, microbiologic sampling, and genome sequencing. S. pyogenes emm type 1.0, the most common circulating type nationally, was identified from all cases yielding GAS isolates. A tailored whole-genome reference population comprising epidemiologically relevant contemporaneous isolates and published isolates was assembled. Data were analyzed independently using whole-genome multilocus sequencing and single-nucleotide polymorphism analyses. Six isolates from staff and residents of the homes formed a single cluster that was separated from the reference population by both analytical approaches. No further cases occurred after mass chemoprophylaxis and enhanced infection control. Our findings demonstrate the ability of 2 independent analytical approaches to enable robust conclusions from nonstandardized whole-genome analysis to support public health practice.
Mechanisms of group A Streptococcus resistance to reactive oxygen species
Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.
2015-01-01
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736
Mechanisms of group A Streptococcus resistance to reactive oxygen species.
Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N
2015-07-01
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.
Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain
Vela, Ana Isabel; Villalón, Pilar; Sáez-Nieto, Juan Antonio; Chacón, Gema; Domínguez, Lucas
2017-01-01
Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals. PMID:29148379
Alam, Faraz M.; Turner, Claire E.; Smith, Ken; Wiles, Siouxsie; Sriskandan, Shiranee
2013-01-01
Streptococcus pyogenes is a leading cause of pharyngeal infection, with an estimated 616 million cases per year. The human nasopharynx represents the major reservoir for all S. pyogenes infection, including severe invasive disease. To investigate bacterial and host factors that influence S. pyogenes infection, we have devised an improved murine model of nasopharyngeal colonization, with an optimized dosing volume to avoid fulminant infections and a sensitive host strain. In addition we have utilized a refined technique for longitudinal monitoring of bacterial burden that is non-invasive thereby reducing the numbers of animals required. The model was used to demonstrate that the two component regulatory system, CovR/S, is required for optimum infection and transmission from the nasopharynx. There is a fitness cost conferred by covR/S mutation that is specific to the nasopharynx. This may explain why S. pyogenes with altered covR/S have not become prevalent in community infections despite possessing a selective advantage in invasive infection. PMID:23637876
Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections.
Díez-Martínez, Roberto; García-Fernández, Esther; Manzano, Miguel; Martínez, Ángel; Domenech, Mirian; Vallet-Regí, María; García, Pedro
2016-01-18
Drug-loaded nanoparticles (NPs) can improve infection treatment by ensuring drug concentration at the right place within the therapeutic window. Poly(lactic-co-glycolic acid) (PLGA) NPs are able to enhance drug localization in target site and to sustainably release the entrapped molecule, reducing the secondary effects caused by systemic antibiotic administration. We have loaded auranofin, a gold compound traditionally used for treatment of rheumatoid arthritis, into PLGA NPs and their efficiency as antibacterial agent against two Gram-positive pathogens, Streptococcus pneumoniae and Streptococcus pyogenes was evaluated. Auranofin-PLGA NPs showed a strong bactericidal effect as cultures of multiresistant pneumococcal strains were practically sterilized after 6 h of treatment with such auranofin-NPs at 0.25 μM. Moreover, this potent bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin-NPs was capable of decreasing the bacterial population about 4 logs more than free auranofin. These results were validated using a zebrafish embryo model demonstrating that treatment with auranofin loaded into NPs achieved a noticeable survival against pneumococcal infections. All these approaches displayed a clear superiority of loaded auranofin PLGA nanocarriers compared to free administration of the drug, which supports their potential application for the treatment of streptococcal infections.
Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.
Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A
2007-10-01
Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the vulvovaginitis. This case stresses the importance of considering re-infection through this route in the patient with recurrent Group A beta-hemolytic streptococcus vulvovaginitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.; Coggill, P.; Bateman, A.
Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable. Wemore » have solved the crystal structure of the gene-product of locus Spy-2152 from S. pyogenes, (PDB: 2fu2), and found it to comprise an anti-parallel four-helix bundle that is structurally similar to other bacteriocin immunity proteins. Sequence analyses indicate this protein to be a possible immunity protein protective against class IIa or IIb bacteriocins. However, given that S. pyogenes appears to lack any IIa pediocin-like proteins but does possess class IIb bacteriocins, we suggest this protein confers immunity to IIb-like peptides. Combined structural, genomic and proteomic analyses have allowed the identification and in silico characterization of a new putative immunity protein from S. pyogenes, possibly the first structure of an immunity protein protective against potential class IIb two-peptide bacteriocins. We have named the two pairs of putative bacteriocins found in S. pyogenes pyogenecin 1, 2, 3 and 4.« less
Unasho, Abayneh; Geyid, Aberra; Melaku, Abebe; Debela, Asfaw; Mekasha, Amha; Girma, Samson; Kebede, Tesfaye; Fantaw, Surafael; Asaminew, Nega; Mamo, Kidanemariam
2009-01-01
Respiratory Tract infections continue to be a major cause of morbidity and mortality world wide. There is a failure to treat respiratory infections due to the emergence of antibiotic resistant strains among the most common respiratory pathogens. To evaluate the in vitro antibacterial activities of two traditionally used plants: Albizia gummifera (Ambabesa-Muka, Oromifa, Sessa-Amharic.) and Ferula communis (Doge-Oromifa, Dog-Amharic) against clinical isolates of S. pyogenes and S. pneumoniae. The study involving the antibacterial susceptibility test of traditionally used plant species against Gram-positive bacterial pathogens was conducted over a period of 5 months (January - August, 2004) at the Ethiopian Health, and Nutrition Research Institute. The in vitro antibacterial activities of 80% methanol crude extracts prepared from the seeds of Ablizia gummifera and, roots of Ferula communis as well as their respective hydro alcoholic solvent fractionates of both plant species were tested for inhibitory activity against the clinical isolates of six S. pneumonae and twenty two S. pyogenes using agar dilution method. Eighty percent ethanol solubilized fractions of both plants were found to have antibacterial effects to all assayed bacteria while aqueous solubilized fractions did not exhibit any effect. Minimum inhibitory concentration (MIC) of the 80% ethanol solubilized fractions was determined and the MIC of the fractions ranged from 500 mg/ ml to 1000 mg/ml for both plants showing the extracts may contain bioactive compounds of therapeutic interest. All extracts showed antibacterial activities against clinical isolates of S. pyogenes and S. pneumoniae. The extracts may contain compounds with potential therapeutic activity. Further purification and identification are needed to be tested using animal models.
Dei, Metella; Di Maggio, Floriana; Di Paolo, Gilda; Bruni, Vincenzina
2010-04-01
Symptoms related to vulvitis and vulvovaginitis are a frequent complaint in the paediatric age. Knowledge of the risk factors and the pathogenetic mechanisms, combined with thorough clinical examination, helps to distinguish between dermatological diseases, non-specific vulvitis and vulvovaginitis proper. On the basis of microbiological data, the most common pathogens prove to be Streptococcus pyogenes, Haemophilus influenzae and Enterobius vermicularis; fungal and viral infections are less frequent. The possibility of isolating opportunistic pathogens should also be considered. In rare situations, the isolation of a micro-organism normally transmitted by sexual contact should prompt a careful evaluation of possible sexual abuse. Current treatments for specific and non-specific forms are outlined, together with pointers for the evaluation of recurrence. Copyright 2009 Elsevier Ltd. All rights reserved.
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs. PMID:27774436
Petrelli, D; Di Luca, M C; Prenna, M; Bernaschi, P; Repetto, A; Vitali, L A
2014-02-01
We investigated the prevalence, genetics, and clonality of fluoroquinolone non-susceptible isolates of Streptococcus pyogenes in the central part of Italy. S. pyogenes strains (n = 197) were isolated during 2012 from patients with tonsillopharyngitis, skin, wound or invasive infections and screened for fluoroquinolone non-susceptibility (resistance to norfloxacin and levofloxacin minimum inhibitory concentration (MIC) = 2 mg/L) following EUCAST guidelines. First-step topoisomerase parC and gyrA substitutions were investigated using sequencing analysis. Clonality was determined by pulsed field gel electrophoresis (PFGE; SmaI digestion) and by emm typing. The fluoroquinolone non-susceptible phenotype was identified in 18 isolates (9.1 %) and correlated with mutations in parC, but not in gyrA, the most frequent leading to substitution of the serine at position 79 with an alanine. Most of the fluoroquinolone non-susceptible isolates belonged to the emm-type 6, even if other emm-types were also represented (emm75, emm89, and emm2). A significant level of association was measured between PFGE and both emm type and substitutions in parC. The prevalence of fluoroquinolone non-susceptible Streptococcus pyogenes isolates in Italy is of concern and, although the well-known emm type 6 is dominant, other types are appearing and spreading.
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes.
Del Grosso, Maria; Camilli, Romina; Rizzi, Ermanno; Pietrelli, Alessandro; De Bellis, Gianluca; Pantosti, Annalisa
2016-07-01
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes
Camilli, Romina; Rizzi, Ermanno; Pietrelli, Alessandro; De Bellis, Gianluca; Pantosti, Annalisa
2016-01-01
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes. In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes. PMID:27067338
Reglinski, Mark; Lynskey, Nicola N; Choi, Yoon Jung; Edwards, Robert J; Sriskandan, Shiranee
2016-04-01
Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reglinski, Mark; Lynskey, Nicola N.; Choi, Yoon Jung; Edwards, Robert J.; Sriskandan, Shiranee
2016-01-01
Summary Objectives Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Methods Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Results Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Conclusion Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. PMID:26880087
Effects of pathogen-specific clinical mastitis on probability of conception in Holstein dairy cows.
Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T
2014-11-01
The objective of this study was to estimate the effects of pathogen-specific clinical mastitis (CM), occurring in different weekly intervals before or after artificial insemination (AI), on the probability of conception in Holstein cows. Clinical mastitis occurring in weekly intervals from 6 wk before until 6 wk after AI was modeled. The first 4 AI in a cow's lactation were included. The following categories of pathogens were studied: Streptococcus spp. (comprising Streptococcus dysgalactiae, Streptococcus uberis, and other Streptococcus spp.); Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level that can be detected from our microbiological procedures) observed in the culture sample and cases with contamination (≥ 3 pathogens in the sample); and other pathogens [including Citrobacter, yeasts, Trueperella pyogenes, gram-negative bacilli (i.e., gram-negative organisms other than E. coli, Klebsiella spp., Enterobacter, and Citrobacter), Corynebacterium bovis, Corynebacterium spp., Pasteurella, Enterococcus, Pseudomonas, Mycoplasma, Prototheca, and others]. Other factors included in the model were parity (1, 2, 3, 4 and higher), season of AI (winter, spring, summer, autumn), day in lactation of first AI, farm, and other non-CM diseases (retained placenta, metritis, ketosis, displaced abomasum). Data from 90,271 AI in 39,361 lactations in 20,328 cows collected from 2003/2004 to 2011 from 5 New York State dairy farms were analyzed in a generalized linear mixed model with a Poisson distribution. The largest reductions in probability of conception were associated with CM occurring in the week before AI or in the 2 wk following AI. Escherichia coli and Klebsiella spp. had the greatest adverse effects on probability of conception. The probability of conception for a cow with any combination of characteristics may be calculated based on the parameter estimates. These findings may be helpful to farmers in assessing reproduction in their dairy cows for more effective cow management. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Auzou, M; Caillon, J; Poyart, C; Weber, P; Ploy, M-C; Leclercq, R; Cattoir, V
2015-07-01
The primary objective of our study was to obtain susceptibility data for josamycin against Streptococcus pyogenes isolated from patients presenting with upper respiratory tract infections in France. The secondary objective was to characterize the molecular mechanism of resistance in macrolide-resistant isolates. MICs of erythromycin, clarithromycin, azithromycin, josamycin, and clindamycin were determined by the broth microdilution method. Resistance genes erm(B), erm(TR), and mef(A) were screened by PCR. The MIC50 and MIC90 of josamycin against 193 isolates of S. pyogenes were 0.12 and 0.25mg/L, respectively, with a resistance rate estimated at 4.7%. Resistance was due to the erm(B) gene whereas strains harboring erm(TR) or mef(A) remained susceptible. Josamycin was active against >95% of S. pyogenes isolated from patients with upper respiratory tract infections, and can be used as an alternative for the treatment of pharyngitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Recurrent Streptococcus pyogenes genital infection in a woman: test and treat the partner!
Verkaeren, Emilienne; Epelboin, Loïc; Epelboin, Sylvie; Boddaert, Nathalie; Brossier, Florence; Caumes, Eric
2014-12-01
Group A Streptococcus (GAS) is a well-known cause of vulvovaginitis in prepubescent girls, but it is rarely described in adult women. We describe the case of a 64-year-old woman who presented with endometritis revealed by GAS bacteraemia, followed by recurrent vulvovaginitis due to a wild-type strain of GAS. She relapsed twice despite amoxicillin treatment. Her husband was found to be an asymptomatic carrier after GAS was identified in nasal and rectal swabs. She was cured after eradication of carriage in both herself and her husband with amoxicillin and rifampin. When recurrent Streptococcus pyogenes genital infections occur, test and treat the partner. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhu, Luchang; Olsen, Randall J; Horstmann, Nicola; Shelburne, Samuel A; Fan, Jia; Hu, Ye; Musser, James M
2016-07-01
Variable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes The nature of the polymorphism is a one-unit deletion in a three-tandem-repeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Microarray Analysis of Microbiota of Gingival Lesions in Noma Patients
Huyghe, Antoine; François, Patrice; Mombelli, Andrea; Tangomo, Manuela; Girard, Myriam; Baratti-Mayer, Denise; Bolivar, Ignacio; Pittet, Didier; Schrenzel, Jacques
2013-01-01
Noma (cancrum oris) is a gangrenous disease of unknown etiology affecting the maxillo-facial region of young children in extremely limited resource countries. In an attempt to better understand the microbiological events occurring during this disease, we used phylogenetic and low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis (ANG) lesions, and compared them to healthy control subjects of the same geographical and social background. Our observations raise doubts about Fusobacterium necrophorum, a previously suspected causative agent of noma, as this species was not associated with noma lesions. Various oral pathogens were more abundant in noma lesions, notably Atopobium spp., Prevotella intermedia, Peptostreptococcus spp., Streptococcus pyogenes and Streptococcus anginosus. On the other hand, pathogens associated with periodontal diseases such as Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Porphyromonas spp. and Fusobacteriales were more abundant in healthy controls. Importantly, the overall loss of bacterial diversity observed in noma samples as well as its homology to that of ANG microbiota supports the hypothesis that ANG might be the immediate step preceding noma. PMID:24086784
Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N
2014-07-01
Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R
2013-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589
[Species and quantitative characteristics of pharyngeal mucosa microflora in pregnant women].
Meshcheriakova, A K; Kostinov, M P; Magarshak, O O; Zaĭtseva, E V
2014-01-01
Species and quantitative characteristics of upper respiratory tract (URT) mucosa microflora in women at gestation period. The results of a bacteriological study of 68 samples of mucus from posterior pharyngeal wall in women at gestation period (from 14 weeks), 52 of those--from pregnant women with acute respiratory infection (ARI) symptoms and 16--from women without signs of disease, are presented. Qualitative and quantitative composition of microflora was studied by a generally accepted bacteriological method. During primary bacteriological study 111 microorganism cultures were isolated. 88 (79.3%) of strains belonged to Gram-positive flora, 20 (18.0%)--to Gram-negative, and Candida genus fungi constituted 3 (2.7%) isolates. Streptococcus pyogenes and Moraxella catarrhalis were isolated from pregnant women with ARI signs at 23.1% and 5.8% frequency of occurrence, respectively. A higher detectability of Staphylococcus aureus--in 31.3% and Candida spp.--in 6.3% of women who did not complain as opposed to patients with URT lesions (in 21.2 and 3.9%, respectively) was determined. In patients without ARI signs the amount of bacteria did not exceed 10(5)--10(6) CFU/ml, in pregnant women with ARI diagnosis in 8 of 52 cases semination of pharyngeal mucuswas observed--10(7)--10(8) CFU/ml. Prevalence of S. aureus, Streptococcus agalactiae, S. pyogenes, Streptococcus mutans in composition of pharyngeal mucus microflora of pregnant women both with URT lesion signs and without them was shown, however the degree of semination by pathogens in the groups was different that determined the severity of disease manifestations.
Prevalence of bovine milk pathogens in Azorean pastures: mobile versus fixed milking machines.
Azevedo, C; Pacheco, D; Soares, L; Moitoso, M; Maldonado, J; Guix, R; Simões, J
2016-01-01
The aims of the present study were (1) to evaluate the influence of using mobile (n=47) or fixed (n=45) milking machines in Azorean herds on the apparent prevalence of several milk pathogens in bulk tank milk (BTM) and (2) to determine whether separated subclinical mastitic cows can serve, in real time, as predictors of milk pathogen prevalence for the remaining animals at the herd level. The use of a mobile or fixed milking machine influenced (P≤0.05) the prevalence of Staphylococcus aureus (72.3 per cent; n=34 v 51.1 per cent; n=23, respectively) and Klebsiella species (46.8 per cent; n=22 v 26.7 per cent; n=12, respectively). S aureus (95 per cent CI OR 1.1 to 6.0) and Klebsiella species (95 per cent CI OR 1.0 to 5.8) were 2.5 times more likely to increase in the BTM of herds using mobile milking machines. The prevalence of coagulase-negative staphylococci (100 per cent; n=92), Escherichia coli (75.0 per cent), Corynebacterium bovis (57.6 per cent), Enterococcus species (55.4 per cent), Streptococcus dysgalactiae (51.1 per cent), Streptococcus uberis (41.3 per cent), Actinomyces pyogenes or Peptostreptococcus indolicus (41.3 per cent) and Streptococcus agalactiae (32.6 per cent) in BTM remained similar among the herds. κ coefficients were always <0.70, indicating intra-herd disagreement of the prevalence of milk pathogens between BTM and separated milking cows. Milking hygiene should be improved in pastures, focusing specifically on herds that use a mobile milking machine. The segregated cows at milking time are not good predictors of milk pathogens in BTM.
Andleeb, Saiqa; Naseer, Anum; Ali, Shaukat; Mustafa, Rozina Ghulam; Zafar, Atiya; Shafique, Irsa; Ihsan-Ul-Haq; Ismail, Muhammad; Saleem, Muhammad; Mansoor, Qaiser
2018-01-01
Human infectious diseases are caused by various pathogens including bacteria, fungi, viruses, parasites, and protozoans. These infectious agents are controlled by using synthetic drugs as well as natural sources. The aim of current study was to evaluate the antibacterial effect of Rumex hastatus against clinical bacterial pathogens. In current research antibacterial effect of Rumex hastatus was analyzed against seven clinical pathogenic bacteria such as Escherichia coli, Serratia marcescens, Streptococcus pyogenes, Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa through agar well diffusion method. The boiled extract was used for the phytochemical screening, antioxidant potential, thin layer chromatography, bio-autography, and spot screening. Genomic DNA was extracted to find the DNA protection effect of R. hastatus. Antibacterial results showed that diethyl ether extract has the maximum inhibition of S. pyogenes (9.66 ± 0.57 mm). Acetone and diethyl ether extracts showed moderate inhibition of K. pneumoniae (6.33 ± 1.52 mm and 5.66 ±1.15 mm) and S. aureus (6.33 ± 1.52 mm and 5.66 ± 0.57 mm). Similarly, chloroform extract indicated moderate inhibition of S. pyogenes (5.66 ± 1.15 mm). Ethanol extract had low or even no effect on the growth of bacteria. Genomic DNA extraction also encouraged the antibacterial effect of R. hastatus. Various phytochemical constituents such as ketoses, oligosaccharides, amino acids, amines, sugars, flavonoids, and antioxidant constituents were detected. TLC-Bioautography and spot screening results revealed the potential use of R. hustatus as an antibacterial agent. It was concluded that most of the tested fractions appeared as an important source for the discovery of new antimicrobial drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dumre, S P; Sapkota, K; Adhikari, N; Acharya, D; Karki, M; Bista, S; Basanyat, S R; Joshi, S K
2009-01-01
Streptococcus pyogenes or Group A streptococcus (GAS) causes several suppurative and non suppurative infections. In addition to pharyngitis and skin infections, GAS are also the causative agent of post-streptococcal infection syndromes such as acute rheumatic fever (ARF) and post-streptococcal glumerulonephritis (PSG). GAS frequently colonises in the throat of an asymptomatic person. Pharyngeal carriage rates of GAS among healthy school children vary with geographical location and seasons. We carried out this preliminary study to determine the throat carriage rate and antimicrobial resistance trend of Streptococcus pyogenes or Group A streptococcus (GAS) among the Nepalese school children. Four schools situated at different locations of Kathmandu valley were included in the study. Throat swabs from 350 students of age group 5-15 years were collected, immediately transported to the laboratory and were processed for S. pyogenes following standard microbiological procedures. Antimicrobial susceptibility testing of the isolates was performed by Kirby Bauer disc diffusion method following CLSI guidelines. S. pyogenes was isolated from 10.9% (38/350) of the screened children. The GAS colonisation rate was statistically insignificant (P>0.05) with sex and age sub-groups, although the rate was slightly higher among girls and age sub-group 9-12 years. No significant difference in carrier rate was observed among different schools (P>0.05). All isolates were susceptible to azithromycin. No resistance was detected for penicillin and its derivative antibiotic ampicillin. Highest resistance rate was observed for cotrimoxazole (71.0%) followed by chloramphenicol (7.8%), ciprofloxacin (5.2%) and erythromycin (5.2%). Antibiotic resistant GAS isolated from asymptomatic Nepalese school children is a public health concern. When screened and appropriately treated with antibiotics, carriers can be prevented from spreading of streptococcal infections in the school environment and the community. Preventing cross infections would ultimately reduce the incidence of life-threatening sequelae which are debilitating and difficult to treat. It is recommended to conduct regular screening and GAS surveillance in schools, and maintain rational use of antibiotics to minimise GAS carriage/infections and resistance.
Burlet, E; HogenEsch, H; Dunham, A; Morefield, G
2017-05-01
Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.
Tatsuno, Ichiro; Isaka, Masanori; Okada, Ryo; Zhang, Yan; Hasegawa, Tadao
2014-03-28
The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes.
Trastoy, Beatriz; Lomino, Joseph V; Wang, Lai Xi; Sundberg, Eric J
2013-12-01
Endoglycosidase S (EndoS) is an enzyme secreted by Streptococcus pyogenes that specifically hydrolyzes the β-1,4-di-N-acetylchitobiose core glycan on immunoglobulin G (IgG) antibodies. One of the most common human pathogens and the cause of group A streptococcal infections, S. pyogenes secretes EndoS in order to evade the host immune system by rendering IgG effector mechanisms dysfunctional. On account of its specificity for IgG, EndoS has also been used extensively for chemoenzymatic synthesis of homogeneous IgG glycoprotein preparations and is being developed as a novel therapeutic for a wide range of autoimmune diseases. The structural basis of its enzymatic activity and substrate specificity, however, remains unknown. Here, the purification and crystallization of EndoS are reported. Using traditional hanging-drop and sitting-drop vapor-diffusion crystallization, crystals of EndoS were grown that diffracted to a maximum of 3.5 Å resolution but suffered from severe anisotropy, the data from which could only be reasonably processed to 7.5 Å resolution. When EndoS was crystallized by liquid-liquid diffusion, it was possible to grow crystals with a different space group to those obtained by vapor diffusion. Crystals of wild-type endoglycosidase and glycosynthase constructs of EndoS grown by liquid-liquid diffusion diffracted to 2.6 and 1.9 Å resolution, respectively, with a greatly diminished anisotropy. Despite extensive efforts, the failure to reproduce these liquid-liquid diffusion-grown crystals by vapor diffusion suggests that these crystallization methods each sample a distinct crystallization space.
Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J
2014-08-08
Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Mingoia, Marina; Morici, Eleonora; Morroni, Gianluca; Giovanetti, Eleonora; Del Grosso, Maria; Pantosti, Annalisa; Varaldo, Pietro E
2014-10-01
The linkage between the macrolide efflux gene mef(I) and the chloramphenicol inactivation gene catQ was first described in Streptococcus pneumoniae (strain Spn529), where the two genes are located in a module designated IQ element. Subsequently, two different defective IQ elements were detected in Streptococcus pyogenes (strains Spy029 and Spy005). The genetic elements carrying the three IQ elements were characterized, and all were found to be Tn5253 family integrative and conjugative elements (ICEs). The ICE from S. pneumoniae (ICESpn529IQ) was sequenced, whereas the ICEs from S. pyogenes (ICESpy029IQ and ICESpy005IQ, the first Tn5253-like ICEs reported in this species) were characterized by PCR mapping, partial sequencing, and restriction analysis. ICESpn529IQ and ICESpy029IQ were found to share the intSp 23FST81 integrase gene and an identical Tn916 fragment, whereas ICESpy005IQ has int5252 and lacks Tn916. All three ICEs were found to lack the linearized pC194 plasmid that is usually associated with Tn5253-like ICEs, and all displayed a single copy of a toxin-antitoxin operon that is typically contained in the direct repeats flanking the excisable pC194 region when this region is present. Two different insertion sites of the IQ elements were detected, one in ICESpn529IQ and ICESpy029IQ, and another in ICESpy005IQ. The chromosomal integration of the three ICEs was site specific, depending on the integrase (intSp 23FST81 or int5252). Only ICESpy005IQ was excised in circular form and transferred by conjugation. By transformation, mef(I) and catQ were cotransferred at a high frequency from S. pyogenes Spy005 and at very low frequencies from S. pneumoniae Spn529 and S. pyogenes Spy029. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Endocarditis in adults with bacterial meningitis.
Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik
2013-05-21
Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.
Schouten, M A; Hoogkamp-Korstanje, J A
1997-08-01
The in-vitro activity of quinupristin-dalfopristin was compared with those of vancomycin, teicoplanin, erythromycin, clarithromycin, rifampicin, imipenem, meropenem, ciprofloxacin and sparfloxacin against 414 bloodstream isolates of Gram-positive cocci. Quinupristin-dalfopristin inhibited strains of Streptococcus pyogenes and Streptococcus agalactiae at 0.12 mg/L, methicillin- and/or erythromycin-resistant Staphylococcus aureus and Staphylococcus epidermidis at 0.5 mg/L, Staphylococcus haemolyticus, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus mitis, Streptococcus bovis, Streptococcus sanguis and Streptococcus anginosus at 1 mg/L and Enterococcus faecalis at 8 mg/L.
Bidet, P; Plainvert, C; Doit, C; Mariani-Kurkdjian, P; Bonacorsi, S; Lepoutre, A; Bouvet, A; Poyart, C; Bingen, E
2010-02-01
Since the 1980s, infections due to Streptococcus pyogenes or group A streptococci (GAS) were marked by the increase in invasive infections and the emergence of clones which were resistant to macrolides. Those challenges led the French national reference center for streptococci to enhance the epidemiological survey and the characterization of GAS strains, in collaboration with the National Institute for Public Health Surveillance. Active surveillance is of major importance for implementation of therapeutic and prophylactic guidelines and for evaluation of future streptococcal vaccines. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Loubinoux, J; Mihaila-Amrouche, L; Bouvet, A
2004-10-01
The need to rapidly identify streptococci responsible for acute infectious diseases has led to the development of agglutination techniques that are able to identify streptococcal group antigens (A, B, C, D, F, and G) directly from primoculture colonies on blood agar. The Prolex agglutination tests (Pro-Lab Diagnostics, Richmond Hill, Ontario, Canada), distributed in France by i2a, have been used for the determination of group antigens of 166 isolates of streptococci and enterococci previously identified in the National Reference Center for Streptococci. The results obtained with the Prolex reagents have permitted to correctly identify all pyogenic beta-hemolytic streptococci (23 Streptococcus pyogenes, 21 Streptococcus agalactiae, 33 Streptococcus dysgalactiae subsp. equisimilis including 6 group C and 27 group G, and 5 Streptococcus porcinus including 4 group B). Four differences between unexpected agglutinations (A or F) and species identifications have been obtained. These differences were observed for four non-hemolytic isolates of Streptococcus mutans, Streptococcus gordonii, Streptococcus infantarius, and Streptococcus suis. The anti-D reagent has been of value as a marker for isolates of enterococci. Thus, these results confirm the abilities of these agglutination tests for the grouping of beta-hemolytic streptococci. Moreover, the use of Prolex has the advantage to be rapid because of the non-enzymatic but chemical extraction of streptococcal antigens.
Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.
Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S
2011-01-01
This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner. Published by Elsevier B.V.
Orden, B; Martínez, R; López de los Mozos, A; Franco, A
1996-02-01
The aim of this study was to know the antibiotic resistence of Streptococcus pyogenes to erythromycine, clindamycine and/or tetracycline in community samples. The second aim was to determine the existence of multiresistant strains and to know the relationship between resistant strains, clinical samples and age of the patient. A retrospective analysis was performed in all the strains of S. pyogenes isolated from January 1992 to December 1994. Antibiotic sensitivity was studied by MIC by the microdilution method using the Pasco semiautomatic system. During the study period 573 beta hemolytic streptococci were identified as S. pyogenes. The global resistance to erythromycine (2.8%), clindamycine (1.4%) and tetracycline (7.3%) remains at low levels but has significantly increased in the case of erythromycine (p < 0.05) and tetracycline (p < 0.05) over these 3 years. The incidence of strains resistant to clindamycine has also increased slowly although this rise is not significant. Five strains (0.9%) were not sensitive to the three antibiotics studied, 4 being isolated in the last trimester of 1994 in pharyngeal exudates. S. pyogenes resistant to erythromycine was most frequently isolated from cutaneous lesions and in pediatric patients (under the age of 14 years). These results confirm the trend towards an increase in the number of strains of S. pyogenes resistant to erythromycine, clindamycine and/or tetracycline, being most often found in cutaneous lesions and pediatric patients.
Deicke, Christin; Chakrakodi, Bhavya; Pils, Marina C; Dickneite, Gerhard; Johansson, Linda; Medina, Eva; Loof, Torsten G
2016-11-01
Coagulation is a mechanism for wound healing after injury. Several recent studies delineate an additional role of the intrinsic pathway of coagulation, also known as the contact system, in the early innate immune response against bacterial infections. In this study, we investigated the role of factor XIII (FXIII), which is activated upon coagulation induction, during Streptococcus pyogenes-mediated skin and soft tissue infections. FXIII has previously been shown to be responsible for the immobilization of bacteria within a fibrin network which may prevent systemic bacterial dissemination. In order to investigate if the FXIII-mediated entrapment of S. pyogenes also influences the disease outcome we used a murine S. pyogenes M1 skin and soft tissue infection model. Here, we demonstrate that a lack of FXIII leads to prolonged clotting times, increased signs of inflammation, and elevated bacterial dissemination. Moreover, FXIII-deficient mice show an impaired survival when compared with wildtype animals. Additionally, local reconstitution of FXIII-deficient mice with a human FXIII-concentrate (Fibrogammin ® P) could reduce the systemic complications, suggesting a protective role for FXIII during early S. pyogenes skin infection. FXIII therefore might be a possible therapeutically application to support the early innate immune response during skin infections caused by S. pyogenes. Copyright © 2016 Elsevier GmbH. All rights reserved.
Lange, Vinzenz; Malmström, Johan A; Didion, John; King, Nichole L; Johansson, Björn P; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi
2008-08-01
In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.
Matsumoto, Masakado; Yamada, Kazuhiro; Suzuki, Masahiro; Adachi, Hirokazu; Kobayashi, Shinichi; Yamashita, Teruo; Minagawa, Hiroko; Tatsuno, Ichiro; Hasegawa, Tadao
2016-07-22
We identified hypervirulent Streptococcus pyogenes in 27 and 420 isolates from patients with invasive and non-invasive diseases, respectively, in Aichi Prefecture, Japan, between 2003 and 2012, in an attempt to understand why the prevalence of streptococcal toxic shock syndrome (STSS) suddenly increased in this location during 2011. Hypervirulent strains belong to the emm1 genotype, with a mutation in the covR/S genes that regulate many other genes, encoding virulence determinants and resulting in the absence of the proteinase streptococcal exotoxin B and the production of virulence factors such as the superantigen streptococcal exotoxin A, the nuclease streptococcal DNase, the cytotoxin NAD-glycohydrolase, and the hemolysin streptolysin O. We found 1 strain from invasive disease and 1 from non-invasive disease with traits similar to those of hypervirulent strains, except that the sda1 gene was absent. We also found 1 non-emm1 strain with phenotypic and genetic traits identical to those of the emm1 hypervirulent strains except that it did not belong to emm1 genotype, from non-invasive diseases cases in 2011. These findings suggested that hypervirulent and hypervirulent-like strains from invasive and non-invasive disease cases could have at least partially contributed to the sudden increase in the number of patients with STSS in Aichi during 2011.
Bazzi, Ali M; Rabaan, Ali A; El Edaily, Zeyad; John, Susan; Fawarah, Mahmoud M; Al-Tawfiq, Jaffar A
Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients. In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2) with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1); 100% ethanol treatment (method 3)), and picking colonies from 90 to 180min subculture plates (method 4). Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Marini, Emanuela; Palmieri, Claudio; Magi, Gloria; Facinelli, Bruna
2015-07-09
Integrative conjugative elements (ICEs) are mobile genetic elements that reside in the chromosome but retain the ability to undergo excision and to transfer by conjugation. Genes involved in drug resistance, virulence, or niche adaptation are often found among backbone genes as cargo DNA. We recently characterized in Streptococcus suis an ICE (ICESsu32457) carrying resistance genes [tet(O/W/32/O), tet(40), erm(B), aphA, and aadE] in the 15K unstable genetic element, which is flanked by two ∼1.3kb direct repeats. Remarkably, ∼1.3-kb sequences are conserved in ICESa2603 of Streptococcus agalactiae 2603V/R, which carry heavy metal resistance genes cadC/cadA and mer. In matings between S. suis 32457 (donor) and S. agalactiae 2603V/R (recipient), transconjugants were obtained. PCR experiments, PFGE, and sequence analysis of transconjugants demonstrated a tandem array between ICESsu32457 and ICESa2603. Matings between tandem array-containing S. agalactiae 2603V/R (donor) and Streptococcus pyogenes RF12 (recipient) yielded a single transconjugant containing a hybrid ICE, here named ICESa2603/ICESsu32457. The hybrid formed by recombination of the left ∼1.3-kb sequence of ICESsu32457 and the ∼1.3-kb sequence of ICESa2603. Interestingly, the hybrid ICE was transferable between S. pyogenes strains, thus demonstrating that it behaves as a conventional ICE. These findings suggest that both tandem arrays and hybrid ICEs may contribute to the evolution of antibiotic resistance in streptococci, creating novel mobile elements capable of disseminating new combinations of antibiotic resistance genes. Copyright © 2015 Elsevier B.V. All rights reserved.
Streptococcus pyogenes vulvovaginitis in children in Nottingham.
Donald, F. E.; Slack, R. C.; Colman, G.
1991-01-01
Isolates of Streptococcus pyogenes from vaginal swabs of children with vulvovaginitis received at Nottingham Public Health Laboratory during 1986-9 were studied. A total of 159 isolates was made during the 4 years, increasing from 17 in 1986 to 64 in 1989 and accounting for 11% of all vaginal swabs received from children. The numbers of throat swabs yielding S. pyogenes also showed an increase from 974 in 1986 to 1519 in 1989. A winter peak of isolates was noted for both vaginal swabs and throat swabs. A total of 98 strains from vaginal swabs were serotyped: 22 different types were identified, 61% of which were the common types M4, M6, R28 and M12. Erythromycin sensitivity was done on 89 strains; 84% were highly sensitive (MIC less than 0.03 mg/l). There are no other reports of such large numbers in the literature; the reason for seeing this increase in Nottingham is unclear. PMID:2050200
Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes.
Zhang, Yan; Tatsuno, Ichiro; Okada, Ryo; Hata, Nanako; Matsumoto, Masakado; Isaka, Masanori; Isobe, Ken-ichi; Hasegawa, Tadao
2016-01-01
In Japan, the number of patients with streptococcal toxic shock syndrome is reported to be increasing. mef(A) gene-positive macrolide-resistant emm1 strains are thought to possibly contribute to the rise in the frequency of STSS. Although analyses of macrolide-resistant mechanisms, including mef(A) resistance, have been performed mainly in Streptococcus pneumoniae, the role of this gene in Streptococcus pyogenes has not been completely investigated. Therefore, to the best of our knowledge, we established the first mef(A)-knockout strain using an emm1-type S. pyogenes strain, and tested its susceptibility to erythromycin, clarithromycin and azithromycin. We found that the antimicrobial susceptibilities were almost identical to those of the parental strain. Hence, we established a knockout strain for another gene, msr(D), that is located immediately downstream of mef(A). The macrolide resistances of the resulting strain significantly decreased, and were further altered when both mef(A) and msr(D) were knocked out. The introduction of the msr(D) gene into a macrolide-sensitive strain conferred more resistance than the introduction of the mef(A) gene. The erythromycin susceptibilities of knockout strains were further dissected using two additional emm4- and emm75-type S. pyogenes strains. We found almost identical results for both strains except for the mef(A) knockout emm4 type, whose susceptibility was altered, although the change was less than that for the msr(D) knockout. These results suggest that both mef(A) and msr(D) are involved in macrolide resistance in S. pyogenes, and that the msr(D) gene plays a more predominant role in macrolide resistance than mef(A).
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited.
Hurst, Jacklyn R; Kasper, Katherine J; Sule, Akshay N; McCormick, John K
2018-07-01
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease. Copyright © 2018. Published by Elsevier B.V.
Meerungrueang, W; Panichayupakaranant, P
2014-09-01
Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.
Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka
2017-01-01
The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.
Karlowsky, James A; Biedenbach, Douglas J; Bouchillon, Samuel K; Hackel, Meredith; Iaconis, Joseph P; Sahm, Daniel F
2016-10-01
The objective of this report was to document antimicrobial susceptibility testing surveillance data for ceftaroline and comparative agents from the AWARE (Assessing Worldwide Antimicrobial Resistance Evaluation) global surveillance program for bacterial pathogens causing skin and soft tissue and respiratory tract infections in African and Middle Eastern countries from 2012 through 2014. Pathogen identities were confirmed by MALDI-TOF and antimicrobial susceptibility testing performed by CLSI broth microdilution methodology in a central laboratory. All methicillin-susceptible Staphylococcus aureus (MSSA) (n= 923; MIC90, 0.25 μg/mL) and 91.8% of methicillin-resistant S. aureus (MRSA) (n= 1161; MIC90, 1 μg/mL) tested were susceptible to ceftaroline. The maximum ceftaroline MIC observed for isolates of MRSA was 2 μg/mL. All Streptococcus pyogenes (n= 174; MIC90, 0.008 μg/mL), Streptococcus agalactiae (n= 44; MIC90, 0.015 μg/mL), Streptococcus pneumoniae (n= 351; MIC90, 0.25 μg/mL), and Haemophilus influenzae (n= 84; MIC90, ≤0.015 μg/mL) were susceptible to ceftaroline. Rates of susceptibility to ceftaroline among ESBL-negative Escherichia coli (n= 338), Klebsiella pneumoniae (n= 241), and Klebsiella oxytoca (n= 97) were 89.1% (MIC90, 1 μg/mL), 94.2% (MIC90, 0.5 μg/mL), and 99.0% (MIC90, 0.5 μg/mL), respectively. Copyright © 2016. Published by Elsevier Inc.
2010-08-01
253 14. ABSTRACT (maximum 200 words) Group A Streptococcus pyogenes is a primary agent of respiratory disease in military environments...COVERED (from - to) January 2007–December 2008 4. TITLE AND SUBTITLE Local Changes in Rates of Group A Streptococcus Disease and Antibiotic Resistance...antibiotic resistance of 802 Streptococcus isolates from 10 US military facilities collected from 2002 through 2007. Most of these sites provided
Zhu, Luchang; Olsen, Randall J; Nasser, Waleed; de la Riva Morales, Ivan; Musser, James M
2015-10-06
Strains of emm89 Streptococcus pyogenes have become one of the major causes of invasive infections worldwide in the last 10 years. We recently sequenced the genome of 1,125 emm89 strains and identified three major phylogenetic groups, designated clade 1, clade 2, and the epidemic clade 3. Epidemic clade 3 strains, which now cause the great majority of infections, have two distinct genetic features compared to clade 1 and clade 2 strains. First, all clade 3 organisms have a variant 3 nga promoter region pattern, which is associated with increased production of secreted cytolytic toxins SPN (S. pyogenes NADase) and SLO (streptolysin O). Second, all clade 3 strains lack the hasABC locus mediating hyaluronic acid capsule synthesis, whereas this locus is intact in clade 1 and clade 2 strains. We constructed isogenic mutant strains that produce different levels of SPN and SLO toxins and capsule (none, low, or high). Here we report that emm89 strains with elevated toxin production are significantly more virulent than low-toxin producers. Importantly, we also show that capsule production is dispensable for virulence in strains that already produce high levels of SPN and SLO. Our results provide new understanding about the molecular mechanisms contributing to the rapid emergence and molecular pathogenesis of epidemic clade 3 emm89 S. pyogenes. S. pyogenes (group A streptococcus [GAS]) causes pharyngitis ("strep throat"), necrotizing fasciitis, and other human infections. Serious infections caused by emm89 S. pyogenes strains have recently increased in frequency in many countries. Based on whole-genome sequence analysis of 1,125 strains recovered from patients on two continents, we discovered that a new emm89 clone, termed clade 3, has two distinct genetic features compared to its predecessors: (i) absence of the genes encoding antiphagocytic hyaluronic acid capsule virulence factor and (ii) increased production of the secreted cytolytic toxins SPN and SLO. emm89 S. pyogenes strains with the clade 3 phenotype (absence of capsule and high expression of SPN and SLO) are highly virulent in mice. These findings provide new understanding of how new virulent clones emerge and cause severe infections worldwide. This newfound knowledge of S. pyogenes virulence can be used to help understand future epidemics and conduct new translational research. Copyright © 2015 Zhu et al.
Liu, George Y; Essex, Anthony; Buchanan, John T; Datta, Vivekanand; Hoffman, Hal M; Bastian, John F; Fierer, Joshua; Nizet, Victor
2005-07-18
Golden color imparted by carotenoid pigments is the eponymous feature of the human pathogen Staphylococcus aureus. Here we demonstrate a role of this hallmark phenotype in virulence. Compared with the wild-type (WT) bacterium, a S. aureus mutant with disrupted carotenoid biosynthesis is more susceptible to oxidant killing, has impaired neutrophil survival, and is less pathogenic in a mouse subcutaneous abscess model. The survival advantage of WT S. aureus over the carotenoid-deficient mutant is lost upon inhibition of neutrophil oxidative burst or in human or murine nicotinamide adenine dinucleotide phosphate oxidase-deficient hosts. Conversely, heterologous expression of the S. aureus carotenoid in the nonpigmented Streptococcus pyogenes confers enhanced oxidant and neutrophil resistance and increased animal virulence. Blocking S. aureus carotenogenesis increases oxidant sensitivity and decreases whole-blood survival, suggesting a novel target for antibiotic therapy.
Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; DeOliveira, Rosane B.; Garrett, Wendy S.; Lu, Xi; O’Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N.; Kayatani, Alexander K. K.; Maira-Litràn, Tomas; Gening, Marina L.; Tsvetkov, Yury E.; Nifantiev, Nikolay E.; Bakaletz, Lauren O.; Pelton, Stephen I.; Golenbock, Douglas T.; Pier, Gerald B.
2013-01-01
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)–linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675
Mingoia, Marina; Morici, Eleonora; Marini, Emanuela; Brenciani, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E
2016-03-01
The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2011-01-01
Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978
Linke, Christian; Siemens, Nikolai; Middleditch, Martin J.; Kreikemeyer, Bernd; Baker, Edward N.
2012-01-01
The extracellular protein Epf from Streptococcus pyogenes is important for streptococcal adhesion to human epithelial cells. However, Epf has no sequence identity to any protein of known structure or function. Thus, several predicted domains of the 205 kDa protein Epf were cloned separately and expressed in Escherichia coli. The N-terminal domain of Epf was crystallized in space groups P21 and P212121 in the presence of the protease chymotrypsin. Mass spectrometry showed that the species crystallized corresponded to a fragment comprising residues 52–357 of Epf. Complete data sets were collected to 2.0 and 1.6 Å resolution, respectively, at the Australian Synchrotron. PMID:22750867
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-01-01
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. PMID:28154192
Richards, Vincent P.; Lang, Ping; Pavinski Bitar, Paulina D.; Lefébure, Tristan; Schukken, Ynte H.; Zadoks, Ruth N.; Stanhope, Michael J.
2011-01-01
In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p < 0.0001). The majority of the bovine strain-specific genes (~85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight intomechanismsfacilitatingenvironmentaladaptationandacquisitionofpotential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150
Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.
2015-01-01
Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774
Crystal structure of Spy0129, a Streptococcus pyogenes class B sortase involved in pilus assembly.
Kang, Hae Joo; Coulibaly, Fasséli; Proft, Thomas; Baker, Edward N
2011-01-11
Sortase enzymes are cysteine transpeptidases that mediate the covalent attachment of substrate proteins to the cell walls of gram-positive bacteria, and thereby play a crucial role in virulence, infection and colonisation by pathogens. Many cell-surface proteins are anchored by the housekeeping sortase SrtA but other more specialised sortases exist that attach sub-sets of proteins or function in pilus assembly. The sortase Spy0129, or SrtC1, from the M1 SF370 strain of Streptococcus pyogenes is responsible for generating the covalent linkages between the pilin subunits in the pili of this organism. The crystal structure of Spy0129 has been determined at 2.3 Å resolution (R = 20.4%, Rfree = 26.0%). The structure shows that Spy0129 is a class B sortase, in contrast to other characterised pilin polymerases, which belong to class C. Spy0129 lacks a flap believed to function in substrate recognition in class C enzymes and instead has an elaborated β6/β7 loop. The two independent Spy0129 molecules in the crystal show differences in the positions and orientations of the catalytic Cys and His residues, Cys221 and His126, correlated with movements of the β7/β8 and β4/β5 loops that respectively follow these residues. Bound zinc ions stabilise these alternative conformations in the crystal. This conformational variability is likely to be important for function although there is no evidence that zinc is involved in vivo.
Chiu, Nan-Chang; Lin, Hsin-Yi; Hsu, Chyong-Hsin; Huang, Fu-Yuan; Lee, Kuo-Sheng; Chi, Hsin
2012-10-01
Acute otitis media (AOM) is one of the most common diseases in children. Here, we describe the epidemiological and microbiological characteristics of AOM in Taiwanese children over a 10-year period. We retrospectively enrolled pediatric patients with culture-proven AOM who were treated at Mackay Memorial Hospital, Taipei between 1999-2008. The data include demographic characteristics, clinical history, and microbiological characteristics. Six hundred and fourteen patients were included. The male:female ratio was 1.4 (p<0.001). Greater than three-fourths of the patients (476 [77.5%]) were < 5 years of age, and most patients were 1-2 years of age. The most common isolated pathogen was Streptococcus pneumoniae (419 patients [68.2%]), followed by nontypeable Haemophilus influenzae (NTHi; 118 patients [19.2%]). The distributions of age, gender, use of tympanocentesis, history of previous AOM, and use of antibiotic between patients infected with the two pathogens were not significantly different. However, the number of patients with AOM caused by S. pneumoniae, but not NTHi, decreased during the study period (p=0.004). Three hundred and eighty-seven children (63.0%) with AOM developed spontaneous otorrhea. Compared with patients who underwent tympanocentesis, those with spontaneous otorrhea were younger (27.0±16.4 vs. 31.1±15.2 months of age, p=0.004), more likely to have a previous history of AOM (p=0.019), and more likely to receive more antibiotics (p=0.012). The third most common pathogen was S. pyogenes (25 patients [4.1%]). S. pyogenes occurred more often in children > 5 years of age and was associated with spontaneous otorrhea (p<0.001). S. pneumoniae and NTHi are common causes of culture-confirmed AOM in Taiwanese children. Although S. pyogenes is not as common, it usually causes AOM in children > 5 years of age and is associated with spontaneous otorrhea. Copyright © 2012. Published by Elsevier B.V.
Becherelli, Marco; Manetti, Andrea G O; Buccato, Scilla; Viciani, Elisa; Ciucchi, Laura; Mollica, Giulia; Grandi, Guido; Margarit, Imma
2012-01-01
Summary Gram-positive pili are known to play a role in bacterial adhesion to epithelial cells and in the formation of biofilm microbial communities. In the present study we undertook the functional characterization of the pilus ancillary protein 1 (AP1_M6) from Streptococcus pyogenes isolates expressing the FCT-1 pilus variant, known to be strong biofilm formers. Cell binding and biofilm formation assays using S. pyogenes in-frame deletion mutants, Lactococcus expressing heterologous FCT-1 pili and purified recombinant AP1_M6, indicated that this pilin is a strong cell adhesin that is also involved in bacterial biofilm formation. Moreover, we show that AP1_M6 establishes homophilic interactions that mediate inter-bacterial contact, possibly promoting bacterial colonization of target epithelial cells in the form of three-dimensional microcolonies. Finally, AP1_M6 knockout mutants were less virulent in mice, indicating that this protein is also implicated in GAS systemic infection. PMID:22320452
Tagini, F; Aubert, B; Troillet, N; Pillonel, T; Praz, G; Crisinel, P A; Prod'hom, G; Asner, S; Greub, G
2017-07-01
Outbreaks of Streptococcus pyogenes hypervirulent clones are constant public health threats. In western Switzerland, an increase of severe cases of S. pyogenes invasive infections was observed between December 2015 and March 2016. Our aim was (i) to investigate these cases by the use of Whole Genome Sequencing (WGS) and (ii) to determine the specific virulome and resistome of each isolate in order to undertake adequate public health measures. Eleven Streptococcus pyogenes strains isolated from 11 patients with severe invasive infections between December 13, 2015 and March 12, 2016 were included in our study. Practically, emm-typing, MLST and WGS were used to investigate the relatedness between the isolates. The presence of virulence and antibiotic resistance genes as well as mutations in transcriptional regulators of virulence and in genes encoding for antibiotic targets were assessed. Three and two groups of isolates shared the same emm-type and ST type, respectively. Single Nucleotide Polymorphism (SNP) analysis revealed 14 to 32 SNPs between the strains of the same emm-type group, ruling out the possibility of a clonal outbreak. Mutations found in covS and rocA could partially explain an increased virulence. As these reassuring results were obtained in less than 10 days, no specific hospital hygiene and no dedicated public health measures had to be undertaken. WGS is a powerful technique to discriminate between closely related strains, excluding an outbreak in less than 10 days. Moreover, WGS provided extensive data on the virulome and resistome of all these strains.
Streptolysin S-like virulence factors: the continuing sagA
Molloy, Evelyn M.; Cotter, Paul D.; Hill, Colin; Mitchell, Douglas A.; Ross, R. Paul
2014-01-01
Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS represents the archetypal example of an extended family of post-translationally modified virulence factors also produced by some other streptococci and Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs). PMID:21822292
Group A Streptococcus tissue invasion by CD44-mediated cell signalling
NASA Astrophysics Data System (ADS)
Cywes, Colette; Wessels, Michael R.
2001-12-01
Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.
Frequency and antimicrobial susceptibility of aerobic bacterial vaginal isolates.
Tariq, Nabia; Jaffery, Tara; Ayub, Rukhsana; Alam, Ali Yawar; Javid, Mahmud Haider; Shafique, Shamsa
2006-03-01
To determine the frequency and antimicrobial susceptibility of aerobic bacterial isolates from high vaginal swab cultures. Cross-sectional survey. Shifa International Hospital, Islamabad, from January 2003 to February 2004. The subjects included 136 symptomatic women attending Obstetrics and Gynecology Out-Patient Department. A proforma was filled to document the demographic details, presenting complaint and examination findings. High vaginal swabs were taken for gram staining, culture and antimicrobial sensitivity testing using standard microbiologic techniques. Normal flora was isolated in 30% of the cases, followed by Candida spp. (21.3%), Enterococcus spp. (14.7%), E.coli (10.2%), Beta hemolytic Streptococcus spp. (7.3%), Staphylococcus spp. (4.4%), Enterobacter spp. (4.4%), while Streptococcus pyogenes, Staphylococcus epidermidis and Klebsiella spp. were isolated 1.5% each. Enterococcus, Staphylococcus and Streptococcus were mostly sensitive to penicillin and amoxicillin while E.coli and Klebsiella were sensitive to (piperacillin-Tazobactum, Imipenem and vancomycin. Enterococci species showed significant resistance to aminoglycoside antibiotics (68.8% to 81.3%) resistance to vancomycin was 5%. Thirty percent of symptomatic patients had normal flora on culture. Candida spp was the most frequent pathogen isolated. Co-amoxiclav should be used as empiric therapy until culture-sensitivity report is available.
Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes
Kawada-Matsuo, Miki; Tatsuno, Ichiro; Arii, Kaoru; Zendo, Takeshi; Oogai, Yuichi; Noguchi, Kazuyuki; Hasegawa, Tadao; Sonomoto, Kenji
2016-01-01
ABSTRACT Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081–spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. IMPORTANCE In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis. This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non-bacteriocin-producing bacteria. Our findings provide new insights into the function of TCSs in S. pyogenes. PMID:27474716
Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes.
Kawada-Matsuo, Miki; Tatsuno, Ichiro; Arii, Kaoru; Zendo, Takeshi; Oogai, Yuichi; Noguchi, Kazuyuki; Hasegawa, Tadao; Sonomoto, Kenji; Komatsuzawa, Hitoshi
2016-10-01
Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081-spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non-bacteriocin-producing bacteria. Our findings provide new insights into the function of TCSs in S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
O'Dwyer, Karen; Hackel, Meredith; Hightower, Sarah; Hoban, Daryl; Bouchillon, Samuel; Qin, Donghui; Aubart, Kelly; Zalacain, Magdalena
2013-01-01
GSK1322322 is a novel peptide deformylase (PDF) inhibitor being developed for the intravenous and oral treatment of acute bacterial skin and skin structure infections and hospitalized patients with community-acquired pneumonia. The activity of GSK1322322 was tested against a global collection of clinical isolates of Haemophilus influenzae (n = 2,370), Moraxella catarrhalis (n = 115), Streptococcus pneumoniae (n = 947), Streptococcus pyogenes (n = 617), and Staphylococcus aureus (n = 940), including strains resistant to one or more marketed antibiotics. GSK1322322 had an MIC90 of 1 μg/ml against M. catarrhalis and 4 μg/ml against H. influenzae, with 88.8% of β-lactamase-positive strains showing growth inhibition at that concentration. All S. pneumoniae strains were inhibited by ≤4 μg/ml of GSK1322322, with an MIC90 of 2 μg/ml. Pre-existing resistance mechanisms did not affect its potency, as evidenced by the MIC90 of 1 μg/ml for penicillin, levofloxacin, and macrolide-resistant S. pneumoniae. GSK1322322 was very potent against S. pyogenes strains, with an MIC90 of 0.5 μg/ml, irrespective of their macrolide resistance phenotype. This PDF inhibitor was also active against S. aureus strains regardless of their susceptibility to methicillin, macrolides, or levofloxacin, with an MIC90 of 4 μg/ml in all cases. Time-kill studies showed that GSK1322322 had bactericidal activity against S. pneumoniae, H. influenzae, S. pyogenes, and S. aureus, demonstrating a ≥3-log10 decrease in the number of CFU/ml at 4× MIC within 24 h in 29 of the 33 strains tested. Given the antibacterial potency demonstrated against this panel of organisms, GSK1322322 represents a valuable alternative therapy for the treatment of infectious diseases caused by drug-resistant pathogens. PMID:23478958
Diehl, Carl; Wisniewska, Magdalena; Frick, Inga-Maria; Streicher, Werner; Björck, Lars; Malmström, Johan; Wikström, Mats
2016-01-01
Streptococcus pyogenes is one of the most significant bacterial pathogens in the human population mostly causing superficial and uncomplicated infections (pharyngitis and impetigo) but also invasive and life-threatening disease. We have previously identified a virulence determinant, protein sHIP, which is secreted at higher levels by an invasive compared to a non-invasive strain of S. pyogenes. The present work presents a further characterization of the structural and functional properties of this bacterial protein. Biophysical and structural studies have shown that protein sHIP forms stable tetramers both in the crystal and in solution. The tetramers are composed of four helix-loop-helix motifs with the loop regions connecting the helices displaying a high degree of flexibility. Owing to interactions at the tetramer interface, the observed tetramer can be described as a dimer of dimers. We identified three residues at the tetramer interface (Leu84, Leu88, Tyr95), which due to largely non-polar side-chains, could be important determinants for protein oligomerization. Based on these observations, we produced a sHIP variant in which these residues were mutated to alanines. Biophysical experiments clearly indicated that the sHIP mutant appear only as dimers in solution confirming the importance of the interfacial residues for protein oligomerisation. Furthermore, we could show that the sHIP mutant interacts with intact histidine-rich glycoprotein (HRG) and the histidine-rich repeats in HRG, and inhibits their antibacterial activity to the same or even higher extent as compared to the wild type protein sHIP. We determined the crystal structure of the sHIP mutant, which, as a result of the high quality of the data, allowed us to improve the existing structural model of the protein. Finally, by employing NMR spectroscopy in solution, we generated a model for the complex between the sHIP mutant and an HRG-derived heparin-binding peptide, providing further molecular details into the interactions involving protein sHIP.
Koskinen, M T; Holopainen, J; Pyörälä, S; Bredbacka, P; Pitkälä, A; Barkema, H W; Bexiga, R; Roberson, J; Sølverød, L; Piccinini, R; Kelton, D; Lehmusto, H; Niskala, S; Salmikivi, L
2009-03-01
Intramammary infection (IMI), also known as mastitis, is the most frequently occurring and economically the most important infectious disease in dairy cattle. This study provides a validation of the analytical specificity and sensitivity of a real-time PCR-based assay that identifies 11 major pathogen species or species groups responsible for IMI, and a gene coding for staphylococcal beta-lactamase production (penicillin resistance). Altogether, 643 culture isolates originating from clinical bovine mastitis, human, and companion animal samples were analyzed using the assay. The isolates represented 83 different species, groups, or families, and originated from 6 countries in Europe and North America. The analytical specificity and sensitivity of the assay was 100% in bacterial and beta-lactamase identification across all isolates originating from bovine mastitis (n = 454). When considering the entire culture collection (including also the isolates originating from human and companion animal samples), 4 Streptococcus pyogenes, 1 Streptococcus salivarius, and 1 Streptococcus sanguis strain of human origin were identified as Streptococcus uberis, and 3 Shigella spp. strains were identified as Escherichia coli, decreasing specificity to 99% in Strep. uberis and to 99.5% in E. coli. These false-positive results were confirmed by sequencing of the 16S rRNA gene. Specificity and sensitivity remained at 100% for all other bacterial targets across the entire culture collection. In conclusion, the real-time PCR assay shows excellent analytical accuracy and holds much promise for use in routine bovine IMI testing programs. This study provides the basis for evaluating the assay's diagnostic performance against the conventional bacterial culture method in clinical field trials using mastitis milk samples.
Microbiological identification and analysis of swine tonsils collected from carcasses at slaughter
O’Sullivan, Terri; Friendship, Robert; Blackwell, Tim; Pearl, David; McEwen, Beverly; Carman, Susy; Slavić, Đurđa; Dewey, Catherine
2011-01-01
The primary objective of this 7-month study was to determine the prevalence of porcine pathogens of the tonsil of the soft palate of swine at slaughter. Additional objectives were to determine if sampling the carcasses of normal or abnormal hogs provided different microbiological profiles and if the slaughter plant provides a feasible sampling frame and environment for detecting and monitoring important pathogens in tonsils that have health implications for both swine and humans. A total of 395 samples were collected from 264 farms. Of these, 180 tonsils were collected from normal carcasses and 215 tonsils were collected from carcasses that were diverted to the hold rail. Laboratory testing included bacteriological culture and identification as well as real time-polymerase chain reaction (PCR) testing for porcine reproductive and respiratory syndrome virus (PPRSV) and immunohistochemistry (IHC) for porcine circovirus-2 (PCV-2). The most commonly isolated bacteria included: Streptococcus suis (53.7%), Arcanobacterium pyogenes (29.9%), Pasteurella multocida (27.3%), and Streptococcus porcinus (19.5%). Virus screening revealed evidence of PRRSV and PCV-2 in 22.0% and 11.9% of the samples, respectively. Salmonella Typhimurium and Yersinia enterocolitica were isolated in 0.5% and 1.8% of the samples, respectively. Tonsils collected from the hold rail were more likely to be positive for Staphylococcus hyicus [odds ratio (OR) = 7.51, confidence interval (CI) = 2.89 to 19.54], Streptococcus porcinus (OR = 9.93, CI = 4.27 to 23.10), and Streptococcus suis (OR = 2.16, CI = 1.45 to 3.24). Tonsils collected from abnormal carcasses were less likely to be positive for Staphylococcus aureus (OR = 0.05, CI = 0.005 to 0.482). PMID:21731180
Linke, Christian; Siemens, Nikolai; Middleditch, Martin J; Kreikemeyer, Bernd; Baker, Edward N
2012-07-01
The extracellular protein Epf from Streptococcus pyogenes is important for streptococcal adhesion to human epithelial cells. However, Epf has no sequence identity to any protein of known structure or function. Thus, several predicted domains of the 205 kDa protein Epf were cloned separately and expressed in Escherichia coli. The N-terminal domain of Epf was crystallized in space groups P2(1) and P2(1)2(1)2(1) in the presence of the protease chymotrypsin. Mass spectrometry showed that the species crystallized corresponded to a fragment comprising residues 52-357 of Epf. Complete data sets were collected to 2.0 and 1.6 Å resolution, respectively, at the Australian Synchrotron.
Pyogenic Pericarditis and Cardiac Tamponade Due to Streptococcus anginosus in a Combat Theater.
Maves, Ryan C; Tripp, Michael S; Franzos, Tracy; Wallace, Scott C; Drinkwine, Benjamin J; Villines, Todd C
2017-01-01
Streptococcus anginosus group pericarditis is rare. A 24-year-old male soldier presented for care at a military clinic in Afghanistan with shock and cardiac tamponade requiring emergent pericardial drainage and aeromedical evacuation. We review the patient's case, the need for serial pericardial drainage, and the available literature on this disorder.
Yang, Chang; Hu, Dong-Hui; Feng, Yan
2015-04-01
Inhalation therapy using essential oils has been used to treat acute and chronic sinusitis and bronchitis. The aim of the present study was to determine the chemical composition of the essential oil of Artemisia capillaris, and evaluate the antibacterial effects of the essential oil and its main components, against common clinically relevant respiratory bacterial pathogens. Gas chromatography and gas chromatography‑mass spectrometry revealed the presence of 25 chemical constituents, the main constituents being: α‑pinene, β‑pinene, limonene, 1,8‑cineole, piperitone, β‑caryophyllene and capillin. The antibacterial activities of the essential oil, and its major constituents, were evaluated against Streptococcus pyogenes, methicillin‑resistant Staphylococcus aureus (MRSA), MRSA (clinical strain), methicillin‑gentamicin resistant Staphylococcus aureus (MGRSA), Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae and Escherichia coli. The essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against the various strains. The essential oil was observed to be much more potent, as compared with any of its major chemical constituents, exhibiting low minimum inhibitory and bacteriocidal concentration values against all of the bacterial strains. The essential oil was most active against S. pyogenes, MRSA (clinical strain), S. pneumoniae, K. pneumoniae, H. influenzae and E. coli. Piperitone and capillin were the most potent growth inhibitors, among the major chemical constituents. Furthermore, the essential oil of A. capillaris induced significant and dose‑dependent morphological changes in the S. aureus bacterial strain, killing >90% of the bacteria when administered at a higher dose; as determined by scanning electron microscopy. In addition, the essential oil induced a significant leakage of potassium and phosphate ions from the S. aureus bacterial cultures. These results indicate that the antibacterial action of A. capillaris essential oil may be mediated through the leakage of these two important ions. In conclusion, A. capillaris essential oil exhibits potent antibacterial activity by inducing morphological changes and leakage of ions in S. aureus bacterial cultures.
Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem.
Wong, Samson Sy; Yuen, Kwok-Yung
2012-07-01
Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous.
Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem
Wong, Samson SY; Yuen, Kwok-Yung
2012-01-01
Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous. PMID:26038416
Caceres, A; Alvarez, A V; Ovando, A E; Samayoa, B E
1991-02-01
Respiratory ailments are important causes of morbidity and mortality in developing countries. Ethnobotanical surveys and literature reviews conducted in Guatemala during 1986-88 showed that 234 plants from 75 families, most of them of American origin, have been used for the treatment of respiratory ailments. Three Gram-positive bacteria causing respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) were used to screen 68 of the most commonly used plants for activity. Twenty-eight of these (41.2%) inhibited the growth of one or more of the bacteria tested. Staphylococcus aureus was inhibited by 18 of the plant extracts, while 7 extracts were effective against Streptococcus pyogenes. Plants of American origin which exhibited antibacterial activity were: Gnaphalium viscosum, Lippia alba, Lippia dulcis, Physalis philadelphica, Satureja brownei, Solanum nigrescens and Tagetes lucida. These preliminary in vitro results provide scientific basis for the use of these plants against bacterial respiratory infections.
Jensen, Christian Salgård; Dam-Nielsen, Casper; Arpi, Magnus
2015-08-01
The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying results, with an identification rate from below 50% to 100%. Large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G isolated from blood cultures between January 1, 2007 and May 1, 2012 were included in the study. Isolates were identified to the species level using a combination of phenotypic characteristics and 16s rRNA sequencing. The isolates were subjected to MALDI-ToF analysis. We used a two-stage approach starting with the direct method. If no valid result was obtained we proceeded to an extraction protocol. Scores above 2 were considered valid identification at the species level. A total of 97 Streptococcus pyogenes, 133 Streptococcus dysgalactiae, and 2 Streptococcus canis isolates were tested; 94%, 66%, and 100% of S. pyogenes, S. dysgalactiae, and S. canis, respectively, were correctly identified by MALDI-ToF. In most instances when the isolates were not identified by MALDI-ToF this was because MALDI-ToF was unable to differentiate between S. pyogenes and S. dysgalactiae. By removing two S. pyogenes reference spectra from the MALDI-ToF database the proportion of correctly identified isolates increased to 96% overall. MALDI-ToF is a promising method for discriminating between S. dysgalactiae, S. canis, and S. equi, although more strains need to be tested to clarify this.
Brogan, O; Malone, J; Fox, C; Whyte, A S
1997-01-01
AIM: To evaluate Lancefield grouping and caramel smell for presumptive identification of the Streptococcus milleri group, and to find whether Lancefield group, species, or protein profile correlated with virulence or infection site. METHODS: Prospective studies were made of 100 consecutive streptococcal isolates in blood cultures or pus from 100 patients in whom the severity of infection was categorised as serious, moderate, or not significant. The usefulness of Lancefield group and the caramel smell for presumptive identification was examined, and the relation of the S milleri species, Lancefield group, and SDS-PAGE protein analysis to severity of infection and infection site was investigated. Lower respiratory tract and genital tract specimens, strict anaerobes, group D streptococci, and strains identified as Streptococcus pneumoniae, Streptococcus pyogenes, or Streptococcus agalactiae were excluded. RESULTS: Most streptococci occurring in pure or significant growth density were S milleri group (87/100; 87%, 95% confidence interval 0.81-0.93). Of these, 89.7% (78/87; 0.84-0.96) were associated with infection. Lancefield group F antigen predominated (41/87; 47.1%, 0.38-0.56). Lancefield group F alone or accompanied by the caramel smell had a specificity of 100%, but a sensitivity of only 47.3% for group F alone, and 19.5% for group F accompanied by the caramel smell. There was no significant association between species, Lancefield group, and severity of infection, site of infection, or pathogenicity. SDS-PAGE analysis failed to discriminate between strains. CONCLUSIONS: Neither species nor Lancefield antigen was related to the site of infection. The presence of Lancefield group F antigen alone or accompanied by a caramel smell was a useful indicator for the S milleri group when present, but was too insensitive to use as a screening test. Most streptococci occurring in pure culture or in significant growth density were of clinical importance. Such organisms should be identified to species level to detect the S milleri group. PMID:9215152
Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens
Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.
2017-01-01
ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising new fluorocycline antibiotic demonstrating in vitro potency and nonclinical efficacy by intravenous and oral administration against the major pathogens associated with moderate to severe CABP. PMID:28251179
Bergin, Sarah M; Periaswamy, Balamurugan; Barkham, Timothy; Chua, Hong Choon; Mok, Yee Ming; Fung, Daniel Shuen Sheng; Su, Alex Hsin Chuan; Lee, Yen Ling; Chua, Ming Lai Ivan; Ng, Poh Yong; Soon, Wei Jia Wendy; Chu, Collins Wenhan; Tan, Siyun Lucinda; Meehan, Mary; Ang, Brenda Sze Peng; Leo, Yee Sin; Holden, Matthew T G; De, Partha; Hsu, Li Yang; Chen, Swaine L; de Sessions, Paola Florez; Marimuthu, Kalisvar
2018-05-09
OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;1-9.
Watson, Michael E.; Nielsen, Hailyn V.; Hultgren, Scott J.
2013-01-01
While many virulence factors promoting Streptococcus pyogenes invasive disease have been described, specific streptococcal factors and host properties influencing asymptomatic mucosal carriage remain uncertain. To address the need for a refined model of prolonged S. pyogenes asymptomatic mucosal colonization, we have adapted a preestrogenized murine vaginal colonization model for S. pyogenes. In this model, derivatives of strains HSC5, SF370, JRS4, NZ131, and MEW123 established a reproducible, asymptomatic colonization of the vaginal mucosa over a period of typically 3 to 4 weeks' duration at a relatively high colonization efficiency. Prior treatment with estradiol prolonged streptococcal colonization and was associated with reduced inflammation in the colonized vaginal epithelium as well as a decreased leukocyte presence in vaginal fluid compared to the levels of inflammation and leukocyte presence in non-estradiol-treated control mice. The utility of our model for investigating S. pyogenes factors contributing to mucosal carriage was verified, as a mutant with a mutation in the transcriptional regulator catabolite control protein A (CcpA) demonstrated significant impairment in vaginal colonization. An assessment of in vivo transcriptional activity in the CcpA− strain for several known CcpA-regulated genes identified significantly elevated transcription of lactate oxidase (lctO) correlating with excessive generation of hydrogen peroxide to self-lethal levels. Deletion of lctO did not impair colonization, but deletion of lctO in a CcpA− strain prolonged carriage, exceeding even that of the wild-type strain. Thus, while LctO is not essential for vaginal colonization, its dysregulation is deleterious, highlighting the critical role of CcpA in promoting mucosal colonization. The vaginal colonization model should prove effective for future analyses of S. pyogenes mucosal colonization. PMID:23460515
Abraham, Tintu; Sistla, Sujatha
2016-07-01
Traditionally Group A Streptococcus pyogenes (GAS) is differentiated from other beta haemolytic streptococci (BHS) by certain presumptive tests such as bacitracin sensitivity and production of Pyrollidonyl Aryl Sulfatase (PYR). The phenotypic and genotypic confirmatory tests are Lancefield grouping for cell wall carbohydrate antigen and PCR for spy1258 gene respectively. Reliance on presumptive tests alone may lead to misidentification of isolates. To compare the predictive values of routine phenotypic tests with spy1258 PCR for the identification of Streptococcus pyogenes. This comparative analytical study was carried out in the Department of Microbiology, JIPMER, Puducherry, over a period of 18 months (1(st) November 2013 to 30(th) April 2015). Two hundred and six consecutive BHS isolates from various clinical samples were subjected to phenotypic tests such as bacitracin sensitivity, PYR test and Lancefield grouping. The results were compared with spy1258 PCR which was considered 95 the confirmatory test for identification. The sensitivity and specificity of phenotypic tests were as follows; Susceptibility to bacitracin - 95.42%, 70.96%, PYR test - 95.42%, 77.41%, Lancefield grouping- 97.71%, 80.64%. Clinical laboratories should not depend on bacitracin sensitivity as a single presumptive test for the routine identification of GAS but should use supplemental tests such as PYR test or latex agglutination test and for best results use spy1258 PCR.
Rasheed, Wasia; Shah, Muhammad Raza; Perveen, Samina; Ahmed, Shakil; Uzzaman, Sami
2018-01-01
Solution based method for the formation of chemically modified silver nanoparticles (CX-AgNPs) using Cefixime as stabilizing and reducing agent was developed. The CX-AgNPs were characterized by AFM, UV-visible, FT-IR and MALDI-TOF MS. Bactericidal efficiency of CX-AgNPs and Cefixime against Streptococcus pyogenes was evaluated. Afterwards, susceptibility differences of Streptococcus pyogenes due to accumulation of Hg(II) against CX-AgNPs and Cefixime were estimated and validated through Atomic force microscopy. Selectivity and sensitivity of CX-AgNPs against Hg(II) was evaluated in a systematic manner. The CX-AgNPs was titrated against optically silent Hg(II) which induced enhancement in the SPR band of CX-AgNPs. The increase in intensity of SPR band of CX-AgNPs was determined to be proportionate to the concentration of Hg(II) in the range of 33.3-700µM obeying linear regression equation of y = 0.125x + 8.962 with the detection limit of 0.10µM and the coefficient of determination equals to 0.985 (n = 3). The association constant Ka of CX-AgNPs-Hg(II) was found to be 386.0095mol -1 dm 3 by using the Benesi Hildebrand plot. Copyright © 2017 Elsevier Inc. All rights reserved.
Pyogenic Pericarditis and Cardiac Tamponade Due to Streptococcus anginosus in a Combat Theater
Tripp, Michael S.; Franzos, Tracy; Wallace, Scott C.; Drinkwine, Benjamin J.; Villines, Todd C.
2017-01-01
Abstract Streptococcus anginosus group pericarditis is rare. A 24-year-old male soldier presented for care at a military clinic in Afghanistan with shock and cardiac tamponade requiring emergent pericardial drainage and aeromedical evacuation. We review the patient’s case, the need for serial pericardial drainage, and the available literature on this disorder. PMID:28470013
Smeesters, Pierre R.; Steer, Andrew C.; Steemson, John D.; Ng, Adrian C. H.; Proft, Thomas; Fraser, John D.; Baker, Michael G.; Morgan, Julie; Carter, Philip E.; Moreland, Nicole J.
2015-01-01
We applied an emm cluster typing system to group A Streptococcus strains in New Zealand, including those associated with acute rheumatic fever (ARF). We observed few so-called rheumatogenic emm types but found a high proportion of emm types previously associated with pyoderma, further suggesting a role for skin infection in ARF. PMID:26292296
Yanagihara, Katsunori; Watanabe, Akira; Aoki, Nobuki; Matsumoto, Tetsuya; Yoshida, Masaki; Sato, Junko; Wakamura, Tomotaro; Sunakawa, Keisuke; Kadota, Junichi; Kiyota, Hiroshi; Iwata, Satoshi; Kaku, Mitsuo; Hanaki, Hideaki; Ohsaki, Yoshinobu; Fujiuchi, Satoru; Takahashi, Manabu; Takeuchi, Kenichi; Takeda, Hiroaki; Ikeda, Hideki; Miki, Makoto; Nakanowatari, Susumu; Takahashi, Hiroshi; Utagawa, Mutsuko; Nishiya, Hajime; Kawakami, Sayoko; Morino, Eriko; Takasaki, Jin; Mezaki, Kazuhisa; Chonabayashi, Naohiko; Tanaka, Chie; Sugiura, Hideko; Goto, Hajime; Saraya, Takeshi; Kurai, Daisuke; Katono, Yasuhiro; Inose, Rika; Niki, Yoshihito; Takuma, Takahiro; Kudo, Makoto; Ehara, Shigeru; Sato, Yoshimi; Tsukada, Hiroki; Watabe, Nobuei; Honma, Yasuo; Mikamo, Hiroshige; Yamagishi, Yuka; Nakamura, Atsushi; Ohashi, Minoru; Seki, Masafumi; Hamaguchi, Shigeto; Toyokawa, Masahiro; Fujikawa, Yasunori; Mitsuno, Noriko; Ukimura, Akira; Miyara, Takayuki; Nakamura, Takahito; Mikasa, Keiichi; Kasahara, Kei; Ui, Koji; Fukuda, Saori; Nakamura, Akihiro; Morimura, Mika; Yamashita, Mikio; Takesue, Yoshio; Wada, Yasunao; Sugimoto, Keisuke; Kusano, Nobuchika; Nose, Motoko; Mihara, Eiichirou; Kuwabara, Masao; Doi, Masao; Watanabe, Yaeko; Tokuyasu, Hirokazu; Hino, Satoshi; Negayama, Kiyoshi; Mukae, Hiroshi; Kawanami, Toshinori; Ota, Toshiyuki; Fujita, Masaki; Honda, Junichi; Hiramatsu, Kazufumi; Aoki, Yosuke; Fukuoka, Mami; Magarifuchi, Hiroki; Nagasawa, Zenzo; Kaku, Norihito; Fujita, Jiro; Higa, Futoshi; Tateyama, Masao
2017-09-01
The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from the patients in Japan was conducted by Japanese Society of Chemotherapy, Japanese association for infectious diseases and Japanese society for Clinical Microbiology in 2012. The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period between January and December in 2012 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical Laboratory Standard Institutes. Susceptibility testing was evaluated in 1236 strains (232 Staphylococcus aureus, 225 Streptococcus pneumoniae, 16 Streptococcus pyogenes, 231 Haemophilus influenzae, 147 Moraxella catarrhalis, 167 Klebsiella pneumoniae and 218 Pseudomonas aeruginosa). Ratio of methicillin-resistant S. aureus was 51.3%, and those of penicillin-intermediate S. pneumoniae was 0.4%. Among H. influenzae, 5.6% of them were found to be β-lactamase-producing ampicillin-resistant strains, and 37.2% to be β-lactamase-non-producing ampicillin-resistant strains. Extended spectrum β-lactamase-producing K. pneumoniae and multi-drug resistant P. aeruginosa with metallo β-lactamase were 4.2% and 3.2%, respectively. Continuous national surveillance is important to determine the actual situation of the resistance shown by bacterial respiratory pathogens to antimicrobial agents. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Isaka, Masanori; Tatsuno, Ichiro; Maeyama, Jun-Ichi; Matsui, Hideyuki; Zhang, Yan; Hasegawa, Tadao
2016-07-01
In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung
2016-01-05
CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kreikemeyer, Bernd; Nakata, Masanobu; Oehmcke, Sonja; Gschwendtner, Caroline; Normann, Jana; Podbielski, Andreas
2005-09-30
The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.
Tsui, Ho-Ching Tiffany; Keen, Susan K; Sham, Lok-To; Wayne, Kyle J; Winkler, Malcolm E
2011-01-01
The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.
Falaleeva, Marina; Zurek, Oliwia W.; Watkins, Robert L.; Reed, Robert W.; Ali, Hadeel; Sumby, Paul; Voyich, Jovanka M.
2014-01-01
The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence. PMID:25287924
Adaptive Evolution of the Streptococcus pyogenes Regulatory Aldolase LacD.1
Cusumano, Zachary
2013-01-01
In the human-pathogenic bacterium Streptococcus pyogenes, the tagatose bisphosphate aldolase LacD.1 likely originated through a gene duplication event and was adapted to a role as a metabolic sensor for regulation of virulence gene transcription. Although LacD.1 retains enzymatic activity, its ancestral metabolic function resides in the LacD.2 aldolase, which is required for the catabolism of galactose. In this study, we compared these paralogous proteins to identify characteristics correlated with divergence and novel function. Surprisingly, despite the fact that these proteins have identical active sites and 82% similarity in amino acid sequence, LacD.1 was less efficient at cleaving both fructose and tagatose bisphosphates. Analysis of kinetic properties revealed that LacD.1's adaptation was associated with a decrease in kcat and an increase in Km. Construction and analysis of enzyme chimeras indicated that non-active-site residues previously associated with the variable activities of human aldolase isoenzymes modulated LacD.1's affinity for substrate. Mutant LacD.1 proteins engineered to have LacD.2-like levels of enzymatic efficiency lost the ability to function as regulators, suggesting that an alteration in efficiency was required for adaptation. In competition under growth conditions that mimic a deep-tissue environment, LacD.1 conferred a significant gain in fitness that was associated with its regulatory activity. Taken together, these data suggest that LacD.1's adaptation represents a form of neofunctionalization in which duplication facilitated the gain of regulatory function important for growth in tissue and pathogenesis. PMID:23316044
Novel bacterial ADP-ribosylating toxins: structure and function
Simon, Nathan C.; Aktories, Klaus; Barbieri, Joseph T.
2018-01-01
Preface Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this review we use prototype bARTTs, such as diphtheria and pertussis toxins, as references for the characterization of several new bARTTs from human, insect, and plant pathogens, which were identified recently through bioinformatic analyses. Several of these toxins, including Cholix toxin from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae, and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and possess unique organizations, which distinguish them from the reference toxins. The characterization of these toxins extends our appreciation for the variety of structure-function properties possessed by bARTTs and their roles in bacterial pathogenesis. PMID:25023120
Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong
2008-12-31
CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.
Ogura, Kohei; Watanabe, Shinya; Kirikae, Teruo; Miyoshi-Akiyama, Tohru
2017-01-01
Epidemiologic typing of Streptococcus pyogenes (GAS) is frequently based on the genotype of the emm gene, which encodes M/Emm protein. In this study, the complete genome sequence of GAS emm3 strain M3-b, isolated from a patient with streptococcal toxic shock syndrome (STSS), was determined. This strain exhibited 99% identity with other complete genome sequences of emm3 strains MGAS315, SSI-1, and STAB902. The complete genomes of five additional strains isolated from Japanese patients with and without STSS were also sequences. Maximum-likelihood phylogenetic analysis showed that strains M3-b, M3-e, and SSI-1, all which were isolated from STSS patients, were relatively close.
Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu
2017-08-01
Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-03-10
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes , PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (Δ pepO ) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by Δ pepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with Δ pepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Jarmusch, Alan K; Pirro, Valentina; Kerian, Kevin S; Cooks, R Graham
2014-10-07
Strep throat causing Streptococcus pyogenes was detected in vitro and in simulated clinical samples by performing touch spray ionization-mass spectrometry. MS analysis took only seconds to reveal characteristic bacterial and human lipids. Medical swabs were used as the substrate for ambient ionization. This work constitutes the initial step in developing a non-invasive MS-based test for clinical diagnosis of strep throat. It is limited to the single species, S. pyogenes, which is responsible for the vast majority of cases. The method is complementary to and, with further testing, a potential alternative to current methods of point-of-care detection of S. pyogenes.
Chen, Chen; Tang, Jiaqi; Dong, Wei; Wang, Changjun; Feng, Youjun; Wang, Jing; Zheng, Feng; Pan, Xiuzhen; Liu, Di; Li, Ming; Song, Yajun; Zhu, Xinxing; Sun, Haibo; Feng, Tao; Guo, Zhaobiao; Ju, Aiping; Ge, Junchao; Dong, Yaqing; Sun, Wen; Jiang, Yongqiang; Wang, Jun; Yan, Jinghua; Yang, Huanming; Wang, Xiaoning; Gao, George F; Yang, Ruifu; Wang, Jian; Yu, Jun
2007-03-21
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen, causing more than 200 cases of severe human infection worldwide, with the hallmarks of meningitis, septicemia, arthritis, etc. Very recently, SS2 has been recognized as an etiological agent for streptococcal toxic shock syndrome (STSS), which was originally associated with Streptococcus pyogenes (GAS) in Streptococci. However, the molecular mechanisms underlying STSS are poorly understood. To elucidate the genetic determinants of STSS caused by SS2, whole genome sequencing of 3 different Chinese SS2 strains was undertaken. Comparative genomics accompanied by several lines of experiments, including experimental animal infection, PCR assay, and expression analysis, were utilized to further dissect a candidate pathogenicity island (PAI). Here we show, for the first time, a novel molecular insight into Chinese isolates of highly invasive SS2, which caused two large-scale human STSS outbreaks in China. A candidate PAI of approximately 89 kb in length, which is designated 89K and specific for Chinese SS2 virulent isolates, was investigated at the genomic level. It shares the universal properties of PAIs such as distinct GC content, consistent with its pivotal role in STSS and high virulence. To our knowledge, this is the first PAI candidate from S. suis worldwide. Our finding thus sheds light on STSS triggered by SS2 at the genomic level, facilitates further understanding of its pathogenesis and points to directions of development on some effective strategies to combat highly pathogenic SS2 infections.
Shafreen, Rajamohmed Beema; Pandian, Shunmugiah Karutha
2013-09-01
Streptococcus pyogenes (SP) is the major cause of pharyngitis accompanied by strep throat infections in humans. 3-keto acyl reductase (FabG), an important enzyme involved in the elongation cycle of the fatty acid pathway of S. pyogenes, is essential for synthesis of the cell-membrane, virulence factors and quorum sensing-related mechanisms. Targeting SPFabG may provide an important aid for the development of drugs against S. pyogenes. However, the absence of a crystal structure for FabG of S. pyogenes limits the development of structure-based drug designs. Hence, in the present study, a homology model of FabG was generated using the X-ray crystallographic structure of Aquifex aeolicus (PDB ID: 2PNF). The modeled structure was refined using energy minimization. Furthermore, active sites were predicted, and a large dataset of compounds was screened against SPFabG. The ligands were docked using the LigandFit module that is available from Discovery Studio version 2.5. From this list, 13 best hit ligands were chosen based on the docking score and binding energy. All of the 13 ligands were screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. From this, the two best descriptors, along with one descriptor that lay outside the ADMET plot, were selected for molecular dynamic (MD) simulation. In vitro testing of the ligands using biological assays further substantiated the efficacy of the ligands that were screened based on the in silico methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Importance of adhesins in the recurrence of pharyngeal infections caused by Streptococcus pyogenes.
Wozniak, Aniela; Scioscia, Natalia; Geoffroy, Enrique; Ponce, Iván; García, Patricia
2017-04-01
Pharyngo-amygdalitis is the most common infection caused by Streptococcus pyogenes (S. pyogenes). Reinfection with strains of different M types commonly occurs. However, a second infection with a strain of the same M type can still occur and is referred to as recurrence. We aimed to assess whether recurrence of S. pyogenes could be associated to erythromycin resistance, biofilm formation or surface adhesins like fibronectin-binding proteins and pilus proteins, both located in the fibronectin-binding, collagen-binding, T-antigen (FCT) region. We analyed clinical isolates of S. pyogenes obtained from children with multiple positive cultures of throat swabs. We analysed potential associations between M types, clonal patterns, biofilm production and FCT types with their capacity of producing a recurrent infection. We genetically defined recurrence as an infection with the same M type (same strain) and reinfection as an infection with a different M type. No differences were observed between recurrent and reinfection isolates in relation to erythromycin resistance, presence and number of domains of prtF1 gene, and biofilm formation capacity; the only significant difference was the higher frequency of FCT-4 type among recurrent isolates. However, when all the factors that could contribute to recurrence (erythromycin resistance, biofilm production, presence of prtF1 gene and FCT-4 type) were analysed together, we observed that recurrent isolates have a higher number of factors than reinfection isolates. Recurrence seems not to be associated with biofilm formation. However, pili and fibronectin-binding proteins could be associated with recurrence because FCT-4 isolates which harbour two fibronectin-binding proteins are more frequent among recurrent isolates.
Zafar, A; Hasan, R; Nizamuddin, S; Mahmood, N; Mukhtar, S; Ali, F; Morrissey, I; Barker, K; Torumkuney, D
2016-05-01
To investigate changes in the antibiotic susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus pyogenes from the Survey of Antibiotic Resistance (SOAR) in community-acquired respiratory tract infections (CA-RTIs) between 2002 and 2015 in Pakistan. This is a review based on previously published studies from 2002-03, 2004-06 and 2007-09 and also new data from 2014-15. Susceptibility was determined by Etest(®) or disc diffusion according to CLSI and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. A total of 706 isolates from CA-RTIs comprising 381 S. pneumoniae, 230 H. influenzae and 95 S. pyogenes were collected between 2002 and 2015 and tested against a range of antibiotics. Antibiotic resistance in S. pneumoniae rose steeply from 2002 to 2009, with isolates non-susceptible to penicillin and macrolides increasing from 10% to 34.1% and from 13%-14% to 29.7%, respectively. Susceptibility to amoxicillin/clavulanic acid (and by inference amoxicillin) remained between 99.4% and 100% from 2002 to 2015. Over the years, the prevalence of susceptibility to cefuroxime was 98%-100% among S. pneumoniae. Resistance in S. pneumoniae to some older antibiotics between 2007 and 2009 was high (86.8% for trimethoprim/sulfamethoxazole and 57.2% for tetracycline). Between 2002 and 2015, ampicillin resistance (β-lactamase-positive strains) among H. influenzae has remained low (between 2.6% and 3.2%) and almost unchanged over the years (H. influenzae was not tested during 2004-06). For S. pyogenes isolates, macrolide resistance reached 22%; however, susceptibility to penicillin, amoxicillin/clavulanic acid and cefuroxime remained stable at 100%. In S. pneumoniae from Pakistan, there has been a clear reduction in susceptibility to key antibiotics since 2002, but not to amoxicillin/clavulanic acid (amoxicillin) or cefuroxime. However, susceptibility in H. influenzae has remained stable. Local antibiotic susceptibility/resistance data are essential to support informed prescribing for CA-RTIs and other infections. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Raczniak, Gregory A.; Kato, Cecilia; Chung, Ida H.; Austin, Amy; McQuiston, Jennifer H.; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S.; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J.
2014-01-01
Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. PMID:25331804
Di Lorenzo, Arianna; Bloise, Nora; Meneghini, Silvia; Sureda, Antoni; Tenore, Gian Carlo; Visai, Livia; Arciola, Carla Renata; Daglia, Maria
2016-01-01
Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral infections and related bone (osteoarthritis, osteomyelitis, periprosthetic joint infections) and cardiovascular diseases. In this study, fifteen red wine samples derived from grapes native to the Oltrepò Pavese region (Italy), obtained from the winemaking processes of “Bonarda dell’Oltrepò Pavese” red wine, were analyzed alongside three samples obtained from marc pressing. Total polyphenol and monomeric anthocyanin contents were determined and metabolite profiling was conducted by means of a chromatographic analysis. Antibacterial activity of wine samples was evaluated against Streptococcus mutans, responsible for dental caries, Streptococcus salivarius, and Streptococcus pyogenes, two oral bacterial pathogens. Results highlighted the winemaking stages in which samples exhibit the highest content of polyphenols and the greatest antibacterial activity. Considering the global need for new weapons against bacterial infections and alternatives to conventional antibiotics, as well as the favorable bioactivities of polyphenols, results point to red wine as a source of antibacterial substances for developing new anti-infective biomaterials and coatings for biomedical devices. PMID:28773444
Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus
Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor
2014-01-01
SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436
Dahesh, Samira; Nizet, Victor; Cole, Jason N
2012-11-15
Streptococcus pyogenes (group A streptococcus, GAS) is a human bacterial pathogen of global significance, causing severe invasive diseases associated with serious morbidity and mortality. To survive within the host and establish an infection, GAS requires essential nutrients, including iron. The streptococcal hemoprotein receptor (Shr) is a surface-localized GAS protein that binds heme-containing proteins and extracellular matrix components. In this study, we employ targeted allelic exchange mutagenesis to investigate the role of Shr in the pathogenesis of the globally disseminated serotype M1T1 GAS. The shr mutant exhibited a growth defect in iron-restricted medium supplemented with ferric chloride, but no significant differences were observed in neutrophil survival, antimicrobial peptide resistance, cell surface charge, fibronectin-binding or adherence to human epithelial cells and keratinocytes, compared with wild-type. However, the shr mutant displayed a reduction in human blood proliferation, laminin-binding capacity and was attenuated for virulence in in vivo models of skin and systemic infection. We conclude that Shr augments GAS adherence to laminin, an important extracellular matrix attachment component. Furthermore, Shr-mediated iron uptake contributes to GAS growth in human blood, and is required for full virulence of serotype M1T1 GAS in mouse models of invasive disease.
Yoon, Ji Young; An, Doo Ri; Yoon, Hye Jin; Kim, Hyoun Sook; Lee, Sang Jae; Im, Ha Na; Jang, Jun Young; Suh, Se Won
2013-11-01
One of the virulence factors produced by Streptococcus pyogenes is β-NAD(+) glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38-451) and the full-length IFS (residues 1-161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPNct-IFS complex, which consists of the SPN C-terminal domain (SPNct; residues 193-451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPNct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.
Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste
Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab
2013-01-01
The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587
Antibacterial activity of different honeys against pathogenic bacteria.
Voidarou, C; Alexopoulos, A; Plessas, S; Karapanou, A; Mantzourani, I; Stavropoulou, E; Fotou, K; Tzora, A; Skoufos, I; Bezirtzoglou, E
2011-12-01
To study the antimicrobial activity of honey, 60 samples of various botanical origin were evaluated for their antimicrobial activities against 16 clinical pathogens and their respective reference strains. The microbiological quality of honeys and the antibiotic susceptibility of the various isolates were also examined. The bioassay applied for determining the antimicrobial effect employs the well-agar diffusion method and the estimation of minimum active dilution which produces a 1mm diameter inhibition zone. All honey samples, despite their origin (coniferous, citrus, thyme or polyfloral), showed antibacterial activity against the pathogenic and their respective reference strains at variable levels. Coniferous and thyme honeys showed the highest activity with an average minimum dilution of 17.4 and 19.2% (w/v) followed by citrus and polyfloral honeys with 20.8 and 23.8% respectively. Clinical isolates of Staphylococcus aureus subsp. aureus, Escherichia coli, Salmonella enterica subsp. Enterica, Streptococcus pyogenes, Bacillus cereus and Bacillus subtilis were proven to be up to 60% more resistant than their equal reference strains thus emphasizing the variability in the antibacterial effect of honey and the need for further research. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wong, Ming-Show; Chu, Wen-Chen; Sun, Der-Shan; Huang, Hsuan-Shun; Chen, Jiann-Hwa; Tsai, Pei-Jane; Lin, Nien-Tsung; Yu, Mei-Shiuan; Hsu, Shang-Feng; Wang, Shih-Lien; Chang, Hsin-Hou
2006-01-01
The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages. PMID:16957236
Menaquinone analogs inhibit growth of bacterial pathogens.
Schlievert, Patrick M; Merriman, Joseph A; Salgado-Pabón, Wilmara; Mueller, Elizabeth A; Spaulding, Adam R; Vu, Bao G; Chuang-Smith, Olivia N; Kohler, Petra L; Kirby, John R
2013-11-01
Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.
Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J
2007-05-15
We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.
Cunha, Federico; Jeon, Soo Jin; Daetz, Rodolfo; Vieira-Neto, Achilles; Laporta, Jimena; Jeong, K Casey; Barbet, Anthony F; Risco, Carlos A; Galvão, Klibs N
2018-07-01
Metritis is caused by polymicrobial infection; however, recent metagenomic work challenges the importance of known pathogens such as Escherichia coli and Trueperella pyogenes while identifying potential new pathogens such as Bacteroides pyogenes, Porphyromonas levii and Helcococcus ovis. This study aims to quantify known and emerging uterine pathogens, and to evaluate their association with metritis and fever in dairy cows. Metritis was diagnosed at 6 ± 2 days postpartum, a uterine swab was collected and rectal temperature was measured. 39 cows were classified into three groups: Healthy (n = 14), Metritis without fever (MNoFever; n = 12), and Metritis with fever (MFever; n = 13). Absolute copy number was determined for total bacteria and for 8 potentially pathogenic bacteria using droplet digital PCR. Both MNoFever and MFever cows had higher copy number of total bacteria, Fusobacterium necrophorum, Prevotella melaninogenica, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis than Healthy cows. MNoFever and MFever groups were similar. There was no difference among groups in copy number of Escherichia coli, Trueperella pyogenes, and Bacteroides heparinolyticus, and they all had low copy numbers. Our work confirms the importance of some bacteria identified by culture-based studies in the pathogenesis of metritis such as Fusobacterium necrophorum and Prevotella melaninogenica; however, it challenges the importance of others such as Escherichia coli and Trueperella pyogenes at the time of metritis diagnosis. Additionally, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis were recognized as emerging pathogens involved in the etiology of metritis. Furthermore, fever was not associated with the total bacterial load or specific bacteria. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.
1996-01-01
Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.
Jarmusch, Alan K.; Pirro, Valentina; Kerian, Kevin S.; Cooks, Graham
2014-01-01
Strep throat causing Streptococcus pyogenes was detected in vitro and in simulated clinical samples by performing touch spray ionization - mass spectrometry. MS analysis took only seconds to reveal characteristic bacterial and human lipids. Medical swabs were used as the substrate for ambient ionization. This work constitutes the initial step in developing a noninvasive MS-based test for clinical diagnosis of strep throat. It is limited to the single species, S. pyogenes, which is responsible for the vast majority of cases. The method is complementary to and, with further testing, a potential alternative to current methods of point-of-care detection of S. pyogenes. PMID:25102079
NASA Astrophysics Data System (ADS)
Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh
2014-11-01
A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.
Watanabe, Shinichi; Ohnishi, Takamitsu; Yuasa, Akira; Kiyota, Hiroshi; Iwata, Satoshi; Kaku, Mitsuo; Watanabe, Akira; Sato, Junko; Hanaki, Hideaki; Manabe, Motomu; Suzuki, Tamio; Otsuka, Fujio; Aihara, Michiko; Iozumi, Ken; Tamaki, Takeshi; Funada, Yuichi; Shinozaki, Mikio; Kobayashi, Motoko; Okuda, Masaru; Kikyo, Go; Kikuchi, Kumi; Okada, Yoshitane; Takeshima, Masanori; Kaneko, Osamu; Ogawa, Natsuki; Ito, Rie; Okuyama, Ryuhei; Shimada, Shinji; Shimizu, Tadamichi; Hatta, Naohito; Manabu, Maeda; Tsutsui, Kiyohiro; Tanaka, Toshihiro; Miyachi, Yoshiki; Asada, Hideo; Furukawa, Fukumi; Kurokawa, Ichiro; Iwatsuki, Keiji; Hide, Michihiro; Muto, Masahiko; Yamamoto, Osamu; Niihara, Hiroyuki; Takagaki, Kenji; Kubota, Yasuo; Sayama, Koji; Sano, Shigetoshi; Furue, Masutaka; Kanekura, Takuro
2017-08-01
To investigate the trends of antimicrobial resistance in pathogens isolated from skin and soft-tissue infections (SSTI) at dermatology departments in Japan, a Japanese surveillance committee conducted the first nationwide survey in 2013. Three main organisms were collected from SSTI at 30 dermatology departments in medical centers and 10 dermatology clinics. A total of 860 strains - 579 of Staphylococcus aureus, 240 of coagulase-negative Staphylococci, and 41 of Streptococcus pyogenes - were collected and shipped to a central laboratory for antimicrobial susceptibility testing. The patient profiles were also studied. Among all 579 strains of S. aureus, 141 (24.4%) were methicillin-resistant (MRSA). Among 97 Staphylococcus epidermidis strains, 54 (55.7%) were methicillin-resistant (MRSE). MRSA and MRSE were more frequently isolated from inpatients than from outpatients. Furthermore, these methicillin-resistant strains were also isolated more frequently from patients with histories of taking antibiotics within 4 weeks and hospitalization within 1 year compared to those without. However, there were no significant differences in MIC values and susceptibility patterns of the MRSA strains between patients with a history of hospitalization within 1 year and those without. Therefore, most of the isolated MRSA cases at dermatology departments are not healthcare-acquired, but community-acquired MRSA. S. pyogenes strains were susceptible to most antibiotics except macrolides. The information in this study is not only important in terms of local public health but will also contribute to an understanding of epidemic clones of pathogens from SSTI. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Brandt, C M; Allerberger, F; Spellerberg, B; Holland, R; Lütticken, R; Haase, G
2001-02-15
To analyze bacteriological treatment failure in streptococcal pharyngitis, 40 consecutive Streptococcus pyogenes isolates from 18 patients were characterized. For 17 patients, isolates were indistinguishable with respect to emm type, random amplified polymorphic DNA pattern, and presence of prtF1 encoding the fibronectin-binding protein F1. prtF1 was detected only in the 11 isolates (4 patients) with emm12 and in the single isolate with emm6. Further analysis by vir(mga) regulon typing, sequencing of sic encoding the streptococcal inhibitor of complement from 19 isolates with emm1 (9 patients), and sequencing of drs (distantly related sic) from 11 isolates with emm12 revealed distinct sic alleles with insertions and/or deletions in sic that corresponded to differences in restriction patterns of the vir(mga) regulon only for paired isolates of 2 patients. Among isolates with emm12, 2 novel drs alleles were found. Analysis of these data suggests that neither the presence of prtF1 nor the diversification of sic / drs is required for the persistence of S. pyogenes in pharyngitis.
Vitali, Luca Agostino; Di Luca, Maria Chiara; Prenna, Manuela; Petrelli, Dezemona
2016-01-01
We investigated the correlation between the genetic variation within mef(A)-msr(D) determinants of efflux-mediated erythromycin resistance in Streptococcus pyogenes and the level of erythromycin resistance. Twenty-eight mef(A)-positive strains were selected according to erythromycin MIC (4-32 μg/mL), and their mef(A)-msr(D) regions were sequenced. Strains were classified according to the bacteriophage carrying mef(A)-msr(D). A new Φm46.1 genetic variant was found in 8 strains out of 28 and named VP_00501.1. Degree of allelic variation was higher in mef(A) than in msr(D). Hotspots for recombination were mapped within the locus that could have shaped the apparent mosaic structure of the region. There was a general correlation between mef(A)-msr(D) sequence and erythromycin resistance level. However, lysogenic conversion of susceptible strains by mef(A)-msr(D)-carrying Φm46.1 indicated that key determinants may not all reside within the mef(A)-msr(D) locus and that horizontal gene transfer could contribute to changes in the level of antibiotic resistance in S. pyogenes. Copyright © 2016 Elsevier Inc. All rights reserved.
Hasegawa, Tadao; Hata, Nanako; Matsui, Hideyuki; Isaka, Masanori; Tatsuno, Ichiro
2017-04-01
Streptococcus pyogenes causes a variety of diseases, such as pharyngitis and toxic shock syndrome. In addition, this bacterium is a causative agent of balanoposthitis. To reveal the bacteriological characteristics of the isolates from balanoposthitis patients, we analysed 47 isolates. In addition, novel clade genotype emm89 S. pyogenes isolates have been reported to be spreading worldwide recently. Hence, we further analysed eight emm89 isolates. A drug susceptibility experiment was performed and emm types were determined. More detailed experiments, such as PCR analysis for the presence of virulence-associated genes and MLST analysis, were performed especially using emm89 isolates. All isolates were sensitive to ampicillin, but 34 % of the isolates were resistant to at least one antibiotic. The emm types of the isolates varied, with emm89 and emm11 being the most prevalent, but the emm1 type was not detected. The analysis of emm89 isolates revealed that drug susceptibilities varied. All isolates were negative for the hasABC gene and produced active NADase that are characteristics of novel clade genotype emm89 S. pyogenes. MLST analysis demonstrated that six isolates were of the ST101 type, the most predominant type reported thus far, but two isolates were of the ST646 type. According to the PCR analysis used to determine the presence of streptococcal pyrogenic exotoxin-related genes, the six ST101 isolates were further classified into four groups. These results suggest that balanoposthitis is caused by a variety of types of S. pyogenes, with novel clade genotype emm89 isolates playing a role in balanoposthitis infections in Japan.
Distribution of small native plasmids in Streptococcus pyogenes in India.
Bergmann, René; Nerlich, Andreas; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric
2014-05-01
Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (<5kb) in a collection of 279 S. pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India. Copyright © 2013 Elsevier GmbH. All rights reserved.
Long-term survival of Streptococcus pyogenes in rich media is pH-dependent
McShan, William M.
2012-01-01
The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6–7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes. PMID:22361943
Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus
2016-11-08
Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved in NSTIs, and that no specific "NSTI causing" combination of species exists. This means that clinicians should be prepared to diagnose and treat any combination of microbial pathogens. Some of the tested molecular methods offer a faster turnaround time combined with a high specificity, which makes supplemental use of such methods attractive for identification of microorganisms, especially for fulminant life-threatening infections such as NSTI.
Kanayama, Shoji; Ikeda, Fumiaki; Okamoto, Kazuaki; Nakajima, Akiko; Matsumoto, Tatsumi; Ishii, Ritsuko; Amano, Ayako; Matsuzaki, Kaoru; Matsumoto, Satoru
2016-10-01
Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against each 50 isolates of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pyogenes according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were recovered from cutaneous specimens of Japanese adult and pediatric patients who visited hospitals in 2014. The MIC90s of ozenoxacin against MSSA, MRSA and S. pyogenes isolates from adult patients were ≤0.06, 4 and ≤0.06 μg/mL, respectively. The MIC90s of ozenoxacin against MSSA and S. pyogenes isolates from pediatric patients were equal to those against the adult isolates. On the other hand, the MIC90s of ozenoxacin against the pediatric MRSA isolates was 0.12 μg/mL, and was 32 times lower than that against the adult isolates. The antimicrobial activity of ozenoxacin against MSSA, MRSA and S. pyogenes was equal to or greater than those of 7 reference antimicrobial agents had been used for the treatment of skin infections. The MICs of ozenoxacin was highly correlated with those of nadifloxacin and levofloxacin in the 50 MRSA isolates (r(2) = 0.906 and 0.833, respectively). However, ozenoxacin kept the potent antimicrobial activity with the MIC ranging from 1 to 4 μg/mL even against MRSA low susceptible (MIC: >64 μg/mL) to nadifloxacin or levofloxacin. Ozenoxacin could represent the first-in-class non-fluorinated quinolone for the topical treatment of various superficial skin infections caused by MSSA, MRSA and S. pyogenes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Torumkuney, D.; Chaiwarith, R.; Reechaipichitkul, W.; Malatham, K.; Chareonphaibul, V.; Rodrigues, C.; Chitins, D. S.; Dias, M.; Anandan, S.; Kanakapura, S.; Park, Y. J.; Lee, K.; Lee, H.; Kim, J. Y.; Lee, Y.; Lee, H. K.; Kim, J. H.; Tan, T. Y.; Heng, Y. X.; Mukherjee, P.; Morrissey, I.
2016-01-01
Objectives To provide susceptibility data for community-acquired respiratory tract isolates of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis collected in 2012–14 from four Asian countries. Methods MICs were determined using Etest® for all antibiotics except erythromycin, which was evaluated by disc diffusion. Susceptibility was assessed using CLSI, EUCAST and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. For macrolide/clindamycin interpretation, breakpoints were adjusted for incubation in CO2 where available. Results Susceptibility of S. pneumoniae was generally lower in South Korea than in other countries. Penicillin susceptibility assessed using CLSI oral or EUCAST breakpoints ranged from 21.2% in South Korea to 63.8% in Singapore. In contrast, susceptibility using CLSI intravenous breakpoints was much higher, at 79% in South Korea and ∼95% or higher elsewhere. Macrolide susceptibility was ∼20% in South Korea and ∼50%–60% elsewhere. Among S. pyogenes isolates (India only), erythromycin susceptibility (∼20%) was lowest of the antibiotics tested. In H. influenzae antibiotic susceptibility was high except for ampicillin, where susceptibility ranged from 16.7% in South Korea to 91.1% in India. South Korea also had a high percentage (18.1%) of β-lactamase-negative ampicillin-resistant isolates. Amoxicillin/clavulanic acid susceptibility for each pathogen (PK/PD high dose) was between 93% and 100% in all countries except for H. influenzae in South Korea (62.5%). Conclusions Use of EUCAST versus CLSI breakpoints had profound differences for cefaclor, cefuroxime and ofloxacin, with EUCAST showing lower susceptibility. There was considerable variability in susceptibility among countries in the same region. Thus, continued surveillance is necessary to track future changes in antibiotic resistance. PMID:27048580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less
Tatsuno, Ichiro; Okada, Ryo; Matsumoto, Masakado; Hata, Nanako; Matsui, Hideyuki; Zhang, Yan; Isaka, Masanori; Hasegawa, Tadao
2016-05-01
Streptococcus pyogenes is a causative agent of streptococcal toxic shock syndrome (STSS). Mutations in covR/S or rgg, negative regulators, can reportedly modulate the severity of infection in this pathogen. Recently, we showed that the regions encoding the SalR-SalK, a two-component regulatory system, were deleted in some emm 1-type isolates (named as 'novel-type'). In this study, the two novel 'STSS' isolates 10-85stss and 11-171stss were more virulent than the two novel 'non-STSS' isolates 11O-2non and 11T-3non when examined using a mouse model of invasive infection. Genome-sequencing experiments using the three strains 10-85stss , 11-171stss , and 11O-2non detected only one single nucleotide polymorphism that causes a non-synonymous mutation in fabT encoding a transcriptional regulator in strain 11O-2non . Loss of fabT reduced the high level of virulence observed in the STSS isolates to that in the non-STSS isolates, and introduction of an intact fabT compensated the lower virulence of 11O-2non , suggesting that the mutation in fabT, but not in covR/S or rgg, is involved in the differential virulence among the novel-type clinical isolates. This type of non-synonymous fabT mutation was also identified in 12 non-STSS isolates (including 11O-2non and 11T-3non ), and most of those 12 isolates showed impaired FabT function. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Fiedler, Tomas; Riani, Catur; Koczan, Dirk; Standar, Kerstin
2013-01-01
Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract. PMID:23241973
Assembly mechanism of FCT region type 1 pili in serotype M6 Streptococcus pyogenes.
Nakata, Masanobu; Kimura, Keiji Richard; Sumitomo, Tomoko; Wada, Satoshi; Sugauchi, Akinari; Oiki, Eiji; Higashino, Miharu; Kreikemeyer, Bernd; Podbielski, Andreas; Okahashi, Nobuo; Hamada, Shigeyuki; Isoda, Ryutaro; Terao, Yutaka; Kawabata, Shigetada
2011-10-28
The human pathogen Streptococcus pyogenes produces diverse pili depending on the serotype. We investigated the assembly mechanism of FCT type 1 pili in a serotype M6 strain. The pili were found to be assembled from two precursor proteins, the backbone protein T6 and ancillary protein FctX, and anchored to the cell wall in a manner that requires both a housekeeping sortase enzyme (SrtA) and pilus-associated sortase enzyme (SrtB). SrtB is primarily required for efficient formation of the T6 and FctX complex and subsequent polymerization of T6, whereas proper anchoring of the pili to the cell wall is mainly mediated by SrtA. Because motifs essential for polymerization of pilus backbone proteins in other Gram-positive bacteria are not present in T6, we sought to identify the functional residues involved in this process. Our results showed that T6 encompasses the novel VAKS pilin motif conserved in streptococcal T6 homologues and that the lysine residue (Lys-175) within the motif and cell wall sorting signal of T6 are prerequisites for isopeptide linkage of T6 molecules. Because Lys-175 and the cell wall sorting signal of FctX are indispensable for substantial incorporation of FctX into the T6 pilus shaft, FctX is suggested to be located at the pilus tip, which was also implied by immunogold electron microscopy findings. Thus, the elaborate assembly of FCT type 1 pili is potentially organized by sortase-mediated cross-linking between sorting signals and the amino group of Lys-175 positioned in the VAKS motif of T6, thereby displaying T6 and FctX in a temporospatial manner.
Goldstone, Robert J.; Amos, Matt; Talbot, Richard; Schuberth, Hans-Joachim; Sandra, Olivier; Sheldon, I. Martin
2014-01-01
Trueperella pyogenes is a common commensal bacterium and an opportunistic pathogen associated with chronic purulent disease, particularly in ruminants. We report here the genome sequence of a T. pyogenes isolate from a severe case of bovine metritis. This is the first full record of a T. pyogenes genome. PMID:24762932
Billington, Stephen J; Songer, J Glenn; Jost, B Helen
2002-05-01
Tetracycline resistance is common among isolates of the animal commensal and opportunistic pathogen Arcanobacterium pyogenes. The tetracycline resistance determinant cloned from two bovine isolates of A. pyogenes was highly similar at the DNA level (92% identity) to the tet(W) gene, encoding a ribosomal protection tetracycline resistance protein, from the rumen bacterium Butyrivibrio fibrisolvens. The tet(W) gene was found in all 20 tetracycline-resistant isolates tested, indicating that it is a widely distributed determinant of tetracycline resistance in this organism. In 25% of tetracycline-resistant isolates, the tet(W) gene was associated with a mob gene, encoding a functional mobilization protein, and an origin of transfer, suggesting that the determinant may be transferable to other bacteria. In fact, low-frequency transfer of tet(W) was detected from mob+ A. pyogenes isolates to a tetracycline-sensitive A. pyogenes recipient. The mobile nature of this determinant and the presence of A. pyogenes in the gastrointestinal tract of cattle and pigs suggest that A. pyogenes may have inherited this determinant within the gastrointestinal tracts of these animals.
Čipčić Paljetak, Hana; Verbanac, Donatella; Padovan, Jasna; Dominis-Kramarić, Miroslava; Kelnerić, Željko; Perić, Mihaela; Banjanac, Mihailo; Ergović, Gabrijela; Simon, Nerrisa; Broskey, John; Holmes, David J; Eraković Haber, Vesna
2016-09-01
As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Verbanac, Donatella; Padovan, Jasna; Dominis-Kramarić, Miroslava; Kelnerić, Željko; Perić, Mihaela; Banjanac, Mihailo; Ergović, Gabrijela; Simon, Nerrisa; Broskey, John; Holmes, David J.; Eraković Haber, Vesna
2016-01-01
As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo. MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy. PMID:27353268
Scrum kidney: epidemic pyoderma caused by a nephritogenic Streptococcus pyogenes in a rugby team.
Ludlam, H; Cookson, B
1986-08-09
In December, 1984, an outbreak of pyoderma affected five scrum players in the St Thomas' Hospital rugby team. The causative organism, Streptococcus pyogenes, was acquired during a match against a team experiencing an outbreak of impetigo, and was transmitted to two front row players of another team a week later, and to two girlfriends of affected St Thomas' players a month later. The strain was M-type 49, tetracycline-resistant, and virulent. It caused salpingitis in a girlfriend and acute glomerulonephritis in one rugby player. No case of subclinical glomerulonephritis was detected in eight patients with pyoderma. Screening of the St Thomas' Hospital team revealed four further cases of non-streptococcal skin infection, with evidence for contemporaneous spread of Staphylococcus aureus. Teams should not field players with sepsis, and it may be advisable to apply a skin antiseptic to traumatised skin after the match.
2010-01-01
Background Since the Influenza A pandemic in 1819, the association between the influenza virus and Streptococcus pneumoniae has been well described in literature. While a leading role has been so far attributed solely to Influenza A as the primary infective pathogen, Influenza B is generally considered to be less pathogenic with little impact on morbidity and mortality of otherwise healthy adults. This report documents the severe synergistic pathogenesis of Influenza B infection and bacterial pneumonia in previously healthy persons not belonging to a special risk population and outlines therapeutic options in this clinical setting. Case Presentation During the seasonal influenza epidemic 2007/2008, three previously healthy women presented to our hospital with influenza-like symptoms and rapid clinical deterioration. Subsequent septic shock due to severe bilateral pneumonia necessitated intensive resuscitative measures including the use of an interventional lung assist device. Microbiological analysis identified severe dual infections of Influenza B with Streptococcus pyogenes in two cases and Streptococcus pneumoniae in one case. The patients presented with no evidence of underlying disease or other known risk factors for dual infection such as age (< one year, > 65 years), pregnancy or comorbidity. Conclusions Influenza B infection can pose a risk for severe secondary infection in previously healthy persons. As patients admitted to hospital due to severe pneumonia are rarely tested for Influenza B, the incidence of admission due to this virus might be greatly underestimated, therefore, a more aggressive search for influenza virus and empirical treatment might be warranted. While the use of an interventional lung assist device offers a potential treatment strategy for refractory respiratory acidosis in addition to protective lung ventilation, the combined empiric use of a neuraminidase-inhibitor and antibiotics in septic patients with pulmonary manifestations during an epidemic season should be considered. PMID:20979628
[Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].
Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A
2017-09-01
Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
Koeth, Laura M; Jacobs, Michael R; Good, Caryn E; Bajaksouzian, Saralee; Windau, Anne; Jakielaszek, Charles; Saunders, Kay A
2004-11-01
A new, pharmacokinetically enhanced, oral formulation of amoxicillin/clavulanic acid has been developed to overcome resistance in the major bacterial respiratory pathogen Streptococcus pneumoniae, while maintaining excellent activity against Haemophilus influenzae and Moraxella catarrhalis, including beta-lactamase producing strains. This study was conducted to provide in vitro susceptibility data for amoxicillin/clavulanic acid and 16 comparator agents against the key respiratory tract pathogens. Susceptibility testing was performed on 9172 isolates collected from 95 centers in North America, Europe, Australia, and Hong Kong by broth microdilution MIC determination, according to NCCLS methods, using amoxicillin/clavulanic acid and 16 comparator antimicrobial agents. Results were interpreted according to NCCLS breakpoints and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints based on oral dosing regimens. Overall, 93.5% of Streptococcus pneumoniae isolates were susceptible to amoxicillin/clavulanic acid at the current susceptible breakpoint of < or =2 microg/mL and 97.3% at the PK/PD susceptible breakpoint of < or =4 microg/mL for the extended release formulation. Proportions of isolates that were penicillin intermediate and resistant were 13% and 16.5%, respectively, while 25% were macrolide resistant and 21.8% trimethoprim/sulfamethoxazole resistant. 21.9% of Haemophilus influenzae were beta-lactamase producers and 16.8% trimethoprim/sulfamethoxazole resistant, >99% of isolates were susceptible to amoxicillin/clavulanic acid, cefixime, ciprofloxacin and levofloxacin at NCCLS breakpoints. The most active agents against Moraxella catarrhalis were amoxicillin/clavulanic acid, macrolides, cefixime, fluoroquinolones, and doxycycline. Overall, 13% of Streptococcus pyogenes were resistant to macrolides. The extended release formulation of amoxicillin/clavulanic acid has potential for empiric use against many respiratory tract infections worldwide due to its activity against species resistant to many agents currently in use.
Influenza-like Illness Surveillance on the California-Mexico Border, 2004-2009
2011-01-01
common in all age groups, causing both hospital- and community - acquired epidemics. AdV probably accounts for 3% of the infections in the civilian...enterovirus, herpes simplex virus, Streptococcus pneumoniae , and Streptococcus pyogenes. Conclusions The US-Mexico border is one of the busiest in...countries where ARIs are the cause of up to 25% of all pediatric deaths.3 In Mexico, ARIs are the leading cause of disease (http://www.dged
[Toxic shock syndrome caused by pyogenic bacteria].
Gábor, Zsuzsa; Szekeres, Sándor; Gacs, Mária
2003-01-12
Case reports and review of the literature. Severe toxic shock syndrome caused by invasive infection with pyogenic bacteria Staphylococcus aureus or group A Streptococcus pyogenes, with high mortality rates in cases of the latter, remained one of the most problematic chapters of critical care medicine to date. To give an overview on the epidemiology, clinical manifestations, the complex therapeutical approaches of the syndrome and, on the role and mechanisms of action of bacterial superantigens in the pathophysiological processes as well. Literary data, and some illustrative selected cases demonstrate that, the incidence of TSS shows increasing tendency worldwide and, that otherwise healthy, younger people are the most frequently affected. As for prognosis: early diagnosis and treatment with sufficient radicality are of decisive importance.
Mansour, Nahla M; Abdelaziz, Sahar A
2016-08-01
The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 μL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Pinho, M. D.; Matos, S. C.; Pomba, C.; Lübke-Becker, A.; Wieler, L. H.; Preziuso, S.; Melo-Cristino, J.
2013-01-01
Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection. PMID:23345291
Pinho, M D; Matos, S C; Pomba, C; Lübke-Becker, A; Wieler, L H; Preziuso, S; Melo-Cristino, J; Ramirez, M
2013-04-01
Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection.
Raczniak, Gregory A; Kato, Cecilia; Chung, Ida H; Austin, Amy; McQuiston, Jennifer H; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J
2014-12-01
Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections. © The American Society of Tropical Medicine and Hygiene.
Šmitran, Aleksandra; Vuković, Dragana; Opavski, Nataša; Gajić, Ina; Marinković, Jelena; Božić, Ljiljana; Živanović, Irena; Kekić, Dušan; Popović, Sunčica; Ranin, Lazar
2018-06-01
In this study, the focus was on the effects of sub-MICs of the antibiotics on adherence, hydrophobicity, and biofilm formation by two groups of Streptococcus pyogenes strains, which were responsible for different clinical cases. The aim of this study was to explore the effects of sub-MICs of penicillin, ceftriaxone, erythromycin, and clindamycin on adherence, surface hydrophobicity, and biofilm biomass in two selected collections of group A streptococcus (GAS): strains isolated from carriers (CA) and strains isolated from patients with tonsillopharyngitis (TPh). Isolates were tested for hydrophobicity to xylene, adherence, and biofilm production in uncoated microtiter plates before and after treatment with 1/2 and 1/4 MICs of antibiotics. Penicillin reduced adherence and biofilm production in TPh strains, whereas ceftriaxone diminished adherence and biofilm formation in CA group. On the contrary, clindamycin enhanced adherence and biofilm production in both groups of strains. Erythromycin did not significantly alter adherence, but triggered biofilm production in both groups of isolates. Hydrophobicity of both groups of strains was significantly reduced after exposure to all antibiotics. Beta-lactams displayed anti-biofilm activity; penicillin diminished both adherence and biofilm production in TPh strains, whereas ceftriaxone reduced it in strains isolated from CA.
Imaeda, Taro; Nakada, Taka-Aki; Abe, Ryuzo; Tateishi, Yoshihisa; Oda, Shigeto
2016-06-01
Streptococcal toxic shock syndrome (STSS), an invasive Streptococcus pyogenes (Group A streptococcus) infection with hypotension and multiple organ failure, is quite rare in pregnancy but is characterized by rapid disease progression and high fatality rates. We present a case of STSS with infection-induced cardiac dysfunction in a pregnant woman who was treated with veno-arterial extracorporeal membrane oxygenation (VA-ECMO). A 24-year-old multiparous woman in the third trimester had early symptoms of high fever and diarrhea 1 day prior to admission to the hospital emergency department. On admission, she had multiple organ failure including circulatory failure. Due to fetal distress, emergency Cesarean section was carried out and transferred to intensive care units. She had refractory circulatory failure with depressed myocardial contractility with progressive multiple organ failure, despite receiving significant hemodynamic supports including high-dose catecholamine. Thus, VA-ECMO was initiated 18 h after intensive care unit admission. Consequently, ECMO provided extra time to recover from infection and myocardial depression. She was successfully weaned from VA-ECMO on day 7 and was discharged home on day 53. VA-ECMO can be a therapeutic option for refractory circulatory failure with significant myocardial depression in STSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research
A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less
Structural and Functional Dissection of the Heterocyclic Peptide Cytotoxin Streptolysin S*S⃞
Mitchell, Douglas A.; Lee, Shaun W.; Pence, Morgan A.; Markley, Andrew L.; Limm, Joyce D.; Nizet, Victor; Dixon, Jack E.
2009-01-01
The human pathogen Streptococcus pyogenes secretes a highly cytolytic toxin known as streptolysin S (SLS). SLS is a key virulence determinant and responsible for the β-hemolytic phenotype of these bacteria. Despite over a century of research, the chemical structure of SLS remains unknown. Recent experiments have revealed that SLS is generated from an inactive precursor peptide that undergoes extensive post-translational modification to an active form. In this work, we address outstanding questions regarding the SLS biosynthetic process, elucidating the features of substrate recognition and sites of posttranslational modification to the SLS precursor peptide. Further, we exploit these findings to guide the design of artificial cytolytic toxins that are recognized by the SLS biosynthetic enzymes and others that are intrinsically cytolytic. This new structural information has ramifications for future antimicrobial therapies. PMID:19286651
Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases
Orchard, Ané
2017-01-01
Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822
Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion
Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich
2004-01-01
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570
A quantitative model for dermal infection and oedema in BALB/c mice pinna.
Marino-Marmolejo, Erika Nahomy; Flores-Hernández, Flor Yohana; Flores-Valdez, Mario Alberto; García-Morales, Luis Felipe; González-Villegas, Ana Cecilia; Bravo-Madrigal, Jorge
2016-12-12
Pharmaceutical industry demands innovation for developing new molecules to improve effectiveness and safety of therapeutic medicines. Preclinical assays are the first tests performed to evaluate new therapeutic molecules using animal models. Currently, there are several models for evaluation of treatments, for dermal oedema or infection. However, the most common or usual way is to induce the inflammation with chemical substances instead of infectious agents. On the other hand, this kind of models require the implementation of histological techniques and the interpretation of pathologies to verify the effectiveness of the therapy under assessment. This work was focused on developing a quantitative model of infection and oedema in mouse pinna. The infection was achieved with a strain of Streptococcus pyogenes that was inoculated in an injury induced at the auricle of BALB/c mice, the induced oedema was recorded by measuring the ear thickness with a digital micrometer and histopathological analysis was performed to verify the damage. The presence of S. pyogenes at the infection site was determined every day by culture. Our results showed that S. pyogenes can infect the mouse pinna and that it can be recovered at least for up to 4 days from the infected site; we also found that S. pyogenes can induce a bigger oedema than the PBS-treated control for at least 7 days; our results were validated with an antibacterial and anti-inflammatory formulation made with ciprofloxacin and hydrocortisone. The model we developed led us to emulate a dermal infection and allowed us to objectively evaluate the increase or decrease of the oedema by measuring the thickness of the ear pinna, and to determine the presence of the pathogen in the infection site. We consider that the model could be useful for assessment of new anti-inflammatory or antibacterial therapies for dermal infections.
[Significance of group A streptococcal infections in human pathology].
Cvjetković, Dejan; Jovanović, Jovana; Hrnjaković-Cvjetković, Ivana; Aleksić-Dordević, Mirjana; Stefan-Mikić, Sandra
2008-01-01
Group A streptococci is the causative agent in 80 percents of human streptococcal infections. The only member of this group is Streptococcus pyogenes. CLINICALFEATURES OF GAS INFECTIONS: The various clinical entities and related complications caused by pyogenic streptococci are reviewed in the article. Pharyngitis, scarlet fever, skin and soft tissue infections (pyoderma, cellulitis, perianal dermatitis, necrotising fasciitis) and streptococcal toxic shock syndrome are described. The way of setting the diagnosis including epidemiological data, clinical features and the course of illness, laboratory findings and supportive diagnostic methods are represented in the article. The most important clinical entities which should be discussed in differential diagnosis of diseases caused by pyogenic streptococci are listed. The major principles of etiologic treatment through widely accepted strategies related to first choice antibiotics and alternatives are reviewed.
Kohayagawa, Yoshitaka; Ishitobi, Natsuko; Yamamori, Yuji; Wakuri, Miho; Sano, Chiaki; Tominaga, Kiyoshi; Ikebe, Tadayoshi
2015-02-01
Streptococcal toxic shock syndrome is a severe infectious disease. We report a Japanese case of Streptococcal toxic shock syndrome caused by a highly mucoid strain of Streptococcus pyogenes. A 31-year old female with shock vital sign presented at a tertiary medical center. Her left breast was necrotizing and S. pyogenes was detected by Immunochromatographic rapid diagnostic kits. Intensive care, including administration of antibiotics and skin debridement, was performed. After 53 days in our hospital, she was discharged. The blood cultures and skin swab cultures all grew S. pyogenes which displayed a highly mucoid morphology on culture media. In her course of the disease, the Streptococcus strain had infected two other family members. All of the strains possessed the T1 and M1 antigens, as well as the emm1.0 gene. As for fever genes, the strains were all positive for speA, speB, and speF, but negative for speC. All of the strains exhibited and the same pattern in PFGE with the SfiI restriction enzyme. The strain might have spread in the local area by the data from the Japanese Infectious Disease Surveillance Center. Immunochromatographic rapid diagnostic kits are very useful for detecting S. pyogenes. However, they can not be used to diagnose severe streptococcul disease by highly mucoid strain alone. Careful observation of patients and colony morphology are useful methods for diagnosing severe streptococcal disease by highly mucoid strain. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Masuno, Katsuaki; Okada, Ryo; Zhang, Yan; Isaka, Masanori; Tatsuno, Ichiro; Shibata, Shinichiro; Hasegawa, Tadao
2014-04-01
Streptococcal toxic shock syndrome (STSS) is a re-emerging infectious disease in many developed countries. Recent studies have suggested that mutations in CovRS, a two-component regulatory system in Streptococcus pyogenes, play important roles in the pathogenesis of STSS. However, in vivo evidence of the significance of CovRS in human infections has not been fully demonstrated. We investigated five S. pyogenes strains isolated simultaneously from the pharynx, sputum, knee joint, cerebrospinal fluid and blood of a single STSS patient. All were emm89-type strains, and multilocus sequence typing (MLST) analysis revealed that the strains of pharynx and blood were isogenic. The growth rates of the strains from pharynx and sputum were faster than those of the other strains. Protein profiles of the culture supernatants of strains from the pharynx and sputum were also different from those of the other strains. Sequence analyses revealed that strains from the knee joint, cerebrospinal fluid and blood contained a single nucleotide difference in the covS coding region, resulting in one amino acid change, compared with the other strains. Introduction of a plasmid containing the covS gene from the pharynx strain to the blood strain increased the production of SpeB protein. This suggests that the one amino acid alteration in CovS was relevant to pathogenesis. This report supports the idea that mutated CovS plays important roles in vivo in the dissemination of S. pyogenes from the upper respiratory tract of human to aseptic tissues such as blood and cerebrospinal fluid.
[Biological activity tests of chemical constituents from two Brazilian Labiatae plants].
Isobe, Takahiko; Doe, Matsumi; Morimoto, Yoshiki; Nagata, Kumiko; Masuoka, Noriyoshi; Ohsaki, Ayumi
2007-02-01
We studied the bioactivities of constituents from two tropical medicinal plants, Cunila spicata and Hyptis fasciculata. These plants found in Brazil belong to the Labiatae family. Four known compounds obtained from these herbs were identified as 3alpha, 24-dihydoxylurs-12-en-28-oic acid, betulinic acid, aurantiamide acetate, and aurantiamide benzoate by spectroscopic means. 3alpha, 24-Dihydoxylurs-12-en-28-oic acid has potent inhibitory activity against Streptococcus salivarius, Streptococcus pneumoniae, Streptococcus pyogenes, and Porphyromomas gingivalis. Aurantiamide benzoate exhibited moderate inhibitory activity against xanthine oxidase. It was clarified that herbs Cunila spicata and Hyptis fasciculata are effective against bronchitis and gout.
In vitro activity of flomoxef in comparison to other cephalosporins.
Simon, C; Simon, M; Plieth, C
1988-01-01
Flomoxef and cefazolin had nearly the same activity against staphylococci, which was stronger than that of other cephalosporins. Against Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus pneumoniae, cefotaxime and cefazolin were more active than flomoxef, but the other cephamycins were less active than flomoxef. In comparison to the other cephalosporins, latamoxef and flomoxef had higher activity against Branhamella catarrhalis, whereas cefotaxime, latamoxef and cefotetan were more active against Haemophilus influenzae. Flomoxef was the only drug exhibiting activity against Clostridium difficile. The activity of flomoxef and latamoxef against Bacteroides fragilis was stronger than that of the other cephalosporins, but Bacteroides bivius was resistant to each of these antibiotics.
Pandey, Manisha; Sekuloski, Silvana; Batzloff, Michael R
2009-07-01
Infections caused by group A streptococcus (GAS) represent a public health problem in both developing and developed countries. The current available methods of prevention are either inadequate or ineffective, which is highlighted by the resurgence in invasive GAS infections over the past two decades. The management of GAS and associated diseases requires new and improved approaches. This review discusses various potential approaches in controlling GAS infections, ranging from prophylactic vaccines to antibody immunotherapy.
Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M
2018-04-28
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.
Replacing and Additive Horizontal Gene Transfer in Streptococcus
Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam
2012-01-01
The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954
Gergova, Raina Tzvetanova; Petrova, Guergana; Gergov, Stefan; Minchev, Petko; Mitov, Ivan; Strateva, Tanya
2016-11-01
Across the globe, upper respiratory tract infections (URTIs) are the most prevalent cause of morbidity in childhood. The aim of our study is to analyze the incidence and etiology of bacterial URTIs in Bulgarian children, as well as the increasing antimicrobial resistance to the most common etiologic agents over a period of 17 years. Retrospective study. The study material comprised the data from 4768 patients (aged 1-16 years) with URTI during the period from 1998-2014. Specific microbiology agent detection was performed by culture examination. Susceptibilities to the investigated pathogens were determined by the disk diffusion method and minimal inhibitory concentration according to the criteria of the Clinical and Laboratory Standards Institute (CLSI). Polymerase chain reaction was used to detect the presence of β-lactam resistance genes. We identified the following as the most common URTI bacterial pathogens: Streptococcus pneumoniae (40.94%), Streptococcus pyogenes (34.16%), Haemophilus influenzae (44.23%), Moraxella catarrhalis (39.19%) and Staphylococcus aureus (23.88%). In more than 70% of cases, a polymicrobial etiology was found. The most commonly affected individuals were pre-school-aged children, which accounted for more than 36% of all patients. During the study period, a dramatic increase in resistance to antibiotic agents was observed. The most frequent types of resistance were the enzymatic inactivation of penicillins and cephalosporins (close to 100% in staphylococci and moraxellae) and inducible macrolide-lincozamide resistance (about 20% of Gram-positive cocci). Due to mandatory immunization against pneumococci and H. influenzae in Bulgaria and the vast expanding resistance to the most popular antimicrobial agents changes in the etiology of URTI have recently been noted. Regular analysis of this etiological dynamic and the antimicrobial resistance of respiratory pathogens is important for choosing the correct therapy and successful treatment.
Olsen, Randall J.; Cantu, Concepcion; Pallister, Kyler B.; Guerra, Fermin E.; Voyich, Jovanka M.; Musser, James M.
2017-01-01
ABSTRACT Studies of the human pathogen group A Streptococcus (GAS) define the carrier phenotype to be an increased ability to adhere to and persist on epithelial surfaces and a decreased ability to cause disease. We tested the hypothesis that a single amino acid change (Arg135Gly) in a highly conserved sensor kinase (LiaS) of a poorly defined GAS regulatory system contributes to a carrier phenotype through increased pilus production. When introduced into an emm serotype-matched invasive strain, the carrier allele (the gene encoding the LiaS protein with an arginine-to-glycine change at position 135 [liaSR135G]) recapitulated a carrier phenotype defined by an increased ability to adhere to mucosal surfaces and a decreased ability to cause disease. Gene transcript analyses revealed that the liaS mutation significantly altered transcription of the genes encoding pilus in the presence of bacitracin. Elimination of pilus production in the isogenic carrier mutant decreased its ability to colonize the mouse nasopharynx and to adhere to and be internalized by cultured human epithelial cells and restored the virulence phenotype in a mouse model of necrotizing fasciitis. We also observed significantly reduced survival of the isogenic carrier mutant compared to that of the parental invasive strain after exposure to human neutrophils. Elimination of pilus in the isogenic carrier mutant increased the level of survival after exposure to human neutrophils to that for the parental invasive strain. Together, our data demonstrate that the carrier mutation (liaSR135G) affects pilus expression. Our data suggest new mechanisms of pilus gene regulation in GAS and that the invasiveness associated with pilus gene regulation in GAS differs from the enhanced invasiveness associated with increased pilus production in other bacterial pathogens. PMID:28264907
Biedenbach, Douglas J; Badal, Robert E; Huang, Ming-Yi; Motyl, Mary; Singhal, Puneet K; Kozlov, Roman S; Roman, Arthur Dessi; Marcella, Stephen
2016-06-01
Bacterial infections that cause community-acquired urinary tract infections (CA-UTI) and upper respiratory tract infections (CA-URTI) are most frequently treated empirically. However, an increase in antimicrobial resistance has become a problem when treating outpatients. This study determined the in vitro activities of oral antibiotics among 1501 pathogens from outpatients with CA-UTI and CA-URTI in medical centers during 2012 and 2013 from Argentina, Mexico, Venezuela, Russia, and the Philippines. Minimal inhibitory concentrations (MICs) were determined using broth microdilution and susceptibility defined by Clinical Laboratory Standards Institute (CLSI) and European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria. Ceftibuten (MIC50, ≤0.25 mg/L) was more potent in vitro compared to other β-lactams against Enterobacteriaceae from CA-UTI. Susceptibility to fluoroquinolones using CLSI criteria varied: Argentina and Mexico (50%), the Philippines (60%), Venezuela (70%), and Russia (80%). Fosfomycin susceptibility was >90% against Enterobacteriaceae in each country. Susceptibility among Enterobacteriaceae to trimethoprim-sulfamethoxazole was 30.6-75.6% and nitrofurantoin susceptibility also varied among the countries and was higher when EUCAST breakpoints were applied (65->90%) compared to CLSI (52-84%). All Haemophilus influenzae isolates from CA-URTI were susceptible to ceftibuten, cefixime, cefpodoxime, and cefuroxime using CLSI breakpoint criteria. EUCAST criteria produced intermediate and resistant MIC values for these oral cephalosporins. Country-specific susceptibility variation for fluoroquinolones, macrolides, and trimethoprim-sulfamethoxazole was observed among Streptococcus pneumoniae and Streptococcus pyogenes from CA-URTI. This study demonstrated that antimicrobial susceptibility patterns varied in the five countries investigated among pathogens from CA-UTI and CA-URTI. Merck & Co. Inc., Kenilworth, New Jersey, USA.
Zhang, Wenlong; Wang, Pu; Wang, Bing; Ma, Bo; Wang, Junwei
2017-05-01
Clostridium perfringens (C. perfringens) and Trueperella pyogenes (T. pyogenes) are two bacterial pathogens frequently associated with wound infections and following lethal complications in livestock. However, prudent use of antimicrobial agents is highly required given the emergence of multidrug-resistant strains of both bacteria and need for food safety. In the current study, a combined vaccine, composed of inactivated C. perfringens and T. pyogenes, was prepared. The amount of formaldehyde being used to inactivate two bacteria was optimized to retain the immunogenicity of antigens. Three adjuvants were tested for their potency in improving specific immune responses against the candidate antigens. Then inactivated combined C. perfringens/T. pyogenes vaccine was prepared using inactive cultures of two organisms. The ratio of inactive cultures of two organisms for preparation of combined vaccine was optimized to gain effective protective immunity against the two pathogens. Results revealed that combined C. perfringens/T. pyogenes inactive vaccine can elicit high level of exotoxins and cell-associated antigen-specific antibodies and induce complete protection against C. perfringens and T. pyogenes infections in mice. The combined vaccine could be used as an alternative of antibiotics for prevention of C. perfringens and T. pyogenes infections in animals. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2002-01-01
The AiroCide TiO2 is an air-purifier that kills 93.3 percent of airborne pathogens that pass through it, including Bacillus anthraci, more commonly known as anthrax. It is essentially a spinoff of KES Science & Technology, Inc.'s Bio-KES system, a highly effective device used by the produce industry for ethylene gas removal to aid in preserving the freshness of fruits, vegetables, and flowers. The TiO2-based ethylene removal technology that is incorporated into the company's AiroCide TiO2 and Bio-KES products was first integrated into a pair of plant-growth chambers known as ASTROCULTURE(TM) and ADVANCED ASTROCULTURE(TM). Both chambers have housed commercial plant growth experiments in space on either the Space Shuttle or the International Space Station. The AiroCide TiO2 also has a proven record of destroying 98 percent of other airborne pathogens, such as microscopic dust mites, molds, and fungi. Moreover, the device is a verified killer of Influenza A (flu), E. coli, Staphylococcus aureas, Streptococcus pyogenes, and Mycoplasma pneumoniae, among many other harmful viruses.
Desai, Meeta; Efstratiou, Androulla; George, Robert; Stanley, John
1999-01-01
We have used fluorescent amplified-fragment length polymorphism (FAFLP) analysis to subtype clinical isolates of Streptococcus pyogenes serotype M1. Established typing methods define most M1 isolates as members of a clone that has a worldwide distribution and that is strongly associated with invasive diseases. FAFLP analysis simultaneously sampled 90 to 120 loci throughout the M1 genome. Its discriminatory power, precision, and reproducibility were compared with those of other molecular typing methods. Irrespective of disease symptomatology or geographic origin, the majority of the clinical M1 isolates shared a single ribotype, pulsed-field gel electrophoresis macrorestriction profile, and emm1 gene sequence. Nonetheless, among these isolates, FAFLP analysis could differentiate 17 distinct profiles, including seven multi-isolate groups. The FAFLP profiles of M1 isolates reproducibly exhibited between 1 and more than 20 amplified fragment differences. The high discriminatory power of genotyping by FAFLP analysis revealed genetic microheterogeneity and differentiated otherwise “identical” M1 isolates as members of a clone complex. PMID:10325352
Haikarainen, Teemu; Loimaranta, Vuokko; Prieto-Lopez, Carlos; Battula, Pradeep; Finne, Jukka; Papageorgiou, Anastassios C
2013-05-01
Streptococcus pyogenes protein 0843 (Spy0843) is a recently identified protein with a potential adhesin function. Sequence analysis has shown that Spy0843 contains two leucine-rich repeat (LRR) domains that mediate interactions with the gp340 receptor. Here, the C-terminal LRR domain was overexpressed in Escherichia coli, purified and crystallized in the presence of 1.7-1.8 M ammonium sulfate pH 7.4 as precipitant. Data were collected from a single crystal to 1.59 Å resolution at 100 K at a synchrotron-radiation source. The crystal was found to belong to space group I41, with unit-cell parameters a = b = 121.4, c = 51.5 Å and one molecule in the asymmetric unit. Elucidation of the crystal structure will provide insights into the interactions of Spy0843 with the gp340 receptor and a better understanding of the role of Spy0843 in streptococcal infections.
Haikarainen, Teemu; Loimaranta, Vuokko; Prieto-Lopez, Carlos; Battula, Pradeep; Finne, Jukka; Papageorgiou, Anastassios C.
2013-01-01
Streptococcus pyogenes protein 0843 (Spy0843) is a recently identified protein with a potential adhesin function. Sequence analysis has shown that Spy0843 contains two leucine-rich repeat (LRR) domains that mediate interactions with the gp340 receptor. Here, the C-terminal LRR domain was overexpressed in Escherichia coli, purified and crystallized in the presence of 1.7–1.8 M ammonium sulfate pH 7.4 as precipitant. Data were collected from a single crystal to 1.59 Å resolution at 100 K at a synchrotron-radiation source. The crystal was found to belong to space group I41, with unit-cell parameters a = b = 121.4, c = 51.5 Å and one molecule in the asymmetric unit. Elucidation of the crystal structure will provide insights into the interactions of Spy0843 with the gp340 receptor and a better understanding of the role of Spy0843 in streptococcal infections. PMID:23695577
Wen, Yao-Tseng; Wang, Jie-Siou; Tsai, Shu-Han; Chuan, Chiang-Ni; Wu, Jiunn-Jong; Liao, Pao-Chi
2014-09-23
Streptococcus pyogenes is responsible for various diseases. During infection, bacteria must adapt to adverse environments, such as the acidic environment. Acidic stimuli may stimulate S. pyogenes to invade into deeper tissue. However, how this acidic stimulus causes S. pyogenes to manipulate its secretome for facilitating invasion remains unclear. The dynamic label-free LC-MS/MS profiling identified 97 proteins, which are influenced by environmental acidification. Among these, 33 (34%) of the identified proteins were predicted to be extracellular proteins. Interestingly, classical secretory proteins comprise approximately 90% of protein abundance of the secretome in acidic condition at the stationary phase. One acid-induced secreted protein, HtpA, was selected to investigate its role in invasive infection. The mouse infected by the htpA deficient mutant showed lower virulence and smaller lesion area than the wild-type strain. The mutant strain was more efficiently cleared at infected skin than the wild-type strain. Besides, the relative phagocytosis resistance is lower in the mutant strain than in the wild-type strain. These data indicate that a novel acid-induced virulence factor, HtpA, which improves anti-phagocytosis ability for causing necrotizing fasciitis. Our investigation provides vital information for documenting the broad influences and mechanisms underlying the invasive behavior of S. pyogenes in an acidified environment. The acidified infected environment may facilitate S. pyogenes invasion from the mucosa to the deeper subepithelial tissue. The acid stimuli have been considered to affect the complex regulatory network of S. pyogenes for causing severe infections. Many of secreted virulence factors influenced by acidified environment may also play a crucial role in pathogenesis of invasive disease. To investigate temporal secretome changes under acidic environment, a comparative secretomics approach using label-free LC-MS/MS was undertaken to analyze the secretome in acidic and neutral conditions. The dynamic label-free LC-MS/MS profiling and secretome prediction were used in this study for mining acid-influenced secreted proteins. We identified 33 acid-influenced secreted proteins in this study. Among these proteins, a novel acid-induced virulence factor, HtpA, was demonstrated to improve anti-phagocytosis ability for causing necrotizing fasciitis. In addition, our study demonstrates the first evidence that acidic stimuli and growth-phase cues are crucial for classical protein secretion in S. pyogenes. Copyright © 2014. Published by Elsevier B.V.
Group A streptococcal infections of the skin: molecular advances but limited therapeutic progress.
Currie, Bart J
2006-04-01
With the sequencing of several Streptococcus pyogenes (group A Streptococcus) genomes have come major advances in understanding the pathogenesis of group A Streptococcus-associated diseases. This review focuses on group A Streptococcus skin infections and summarizes data published in the English language medical literature in 2004 and 2005. Group A Streptococcus shows enormous and evolving molecular diversity driven by horizontal transmission between group A Streptococcus strains and between group A Streptococcus and other streptococci. Acquisition of prophages accounts for much of the diversity, conferring both virulence through phage-associated virulence factors and increased bacterial survival against host defences. Studies of group A Streptococcus isolates outside the US also question the generalizability of classic group A Streptococcus M serotype associations with specific disease entities such as acute rheumatic fever and necrotizing fasciitis. The distinction between throat and skin group A Streptococcus has become blurred. Although there have been few advances in treatment of group A Streptococcus skin infections, developments towards group A Streptococcus vaccines are promising. The diversity of group A Streptococcus remains a challenge for vaccine development. As acute rheumatic fever and streptococcal pyoderma occur predominantly in disadvantaged populations, international funding support will be necessary for any group A Streptococcus vaccine to have a sustained impact on the global burden of disease.
Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus
Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.
2014-01-01
The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706
Bruun, T; Kittang, B R; de Hoog, B J; Aardal, S; Flaatten, H K; Langeland, N; Mylvaganam, H; Vindenes, H A; Skrede, S
2013-12-01
Streptococcus pyogenes (group A streptococcus, GAS) is a major cause of necrotizing soft tissue infection (NSTI). On rare occasions, other β-haemolytic streptococci may also cause NSTI, but the significance and nature of these infections has not been thoroughly investigated. In this study, clinical and molecular characteristics of NSTI caused by GAS and β-haemolytic Streptococcus dysgalactiae subsp. equisimilis of groups C and G (GCS/GGS) in western Norway during 2000-09 are presented. Clinical data were included retrospectively. The bacterial isolates were subsequently emm typed and screened for the presence of genes encoding streptococcal superantigens. Seventy cases were identified, corresponding to a mean annual incidence rate of 1.4 per 100 000. Sixty-one of the cases were associated with GAS, whereas GCS/GGS accounted for the remaining nine cases. The in-hospital case fatality rates of GAS and GCS/GGS disease were 11% and 33%, respectively. The GCS/GGS patients were older, had comorbidities more often and had anatomically more superficial disease than the GAS patients. High age and toxic shock syndrome were associated with mortality. The Laboratory Risk Indicator for Necrotizing Fasciitis laboratory score showed high values (≥6) in only 31 of 67 cases. Among the available 42 GAS isolates, the most predominant emm types were emm1, emm3 and emm4. The virulence gene profiles were strongly correlated to emm type. The number of superantigen genes was low in the four available GCS/GGS isolates. Our findings indicate a high frequency of streptococcal necrotizing fasciitis in our community. GCS/GGS infections contribute to the disease burden, but differ from GAS cases in frequency and predisposing factors. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Córdova-Guerrero, Iván; Aragon-Martinez, Othoniel H; Díaz-Rubio, Laura; Franco-Cabrera, Santiago; Serafín-Higuera, Nicolas A; Pozos-Guillén, Amaury; Soto-Castro, Tely A; Martinez-Morales, Flavio; Isiordia-Espinoza, Mario
Due to the great global concern regarding bacterial resistance to antibiotics, an ongoing search for new molecules having antibacterial activity is necessary. This study evaluated the antibacterial and anticandidal effects of a hexane extract from the root of Salvia apiana. Salvia extracts at concentrations of 27, 13.5, 6.8 and 3.4mg/ml caused growth inhibition of Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Candida albicans. However, no significant effect was observed on Escherichia coli and Candida tropicalis in comparison to vehicle. It was here demonstrated for the first time that Salvia apiana has an important antimicrobial effect on human pathogens of great clinical value, thus opening the field to continue the evaluation of this lamiaceous plant for its future use as a therapeutic agent. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Discovery of a widely distributed toxin biosynthetic gene cluster
Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.
2008-01-01
Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757
Parasitic scabies mites and associated bacteria joining forces against host complement defence.
Swe, P M; Reynolds, S L; Fischer, K
2014-11-01
Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections. © 2014 John Wiley & Sons Ltd.
Wijesundara, Niluni M; Rupasinghe, H P Vasantha
2018-04-01
In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis. Copyright © 2018 Elsevier Ltd. All rights reserved.
You, Yuan Hai; Song, Yan Yan; Yan, Xiao Mei; Wang, Hai Bin; Zhang, Meng Han; Tao, Xiao Xia; Li, Lei Lei; Zhang, Yu Xin; Jiang, Xi Hong; Zhang, Bing Hua; Zhou, Hao; Xiao, Di; Jin, Lian Mei; Feng, Zi Jian; Luo, Feng Ji; Zhang, Jian Zhong
2013-11-01
To investigate molecular characterization of streptococcus pyogenes isolates involved in an outbreak of scarlet fever in China in 2011. Seventy-four Streptococcal pyogenes involved in an outbreak of scarlet fever were isolated from pediatric patients in the areas with high incidence in China from May to August of 2011. Emm genotyping, pulsed-field gel electrophoresis (PFGE), superantigen (SAg) genes and antimicrobial susceptibility profiling were analyzed for these isolates. A total of 4 different emm types were identified. Emm12 was the most prevalent type which contained four predominating PFGE patterns corresponding to four different virulence and superantigen profiles. Emm12 (79.7%) and emm1 (14.9%) accounted for approximately 94% of all the isolates. The speA gene was all negative in emm12 isolates and positive in emm1 isolates. All strains were resistant to erythromycin, and 89.4% of them were resistant to erythromycin, tracycline, and clindamycin simultaneously. Several highly diversified clones with a high macrolide resistance rate comprise a predominant proportion of circulating strains, though no new emm type was found in this outbreak. The data provide a baseline for further surveillance of scarlet fever, which may contribute to the explanation of the outbreak and development of a GAS vaccine in China. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W
2005-12-06
Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.
Chang, Ann; Khemlani, Adrina; Kang, HaeJoo; Proft, Thomas
2011-03-01
Streptococcus pyogenes nuclease A (SpnA) is a recently discovered DNase that plays a role in virulence as shown in a mouse infection model. SpnA is the only cell wall-anchored DNase found in S. pyogenes thus far and shows a unique protein architecture. The C-terminal nuclease domain contains highly conserved catalytic site and Mg(2+) binding site residues. However, expression of the SpnA nuclease domain alone resulted in a soluble, but enzymatically inactive protein. We found that at least two out of three oligonucleotide/oligosaccharide-binding fold motifs found in the N-terminal domain are required for SpnA activity, probably contributing to substrate binding. Using a combination of a spnA deletion mutant and a Lactococcus lactis'gain-of-function' mutant, we have shown that SpnA promotes survival in whole human blood and in neutrophil killing assays and this is, at least in part, achieved by the destruction of neutrophil extracellular traps (NETs). We observed higher frequencies for anti-SpnA antibodies in streptococcal disease patient sera (79%, n = 19) compared with sera from healthy donors (33%, n = 9) suggesting that SpnA is expressed during infection. Detection of anti-SpnA antibodies in patient serum might be useful for the diagnostic of post-streptococcal diseases, such as acute rheumatic fever or glomerulonephritis. © 2011 Blackwell Publishing Ltd.
Okuno, Rumi; Endoh, Miyoko; Shimojima, Yukako; Yanagawa, Yoshitoki; Morozumi, Satoshi; Igarashi, Hideo; Ooe, Kenji
2004-01-01
To investigate clinical and microbiological features of streptococcal toxic shock syndrome (STSS), clinical, epidemiological, and bacteriological data obtained from 250 patients between 1992 and 2001 were analyzed. Among these 250 cases, 16 cases were excluded from the study because the causative microorganism were not Streptococcus pyogenes. 234 strains of S. pyogenes obtained from the aforementioned 234 cases were tested for T-type by a serological method, and for streptococcal pyrogenic exotoxin (SPE) by in vitro productivity of the toxin as well as molecular genetic methods. The number of patients was 141 (56.4%) for males, and 107 (42.8%) for females. The highest frequency of STSS was observed in those patients in their sixties in both sexes. The overall mortality rate was 43.2%. The mortality rate for male was 36.9%, and 52.3% for female. Bacteriological studies revealed that most common T types were T1 and T3. These strains consisted 54.3% of the strains collected. Among strains of T1 type, 98.8% possessed genes of spe A, and 46.1% were shown to produce SPE A in vitro. Among strains of T3 type, 82.9% possessed spe A gene, and all of these strains were shown to produce the toxin in vitro. It is concluded that certain strains of S. pyogenes, such as those with T1, or T3 type, and those with spe A gene or in vitro production of SPE A, are the most frequent cause of STSS. Although infections caused by such bacteria are quite common, STSS rarely occurs in most such patients. Additional factors, such as host factors, may play a crucial role in the pathogenesis of STSS.
Baums, Christoph G.; Kaim, Ute; Fulde, Marcus; Ramachandran, Girish; Goethe, Ralph; Valentin-Weigand, Peter
2006-01-01
Streptococcus suis serotype 2 is a porcine and human pathogen with adhesive and invasive properties. In other streptococci, large surface-associated proteins (>100 kDa) of the MSCRAMM family (microbial surface components recognizing adhesive matrix molecules) are key players in interactions with host tissue. In this study, we identified a novel opacity factor of S. suis (OFS) with structural homology to members of the MSCRAMM family. The N-terminal region of OFS is homologous to the respective regions of fibronectin-binding protein A (FnBA) of Streptococcus dysgalactiae and the serum opacity factor (SOF) of Streptococcus pyogenes. Similar to these two proteins, the N-terminal domain of OFS opacified horse serum. Serum opacification activity was detectable in sodium dodecyl sulfate extracts of wild-type S. suis but not in extracts of isogenic ofs knockout mutants. Heterologous expression of OFS in Lactococcus lactis demonstrated that a high level of expression of OFS is sufficient to provide surface-associated serum opacification activity. Furthermore, serum opacification could be inhibited by an antiserum against recombinant OFS. The C-terminal repetitive sequence elements of OFS differed significantly from the respective repeat regions of FnBA and SOF as well as from the consensus sequence of the fibronectin-binding repeats of MSCRAMMs. Accordingly, fibronectin binding was not detectable in recombinant OFS. To investigate the putative function of OFS in the pathogenesis of invasive S. suis diseases, piglets were experimentally infected with an isogenic mutant strain in which the ofs gene had been knocked out by an in-frame deletion. The mutant was severely attenuated in virulence but not in colonization, demonstrating that OFS represents a novel virulence determinant of S. suis. PMID:17057090
Skyllouriotis, P; Skyllouriotis-Lazarou, M; Natter, S; Steiner, R; Spitzauer, S; Kapiotis, S; Valent, P; Hirschl, A M; Guber, S E; Laufer, G; Wollenek, G; Wolner, E; Wimmer, M; Valenta, R
1999-01-01
Studies performed in mice together with the demonstration of increased levels of heart-specific autoantibodies, cytokines and cytokine receptors in sera from cardiomyopathy (CMP) patients argued for a pathogenic role of autoimmune mechanisms in CMP. This study was designed to analyse the presence of IgG anti-heart antibodies in sera from patients suffering from hypertrophic and dilatative forms of CMP as well as from patients with ischaemic heart disease and healthy individuals. Patients' sera were analysed for IgG reactivity to Western-blotted extracts prepared from human epithelial and endothelial cells, heart and skeletal muscle specimens as well as from Streptococcus pyogenes. The IgG subclass (IgG1–4) reactivity to purified human cardiac myosin was analysed by ELISA. While sera from CMP patients and healthy individuals displayed comparable IgG reactivity to a variety of human proteins, cardiac myosin represented the prominent antigen detected strongly and preferentially by sera from CMP patients. Pronounced IgG anti-cardiac myosin reactivity was frequently found in sera from patients with dilatative CMP and reduced ventricular function. ELISA analyses revealed a prominent IgG2/IgG3 anti-cardiac myosin reactivity in CMP sera, indicating a preferential Th1-like immune response. Elevated anti-cytomegalovirus, anti-enterovirus IgG titres as well as IgG reactivity to nitrocellulose-blotted S. pyogenes proteins were also frequently observed in the group of CMP patients. If further work can support the hypothesis that autoreactivity to cardiac myosin represents a pathogenic factor in CMP, specific immunomodulation of this Th1- towards a Th2-like immune response may represent a promising therapeutic strategy for CMP. PMID:9933448
NASA Astrophysics Data System (ADS)
Hervás, Daniel; Hervás-Masip, Juan; Ferrés, Laia; Ramírez, Antonio; Pérez, José L.; Hervás, Juan A.
2016-05-01
The objective of this study was to determine the seasonal pattern of group A streptococcal pharyngitis in children attended at a hospital emergency department in the Mediterranean island of Mallorca (Spain), and its association with meteorologic factors and schooling. We conducted a retrospective review of the medical records of children aged 1-15 years with a diagnosis of Streptococcus pyogenes pharyngitis between January 2006 and December 2011. The number of S. pyogenes pharyngitis was correlated to temperature, humidity, rainfall, atmospheric pressure, wind speed, solar radiation, and schooling, using regression and time series techniques. A total of 906 patients (median, 4 years old) with S. pyogenes pharyngitis, confirmed by throat culture, were attended during the study period. A seasonal pattern was observed with a peak activity in June and a minimum in September. Mean temperature, solar radiation, and school holidays were the best predicting variables ( R 2 = 0.68; p < 0.001 ). S. pyogenes activity increased with the decrease of mean temperature ( z = -2.4; p < 0.05), the increase of solar radiation ( z = 4.2; p < 0.001), and/or the decrease in school holidays ( z = -2.4; p < 0.05). In conclusion, S. pyogenes pharyngitis had a clear seasonality predominating in springtime, and an association with mean temperature, solar radiation, and schooling was observed. The resulting model predicted 68 % of S. pyogenes pharyngitis.
Torumkuney, D; Chaiwarith, R; Reechaipichitkul, W; Malatham, K; Chareonphaibul, V; Rodrigues, C; Chitins, D S; Dias, M; Anandan, S; Kanakapura, S; Park, Y J; Lee, K; Lee, H; Kim, J Y; Lee, Y; Lee, H K; Kim, J H; Tan, T Y; Heng, Y X; Mukherjee, P; Morrissey, I
2016-05-01
To provide susceptibility data for community-acquired respiratory tract isolates of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis collected in 2012-14 from four Asian countries. MICs were determined using Etest(®) for all antibiotics except erythromycin, which was evaluated by disc diffusion. Susceptibility was assessed using CLSI, EUCAST and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. For macrolide/clindamycin interpretation, breakpoints were adjusted for incubation in CO2 where available. Susceptibility of S. pneumoniae was generally lower in South Korea than in other countries. Penicillin susceptibility assessed using CLSI oral or EUCAST breakpoints ranged from 21.2% in South Korea to 63.8% in Singapore. In contrast, susceptibility using CLSI intravenous breakpoints was much higher, at 79% in South Korea and ∼95% or higher elsewhere. Macrolide susceptibility was ∼20% in South Korea and ∼50%-60% elsewhere. Among S. pyogenes isolates (India only), erythromycin susceptibility (∼20%) was lowest of the antibiotics tested. In H. influenzae antibiotic susceptibility was high except for ampicillin, where susceptibility ranged from 16.7% in South Korea to 91.1% in India. South Korea also had a high percentage (18.1%) of β-lactamase-negative ampicillin-resistant isolates. Amoxicillin/clavulanic acid susceptibility for each pathogen (PK/PD high dose) was between 93% and 100% in all countries except for H. influenzae in South Korea (62.5%). Use of EUCAST versus CLSI breakpoints had profound differences for cefaclor, cefuroxime and ofloxacin, with EUCAST showing lower susceptibility. There was considerable variability in susceptibility among countries in the same region. Thus, continued surveillance is necessary to track future changes in antibiotic resistance. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Siemens, Nikolai; Kreikemeyer, Bernd
2013-01-01
Background Ralp3 is a transcriptional regulator present in a serotype specific fashion on the chromosome of the human pathogen Streptococcus pyogenes (group A streptococci, GAS). In serotypes harbouring the ralp3 gene either positive or negative effects on important metabolic and virulence genes involved in colonization and immune evasion in the human host were observed. A previous study revealed that deletion of ralp3 in a GAS M49 serotype significantly attenuated many virulence traits and caused metabolic disadvantages. This leads to two questions: (i) which kind of consequences could Ralp3 expression have in GAS serotypes naturally lacking this gene, and (ii) is Ralp3 actively lost during evolution in these serotypes. Methodology/Principal Findings We investigated the role of Ralp3 in GAS M2 and M6 pathogenesis. Both serotypes lack ralp3 on their chromosome. The heterologous expression of ralp3 in both serotypes resulted in reduced attachment to and internalization into the majority of tested epithelial cells. Both ralp3 expression strains showed a decreased ability to survive in human blood and exclusively M2::ralp3 showed decreased survival in human serum. Both mutants secreted more active SpeB in the supernatant, resulting in a higher activity compared to wild type strains. The respective M2 and M6 wild type strains outcompeted the ralp3 expression strains in direct metabolic competition assays. The phenotypic changes observed in the M2:ralp3 and M6:ralp3 were verified on the transcriptional level. Consistent with the virulence data, tested genes showed transcript level changes in the same direction. Conclusions/Significance Together these data suggest that Ralp3 can take over transcriptional control of virulence genes in serotypes lacking the ralp3 gene. Those serotypes most likely lost Ralp3 during evolution since obviously expression of this gene is disadvantageous for metabolism and pathogenesis. PMID:23424622
Siemens, Nikolai; Kreikemeyer, Bernd
2013-01-01
Ralp3 is a transcriptional regulator present in a serotype specific fashion on the chromosome of the human pathogen Streptococcus pyogenes (group A streptococci, GAS). In serotypes harbouring the ralp3 gene either positive or negative effects on important metabolic and virulence genes involved in colonization and immune evasion in the human host were observed. A previous study revealed that deletion of ralp3 in a GAS M49 serotype significantly attenuated many virulence traits and caused metabolic disadvantages. This leads to two questions: (i) which kind of consequences could Ralp3 expression have in GAS serotypes naturally lacking this gene, and (ii) is Ralp3 actively lost during evolution in these serotypes. We investigated the role of Ralp3 in GAS M2 and M6 pathogenesis. Both serotypes lack ralp3 on their chromosome. The heterologous expression of ralp3 in both serotypes resulted in reduced attachment to and internalization into the majority of tested epithelial cells. Both ralp3 expression strains showed a decreased ability to survive in human blood and exclusively M2::ralp3 showed decreased survival in human serum. Both mutants secreted more active SpeB in the supernatant, resulting in a higher activity compared to wild type strains. The respective M2 and M6 wild type strains outcompeted the ralp3 expression strains in direct metabolic competition assays. The phenotypic changes observed in the M2:ralp3 and M6:ralp3 were verified on the transcriptional level. Consistent with the virulence data, tested genes showed transcript level changes in the same direction. Together these data suggest that Ralp3 can take over transcriptional control of virulence genes in serotypes lacking the ralp3 gene. Those serotypes most likely lost Ralp3 during evolution since obviously expression of this gene is disadvantageous for metabolism and pathogenesis.
Yahav, D; Duskin-Bitan, H; Eliakim-Raz, N; Ben-Zvi, H; Shaked, H; Goldberg, E; Bishara, J
2014-11-01
Necrotizing fasciitis (NF) is a life-threatening soft tissue infection. It is usually caused by Streptococcus pyogenes and other Gram-positive bacteria. Several reports, however, emphasize the importance of Gram-negative rods in this infection. We retrospectively studied all cases of monomicrobial necrotizing fasciitis hospitalized in our center during the years 2002-2012. We compared clinical characteristics and outcomes of patients with Gram-negative versus Gram-positive infection. Forty-five cases were reviewed, 19 caused by Gram-negative organisms, 10 of them Escherichia coli, and 26 caused by Gram-positive organisms, 10 of them S. pyogenes. Compared to Gram-positive infections, patients with Gram-negative infections were more likely to have a baseline malignancy (9/19, 47.4%) or to have undergone recent surgery (4/19, 42.3%). The 30-day mortality was higher among Gram-negative infected patients (8/19, 42.1% vs. 8/26, 30.8%). Creatine phosphokinase (CPK) was elevated in a minority of patients with Gram-negative necrotizing fasciitis, and its absolute value was lower than in Gram-positive necrotizing fasciitis. In our center, 42% of monomicrobial necrotizing fasciitis cases were found to be caused by Gram-negative organisms, mostly E. coli. These infections usually appeared in immunocompromised or postoperative patients, often presented with normal CPK levels, and were associated with high mortality rates.
Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki
2017-08-10
The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.
Tsai, Chia-Ta; Chi, Chih-Yu; Ho, Cheng-Mao; Lin, Po-Chang; Chou, Chia-Hui; Wang, Jen-Hsien; Wang, Jui-Hsing; Lin, Hsiao-Chuan; Tien, Ni; Lin, Kuo-Hsi; Ho, Mao-Wang; Lu, Jang-Jih
2014-12-01
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is increasingly recognized as a human pathogen responsible for invasive infection and streptococcal toxic shock syndrome (STSS). The pathogen possesses virulence genes that resemble those found in Streptococcus pyogenes (GAS). We analyzed the association between these specific toxic genes, clinical presentations, and outcome in patients with SDSE infections. Patients (older than 18 years) with community-acquired invasive bacteremia caused by SDSE bacteremia who were undergoing treatment at China Medical University Hospital from June 2007 to December 2010 were included in this study. Multiplex polymerase chain reaction was performed to identify virulence genes of the SDSE isolates. Demographic data, clinical presentations, and outcome in patients with SDSE infections were reviewed and analyzed. Forty patients with 41 episodes of SDSE bacteremia were reviewed. The median age of the patients with SDSE infection was 69.7 years; 55% were female and 78% had underlying diseases. Malignancy (13, 33%) and diabetes mellitus (13, 33%) were the most common comorbidities. The 30-day mortality rate was 12%. Compared with the survivors, the non-survivors had a higher rate of diabetes mellitus (80% vs. 26%), liver cirrhosis (60% vs.11%), shock (60% vs.17%), STSS (60% vs. 8%), and a high Pittsburgh bacteremia score >4 (40% vs. 6%). Most isolates had scpA, ska, saga, and slo genes, whereas speC, speG, speH, speI, speK, smez, and ssa genes were not detected. speA gene was identified only in one patient with STSS (1/6, 17%). All isolates were susceptible to penicillin, cefotaxime, levofloxacin, moxifloxacin, vancomycin, and linezolid. In invasive SDSE infections, most isolates carry putative virulence genes, such as scpA, ska, saga, and slo. Clinical SDSE isolates in Taiwan remain susceptible to penicillin cefotaxime, and levofloxacin. Copyright © 2013. Published by Elsevier B.V.
Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J.; Gillen, Christine M.; Ghaffar, Khairunnisa Abdul; West, Nicholas P.; Silvestri, Guido; Good, Michael F.; Moyle, Peter M.; Toth, Istvan; Nizet, Victor; Batzloff, Michael R.
2016-01-01
ABSTRACT Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. PMID:27302756
Martín, Virginia; Mediano, Pilar; Del Campo, Rosa; Rodríguez, Juan M; Marín, María
2016-11-01
The genus Streptococcus is 1 of the dominant bacterial groups in human milk, but the taxonomic identification of some species remains difficult. The objective of this study was to investigate the discriminatory ability of different methods to identify streptococcal species in order to perform an assessment of the streptococcal diversity of human milk microbiota as accurately as possible. The identification of 105 streptococcal strains from human milk was performed by 16S rRNA, tuf, and sodA gene sequencing, phylogenetic analysis, and Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry. Streptococcus salivarius, Streptococcus mitis, and Streptococcus parasanguinis were the streptococcal dominant species in the human milk microbiota. Sequencing of housekeeping genes allowed the classification of 96.2% (16S rRNA), 84.8% ( sodA), and 88.6% ( tuf) of the isolates. Phylogenetic analysis showed 3 main streptococcal clusters corresponding with the mitis (73 isolates), salivarius (29), mutans (1)-pyogenic (2) groups, but many of the mitis group isolates (36) could not be assigned to any species. The application of the MALDI-TOF Bruker Biotyper system resulted in the identification of 56 isolates (53.33%) at the species level, but it could not discriminate between S pneumoniae and S mitis isolates, in contrast to the Vitek-MS system. There was a good agreement among the different methods assessed in this study to identify those isolates of the salivarius, mutans, and pyogenic groups, whereas unambiguous discrimination could not be achieved concerning some species of the mitis group ( S mitis, S pneumoniae, S pseudopneumoniae, S oralis).
Systemic cytokine response in moribund mice of streptococcal toxic shock syndrome model.
Saito, Mitsumasa; Kajiwara, Hideko; Iida, Ken-ichiro; Hoshina, Takayuki; Kusuhara, Koichi; Hara, Toshiro; Yoshida, Shin-ichi
2011-02-01
Streptococcus pyogenes causes severe invasive disease in humans, including streptococcal toxic shock syndrome (STSS). We previously reported a mouse model that is similar to human STSS. When mice were infected intramuscularly with 10(7) CFU of S. pyogenes, all of them survived acute phase of infection. After 20 or more days of infection, a number of them died suddenly accompanied by S. pyogenes bacteremia. We call this phenomenon "delayed death". We analyzed the serum cytokine levels of mice with delayed death, and compared them with those of mice who died in the acute phase of intravenous S. pyogenes infection. The serum levels of TNF-α and IFN-γ in mice of delayed death were more than 100 times higher than those in acute death mice. IL-10 and IL-12, which were not detected in acute death, were also significantly higher in mice of delayed death. IL-6 and MCP-1 (CCL-2) were elevated in both groups of mice. It was noteworthy that not only pro-inflammatory cytokines but also anti-inflammatory cytokines were elevated in delayed death. We also found that intravenous TNF-α injection accelerated delayed death, suggesting that an increase of serum TNF-α induced S. pyogenes bacteremia in our mouse model. Copyright © 2010 Elsevier Ltd. All rights reserved.
2012-01-01
Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes, S. pneumoniae and against all the tested fungal strains. In addition, E. odorata oil showed the most cytotoxic effect. However, the best antiviral activity appeared with E. bicostata. Virus pretreatment with E. bicostata essential oil showed better antiviral activity (IC50 = 0.7 mg/ml, SI = 22.8) than cell-pretreatment (IC50 = 4.8 mg/ml, SI = 3.33). The essential oil of E. astringens showed antiviral activity only when incubated with virus prior to cell infection. This activity was dose-dependent and the antiviral activity diminished with the decreasing essential oil concentration. PMID:22742534
Gallach Sanchis, David; Doñate Pérez, Francisco; Jiménez Ortega, Plácido
2014-06-01
Chickenpox is an infectious disease common in children, which in most cases is benign toward the self-limited resolution. There are, however, serious systemic and musculoskeletal complications, especially in patients with immunosuppression. We report a case of multifocal skeletal muscle involvement, as a complication of chickenpox by Streptococcus pyogenes.
Tong, Xin; Li, Tiezheng; Orwenyo, Jared; Toonstra, Christian; Wang, Lai-Xi
2018-04-01
A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liotard, Brigitte; Sygusch, Jurgen
2004-03-01
Tagatose-1,6-bisphosphate aldolase (EC 4.1.2.40) is situated at the branching of the tagatose-6-phosphate and Embden-Meyerhof-Parnas (glycolysis) metabolic pathways, where it catalyzes the reversible cleavage of tagatose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The recombinant protein from Streptococcus pyogenes was overexpressed in Escherichia coli in its native and selenomethionine-derivative forms and purified using ion-exchange and hydrophobic interaction chromatography. Orthorhombic crystals suitable for structural analysis were obtained by the hanging-drop vapour-diffusion method for both isoforms. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 63.7, b = 108.1, c = 238.7 A for the native form and a = 64.1, b = 108.3, c = 239.8 A for the selenomethionine derivative. The asymmetric unit contains four protomers, corresponding to a crystal volume per protein weight (V(M)) of 2.8 A(3) Da(-1) and a solvent content of 56% by volume.
Jaureguiberry, María; Madoz, Laura Vanina; Giuliodori, Mauricio Javier; Wagener, Karen; Prunner, Isabella; Grunert, Tom; Ehling-Schulz, Monika; Drillich, Marc; de la Sota, Rodolfo Luzbel
2016-11-28
Uterine disorders are common postpartum diseases in dairy cows. In practice, uterine treatment is often based on systemic or locally applied antimicrobials with no previous identification of pathogens. Accurate on-farm diagnostics are not available, and routine testing is time-consuming and cost intensive. An accurate method that could simplify the identification of uterine pathogenic bacteria and improve pathogen-specific treatments could be an important advance to practitioners. The objective of the present study was to evaluate whether a database built with uterine bacteria from European dairy cows could be used to identify bacteria from Argentinean cows by Fourier transformed infrared (FTIR) spectroscopy. Uterine samples from 64 multiparous dairy cows with different types of vaginal discharge (VD) were collected between 5 and 60 days postpartum, analyzed by routine bacteriological testing methods and then re-evaluated by FTIR spectroscopy (n = 27). FTIR spectroscopy identified Escherichia coli in 12 out of 14 samples and Trueperella pyogenes in 8 out of 10 samples. The agreement between the two methods was good with a Kappa coefficient of 0.73. In addition, the likelihood for bacterial growth of common uterine pathogens such as E. coli and T. pyogenes tended to increase with VD score. The odds for a positive result to E. coli or T. pyogenes was 1.88 times higher in cows with fetid VD than in herdmates with clear normal VD. We conclude that the presence of E. coli and T. pyogenes in uterine samples from Argentinean dairy cows can be detected with FTIR with the use of a database built with uterine bacteria from European dairy cows. Future studies are needed to determine if FTIR can be used as an alternative to routine bacteriological testing methods.
Highly virulent M1 Streptococcus pyogenes isolates resistant to clindamycin.
Plainvert, C; Martin, C; Loubinoux, J; Touak, G; Dmytruk, N; Collobert, G; Fouet, A; Ploy, M-C; Poyart, C
2015-01-01
Emm1-type group A Streptococcus (GAS), or Streptococcus pyogenes, is mostly responsible for invasive infections such as necrotizing fasciitis (NF) and streptococcal toxic shock syndrome (STSS). The recommended treatment of severe invasive GAS infections is a combination of clindamycin and penicillin. Until 2012, almost all emm1 isolates were susceptible to clindamycin. We aimed to identify the phenotypic and genotypic characteristics of emm1 GAS clone resistant to clindamycin. GAS strains were characterized by emm sequence typing, detection of genes encoding pyrogenic exotoxins or superantigens. Cluster analysis was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antibiotic susceptibility was assessed using disk diffusion and resistance genes were detected by PCR. A total of 1321 GAS invasive isolates were analyzed between January 2011 and December 2012. The overall number of invasive isolates resistant to clindamycin was 52 (3.9%); seven of them were emm1 isolates. All isolates had the same genomic markers: macrolide resistance due to the presence of the erm(B) gene, emm subtype 1.0, the same toxin or superantigen profile, PFGE pattern and sequence type. This is the first description of highly virulent GAS emm1 isolates resistant to clindamycin in France. This article strengthens the need for monitoring the epidemiology of invasive GAS strains as they could lead to changes in treatment guidelines. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ikebe, T; Okuno, R; Sasaki, M; Kanda, Y; Otsuka, H; Kawahara, R; Ohya, H; Suzuki, M; Uchida, K; Nihonmatsu, H; Ohnishi, M
2018-02-01
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multiorgan failure, and high mortality. Although STSS is mainly caused by Streptococcus pyogenes, group G streptococcus identified as S. dysgalactiae subsp. equisimilis (SDSE) causing STSS has also been reported; however, no study has analyzed >100 isolates of SDSE causing STSS. Therefore, we characterized the emm genotype of 173 SDSE isolates obtained from STSS patients in Japan during 2014-2016 and performed antimicrobial susceptibility testing using the broth microdilution method and emm gene typing. The predominant emm genotype was found to be stG6792, followed by stG485, stG245, stG10, stG6, and stG2078. These six genotypes constituted more than 75% of the STSS isolates. The proportion of each emm genotype in STSS isolates correlated with that in invasive isolates previously reported. We found that 16.2% of the isolates showed clindamycin resistance. The proportion of clindamycin-resistant SDSE isolates was significantly higher than that of S. pyogenes isolates. Thus, while treating STSS caused by SDSE, it is necessary to consider the possibility of clindamycin resistance and to ensure judicious use of the drug. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Traverso, F; Sparo, M; Rubio, V; Sáez Nieto, J A
2010-01-01
Streptococcus pyogenes causes a variety of common human diseases, including pharyngitis, scarlet fever and impetigo. Nevertheless, the past decades have witnessed a worldwide resurgence in invasive disease and streptococcal toxic shock syndrome (STSS). The objective of the present study is to evaluate the genetic diversity, virulence gene distribution (spe, sme and ssa genes) and susceptibility pattern of 10 S. pyogenes isolates causing invasive disease and STSS. The isolates were recovered from blood cultures of hospitalized patients at Hospital Santamarina and Nueva Clínica Chacabuco, Tandil, Buenos Aires, Argentina between 12/2000-04/2005. Two pulse field gel electrophoretic patterns predominated. The most frequent one included 5 characteristic isolates of emm1-T1 type, toxin gene profile speA, speB, speF, speG and smeZ. The second pattern included 2 characteristic isolates of emm3-TNT type (speB, speF, speG). The other 3 isolates corresponded to types emm49-TNT (speB, speC, speF, speG), emm75-T25 (speB, speF, speG) and emm83-TNT (speB, speF, speG, ssa, smeZ). All isolates were susceptible to penicillin, cefotaxime, erythromycin, clindamycin, chloramphenicol, tetracycline and rifampicin. The data from the present study demonstrated genetic diversity among the strains. Types emm1 and emm3 were prevalent in invasive disease. The empirical treatment with the combination of penicillin and clindamicin is still valid.
Villaseñor-Sierra, Alberto; Katahira, Eva; Jaramillo-Valdivia, Abril N.; de los Angeles Barajas-García, María; Bryant, Amy; Morfín-Otero, Rayo; Márquez-Díaz, Francisco; Tinoco, Juan Carlos; Sánchez-Corona, José; Stevens, Dennis L.
2012-01-01
Summary Objective To compare the prevalence, phenotypes, and genes responsible for erythromycin resistance among Streptococcus pyogenes isolates from Mexico and the USA. Methods Eighty-nine invasive and 378 non-invasive isolates from Mexico, plus 148 invasive, 21 non-invasive, and five unclassified isolates from the USA were studied. Susceptibilities to penicillin, erythromycin, clindamycin, ceftriaxone, and vancomycin were evaluated according to Clinical and Laboratory Standards Institute (CLSI) standards. Phenotypes of erythromycin resistance were identified by triple disk test, and screening for mefA, ermTR, and ermB genes was carried out by PCR. Results All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Erythromycin resistance was found in 4.9% of Mexican strains and 5.2% of USA strains. Phenotypes in Mexican strains were 95% M and 5% cMLS; in strains from the USA, phenotypes were 33.3% iMLS, 33.3% iMLS-D, and 33.3% M. Erythromycin resistance genes in strains from Mexico were mefA (95%) and ermB (5%); USA strains harbored ermTR (56%), mefA (33%), and none (11%). In Mexico, all erythromycin-resistant strains were non-invasive, whereas 89% of strains from the USA were invasive. Conclusions Erythromycin resistance continues to exist at low levels in both Mexico and the USA, although the genetic mechanisms responsible differ between the two nations. These genetic differences may be related to the invasive character of the S. pyogenes isolated. PMID:22217469
Khani, Afsaneh; Popp, Nicole; Kreikemeyer, Bernd; Patenge, Nadja
2018-01-01
Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.
Chaussee, Michael S.; Sandbulte, Heather R.; Schuneman, Margaret J.; DePaula, Frank P.; Addengast, Leslie A.; Schlenker, Evelyn H.; Huber, Victor C.
2011-01-01
Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with S. pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue to levels that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete. PMID:21440037
Silva-Costa, Catarina; Carriço, Joao A; Ramirez, Mario; Melo-Cristino, Jose
2014-03-01
Several outbreaks of scarlet fever caused by Streptococcus pyogenes were recently reported. Scarlet fever is historically considered a toxin-mediated disease, dependent on the production of the exotoxins SpeA and SpeC, but a strict association between scarlet fever and these exotoxins is not always detected. The aims of this study were to characterize the scarlet fever bacterial isolates recovered from patients in a Lisbon hospital and to identify any distinctive characteristics of such isolates. We characterized a collection of 303 pharyngeal S. pyogenes collected between 2002 and 2008. One-hundred and one were isolated from scarlet fever patients and 202 were associated to a diagnosis of tonsillo-pharyngitis. Isolates were characterized by T and emm typing, pulsed field gel electrophoresis profiling and superantigen gene profiling. The diversity of the scarlet fever isolates was lower than that of the pharyngitis isolates. Specific lineages of emm87, emm4 and emm3 were overrepresented in scarlet fever isolates but only 1 pulsed field gel electrophoresis major lineage was significantly associated with scarlet fever. Multivariate analysis indicated associations of ssa, speA and speC with scarlet fever. In nonoutbreak conditions, scarlet fever is caused by a number of distinct genetic lineages. The lower diversity of these isolates and the association with specific exotoxin genes indicates that some lineages are more prone to cause this presentation than others even in nonoutbreak conditions.
Pidutti, P; Federici, F; Brandi, J; Manna, L; Rizzi, E; Marini, U; Cecconi, D
2018-02-01
The aim of this study was to investigate the antimicrobial potential of proteins secreted by a new strain of Lactobacillus salivarius. The secretome of L. salivarius SGL 03 strain was analysed by gel-assisted fractionation and MS/MS to identify low-molecular-mass proteins. This strategy allowed us to identify 10 secreted proteins. Then, a combination of heterologous expression and agar well diffusion was used to characterize them as to their antimicrobial activity, mechanisms of action and stability. Our findings indicate that L27 and L30 proteins of the 50S ribosomal subunit have antimicrobial activity against Streptococcus pyogenes, Streptococcus uberis and Enterococcus faecium. In addition, both proteins are bactericidal against S. pyogenes and maintain their antimicrobial activity after different protease treatments, at acidic pH, after heat treatment, and if stored in a refrigerated ambient at least at 4°C. The overall results demonstrated that the L27 and L30 ribosomal proteins are of interest as new antimicrobial molecules to prevent the growth of S. pyogenes, S. uberis and E. faecium. Our results provide the first insight into the extra-ribosomal activity of L27 and L30 secreted proteins of L. salivarius. This study demonstrated the capacity of L. salivarius SGL 03 to produce antimicrobial molecules and suggested this strain as a promising probiotic candidate. © 2017 The Society for Applied Microbiology.
Bourne, Roger; Himmelreich, Uwe; Sharma, Ansuiya; Mountford, Carolyn; Sorrell, Tania
2001-01-01
A new fingerprinting technique with the potential for rapid identification of bacteria was developed by combining proton magnetic resonance spectroscopy (1H MRS) with multivariate statistical analysis. This resulted in an objective identification strategy for common clinical isolates belonging to the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, and the Streptococcus milleri group. Duplicate cultures of 104 different isolates were examined one or more times using 1H MRS. A total of 312 cultures were examined. An optimized classifier was developed using a bootstrapping process and a seven-group linear discriminant analysis to provide objective classification of the spectra. Identification of isolates was based on consistent high-probability classification of spectra from duplicate cultures and achieved 92% agreement with conventional methods of identification. Fewer than 1% of isolates were identified incorrectly. Identification of the remaining 7% of isolates was defined as indeterminate. PMID:11474013
Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza
2015-08-05
Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Streptococcus anginosus infections: crossing tissue planes.
Sunwoo, Bernie Y; Miller, Wallace T
2014-10-01
Streptococcus anginosus has long been recognized to cause invasive pyogenic infections. This holds true for thoracic infections where S. anginosus has a propensity for abscess and empyema formation. Early diagnosis is important given the significant morbidity and mortality associated with thoracic S. anginosus infections. Yet, distinguishing thoracic S. anginosus clinically is difficult. We present three cases of thoracic S. anginosus that demonstrated radiographic extension across tissue planes, including the interlobar fissure, diaphragm, and chest wall. Few infectious etiologies are known to cross tissue planes. Accordingly, we propose S. anginosus be considered among the differential diagnosis of potential infectious etiologies causing radiographic extension across tissue planes.
NASA Astrophysics Data System (ADS)
Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan
2017-01-01
Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.
Kim, Hounyoung; Chai, Sun Myung; Ahn, Eun Hee; Lee, Mee-Hwa
2016-03-01
To update information on the clinical and microbiologic characteristics of pediatric vulvovaginitis in Korean prepubertal girls. A total of 120 girls (aged 0 to 9 years) with culture-confirmed pediatric vulvovaginitis, diagnosed between 2009 and 2014, were enrolled in the study. The epidemiologic and microbiologic characteristics, and clinical outcomes were assessed. Patients with sexual precocity, as well as those who were referred for suspected sexual abuse, were excluded. Girls aged 4 to 6 years were at the highest risk of pediatric vulvovaginitis. Seasonal distribution indicated obvious peaks in summer and winter. Of the 120 subjects, specific pathogens were identified in the genital specimens in only 20 cases (16.7%). Streptococcus pyogenes (n=12, 60%) was the leading cause of specific vulvovaginitis. Haemophilus influenzae was isolated in one patient. No cases presented with enteric pathogens, such as Shigella or Yersinia. A history of recent upper respiratory tract infection, swimming, and bubble bath use was reported in 37.5%, 15.8%, and 10.0% of patients, respectively. Recent upper respiratory tract infection was not significantly correlated with the detection of respiratory pathogens in genital specimens (P>0.05). Of 104 patients who underwent perineal hygienic care, 80 (76.9%) showed improvement of symptoms without antibiotic treatment. Furthermore, the efficacy of hygienic care was not significantly different between patients with or without specific pathogens (P>0.05). Specific pathogens were only found in 16.7% of pediatric vulvovaginitis cases. Our results indicate an excellent outcome with hygienic care, irrespective of the presence of specific pathogens.
Kim, Hounyoung; Chai, Sun Myung; Ahn, Eun Hee
2016-01-01
Objective To update information on the clinical and microbiologic characteristics of pediatric vulvovaginitis in Korean prepubertal girls. Methods A total of 120 girls (aged 0 to 9 years) with culture-confirmed pediatric vulvovaginitis, diagnosed between 2009 and 2014, were enrolled in the study. The epidemiologic and microbiologic characteristics, and clinical outcomes were assessed. Patients with sexual precocity, as well as those who were referred for suspected sexual abuse, were excluded. Results Girls aged 4 to 6 years were at the highest risk of pediatric vulvovaginitis. Seasonal distribution indicated obvious peaks in summer and winter. Of the 120 subjects, specific pathogens were identified in the genital specimens in only 20 cases (16.7%). Streptococcus pyogenes (n=12, 60%) was the leading cause of specific vulvovaginitis. Haemophilus influenzae was isolated in one patient. No cases presented with enteric pathogens, such as Shigella or Yersinia. A history of recent upper respiratory tract infection, swimming, and bubble bath use was reported in 37.5%, 15.8%, and 10.0% of patients, respectively. Recent upper respiratory tract infection was not significantly correlated with the detection of respiratory pathogens in genital specimens (P>0.05). Of 104 patients who underwent perineal hygienic care, 80 (76.9%) showed improvement of symptoms without antibiotic treatment. Furthermore, the efficacy of hygienic care was not significantly different between patients with or without specific pathogens (P>0.05). Conclusion Specific pathogens were only found in 16.7% of pediatric vulvovaginitis cases. Our results indicate an excellent outcome with hygienic care, irrespective of the presence of specific pathogens. PMID:27004204
Lin, Chang Sheng-Huei; Chao, Shi-Yu; Hammel, Michal; Nix, Jay C; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying
2014-01-01
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Regulation of virulence by a two-component system in group B streptococcus.
Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R
2005-02-01
Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.
Streptococcus iniae and Streptococcus agalactiae
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...
Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T
2014-03-01
The objective of this study was to estimate the effects of clinical mastitis (CM) cases due to different pathogens on milk yield in Holstein cows. The first 3 CM cases in a cow's lactation were modeled. Eight categories of pathogens were included: Streptococcus spp.; Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level detectable by our microbiological procedures) observed in the culture sample, and cases with contamination (≥ 3 pathogens in the sample); other pathogens that may be treated with antibiotics (included Citrobacter, Corynebacterium bovis, Enterobacter, Enterococcus, Pasteurella, Pseudomonas; "other treatable"); and other pathogens not successfully treated with antibiotics (Trueperella pyogenes, Mycoplasma, Prototheca, yeasts; "other not treatable"). Data from 38,276 lactations in cows from 5 New York State dairy herds, collected from 2003-2004 until 2011, were analyzed. Mixed models with an autoregressive correlation structure (to account for correlation among the repeated measures of milk yield within a lactation) were estimated. Primiparous (lactation 1) and multiparous (lactations 2 and 3) cows were analyzed separately, as the shapes of their lactation curves differed. Primiparas were followed for up to 48 wk of lactation and multiparas for up to 44 wk. Fixed effects included parity, calving season, week of lactation, CM (type, case number, and timing of CM in relation to milk production cycle), and other diseases (milk fever, retained placenta, metritis, ketosis, displaced abomasum). Herd was modeled as a random effect. Clinical mastitis was more common in multiparas than in primiparas. In primiparas, Streptococcus spp. occurred most frequently as the first case. In multiparas, E. coli was most common as the first case. In subsequent cases, CM cases with no specific growth or contamination were most common in both parity groups. The hazard of CM increased with case number. Mastitic cows were generally higher producers before the CM episode than their nonmastitic herdmates. Milk loss varied with pathogen and case number. In primiparas, the greatest losses were associated with E. coli and "other not treatable" organisms. In multiparas, the greatest losses were associated with Klebsiella spp. and "other not treatable" organisms. Milk loss was not associated with occurrence of CNS. The findings may help farmers to make optimal management decisions for their cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial...
2003-01-01
1]. SPEA1 is a major virulence factor released by Streptococcus pyogenes and is associated with scarlet fever and severe invasive infections [1–4...Selander, J.M. Musser, Character- ization and clonal distribution of four alleles of the speA gene en- coding pyrogenic exotoxin A ( scarlet fever toxin
Varicella complicated by scarlet fever.
Yavuz, Taner; Parlak, Ali Haydar; Kocabay, Kenan
2003-10-01
We report a 3-year-old boy with varicella complicated by cellulitis and scarlet fever. He developed a typical rash of scarlet fever following the onset of varicella. Streptococcus pyogenes was isolated from the ulcers due to varicella. The present case suggests that scarlet fever may rarely develop following varicella and should be considered in children with complicated varicella.
Turner, Melissa M.; DePerno, Christopher S.; Conner, Mark C.; Eyler, T. Brian; Lancia, Richard A.; Klaver, Robert W.; Stoskopf, Michael K.
2013-01-01
Conclusion: Our study indicates A. pyogenes may be carried widely among white-tailed deer regardless of sex or age class, but we found no evidence the pathogen is acquired in utero. The distribution of A. pyogenes across regions and concentration in a region with low livestock levels suggests the potential for localized endemicity of the organism and the possibility that deer may serve as a maintenance reservoir for an emerging one health concern.
Chiou, Chien-Shun; Wang, You-Wun; Chen, Pei-Ling; Wang, Wan-Ling; Wu, Ping-Fuai; Wei, Hsiao-Lun
2009-06-01
The number of scarlet fever occurrences reported between 2000 and 2006 fluctuated considerably in central Taiwan and throughout the nation. Isolates of Streptococcus pyogenes were collected from scarlet fever patients in central Taiwan and were characterized by emm sequencing and a standardized pulsed-field gel electrophoresis (PFGE) method. National weekly report data were collected for investigating epidemiological trends. A total of 23 emm types were identified in 1,218 S. pyogenes isolates. The five most prevalent emm types were emm12 (50.4%), emm4 (23.2%), emm1 (16.4%), emm6 (3.8%) and emm22 (3.0%). PFGE analysis with SmaI suggested that, with a few exceptions, strains with a common emm type belonged to the same clone. There were two large emm12 clones, one with DNA resistant to cleavage by SmaI. Each prevalent emm clone had major PFGE strain(s) and many minor strains. Most of the minor strains emerged in the population and disappeared soon after. Even some major strains remained prevalent for only 2-3 years before declining. The large fluctuation of scarlet fever cases between 2000 and 2006 was associated with the shuffling of six prevalent emm clones. In 2003, the dramatic drop in scarlet fever cases in central Taiwan and throughout the whole country was associated with the occurrence of a severe acute respiratory syndrome (SARS) outbreak that occurred between late-February and mid-June in Taiwan. The occurrences of scarlet fever in central Taiwan in 2000-2006 were primarily caused by five emm types, which accounted for 96.8% of the isolates collected. Most of the S. pyogenes strains (as defined by PFGE genotypes) emerged and lasted for only a few years. The fluctuation in the number of scarlet fever cases during the seven years can be primarily attributed to the shuffling of six prevalent emm clones and to the SARS outbreak in 2003.
Gergova, Raina Tzvetanova; Petrova, Guergana; Gergov, Stefan; Minchev, Petko; Mitov, Ivan; Strateva, Tanya
2016-01-01
Background Across the globe, upper respiratory tract infections (URTIs) are the most prevalent cause of morbidity in childhood. Aims The aim of our study is to analyze the incidence and etiology of bacterial URTIs in Bulgarian children, as well as the increasing antimicrobial resistance to the most common etiologic agents over a period of 17 years. Study Design Retrospective study. Methods The study material comprised the data from 4768 patients (aged 1–16 years) with URTI during the period from 1998–2014. Specific microbiology agent detection was performed by culture examination. Susceptibilities to the investigated pathogens were determined by the disk diffusion method and minimal inhibitory concentration according to the criteria of the Clinical and Laboratory Standards Institute (CLSI). Polymerase chain reaction was used to detect the presence of β-lactam resistance genes. Results We identified the following as the most common URTI bacterial pathogens: Streptococcus pneumoniae (40.94%), Streptococcus pyogenes (34.16%), Haemophilus influenzae (44.23%), Moraxella catarrhalis (39.19%) and Staphylococcus aureus (23.88%). In more than 70% of cases, a polymicrobial etiology was found. The most commonly affected individuals were pre-school-aged children, which accounted for more than 36% of all patients. During the study period, a dramatic increase in resistance to antibiotic agents was observed. The most frequent types of resistance were the enzymatic inactivation of penicillins and cephalosporins (close to 100% in staphylococci and moraxellae) and inducible macrolide-lincozamide resistance (about 20% of Gram-positive cocci). Conclusion Due to mandatory immunization against pneumococci and H. influenzae in Bulgaria and the vast expanding resistance to the most popular antimicrobial agents changes in the etiology of URTI have recently been noted. Regular analysis of this etiological dynamic and the antimicrobial resistance of respiratory pathogens is important for choosing the correct therapy and successful treatment. PMID:27994923
Spittel, Susanne; Hoedemaker, Martina
2012-01-01
In the following field study, the commercial PathoProof Mastitis PCR Assay, a real-time PCR for identifying eleven mastitis pathogens and the staphylococcal beta-lactamase gene, was compared with conventional bacterial culture. For this purpose, 681 udder quarter samples from 173 clinically healthy cows with varying somatic cell count from four dairy herds in the region of Osnabrück, Lower Saxony, Germany, were collected between July 2010 and February 2011 and subjected to PCR and bacterial culture. The frequency of positive pathogen signals was markedly higher with PCR compared with culture (70.6% vs. 32.2%). This was accompanied by a substantial higher percentage of multiple pathogen identifications and a lower percentage of single identifications in the PCR compared with bacterial culture. Using bacterial culture as gold standard, moderate to high sensitivities (76.9-100%) and specificities (63.3-98.7%) were calculated for six out of seven pathogens with sufficient detection numbers. For Enterococcus spp, the sensitivity was only 9.1%. When the PCR results of pooled udder quarter samples of the 173 cows were compared with the single udder quarter samples, in 72% of the cases, major pathogen DNA was either not found in both types of samples, or in the case of a positive pool sample, the respective pathogens were found in at least one udder quarter sample. With both methods, the most frequently detected mastitis pathogens were coryneform bacteria (PCR: Corynebacterium bovis), coagulase-negative staphylococci (CNS) and Staphylococcus (S.) aureus, followed by Arcanobacterium pyogenes/Peptoniphilus indolicus with PCR, and then with both methods, Streptococcus uberis. The staphylococcal beta-lactamase gene was found in 27.7% of the S. aureus and in 37.0% of the CNS identifications.
Molla, Yalew; Nedi, Teshome; Tadesse, Getachew; Alemayehu, Haile; Shibeshi, Workineh
2016-08-15
Medicinal plants play great roles in the treatment of various infectious diseases. Rhamnus prinoides is one of the medicinal plants used traditionally for treatment of bacterial diseases. The antibacterial activity of the crude extract of the plant had been shown by a previous study, but this study was undertaken to further the claimed medicinal use of the plant by screening its solvent fractions for the said activity so that it could serve as a basis for subsequent studies. The solvent fractions of the plant were obtained by successive soxhlet extraction with solvents of increasing polarity, with chloroform and methanol, followed by maceration of the marc of methanol fraction with water. The antibacterial activity of the solvent fractions was evaluated on seven bacterial species using agar well diffusion method at different concentrations (78 mg/well, 39 mg/well and 19.5 mg/well) in the presence of positive and negative controls. The minimum inhibitory concentration of the solvent fractions was determined by micro-broth dilution method using resazurin as indicator. Methanol and chloroform fractions revealed antibacterial activities against the growth of test bacterial strains with varying antibacterial spectrum and the susceptible bacterial species were Staphylococcus aureus, Streptococcus pyogen, Streptococcus pneumoniae and Salmonella typhi. The average minimum inhibitory concentration value of the methanol and chloroform fractions ranged from 8.13 mg/ml to 32.5 mg/ml and from 8.13 mg/ml to 16.25 mg/ml, respectively. The methanol and chloroform fractions demonstrated significant antibacterial activities against the growth of pathogenic bacteria but the aqueous fraction did not reveal antibacterial activity against any of the test bacteria.
Valdes, Kayla M.; Sundar, Ganesh S.; Vega, Luis A.; Belew, Ashton T.; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M.
2016-01-01
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the fru locus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fru operon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-d-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. PMID:26787724
Valdes, Kayla M; Sundar, Ganesh S; Vega, Luis A; Belew, Ashton T; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M; Le Breton, Yoann; McIver, Kevin S
2016-04-01
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Brook, Itzhak; Foote, Perry A; Hausfeld, Jeffrey N
2005-11-01
The growing resistance of Streptococcus pneumoniae to penicillin can be overcome by increasing the dose of the penicillin administered. This generated the recommendation that the adult dose of amoxicillin for the treatment of acute maxillary sinusitis (AMS) be increased from 1.5 g/day to 4.0 g/day. The objective of this study was to investigate whether the higher dose of amoxicillin is more effective than the previously recommended dose in eradicating S. pneumoniae from the nasopharynx of patients who present with AMS. Nasopharyngeal cultures obtained from 58 patients with AMS were studied: 30 received amoxicillin 1.5 g/day given in divided doses three times a day for 10 days (amoxicillin/clavulanic acid 4:1 formulation) and 28 were treated with amoxicillin 4.0 g/day given in divided doses twice a day for 10 days (amoxicillin/clavulanic acid 16:1 formulation). Seventy-one potentially pathogenic organisms were isolated: S. pneumoniae (27 isolates), Haemophilus influenzae non-type b (25), Moraxella catarrhalis (5), Streptococcus pyogenes (5) and Staphylococcus aureus (9). The number of S. pneumoniae isolates in the 1.5 g/day group was reduced from 14 to 9 (2 intermediately resistant and 3 highly resistant). In contrast, the number of S. pneumoniae isolates in the 4.0 g/day group was reduced from 13 to 2 (1 highly resistant) (P<0.05). No differences were noted in the eradication rate of other groups of isolates, which were all susceptible to amoxicillin/clavulanic acid. These data illustrate the superiority of 4.0 g/day amoxicillin/clavulanic acid compared with 1.5 g/day amoxicillin/clavulanic acid in the eradication of S. pneumoniae from the nasopharynx.
Ebner, Florian; Ivin, Masa; Kratochvill, Franz; Gratz, Nina; Villunger, Andreas; Sixt, Michael
2017-01-01
Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections. PMID:28504646
Endophytic Diaporthe sp. LG23 Produces a Potent Antibacterial Tetracyclic Triterpenoid.
Li, Gang; Kusari, Souvik; Kusari, Parijat; Kayser, Oliver; Spiteller, Michael
2015-08-28
A new lanostanoid, 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (1), characterized by the presence of an aromatic B ring and hydroxylated at C-1, C-3, C-12, and C-22, was isolated from an endophytic fungus, Diaporthe sp. LG23, inhabiting leaves of the Chinese medicinal plant Mahonia fortunei. Six biosynthetically related known steroids were also isolated in parallel. Their structures were confirmed on the basis of detailed spectroscopic analysis in conjunction with the published data. Compound 1, an unusual fungus-derived 19-nor-lanostane tetracyclic triterpenoid with an aromatic B-ring system, exhibited pronounced antibacterial efficacy against both Gram-positive and -negative bacteria, especially the clinical isolates of Streptococcus pyogenes and Pseudomonas aeruginosa as well as a human pathogenic strain of Staphylococcus aureus. Our results reveal the potential of endophytes not only in conferring host fitness but also in contributing toward traditional host plant medicines.
Störmer, M; Arroyo, A; Brachert, J; Carrero, H; Devine, D; Epstein, J S; Gabriel, C; Gelber, C; Goodrich, R; Hanschmann, K-M; Heath, D G; Jacobs, M R; Keil, S; de Korte, D; Lambrecht, B; Lee, C-K; Marcelis, J; Marschner, S; McDonald, C; McGuane, S; McKee, M; Müller, T H; Muthivhi, T; Pettersson, A; Radziwon, P; Ramirez-Arcos, S; Reesink, H W; Rojo, J; Rood, I; Schmidt, M; Schneider, C K; Seifried, E; Sicker, U; Wendel, S; Wood, E M; Yomtovian, R A; Montag, T
2012-01-01
Bacterial contamination of platelet concentrates (PCs) still remains a significant problem in transfusion with potential important clinical consequences, including death. The International Society of Blood Transfusion Working Party on Transfusion-Transmitted Infectious Diseases, Subgroup on Bacteria, organised an international study on Transfusion-Relevant Bacteria References to be used as a tool for development, validation and comparison of both bacterial screening and pathogen reduction methods. Four Bacteria References (Staphylococcus epidermidis PEI-B-06, Streptococcus pyogenes PEI-B-20, Klebsiella pneumoniae PEI-B-08 and Escherichia coli PEI-B-19) were selected regarding their ability to proliferate to high counts in PCs and distributed anonymised to 14 laboratories in 10 countries for identification, enumeration and bacterial proliferation in PCs after low spiking (0·3 and 0·03 CFU/ml), to simulate contamination occurring during blood donation. Bacteria References were correctly identified in 98% of all 52 identifications. S. pyogenes and E. coli grew in PCs in 11 out of 12 laboratories, and K. pneumoniae and S. epidermidis replicated in all participating laboratories. The results of bacterial counts were very consistent between laboratories: the 95% confidence intervals were for S. epidermidis: 1·19-1·32 × 10(7) CFU/ml, S. pyogenes: 0·58-0·69 × 10(7) CFU/ml, K. pneumoniae: 18·71-20·26 × 10(7) CFU/ml and E. coli: 1·78-2·10 × 10(7) CFU/ml. The study was undertaken as a proof of principle with the aim to demonstrate (i) the quality, stability and suitability of the bacterial strains for low-titre spiking of blood components, (ii) the property of donor-independent proliferation in PCs, and (iii) their suitability for worldwide shipping of deep frozen, blinded pathogenic bacteria. These aims were successfully fulfilled. The WHO Expert Committee Biological Standardisation has approved the adoption of these four bacteria strains as the first Repository for Transfusion-Relevant Bacteria Reference Strains and, additionally, endorsed as a project the addition of six further bacteria strain preparations suitable for control of platelet contamination as the next step of enlargement of the repository. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.
Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin.
Shen, Yang; Köller, Thomas; Kreikemeyer, Bernd; Nelson, Daniel C
2013-08-01
Streptococcus pyogenes, or Group A streptococcus (GAS), has a propensity to colonize human tissues and form biofilms. Significantly, these biofilms are a contributing mechanism of antibiotic treatment failure in streptococcal disease. In this study, we evaluate a streptococcal-specific bacteriophage-encoded endolysin (PlyC), which is known to lyse planktonic streptococci, on both static and dynamic streptococcal biofilms. PlyC was benchmarked against antibiotics for MIC, MBC and minimum biofilm eradication concentration (MBEC). A biomass eradication assay based on crystal violet staining of the biofilm matrix was also used to quantify the anti-biofilm properties of PlyC. Finally, conventional fluorescence microscopy and laser scanning confocal microscopy were used to study the effects of PlyC on static and dynamic biofilms of GAS. PlyC and antibiotics had similar MIC (range 0.02-0.08 mg/L) and MBC (range 0.02-1.25 mg/L) values on planktonic GAS. However, when GAS grew in biofilms, the MBEC values for antibiotics rose to clinically resistant values (≥400 mg/L) whereas PlyC had MBEC values two orders of magnitude lower by mass and four orders of magnitude lower by molarity than the conventional antibiotics. Laser scanning confocal microscopy revealed that PlyC destroys the biofilm as it diffuses through the matrix in a time-dependent fashion. Our findings indicate that while streptococcal cells within a biofilm rapidly become refractory to traditional antibiotics, the biofilm matrix is readily destroyed by the lytic actions of PlyC.
Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.
Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada
2012-02-01
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.
Ohya, Hiroaki; Mori, Nobuaki; Hayashi, Tetsuro; Minami, Shujiro; Higuchi, Akiko; Takahashi, Takashi
2017-06-01
Descending mediastinitis caused by Streptococcus pyogenes (group A streptococcus, GAS) is rare among cases of invasive GAS infection. In this report, we describe a case of a cervical abscess and secondary descending mediastinitis in a previously healthy 39-year-old Japanese man. The patient presented with a 2-week history of a sore throat, and subsequently developed an abscess and descending mediastinitis. We treated the cervical abscess using ampicillin/sulbactam and drainage, and GAS was subsequently isolated in two blood cultures from the patient's admission. Microbiological analyses revealed that the isolate harbored genotype emm25 and sequence type (ST) 660. This strain was susceptible to erythromycin (minimum inhibitory concentration [MIC]: ≤0.12 μg/mL), resistant to minocycline (MIC: >4 μg/mL), and possessed the tet(M) determinant. Although we have reviewed the literature regarding the clinical and microbiological characteristics of descending mediastinitis cause by GAS, little is known regarding epidemiological and clinical characteristics of emm25/ST660 GAS. Furthermore, to best of our knowledge, this is the first reported case of descending mediastinitis caused by emm25/ST660 GAS. Therefore, physicians should be aware of case with a cervical abscess and secondary descending mediastinitis caused by GAS infection, even if the patient is immunocompetent. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Villaseñor-Sierra, Alberto; Katahira, Eva; Jaramillo-Valdivia, Abril N; Barajas-García, María de los Angeles; Bryant, Amy; Morfín-Otero, Rayo; Márquez-Díaz, Francisco; Tinoco, Juan Carlos; Sánchez-Corona, José; Stevens, Dennis L
2012-03-01
To compare the prevalence, phenotypes, and genes responsible for erythromycin resistance among Streptococcus pyogenes isolates from Mexico and the USA. Eighty-nine invasive and 378 non-invasive isolates from Mexico, plus 148 invasive, 21 non-invasive, and five unclassified isolates from the USA were studied. Susceptibilities to penicillin, erythromycin, clindamycin, ceftriaxone, and vancomycin were evaluated according to Clinical and Laboratory Standards Institute (CLSI) standards. Phenotypes of erythromycin resistance were identified by triple disk test, and screening for mefA, ermTR, and ermB genes was carried out by PCR. All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Erythromycin resistance was found in 4.9% of Mexican strains and 5.2% of USA strains. Phenotypes in Mexican strains were 95% M and 5% cMLS; in strains from the USA, phenotypes were 33.3% iMLS, 33.3% iMLS-D, and 33.3% M. Erythromycin resistance genes in strains from Mexico were mefA (95%) and ermB (5%); USA strains harbored ermTR (56%), mefA (33%), and none (11%). In Mexico, all erythromycin-resistant strains were non-invasive, whereas 89% of strains from the USA were invasive. Erythromycin resistance continues to exist at low levels in both Mexico and the USA, although the genetic mechanisms responsible differ between the two nations. These genetic differences may be related to the invasive character of the S. pyogenes isolated. Copyright © 2011 International Society for Infectious Diseases. All rights reserved.
Hartas, J; Sriprakash, K S
1999-01-01
Streptococcus pyogenes infection and acute glomerulonephritis (AGN), a non-suppurtave disease, are endemic in the Aboriginal people of the Northern Territory (NT) of Australia. Vir typing, a locus-specific polymerase chain reaction (PCR)-based typing method [Gardiner, Hartas, Currie et al PCR Meth Appl 1995 4: 288-93], has revealed high divergence among the NT streptococcal strains. A total of 76 Vir types (VTs) representing about 95% of the NT isolates were screened for sic, a gene for streptococcal inhibitor of complement function, by PCR and hybridization. This revealed that seven VTs are positive for sic, and there are two classes of the gene: those closely related to sic (CRS) originally described by Akesson, Sjoholm & Bjorck [ J. Biol. Chem. 1996 271: 1081-8] and those distantly related to sic (DRS). Among the CRS-positive VTs, VT16, VT78 and VT91 have emm (gene for M protein) encoding type 1 M protein or related specificity, and VT8 and VT101 contain emm57 or related alleles. Chromosomal location of CRS in emm57 is different from that in emm1 or related strains. The DRS-positive VT18 and VT52 contained emm55 and emm12 respectively, which are phylogenetically related. Strains of S. pyogenes types 1, 12, 55 and 57 are known to be associated with AGN. Restricted distribution of CRS and DRS among the M types historically associated with AGN suggests that these sic alleles may have a role in AGN pathogenesis. Copyright 1999 Academic Press.
Molecular biology of Group A Streptococcus and its implications in vaccine strategies.
Brahmadathan, N K
2017-01-01
Infections due to Streptococcus pyogenes and their complications are a problem of major concern in many countries, including India. Primary prophylaxis with benzathine penicillin is the key to control and prevent sequelae such as acute rheumatic fever and rheumatic heart disease (RF/RHD) or post-streptococcal glomerulonephritis (PSGN). Non-compliance to prophylaxis due to fear of injection and anaphylaxis is major issues in RF/RHD control in India and leads to continued high prevalence of infection and post-streptococcal sequelae. Differing reports on the efficacy of two weekly, three weekly or monthly injections raise questions on the actual dosages to be administered. Availability of more effective antibiotics with better dosages has replaced the use of penicillin; hence, companies are reluctant to manufacture penicillin preparations in India. It is in this context that a concept of a Group A streptococci vaccine is looked at and whether or not a globally designed vaccine will be useful in the Indian context. Modern molecular techniques and genomic analysis of S. pyogenes have identified many molecules as vaccine candidates among which the M-protein has attracted the most attention. High diversity of M (emm) types in endemic regions raises questions about the efficacy of such a vaccine. A recent 30-valent M-protein-based vaccine that elicits antibodies to homologous as well as non-vaccine M types looks promising. This review will discuss the genomics of S. pyogenes, the various candidate vaccine molecules and highlight their efficacy in the Indian context where control of post-streptococcal sequelae remains a challenge.
Group A beta-hemolytic streptococcal hemorrhagic colitis complicated with pharyngitis and impetigo.
Isozaki, Atsushi; Matsubara, Keiko; Yui, Takako; Kobayashi, Kenji; Kawano, Yutaka
2007-12-01
A 6-year-old boy with bloody diarrhea was diagnosed with group A beta-hemolytic streptococcal hemorrhagic colitis. Complications included pharyngitis and impetigo, both caused by the same organisms. In addition to being isolated from stools, Streptococcus pyogenes was also isolated from skin lesions. Furthermore, a rapid group A streptococcal antigen test by throat swab was also positive. Hemorrhagic colitis caused by group A beta-hemolytic streptococcus is extremely rare, and much rarer are its complications with pharyngitis and impetigo. Compared with findings in reports of group A beta-hemolytic streptococcal proctitis and perianal and perineal diseases, this case suggests a distinct pathogenesis for hemorrhagic colitis.
Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.
Turner, Claire E; Pyzio, Marta; Song, Bonita; Lamagni, Theresa; Meltzer, Margie; Chow, J Yimmy; Efstratiou, Androulla; Curtis, Sally; Sriskandan, Shiranee
2016-06-01
Scarlet fever notifications surged across the United Kingdom in spring 2014. Molecular epidemiologic investigation of Streptococcus pyogenes infections in North-West London highlighted increased emm4 and emm3 infections coincident with the upsurge. Unlike outbreaks in other countries, antimicrobial resistance was uncommon, highlighting an urgent need to better understand the drivers of scarlet fever activity.
USDA-ARS?s Scientific Manuscript database
The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...
Ferro, Valerie A.; Bradbury, Fiona; Cameron, Pamela; Shakir, Eisin; Rahman, Sabita R.; Stimson, William H.
2003-01-01
Aloe barbadensis Miller (or Aloe vera) has widespread use in health products, and despite numerous reports on the whole plant, little work has been performed on the inner gel, which has been used extensively in these products. This report describes the in vitro susceptibilities of two bacteria to this component. PMID:12604556
Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes
Makthal, Nishanth; Gavagan, Maire; Do, Hackwon; ...
2016-02-19
Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less
Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makthal, Nishanth; Gavagan, Maire; Do, Hackwon
Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Páez, Gonzalo E.; Wolan, Dennis W.
2012-09-05
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50}more » values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.« less
Davies, Mark R; Holden, Matthew T; Coupland, Paul; Chen, Jonathan H K; Venturini, Carola; Barnett, Timothy C; Zakour, Nouri L Ben; Tse, Herman; Dougan, Gordon; Yuen, Kwok-Yung; Walker, Mark J
2015-01-01
A scarlet fever outbreak began in mainland China and Hong Kong in 2011 (refs. 1-6). Macrolide- and tetracycline-resistant Streptococcus pyogenes emm12 isolates represent the majority of clinical cases. Recently, we identified two mobile genetic elements that were closely associated with emm12 outbreak isolates: the integrative and conjugative element ICE-emm12, encoding genes for tetracycline and macrolide resistance, and prophage ΦHKU.vir, encoding the superantigens SSA and SpeC, as well as the DNase Spd1 (ref. 4). Here we sequenced the genomes of 141 emm12 isolates, including 132 isolated in Hong Kong between 2005 and 2011. We found that the introduction of several ICE-emm12 variants, ΦHKU.vir and a new prophage, ΦHKU.ssa, occurred in three distinct emm12 lineages late in the twentieth century. Acquisition of ssa and transposable elements encoding multidrug resistance genes triggered the expansion of scarlet fever-associated emm12 lineages in Hong Kong. The occurrence of multidrug-resistant ssa-harboring scarlet fever strains should prompt heightened surveillance within China and abroad for the dissemination of these mobile genetic elements.
Iwamoto, Mitsuhiro; Sekiguchi, Yukiko; Nakamura, Kensuke; Kawaguchi, Yoshirou; Honda, Takeshi; Hasegawa, Jun
2018-01-01
The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S) and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ.
Morales-Covarrubias, Maria Soledad; Del Carmen Bolan-Mejía, María; Vela Alonso, Ana Isabel; Fernandez-Garayzabal, Jose F; Gomez-Gil, Bruno
2018-05-01
Strain CAIM 1838 T , isolated from the hepatopancreas of a cultured diseased Pacific white shrimp (Penaeus vannamei), was subjected to characterization by a polyphasic taxonomic approach. On the basis of 16S rRNA gene sequence analysis, strain CAIM 1838 T was most closely related to Streptococcus bovimastitidis 99.3 % and to other species of the Pyogenes clade of Streptococcus with lower similarity values. Average nucleotide identity values and the genome-to-genome distance of strain CAIM 1838 T , as compared with the type strains, confirmed the separate species status with closely related species of the genus Streptococcus and were all below the thresholds to delimit a species, 93.1 and 49.4 %, respectively. The DNA G+C content was 38.1 mol%. Differential phylogenetic distinctiveness together with phenotypic properties obtained in this study revealed that strain CAIM 1838 T could be differentiated from the closely related species. Based on these results it is proposed that strain CAIM 1838 T represents a novel species in the genus Streptococcus, for which the name Streptococcus penaeicida sp. nov is proposed (type strain, CAIM 1838 T =CECT 8596 T ,=DSM26545 T ), is proposed.
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia
NASA Astrophysics Data System (ADS)
Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET
2018-01-01
Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.
Burton, Jeremy P.; Wescombe, Philip A.; Macklaim, Jean M.; Chai, Melissa H. C.; MacDonald, Kyle; Hale, John D. F.; Tagg, John; Reid, Gregor; Gloor, Gregory B.; Cadieux, Peter A.
2013-01-01
Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18’s persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer. PMID:23785463
Burton, Jeremy P; Wescombe, Philip A; Macklaim, Jean M; Chai, Melissa H C; Macdonald, Kyle; Hale, John D F; Tagg, John; Reid, Gregor; Gloor, Gregory B; Cadieux, Peter A
2013-01-01
Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18's persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer.
Bu, Ri-E; Wang, Jin-Liang; Wu, Jin-Hua; Xilin, Gao-Wa; Chen, Jin-Long; Wang, Hua
2017-03-01
The aim of this study was to establish a rapid and accurate method for the detection of the Streptococcus agalactiae antibody (SA-Ab) to determine the presence of the bovine mastitis (BM)-causative pathogen. The multi-subunit fusion protein rSip-Pgk-FbsA was prokaryotically expressed and purified. The triple activities of the membrane surface-associated proteins Sip, phosphoglycerate kinase (Pgk), and fibronectin (FbsA) were used as the diagnostic antigens to establish an indirect enzyme-linked immunosorbent assay (ELISA) method for the detection of SA-Ab in BM. The optimal antigen coating concentration was 2 μg/mL, the optimal serum dilution was 1:160, and the optimal dilution of the enzyme-labeled secondary antibody was 1:6000. The sensitivity, specificity, and repeatability tests showed that the method established in this study had no cross-reaction with antibodies to Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis in the sera. The results of the sensitivity test showed that a positive result could be obtained even if the serum dilution reached 1:12,800, indicating the high sensitivity and good repeatability of the method. The positive coincidence rate of this method was 98.6%, which is higher than that of previous tests established with the Sip or Pgk mono-antigen fusion protein, respectively, demonstrating the relatively higher sensitivity of this newly established method. The detection rate for 389 clinical samples was 46.53%. The indirect ELISA method established in this study could provide a more accurate and reliable serological method for the rapid detection of S. agalactiae in cases of BM.
Traverso, Fernando; Blanco, Alejandra; Villalón, Pilar; Beratz, Noelia; Sáez Nieto, Juan Antonio; Lopardo, Horacio
Streptococcus dysgalactiae subsp. equisimilis (SDSE) has virulence factors similar to those of Streptococcus pyogenes. Therefore, it causes pharyngitis and severe infections indistinguishable from those caused by the classic pathogen. The objectives of this study were: to know the prevalence of SDSE invasive infections in Argentina, to study the genetic diversity, to determine the presence of virulence genes, to study antibiotic susceptibility and to detect antibiotic resistance genes. Conventional methods of identification were used. Antibiotic susceptibility was determined by the disk diffusion and the agar dilution methods and the E-test. Twenty eight centers from 16 Argentinean cities participated in the study. Twenty three isolates (16 group G and 7 group C) were obtained between July 1 2011 and June 30 2012. Two adult patients died (8.7%). Most of the isolates were recovered from blood (60.9%). All isolates carried speJ and ssa genes. stG62647, stG653 and stG840 were the most frequent emm types. Nineteen different PFGE patterns were detected. All isolates were susceptible to penicillin and levofloxacin, 6 (26.1%) showed resistance or reduced susceptibility to erythromycin [1 mef(A), 3 erm(TR), 1 mef(A)+erm(TR) and 1 erm(TR)+erm(B)] and 7 (30.4%) were resistant or exhibited reduced susceptibility to tetracycline [2 tet(M), 5 tet(M)+tet(O)]. The prevalence in Argentina was of at least 23 invasive infections by SDSE. A wide genetic diversity was observed. All isolates carried speJ and ssa genes. Similarly to other studies, macrolide resistance (26.1%) was mainly associated to the MLS B phenotype. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014
Turner, Claire E.; Pyzio, Marta; Song, Bonita; Lamagni, Theresa; Meltzer, Margie; Chow, J. Yimmy; Efstratiou, Androulla; Curtis, Sally
2016-01-01
Scarlet fever notifications surged across the United Kingdom in spring 2014. Molecular epidemiologic investigation of Streptococcus pyogenes infections in North-West London highlighted increased emm4 and emm3 infections coincident with the upsurge. Unlike outbreaks in other countries, antimicrobial resistance was uncommon, highlighting an urgent need to better understand the drivers of scarlet fever activity. PMID:27192393
[M protein gene (emm) typing of Streptococcus pyogenes].
Katsukawa, Chihiro; Tamaru, Aki; Morikawa, Yoshiro; Oda, Kimiko
2002-04-01
T-agglutination typing and M protein gene (emm) typing were determined on the isolates of Streptococcus pyogenes taken from patients in Osaka and neighboring districts during 1996-2000. A total of 701 isolates were classified to 15 kinds of T types and type untypable. In all isolates, T 12 was revealed as the most dominant serotype, followed by T1, T4 and T2. The isolation rates of T 12 strains were high through these five years, and these of T1 or T4 strains formed epidemic waves showing the peak to be from 1997 to 1999 and 1998 to 2000, respectively. These of T2 strains were high in 1996 and 1997 and decreased rapidly. In 2000 T2 strain has not been detected. A total of 304 isolates were examined for emm typing. We are able to determine the emm type of all isolates including T-untypable (UT) isolates and to classify 21 kinds of emm types. T1, T2, T4, T6, T9, T11, T12, T22, T25 strains exhibited one T-type and emm type pattern association respectively such as T1/emm1, T2/emm2, T4/emm4, T6/emm6, T9/emm9, T11/emm11, T12/emm12, T22/emm22, T25/emm75. Whereas T13 strains had varied T/emm pattern associations such as T13/emm73, T13/emm77, T13/emm101. Similarly, T28, TB3264, UT had varied T/emm pattern associations. emm28 and emm87 were seen in T28, emm89 and emm94 in TB3264, emm2, emm12, emm22, emm58, emm75, emm77 and emm112 in UT. The emm typing method did not require many kinds of M typing antisera, and were successful by using the two highly conserved primers to amplify the emm gene and direct sequencing. Therefore, this method was a useful tool for typing Streptococcus pyogenes isolates.
Teloni, R; von Hunolstein, C; Mariotti, S; Donati, S; Orefici, G; Nisini, R
2004-05-01
Type-specific antibodies against M protein are critical for human protection as they enhance phagocytosis and are protective. An ideal vaccine for the protection against Streptococcus pyogenes would warrant mucosal immunity, but mucosally administered M-protein has been shown to be poorly immunogenic in animals. We used a recombinant M type 6 protein to immunize mice in the presence of synthetic oligodeoxynucleotides containing CpG motifs (immunostimulatory sequences: ISS) or cholera toxin (CT) to explore its possible usage in a mucosal vaccine. Mice were immunized by intranasal (in) or intradermal (id) administration with four doses at weekly intervals of M6-protein (10 microg/mouse) with or without adjuvant (ISS, 10 microg/mouse or CT, 0,5 microg/mouse). M6 specific antibodies were measured by enzyme linked immunosorbent assay using class and subclass specific monoclonal antibodies. The use of ISS induced an impressive anti M-protein serum IgG response but when id administered was not detectable in the absence of adjuvant. When used in, M-protein in the presence of both ISS and CT induced anti M-protein IgA in the bronchoalveolar lavage, as well as specific IgG in the serum. IgG were able to react with serotype M6 strains of S. pyogenes. The level of antibodies obtained by immunizing mice in with M-protein and CT was higher in comparison to M-protein and ISS. The analysis of anti-M protein specific IgG subclasses showed high levels of IgG1, IgG2a and IgG2b, and low levels of IgG3 when ISS were used as adjuvant. Thus, in the presence of ISS, the ratio IgG2a/IgG1 and (IgG2a+IgG3)/IgG1 >1 indicated a type 1-like response obtained both in mucosally or systemically vaccinated mice. Our study offers a reproducible model of anti-M protein vaccination that could be applied to test new antigenic formulations to induce an anti-group A Streptococcus (GAS) vaccination suitable for protection against the different diseases caused by this bacterium.
Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota
Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P
1999-01-01
The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188
NASA Astrophysics Data System (ADS)
Emara, Adel A. A.
2010-09-01
The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
[Postoperative necrotizing fasciitis: a rare and fatal complication].
Ghezala, Hassen Ben; Feriani, Najla
2016-01-01
Postoperative parietal complications can be exceptionally severe and serious threatening vital prognosis. Necrotizing fasciitis is a rare infection of the skin and deep subcutaneous tissues, spreading along fascia and adipose tissue. It is mainly caused by group A streptococcus (streptococcus pyogenes) but also by other bacteria such as Vibrio vulnificus, Clostridium perfringens or Bacteroides fragilis. Necrotizing fasciitis is a real surgical and medical emergency. We report, in this study, a very rare case of abdominal parietal gangrene occurring in a 75-year-old woman on the fifth day after surgery for an ovarian cyst. Evolution was marked by occurrence of a refractory septic shock with a rapidly fatal course on the third day of management.
Plainvert, Céline; Longo, Magalie; Seringe, Elise; Saintpierre, Benjamin; Sauvage, Elisabeth; Ma, Laurence; Beghain, Johann; Dmytruk, Nicolas; Collobert, Gislène; Hernandez, Eric; Manuel, Christian; Astagneau, Pascal; Glaser, Philippe; Ariey, Frédéric; Poyart, Claire; Fouet, Agnès
2018-06-23
An outbreak of nosocomial infections due to Streptococcus pyogenes (Group A Streptococcus; GAS) occurred in a post-surgery oncology unit and concerned more than 60 patients and lasted 20 months despite enhanced infection control and prophylaxis measures. All GAS strains were characterized (emm genotype, toxin gene profile and pulse-field gel electrophoresis subtype). Selected strains were sequenced and phylogenetic relationship established. Capacity to form biofilm and interaction with human pulmonary epithelial cells and macrophages were determined. Twenty-six GAS strains responsible for invasive infections (II) and 57 for non-II or colonization were isolated from patients (n = 66) or healthcare workers (n = 13). Seventy strains shared the same molecular markers and 69 the same PFGE pattern; 56 were sequenced. They all belonged to the emerging emm89 clade 3; all but 1 were clonal. Whole genome sequencing identified 43 genetic profiles with sporadic mutations in regulatory genes and acquired mutations in 2 structural genes. Except for two regulatory gene mutants, all strains tested had the same biofilm formation capacity and displayed similar adherence and invasion of pulmonary epithelial cells and phagocytosis and survival in human macrophages. This large outbreak of GAS infection in a post-surgery oncology unit, a setting that contains highly susceptible patients, arose from a strain of the emergent emm89 clade. No relationship between punctual or acquired mutations, invasive status, and strain phenotypic characteristics was found. Noteworthy, the phenotypic characteristics of this clone account for its emergence and its remarkable capacity to elicit outbreaks.
Biswas, Indranil; Germon, Pierre; McDade, Kathleen; Scott, June R.
2001-01-01
The M protein is an important surface-located virulence factor of Streptococcus pyogenes, the group A streptococcus (GAS). Expression of M protein is primarily controlled by Mga, a transcriptional activator protein. A recent report suggested that the sag locus, which includes nine genes necessary and sufficient for production of streptolysin S, another GAS virulence factor, is also needed for transcription of emm, encoding the M protein (Z. Li, D. D. Sledjeski, B. Kreikemeyer, A. Podbielski, and M. D. Boyle, J. Bacteriol. 181:6019–6027, 1999). To investigate this in more detail, we constructed an insertion-deletion mutation in sagA, the first gene in the sag locus, in the M6 strain JRS4. The resulting strain, JRS470, produced no detectable streptolysin S and showed a drastic reduction in cell surface-associated M protein, as measured by cell aggregation and Western blot analysis. However, transcription of the emm gene was unaffected by the sagA mutation. Detailed analysis with monoclonal antibodies and an antipeptide antibody showed that the M protein in the sagA mutant strain was truncated so that it lacks the C-repeat region and the C-terminal domain required for anchoring it to the cell surface. This truncated M protein was largely found, as expected, in the culture supernatant. Lack of surface-located M protein made the sagA mutant strain susceptible to phagocytosis. Thus, although sagA does not affect transcription of the M6 protein gene, it is needed for the surface localization of this important virulence factor. PMID:11598078
Involvement of T6 Pili in Biofilm Formation by Serotype M6 Streptococcus pyogenes
Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka
2012-01-01
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections. PMID:22155780
Lin, Jiun-Nong; Chang, Lin-Li; Lai, Chung-Hsu; Lin, Hsi-Hsun; Chen, Yen-Hsu
2013-01-01
Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9-83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease.
Lin, Jiun-Nong; Chang, Lin-Li; Lai, Chung-Hsu; Lin, Hsi-Hsun; Chen, Yen-Hsu
2013-01-01
Background Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. Methods To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. Results In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9–83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). Conclusions Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease. PMID:24349115
New non-alcoholic formulation for hand disinfection.
Biagi, Marco; Giachetti, Daniela; Miraldi, Elisabetta; Figura, Natale
2014-04-01
Hand washing is considered as the single most important strategy to prevent infections. World health organization (WHO) defines hand hygiene as a primary issue of personal care with particular reference to hospital personnel and health facility workers. In this work, we investigated a new combination for hand disinfection as an alternative to alcohol-based and chlorhexidine products. The new combination of 5-pyrrolidone-2-carboxylic acid (PCA) and copper sulphate pentahydrate (CS) was tested upon different bacterial species that normally colonize hands, including Staphylococcus aureus, methicillin resistant S. aureus (MR S. aureus), Staphylococcus epidermidis, multidrug resistant S. epidermidis (MDR S. epidermidis), Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Candida albicans and three clinical isolates: MR S. aureus, MDR S. epidermidis, and an E. coli strain. Minimal inhibitory concentrations (MICs), Minimal bactericidal concentrations (MBCs), fractional inhibitory concentration (FIC) indices, and fractional bactericidal concentration (FBC) indices were evaluated. Ethanol 70% V/V, isopropanol 60% V/V, and 4% w/V chlorhexidine solution were used as reference hand disinfectants. Copper sulphate pentahydrate was very effective against all tested microorganisms: The MIC and MBC for CS ranged from 781 mg/l against S. pyogenes to 12500 mg/l against E. coli strains and C. albicans. In addition, PCA exhibited a good antimicrobial activity, in particular, against S. pyogenes and S. agalactiae. The combination of CS and PCA showed a strong synergistic effect and all FIC indices were ≤0·500. The combination of CS and PCA were more effective than ethanol 70% V/V and isopropanol 60% V/V. In addition to antimicrobial activity, the new formulation possesses peculiar features such as residual activity and moisturizing effect. This work identifies a new strategy for hand disinfection.
Opavski, Natasa; Gajic, Ina; Borek, Anna L; Obszańska, Katarzyna; Stanojevic, Maja; Lazarevic, Ivana; Ranin, Lazar; Sitkiewicz, Izabela; Mijac, Vera
2015-07-01
A steady increase in macrolide resistance in Streptococcus pyogenes, group A streptococci (GAS) was reported in Serbia during 2004-2009 (9.9%). However, there are no data on the molecular epidemiology of pharyngeal macrolide resistance GAS (MRGAS) isolates. Therefore, the aims of this first nationwide study were to examine the prevalence of macrolide resistance in Serbian GAS and to determine their resistance phenotypes, genotypes and clonal relationships. Overall 3893 non-duplicate pharyngeal S. pyogenes isolates from outpatients with GAS infection were collected throughout country during 2008 and 2009. Among 486 macrolide resistant pharyngeal isolates collected, 103 were further characterized. Macrolide resistance phenotypes and genotypes were determined by double-disk diffusion test and PCR, respectively. Strain relatedness was determined by emm typing, multilocus sequence typing (MLST), multilocus variable tandem repeat analysis (MLVA), phage profiling (PP) and virulence factor profiling (VFP). Overall, macrolide resistance among GAS isolates in Serbia was 12.5%. M phenotype was the most common (71.8%), followed by iMLS (18.4%) and cMLS (9.7%). Three clonal complexes--emm75/mefA/ST49, emm12/mefA/ST36 and emm77/ermA/tetO/ST63 comprised over 90% of the tested strains. Although MLVA, PP and VFP distinguished 10, 20 and 12 different patterns, respectively, cluster analysis disclosed only small differences between strains which belonged to the same emm/ST type. Our data indicate dominance of three major internationally widely disseminated macrolide resistant clones and a high genetic homogeneity among the Serbian MRGAS population. Continued surveillance of macrolide resistance and clonal composition in MRGAS in Serbia in future is necessary to determine stability of MRGAS clones and to guide therapy strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Phenotypic and genotypic characteristics of Trueperella pyogenes isolated from ruminants.
Rogovskyy, Artem S; Lawhon, Sara; Kuczmanski, Kathryn; Gillis, David C; Wu, Jing; Hurley, Helen; Rogovska, Yuliya V; Konganti, Kranti; Yang, Ching-Yuan; Duncan, Kay
2018-05-01
Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in animals including humans. Data on phenotypic and genotypic properties of T. pyogenes isolated from ruminants, particularly goats and sheep, are lacking. We characterized, by phenotypic and genotypic means, T. pyogenes of caprine and ovine origin, and established their phylogenetic relationship with isolates from other ruminants. T. pyogenes isolates ( n = 50) from diagnostic specimens of bovine ( n = 25), caprine ( n = 19), and ovine ( n = 6) origin were analyzed. Overall, variable biochemical activities were observed among the T. pyogenes isolates. The fimbriae-encoding gene, fimE, and neuraminidase-encoding gene, nanH, were, respectively, more frequently detected in the large ( p = 0.0006) and small ( p = 0.0001) ruminant isolates. Moreover, genotype V ( plo/ nanH/ nanP/ fimA/ fimC) was only detected in the caprine and ovine isolates, whereas genotype IX ( plo/ nanP/ fimA/ fimC/ fimE) was solely present in the isolates of bovine origin ( p = 0.0223). The 16S rRNA gene sequences of all T. pyogenes isolates were clustered with the reference T. pyogenes strain ATCC 19411 and displayed a high degree of identity to each other. Our results highlight phenotypic and genotypic diversity among ruminant isolates of T. pyogenes and reinforce the importance of characterization of more clinical isolates to better understand the pathogenesis of this bacterium in different animal species.
Ali, Nafisa Hassan; Faizi, Shaheen; Kazmi, Shahana Urooj
2011-08-01
Development of resistance in human pathogens against conventional antibiotic necessitates searching indigenous medicinal plants having antibacterial property. Twenty-seven medicinal plants used actively in folklore, ayurvedic and traditional system of medicine were selected for the evaluation of their antimicrobial activity for this study. Eleven plants chosen from these 27 are used as spices in local cuisine. Evaluation of the effectiveness of some medicinal plant extracts against clinical isolates. Nonedible plant parts were extracted with methanol and evaporated in vacuo to obtain residue. Powdered edible parts were boiled three times and cooled in sterile distilled water for 2 min each and filtrate collected. The minimum inhibitory concentration (MIC) of plant extracts and filtrates/antibiotics was evaluated against clinical isolates by microbroth dilution method. Water extract of Syzygium aromaticum L. (Myrtaceae) buds, methanol extracts of Ficus carica L. (Moraceae) and Olea europaea L. (Oleaceae) leaves and Peganum harmala L. (Nitrariaceae) seeds had MIC ranges of 31.25-250 µg/ml. S. aromaticum inhibited growth of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Salmonella enterica serovar Typhi and Pseudomonas aeruginosa. F. carica and O. europaea inhibited growth of S. aureus, S. epidermidis, and S. pyogenes whereas P. harmala was effective against S. aureus, Acinetobacter calcoaceticus and Candida albicans. Ampicillin, velosef, sulfamethoxazole, tetracycline and ceftazidime, cefotaxime, cefepime, which are used as control, had MIC ≥ 50 and 1.5 µg/ml, respectively, for organisms sensitive to extracts. Mono/multiextract from identified plants will provide an array of safe antimicrobial agents to control infections by drug-resistant bacteria.
2004-06-01
identification of several new virulence gene candidates. In particular, K96243 harbors multiple genomic islands with relatively low GC contents, suggesting...coli, Streptococcus pyogenes, Staphylococcus aureus, S. enterica, and Xylella fastidiosa (11, 16, 17). The genomic sequencing results for multiple... virulence genes by subtractive hybridization: identifica- tion of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant
2004-06-11
Streptococcus pneumoniae 33400 Enterobacter cloaceae 49141 S. pyogenes 19615 E. aerogenes m10822 Vibrio cholerae N16961 Enterococcus durans 6056 Yersinia...identified. Thus the sensitivity for both assays was 100%. Of the 56 samples that lacked sea or seb genes, two false positives ( Enterobacter aerogenes ...Comanonas, Enterobacter , Enterococcus, Escherichia, Francisella, Haemophilus, Klebsiella, Listeria, Moraxella, Neisseria, Proteus, Pseudomonas, Salmonella
Gooskens, J; Neeling, A J De; Willems, R J; Wout, J W Van 't; Kuijper, E J
2005-01-01
An increasing number of group A streptococci (GAS) with constitutive or inducible resistance to macrolide-lincosamide-streptogramin B antibiotics (cMLS or iMLS phenotype) is observed in Europe, but MLS resistant GAS associated with streptococcal toxic shock syndrome (STSS) has not been reported. We describe a patient admitted with STSS caused by an iMLS resistant T28 M77 Streptococcus pyogenes carrying the ermA [subclass TR] gene. A 2-y retrospective analysis among 701 nationwide collected GAS strains revealed an incidence of 3.1% of this M type 77 GAS. Analysis of 17 available M77 strains (12 T28 and 5 T13) indicated that 2 (12%) were MLS resistant due to the ermA [TR] gene. Both MLS resistant strains were cultured from blood and belonged to T28 serotype. Multilocus sequence typing (MLST) showed that all M77 isolates belonged to sequence type 63. We conclude that 17 M77 GAS collected in the Netherlands in a 2-y period were associated with invasive disease and belonged to the same clonal complex. Since only 12% carried the ermA [TR] resistance gene, it is very likely that the gene has been acquired by horizontal transmission rather than from spread of a resistant circulating clone.
HogenEsch, Harm; Dunham, Anisa; Burlet, Elodie; Lu, Fangjia; Mosley, Yung-Yi C; Morefield, Garry
2017-02-01
A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Beres, Stephen B; Olsen, Randall J; Ojeda Saavedra, Matthew; Ure, Roisin; Reynolds, Arlene; Lindsay, Diane S J; Smith, Andrew J; Musser, James M
2017-12-01
Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.
Magnussen, Marita D; Gaini, Shahin; Gislason, Hannes; Kristinsson, Karl G
2016-04-01
The aim of this study was to investigate the antibacterial resistance of Streptococcus pyogenes (GAS), and correlate the findings with the sales of erythromycin and tetracycline. General practitioners in the Faroe Islands were recruited to send oropharyngeal swabs. From an ongoing pneumococcal study, nasopharyngeal swabs were sampled from healthy children 0-7 years of age. Erythromycin susceptibility data from Iceland were obtained from the reference laboratory at the Landspitali University Hospital. Susceptibility testing in the Faroe Islands and Iceland was performed according to CLSI methods and criteria. The resistance rate to erythromycin and tetracycline found in patients in the Faroe Islands in 2009/2010 was 6% and 30% respectively. Tetracycline resistance in patients declined significantly from 2009 to 2010 (37-10%, p-value = 0.006 < 0.05) and differed significantly between age groups (p-value = 0.03 < 0.05). In Iceland, there was a peak in erythromycin resistance in 2008 (44%) and a substantial decrease in 2009 (5%). Although the prevalence of erythromycin and tetracycline resistance in the Faroe Islands and Iceland may be associated with antimicrobial use, sudden changes can occur with the introduction of new resistant clones. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Tanaka, Yuhei; Gotoh, Kenji; Teramachi, Mariko; Ishimoto, Kazuhisa; Tsumura, Naoki; Shindou, Shizuo; Yamashita, Yushiro
2016-11-01
Here we report the molecular epidemiology of macrolide-resistant Streptococcus pyogenes (group A streptococci, GAS) isolated from children with pharyngotonsillitis between 2011 and 2013 in Japan. In 299 isolates, 124 (41.5%) isolates were macrolide-resistant. We characterized the isolates by emm typing, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Of 299 isolates, 124 (41.5%) were macrolide-resistant isolates, 76 (61.3%) possessed mefA and 46 (37.1%) possessed ermB. All 76 isolates with mefA possessed msrD. There were no isolates possessed ermTR in this study. Eight emm/MLST types were observed. The predominant type was emm1/ST28 (57 isolates, 46.0%), which possessed the mefA/msrD complex, presenting as the M phenotype. The second most predominant type was emm12/ST467, which possessed ermB, presenting as the cMLS B phenotype. Of the cMLS B phenotype isolates, types emm28/ST52 and emm12/ST36 had multiple genetic backgrounds. We found high proportions of macrolide-resistant GAS in the southwestern areas of Japan. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Sekiguchi, Yukiko; Nakamura, Kensuke; Kawaguchi, Yoshirou; Honda, Takeshi; Hasegawa, Jun
2018-01-01
The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S) and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ. PMID:29474426
Sugimoto, Atsushi; Maeda, Asuka; Itto, Kaori; Arimoto, Hirokazu
2017-04-25
Because of the scanty pipeline of antibiotics newly obtained from nature, chemical modification of established drugs is one of the major streams of current antibacterial research. Intuitive and easy-to-use assays are critical for identifying drug candidates with novel modes of action. In this study, we demonstrated that metabolic fluorescent staining of growing cell walls is a powerful tool for mode-of-action analyses of antibiotics using Streptococcus pyogenes. A set of major cell-wall-inhibiting antibiotics (bacitracin, D-cycloserine, flavomycin, oxacillin, ramoplanin, and vancomycin) was employed to validate the potential of the assay. The mechanistic differences of these antibiotics were successfully observed. For instance, D-cycloserine treatment induced fluorescently stained, excessive peripheral cell wall growth. This may indicate that the switch from the peripheral growth stage to the succeeding septal growth was disturbed by the treatment. We then applied this assay to analyze a series of vancomycin derivatives. The assay was sufficiently sensitive to detect the effects of single-site chemical modification of vancomycin on its modes of action. This metabolic fluorescent labeling method is easy to perform, especially because it does not require radiolabeled substrates. Thus, it is suitable for the preliminary evaluation of antibacterial mechanisms during antibacterial research.
Wakiyama, Yoshinari; Kumura, Ko; Umemura, Eijiro; Masaki, Satomi; Ueda, Kazutaka; Sato, Yasuo; Hirai, Yoko; Hayashi, Yoshio; Ajito, Keiichi
2018-02-01
In order to modify lincomycin at the C-6 and C-7 positions, we prepared target molecules, which have substituted pipecolinic acid at the 6-amino group and a para-substituted phenylthio group at the C-7 position, in application of palladium-catalyzed cross-coupling as a key reaction. As the result of structure-activity relationship (SAR) studies at the 6-position, analogs possessing 4'-cis-(cyclopropylmethyl)piperidine showed significantly strong antibacterial activities against Streptococcus pneumoniae and Streptococcus pyogenes with an erm gene. On the basis of SAR, we further synthesized novel analogs possessing 4'-cis-(cyclopropylmethyl)piperidine by transformation of a C-7 substituent. Consequently, novel derivatives possessing a para-heteroaromatic-phenylthio group at the C-7 position exhibited significantly strong activities against S. pneumoniae and S. pyogenes with an erm gene even when compared with those of telithromycin. Finally, in vivo efficacy of selected two derivatives was evaluated in a rat pulmonary infection model with resistant S. pneumoniae with erm + mef genes. One of them exhibited strong and constant in vivo efficacy in this model, and both compounds showed strong in vivo efficacy against resistant S. pneumoniae with a mef gene.
Blanchard, Adam M.; Egan, Sharon A.; Emes, Richard D.; Warry, Andrew; Leigh, James A.
2016-01-01
The Pragmatic Insertional Mutation Mapping (PIMMS) laboratory protocol was developed alongside various bioinformatics packages (Blanchard et al., 2015) to enable detection of essential and conditionally essential genes in Streptococcus and related bacteria. This extended the methodology commonly used to locate insertional mutations in individual mutants to the analysis of mutations in populations of bacteria. In Streptococcus uberis, a pyogenic Streptococcus associated with intramammary infection and mastitis in ruminants, the mutagen pGhost9:ISS1 was shown to integrate across the entire genome. Analysis of >80,000 mutations revealed 196 coding sequences, which were not be mutated and a further 67 where mutation only occurred beyond the 90th percentile of the coding sequence. These sequences showed good concordance with sequences within the database of essential genes and typically matched sequences known to be associated with basic cellular functions. Due to the broad utility of this mutagen and the simplicity of the methodology it is anticipated that PIMMS will be of value to a wide range of laboratories in functional genomic analysis of a wide range of Gram positive bacteria (Streptococcus, Enterococcus, and Lactococcus) of medical, veterinary, and industrial significance. PMID:27826289
2009-01-01
Background The number of scarlet fever occurrences reported between 2000 and 2006 fluctuated considerably in central Taiwan and throughout the nation. Isolates of Streptococcus pyogenes were collected from scarlet fever patients in central Taiwan and were characterized by emm sequencing and a standardized pulsed-field gel electrophoresis (PFGE) method. National weekly report data were collected for investigating epidemiological trends. Results A total of 23 emm types were identified in 1,218 S. pyogenes isolates. The five most prevalent emm types were emm12 (50.4%), emm4 (23.2%), emm1 (16.4%), emm6 (3.8%) and emm22 (3.0%). PFGE analysis with SmaI suggested that, with a few exceptions, strains with a common emm type belonged to the same clone. There were two large emm12 clones, one with DNA resistant to cleavage by SmaI. Each prevalent emm clone had major PFGE strain(s) and many minor strains. Most of the minor strains emerged in the population and disappeared soon after. Even some major strains remained prevalent for only 2–3 years before declining. The large fluctuation of scarlet fever cases between 2000 and 2006 was associated with the shuffling of six prevalent emm clones. In 2003, the dramatic drop in scarlet fever cases in central Taiwan and throughout the whole country was associated with the occurrence of a severe acute respiratory syndrome (SARS) outbreak that occurred between late-February and mid-June in Taiwan. Conclusion The occurrences of scarlet fever in central Taiwan in 2000–2006 were primarily caused by five emm types, which accounted for 96.8% of the isolates collected. Most of the S. pyogenes strains (as defined by PFGE genotypes) emerged and lasted for only a few years. The fluctuation in the number of scarlet fever cases during the seven years can be primarily attributed to the shuffling of six prevalent emm clones and to the SARS outbreak in 2003. PMID:19486515
Pediatric pyogenic liver abscess.
Israeli, Rafi; Jule, Jose Ernesto; Hom, Jeffrey
2009-02-01
Pyogenic liver abscess (PLA) is a rare pediatric disease. Typically, PLA is found in adults with biliary disease. There are no typical physical findings or symptoms. Often, pathogenic organisms are not recovered for identification. This case illustrates a teenager presenting with prolonged episodes of fever and vomiting. With percutaneous drainage and month-long antibiotic therapy, the PLA resolved. This case illustrates that a high index of suspicion is needed for diagnosis.
Squeglia, Flavia; Bachert, Beth; De Simone, Alfonso; Lukomski, Slawomir; Berisio, Rita
2014-02-21
The arsenal of virulence factors deployed by streptococci includes streptococcal collagen-like (Scl) proteins. These proteins, which are characterized by a globular domain and a collagen-like domain, play key roles in host adhesion, host immune defense evasion, and biofilm formation. In this work, we demonstrate that the Scl2.3 protein is expressed on the surface of invasive M3-type strain MGAS315 of Streptococcus pyogenes. We report the crystal structure of Scl2.3 globular domain, the first of any Scl. This structure shows a novel fold among collagen trimerization domains of either bacterial or human origin. Despite there being low sequence identity, we observed that Scl2.3 globular domain structurally resembles the gp41 subunit of the envelope glycoprotein from human immunodeficiency virus type 1, an essential subunit for viral fusion to human T cells. We combined crystallographic data with modeling and molecular dynamics techniques to gather information on the entire lollipop-like Scl2.3 structure. Molecular dynamics data evidence a high flexibility of Scl2.3 with remarkable interdomain motions that are likely instrumental to the protein biological function in mediating adhesive or immune-modulatory functions in host-pathogen interactions. Altogether, our results provide molecular tools for the understanding of Scl-mediated streptococcal pathogenesis and important structural insights for the future design of small molecular inhibitors of streptococcal invasion.
Ribeiro, M G; Risseti, R M; Bolaños, C A D; Caffaro, K A; de Morais, A C B; Lara, G H B; Zamprogna, T O; Paes, A C; Listoni, F J P; Franco, M M J
2015-06-01
Formerly, Arcanobacterium pyogenes was recently renamed Trueperella pyogenes. This opportunistic bacterium is related to miscellaneous pyogenic infections in animals. Most studies involving T. pyogenes are case reports, whereas few surveys have focused the major aspects of T. pyogenes infections involving a case series study design. The aim of this study was to retrospectively evaluate selected epidemiological and clinical aspects, as well as the in vitro antimicrobial susceptibility pattern of 144 cases of T. pyogenes infections among domestic animals from 2002 to 2012. T. pyogenes was isolated from different clinical specimens from cattle, goats, sheep, pigs, horses, dogs, and buffaloes. Correlations were assessed by the Chi-square or Fisher's exact tests. Mastitis (45.1%), abscesses (18.0%), pneumonia (11.1%), and lymphadenitis (9.0%) were the most common clinical manifestations. In addition, the organism was also isolated from other miscellaneous clinical specimens from cases of septicemia, encephalitis, pyometra, prostatitis, orchitis, seminal vesiculitis, pericarditis, and omphalitis. No statistical association was observed between T. pyogenes infections and age, gender, or season across the study. The most effective drugs against the pathogen were florfenicol (99.1%), cefoperazone (96.0%), cephalexin (95.0%), and ceftiofur (94.8%). High resistance rates were observed against trimethoprim-sulfamethoxazole (49.3%), followed by norfloxacin (10.9%) and tetracycline (9.2%). This study highlights the diversity of clinical manifestations and the opportunistic behavior of T. pyogenes infections in domestic animals, with predominance of mastitis, abscesses, pneumonia, and lymphadenitis. It also reinforces the importance of knowing the susceptibility profile before initiating therapy, to improve antimicrobial therapy approaches.
Wang, Deguo; Liu, Yanhong
2015-05-26
Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.
Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens
LaRock, Christopher N.; Nizet, Victor
2015-01-01
Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232