Science.gov

Sample records for pathogen streptococcus suis

  1. Restoration of Bioactive Lantibiotic Suicin from a Remnant lan Locus of Pathogenic Streptococcus suis Serotype 2

    PubMed Central

    Wang, Jian; Gao, Yong; Teng, Kunling; Zhang, Jie; Sun, Shutao

    2014-01-01

    Lantibiotics are ribosomally synthesized, posttranslationally modified antimicrobial peptides. Their biosynthesis genes are usually organized in gene clusters, which are mainly found in Gram-positive bacteria, including pathogenic streptococci. Three highly virulent Streptococcus suis serotype 2 strains (98HAH33, 05ZYH33, and SC84) have been shown to contain an 89K pathogenicity island. Here, on these islands, we unveiled and reannotated a putative lantibiotic locus designated sui which contains a virulence-associated two-component regulator, suiK-suiR. In silico analysis revealed that the putative lantibiotic modification gene suiM was interrupted by a 7.9-kb integron and that other biosynthesis-related genes contained various frameshift mutations. By reconstituting the intact suiM in Escherichia coli together with a semi-in vitro biosynthesis system, a putative lantibiotic named suicin was produced with bactericidal activities against a variety of Gram-positive strains, including pathogenic streptococci and vancomycin-resistant enterococci. Ring topology dissection indicated that the 34-amino-acid lantibiotic contained two methyllanthionine residues and one disulfide bridge, which render suicin in an N-terminal linear and C-terminal globular shape. To confirm the function of suiK-suiR, SuiR was overexpressed and purified. In vitro analysis showed that SuiR could specifically bind to the suiA gene promoter. Its coexpression with suiK could activate suiA gene promoter in Lactococcus lactis NZ9000. Conclusively, we obtained a novel lantibiotic suicin by restoring its production from the remnant sui locus and demonstrated that virulence-associated SuiK-SuiR regulates its production. PMID:24271178

  2. Streptococcus suis infection

    PubMed Central

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  3. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics.

    PubMed

    Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2013-12-01

    Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs.

  4. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics.

    PubMed

    Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2013-12-01

    Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs. PMID:24096107

  5. Deregulated balance of omega-6 and omega-3 polyunsaturated fatty acids following infection by the zoonotic pathogen Streptococcus suis.

    PubMed

    Lachance, Claude; Segura, Mariela; Dominguez-Punaro, Maria C; Wojewodka, Gabriella; De Sanctis, Juan B; Radzioch, Danuta; Gottschalk, Marcelo

    2014-05-01

    Streptococcus suis is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for early high mortality in septic shock-like syndrome cases. Polyunsaturated fatty acids (PUFAs) may contribute to regulating inflammatory processes. This study shows that mouse infection by S. suis is accompanied by an increase of arachidonic acid, a proinflammatory omega-6 (ω-6) PUFA, and by a decrease of docosahexaenoic acid, an anti-inflammatory ω-3 PUFA. Macrophages infected with S. suis showed activation of mitogen-activated protein kinase pathways and cyclooxygenase-2 upregulation. Fenretinide, a synthetic vitamin A analog, reduced in vitro expression of inflammatory mediators. Pretreatment of mice with fenretinide significantly improved their survival by reducing systemic proinflammatory cytokines during the acute phase of an S. suis infection. These findings indicate a beneficial effect of fenretinide in diminishing the expression of inflammation and improving survival during an acute infection by a virulent S. suis strain.

  6. Current Taxonomical Situation of Streptococcus suis.

    PubMed

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-01-01

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several "S. suis-like strains" that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains. PMID:27348006

  7. Current Taxonomical Situation of Streptococcus suis

    PubMed Central

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-01-01

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains. PMID:27348006

  8. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis.

    PubMed

    Ye, Huiyan; Cai, Mingzhu; Zhang, Huimin; Li, Zhencui; Wen, Ronghui; Feng, Youjun

    2016-05-24

    Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus.

  9. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis.

    PubMed

    Ye, Huiyan; Cai, Mingzhu; Zhang, Huimin; Li, Zhencui; Wen, Ronghui; Feng, Youjun

    2016-01-01

    Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus. PMID:27217336

  10. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis

    PubMed Central

    Ye, Huiyan; Cai, Mingzhu; Zhang, Huimin; Li, Zhencui; Wen, Ronghui; Feng, Youjun

    2016-01-01

    Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus. PMID:27217336

  11. Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens.

    PubMed

    Palmieri, Claudio; Magi, Gloria; Mingoia, Marina; Bagnarelli, Patrizia; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna

    2012-09-01

    Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.

  12. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis.

    PubMed

    Weinert, Lucy A; Chaudhuri, Roy R; Wang, Jinhong; Peters, Sarah E; Corander, Jukka; Jombart, Thibaut; Baig, Abiyad; Howell, Kate J; Vehkala, Minna; Välimäki, Niko; Harris, David; Chieu, Tran Thi Bich; Van Vinh Chau, Nguyen; Campbell, James; Schultsz, Constance; Parkhill, Julian; Bentley, Stephen D; Langford, Paul R; Rycroft, Andrew N; Wren, Brendan W; Farrar, Jeremy; Baker, Stephen; Hoa, Ngo Thi; Holden, Matthew T G; Tucker, Alexander W; Maskell, Duncan J

    2015-01-01

    Streptococcus suis causes disease in pigs worldwide and is increasingly implicated in zoonotic disease in East and South-East Asia. To understand the genetic basis of disease in S. suis, we study the genomes of 375 isolates with detailed clinical phenotypes from pigs and humans from the United Kingdom and Vietnam. Here, we show that isolates associated with disease contain substantially fewer genes than non-clinical isolates, but are more likely to encode virulence factors. Human disease isolates are limited to a single-virulent population, originating in the 1920, s when pig production was intensified, but no consistent genomic differences between pig and human isolates are observed. There is little geographical clustering of different S. suis subpopulations, and the bacterium undergoes high rates of recombination, implying that an increase in virulence anywhere in the world could have a global impact over a short timescale. PMID:25824154

  13. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis

    PubMed Central

    Weinert, Lucy A.; Chaudhuri, Roy R.; Wang, Jinhong; Peters, Sarah E.; Corander, Jukka; Jombart, Thibaut; Baig, Abiyad; Howell, Kate J.; Vehkala, Minna; Välimäki, Niko; Harris, David; Chieu, Tran Thi Bich; Van Vinh Chau, Nguyen; Campbell, James; Schultsz, Constance; Parkhill, Julian; Bentley, Stephen D.; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Farrar, Jeremy; Baker, Stephen; Hoa, Ngo Thi; Holden, Matthew T.G.; Tucker, Alexander W.; Maskell, Duncan J.; Bossé, Janine T.; Li, Yanwen; Maglennon, Gareth A.; Matthews, Dominic; Cuccui, Jon; Terra, Vanessa

    2015-01-01

    Streptococcus suis causes disease in pigs worldwide and is increasingly implicated in zoonotic disease in East and South-East Asia. To understand the genetic basis of disease in S. suis, we study the genomes of 375 isolates with detailed clinical phenotypes from pigs and humans from the United Kingdom and Vietnam. Here, we show that isolates associated with disease contain substantially fewer genes than non-clinical isolates, but are more likely to encode virulence factors. Human disease isolates are limited to a single-virulent population, originating in the 1920, s when pig production was intensified, but no consistent genomic differences between pig and human isolates are observed. There is little geographical clustering of different S. suis subpopulations, and the bacterium undergoes high rates of recombination, implying that an increase in virulence anywhere in the world could have a global impact over a short timescale. PMID:25824154

  14. [Lytic phages and prophages of Streptococcus suis--a review].

    PubMed

    Tang, Fang; Lu, Chengping

    2015-04-01

    Streptococcus suis (S. suis) is an important zoonosis and pathogen that can carry prophages. In this review, we focus on the recent advances in our understanding of lytic phage and lysogenic phage of S. suis, including the morphology of S. suis lytic phage, the functions of lysin and terminase large subunit encoded by S. suis lytic phage, comparative genomics of S. suis prophages, lysogenic. conversion between S. suis lytic phage and prophage. Furthermore, prospective evolution of interactions between phage and host was discussed. PMID:26211312

  15. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis

    PubMed Central

    Gurung, Mamata; Tamang, Migma Dorji; Moon, Dong Chan; Kim, Su-Ran; Jeong, Jin-Ha; Jang, Geum-Chan; Jung, Suk-Chan; Park, Yong-Ho

    2015-01-01

    Characterization of 227 Streptococcus suis strains isolated from pigs during 2010 to 2013 showed high levels of resistance to clindamycin (95.6%), tilmicosin (94.7%), tylosin (93.8%), oxytetracycline (89.4%), chlortetracycline (86.8%), tiamulin (72.7%), neomycin (70.0%), enrofloxacin (56.4%), penicillin (56.4%), ceftiofur (55.9%), and gentamicin (55.1%). Resistance to tetracyclines, macrolides, aminoglycosides, and fluoroquinolone was attributed to the tet gene, erm(B), erm(C), mph(C), and mef(A) and/or mef(E) genes, aph(3′)-IIIa and aac(6′)-Ie-aph(2″)-Ia genes, and single point mutations in the quinolone resistance-determining region of ParC and GyrA, respectively. PMID:25903569

  16. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis.

    PubMed

    Cao, Thinh-Phat; Kim, Joong-Su; Woo, Mi-Hee; Choi, Jin Myung; Jun, Youngsoo; Lee, Kun Ho; Lee, Sung Haeng

    2016-04-01

    2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation resulting in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.

  17. Amoeba Host Model for Evaluation of Streptococcus suis Virulence ▿

    PubMed Central

    Bonifait, Laetitia; Charette, Steve J.; Filion, Geneviève; Gottschalk, Marcelo; Grenier, Daniel

    2011-01-01

    The Gram-positive bacterium Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, and endocarditis. In this study, we demonstrate that the amoeba Dictyostelium discoideum can be a relevant alternative system to study the virulence of S. suis. PMID:21742906

  18. Experimental exposure of young pigs using a pathogenic strain of Streptococcus suis serotype 2 and evaluation of this method for disease prevention.

    PubMed Central

    Torremorell, M; Pijoan, C; Dee, S

    1999-01-01

    Control of Streptococcus suis infections and associated disease have proven to be a difficult challenge under most farm conditions. The objective of this study was to experimentally expose young pigs with a pathogenic strain of S. suis serotype 2 as a means of controlling the disease in a commercial swine farm. Prior to the start of the study, the pathogenic S. suis strain responsible for mortality in the farm was identified and used to experimentally inoculate baby piglets. Over a 3-week period, groups of pigs were selected (100 pigs/wk) and divided into 2 groups: control (50 pigs/week) and experimentally exposed (50 pigs/week). Pigs in the experimentally exposed group were inoculated at 5 d old by tonsillar swabbing with the pathogenic S. suis farm isolate. The effect of exposure with this pathogenic strain was evaluated during the nursery and finishing stages and was based on: morbidity (pigs with central nervous signs (CNS) and/or lameness), mortality and number of treatments required by pigs that had either CNS or lameness. The relative risk (RR) of acquiring disease due to S. suis infection was also calculated. Results showed that morbidity in the experimentally exposed groups was lower than in the control group and these results were statistically different (P = 0.006). Experimentally exposed pigs also showed a statistically significant reduction in lameness problems (P = 0.012), but not in CNS (P = 0.20) or mortality (P = 0.59). Pigs in the control group had an increased RR of 4.76, 8.77 and 2.7 for morbidity, to have lameness or to have CNS signs, respectively. In conclusion, experimental exposure of young pigs with the farm's pathogenic S. suis strain at a young age, had a positive effect in reducing clinical signs characteristics of S. suis infection. This method constitutes a novel approach to the control of S. suis infections in swine farms. Images Figure 1. PMID:10534006

  19. The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence.

    PubMed

    Hu, Dan; Zhang, Fengyu; Zhang, Huimin; Hao, Lina; Gong, Xiufang; Geng, Meiling; Cao, Min; Zheng, Feng; Zhu, Jin; Pan, Xiuzhen; Tang, Jiaqi; Feng, Youjun; Wang, Changjun

    2014-01-01

    Streptococcal pathogens have evolved to express exoglycosidases, one of which is BgaC β-galactosidase, to deglycosidate host surface glycolconjucates with exposure of the polysaccharide receptor for bacterial adherence. The paradigm BgaC protein is the bgaC product of Streptococcus, a bacterial surface-exposed β-galactosidase. Here we report the functional definition of the BgaC homologue from an epidemic Chinese strain 05ZYH33 of the zoonotic pathogen Streptococcus suis. Bioinformatics analyses revealed that S. suis BgaC shared the conserved active sites (W240, W243 and Y454). The recombinant BgaC protein of S. suis was purified to homogeneity. Enzymatic assays confirmed its activity of β-galactosidase. Also, the hydrolysis activity was found to be region-specific and sugar-specific for the Gal β-1,3-GlcNAc moiety of oligosaccharides. Flow cytometry analyses combined with immune electron microscopy demonstrated that S. suis BgaC is an atypical surface-anchored protein in that it lacks the "LPXTG" motif for typical surface proteins. Integrative evidence from cell lines and mice-based experiments showed that an inactivation of bgaC does not significantly impair the ability of neither adherence nor anti-phagocytosis, and consequently failed to attenuate bacterial virulence, which is somewhat similar to the scenario seen with S. pneumoniae. Therefore we concluded that S. suis BgaC is an atypical surface-exposed protein without the involvement of bacterial virulence.

  20. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens.

    PubMed

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2014-09-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  1. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens.

    PubMed

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2014-09-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  2. Suicin 90-1330 from a Nonvirulent Strain of Streptococcus suis: a Nisin-Related Lantibiotic Active on Gram-Positive Swine Pathogens

    PubMed Central

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  3. Streptococcus suis Serotype 2 Capsule In Vivo.

    PubMed

    Auger, Jean-Philippe; Meekhanon, Nattakan; Okura, Masatoshi; Osaki, Makoto; Gottschalk, Marcelo; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-10-01

    Many Streptococcus suis isolates from porcine endocarditis in slaughterhouses have lost their capsule and are considered avirulent. However, we retrieved capsule- and virulence-recovered S. suis after in vivo passages of a nonencapsulated strain in mice, suggesting that nonencapsulated S. suis are still potentially hazardous for persons in the swine industry. PMID:27648583

  4. Streptococcus suis Serotype 2 Capsule In Vivo

    PubMed Central

    Auger, Jean-Philippe; Meekhanon, Nattakan; Okura, Masatoshi; Osaki, Makoto; Gottschalk, Marcelo; Sekizaki, Tsutomu

    2016-01-01

    Many Streptococcus suis isolates from porcine endocarditis in slaughterhouses have lost their capsule and are considered avirulent. However, we retrieved capsule- and virulence-recovered S. suis after in vivo passages of a nonencapsulated strain in mice, suggesting that nonencapsulated S. suis are still potentially hazardous for persons in the swine industry. PMID:27648583

  5. The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence

    PubMed Central

    Hu, Dan; Zhang, Fengyu; Zhang, Huimin; Hao, Lina; Gong, Xiufang; Geng, Meiling; Cao, Min; Zheng, Feng; Zhu, Jin; Pan, Xiuzhen; Tang, Jiaqi; Feng, Youjun; Wang, Changjun

    2014-01-01

    Streptococcal pathogens have evolved to express exoglycosidases, one of which is BgaC β-galactosidase, to deglycosidate host surface glycolconjucates with exposure of the polysaccharide receptor for bacterial adherence. The paradigm BgaC protein is the bgaC product of Streptococcus, a bacterial surface-exposed β-galactosidase. Here we report the functional definition of the BgaC homologue from an epidemic Chinese strain 05ZYH33 of the zoonotic pathogen Streptococcus suis. Bioinformatics analyses revealed that S. suis BgaC shared the conserved active sites (W240, W243 and Y454). The recombinant BgaC protein of S. suis was purified to homogeneity. Enzymatic assays confirmed its activity of β-galactosidase. Also, the hydrolysis activity was found to be region-specific and sugar-specific for the Gal β-1,3-GlcNAc moiety of oligosaccharides. Flow cytometry analyses combined with immune electron microscopy demonstrated that S. suis BgaC is an atypical surface-anchored protein in that it lacks the “LPXTG” motif for typical surface proteins. Integrative evidence from cell lines and mice-based experiments showed that an inactivation of bgaC does not significantly impair the ability of neither adherence nor anti-phagocytosis, and consequently failed to attenuate bacterial virulence, which is somewhat similar to the scenario seen with S. pneumoniae. Therefore we concluded that S. suis BgaC is an atypical surface-exposed protein without the involvement of bacterial virulence. PMID:24556915

  6. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2.

    PubMed

    Li, Ming; Shen, Xiaodong; Yan, Jinghua; Han, Huiming; Zheng, Beiwen; Liu, Di; Cheng, Hao; Zhao, Yan; Rao, Xiancai; Wang, Changjun; Tang, Jiaqi; Hu, Fuquan; Gao, George F

    2011-03-01

    Pathogenicity islands (PAIs), a distinct type of genomic island (GI), play important roles in the rapid adaptation and increased virulence of pathogens. 89K is a newly identified PAI in epidemic Streptococcus suis isolates that are related to the two recent large-scale outbreaks of human infection in China. However, its mechanism of evolution and contribution to the epidemic spread of S. suis 2 remain unknown. In this study, the potential for mobilization of 89K was evaluated, and its putative transfer mechanism was investigated. We report that 89K can spontaneously excise to form an extrachromosomal circular product. The precise excision is mediated by an 89K-borne integrase through site-specific recombination, with help from an excisionase. The 89K excision intermediate acts as a substrate for lateral transfer to non-89K S. suis 2 recipients, where it reintegrates site-specifically into the target site. The conjugal transfer of 89K occurred via a GI type IV secretion system (T4SS) encoded in 89K, at a frequency of 10(-6) transconjugants per donor. This is the first demonstration of horizontal transfer of a Gram-positive PAI mediated by a GI-type T4SS. We propose that these genetic events are important in the emergence, pathogenesis and persistence of epidemic S. suis 2 strains.

  7. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  8. Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis

    PubMed Central

    Ferrando, M. Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S.; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E.; Wells, Jerry M.

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  9. Genetic analysis of Streptococcus suis isolates from wild rabbits.

    PubMed

    Sánchez del Rey, V; Fernández-Garayzábal, J F; Briones, V; Iriso, A; Domínguez, L; Gottschalk, M; Vela, A I

    2013-08-30

    This work aims to investigate the presence of Streptococcus suis in wild rabbits. A total of 65 S. suis isolates were recovered from 33.3% of the wild rabbits examined. Most isolates (86.2%) belong to genotype cps9. These isolates were further characterized by pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and virulence genotyping. Overall, S. suis exhibited a low genetic diversity. Only 5 genetic profiles were obtained by PFGE and most isolates (71.4%) were included in two pulsotypes that were also widely distributed among the wild rabbit population. MLST analysis assigned all cps9 isolates into three new singlestones (ST216, ST217 and ST284), which were not genetically related to the European ST87 and Spanish ST61 widespread swine clones, indicating a different genetic background for the S. suis isolates from wild rabbits and pigs. Wild rabbit isolates exhibited the genotype mrp-/epf-/sly-, different from those showed by most of the swine S. suis isolates of the ST87 and ST61 clones. None of the S. suis isolated from wild rabbits exhibited the genotype cps2/mrp+/epf+/sly+ associated with human infections. These results indicate that S. suis isolates from wild rabbits are not genetically related with prevalent clones usually associated with infections in pigs or humans in Europe and do not exhibit either their virulence genotypes. Therefore, although wild rabbits could represent an unknown reservoir of this pathogen, they could not represent a potential risk for pigs or humans.

  10. Establishment of a Cre recombinase based mutagenesis protocol for markerless gene deletion in Streptococcus suis.

    PubMed

    Koczula, A; Willenborg, J; Bertram, R; Takamatsu, D; Valentin-Weigand, P; Goethe, R

    2014-12-01

    The lack of knowledge about pathogenicity mechanisms of Streptococcus (S.) suis is, at least partially, attributed to limited methods for its genetic manipulation. Here, we established a Cre-lox based recombination system for markerless gene deletions in S. suis serotype 2 with high selective pressure and without undesired side effects.

  11. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    PubMed Central

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  12. Streptococcus suis infection in Taiwan, 2000-2011.

    PubMed

    Tsai, Hsih-Yeh; Liao, Chun-Hsing; Liu, Chia-Ying; Huang, Yu-Tsung; Teng, Lee-Jene; Hsueh, Po-Ren

    2012-09-01

    From 2000 to 2011, 8 patients with Streptococcus suis infections were identified in Taiwan. Six isolates were initially misidentified as Streptococcus acidominimus using commercial identification systems and later confirmed to be S. suis using 16S rRNA gene sequencing analysis. Among the 7 isolates available for further analysis, all belonged to biotype II. Three serotype I isolates possessed the same genotypes, indicating the possible clonal spread of S. suis. All of these patients survived. S. suis infection is underestimated in Taiwan. PMID:22705228

  13. Isolation of Streptococcus suis from 2 lambs with a history of lameness

    PubMed Central

    Muckle, Anne; López, Alfonso; Gottschalk, Marcelo; López-Méndez, Carlos; Giles, Jan; Lund, Lorraine; Saab, Matthew

    2014-01-01

    Streptococcus suis was isolated postmortem from 2 lambs with a history of lameness. Identity of S. suis was confirmed by species-specific polymerase chain reaction (PCR) and by 16S rRNA gene sequencing. One isolate was untypable by serotyping and non-encapsulated, while the other isolate was serotype 33. The lambs had come from the same farm, and there was no evidence of contact between the lambs and pigs. Although the natural niche for S. suis is considered to be the pig, a wide range of host species may be affected by this pathogen. PMID:25320381

  14. FATAL CASE OF STREPTOCOCCUS SUIS INFECTION IN A YOUNG WILD BOAR (SUS SCROFA) FROM SOUTHWESTERN SPAIN.

    PubMed

    Risco, David; Fernández-Llario, Pedro; Cuesta, Jesús M; García-Jiménez, Waldo L; Gonçalves, Pilar; Martínez, Remigio; García, Alfredo; Rosales, Rubén; Gómez, Luis; de Mendoza, Javier Hermoso

    2015-06-01

    Streptococcus suis is a recognized pathogen that may cause important diseases in pigs and humans. This microorganism has been repeatedly isolated from wild boar (Sus scrofa). However, its health implications for this wild species are still unknown. This article reports a detailed description of a fatal case of septicemia by S. suis affecting a young wild boar. The affected animal, about 15 days old, was found near death and exhibiting neurologic signs at a wild boar estate in southwestern Spain. Postmortem examination showed generalized congestion, brain hemorrhages and lobular pneumonia. Histopathological evaluation demonstrated the presence of meningitis and encephalitis with marked congestion and suppurative bronchopneumonia. Streptococcus suis serotype 2 isolates exhibiting important virulence factors (extracellular factor, muramidase-released protein, and suylisin) were isolated from the affected animal. This study confirms the presence of potentially virulent and zoonotic strains of S. suis in wild boar from Spain. PMID:26056897

  15. Draft genome sequences of nine Streptococcus suis strains isolated in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus suis is a swine pathogen responsible for economic losses to the pig industry worldwide. Additionally, it is a zoonotic agent that can cause severe infections in those in close contact with infected pigs and/or who consume uncooked or undercooked pork products. Here, we report nine draf...

  16. Suicin 3908, a New Lantibiotic Produced by a Strain of Streptococcus suis Serotype 2 Isolated from a Healthy Carrier Pig

    PubMed Central

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    While Streptococcus suis serotype 2 is known to cause severe infections in pigs, it can also be isolated from the tonsils of healthy animals that do not develop infections. We hypothesized that S. suis strains in healthy carrier pigs may have the ability to produce bacteriocins, which may contribute to preventing infections by pathogenic S. suis strains. Two of ten S. suis serotype 2 strains isolated from healthy carrier pigs exhibited antibacterial activity against pathogenic S. suis isolates. The bacteriocin produced by S. suis 3908 was purified to homogeneity using a three-step procedure: ammonium sulfate precipitation, cationic exchange HPLC, and reversed-phase HPLC. The bacteriocin, called suicin 3908, had a low molecular mass; was resistant to heat, pH, and protease treatments; and possessed membrane permeabilization activity. Additive effects were obtained when suicin 3908 was used in combination with penicillin G or amoxicillin. The amino acid sequence of suicin 3908 suggested that it is lantibiotic-related and made it possible to identify a bacteriocin locus in the genome of S. suis D12. The putative gene cluster involved in suicin production by S. suis 3908 was amplified by PCR, and the sequence analysis revealed the presence of nine open reading frames (ORFs), including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Suicin 3908, which is encoded by the suiA gene, exhibited approximately 50% identity with bovicin HJ50 (Streptococcus bovis), thermophilin 1277 (Streptococcus thermophilus), and macedovicin (Streptococcus macedonicus). Given that S. suis 3908 cannot cause infections in animal models, that it is susceptible to conventional antibiotics, and that it produces a bacteriocin with antibacterial activity against all pathogenic S. suis strains tested, it could potentially be used to prevent infections and to reduce antibiotic use by the swine industry. PMID:25659110

  17. Real-time PCR for detection of Streptococcus suis serotype 2 in cerebrospinal fluid of human patients with meningitis

    PubMed Central

    Nga, Tran Vu Thieu; Nghia, Ho Dang Trung; Tu, Le Thi Phuong; Diep, To Song; Mai, Nguyen Thi Hoang; Chau, Tran Thi Hong; Sinh, Dinh Xuan; Phu, Nguyen Hoan; Nga, Tran Thi Thu; Chau, Nguyen Van Vinh; Campbell, James; Hoa, Ngo Thi; Chinh, Nguyen Tran; Hien, Tran Tinh; Farrar, Jeremy; Schultsz, Constance

    2011-01-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen and is the main cause of acute bacterial meningitis in adult patients in Vietnam. We developed an internally controlled real-time PCR for detection of S. suis serotype 2 in cerebrospinal fluid (CSF) samples targeted at the cps2J gene. Sensitivity and specificity in culture-confirmed clinical samples were 100%. The PCR detected S. suis serotype 2 infection in 101 of 238 (42.4%) prospectively collected CSF samples, of which 55 (23%) were culture positive. Culture-negative but PCR-positive CSF samples were significantly associated with the use of antimicrobial agents before admission. S. suis serotype 2 infection was more common than infections with Streptococcus pneumoniae and Neisseria meningitidis combined. Our results strikingly illustrate the additional diagnostic value of PCR in patients who are pretreated with antimicrobial agents and demonstrate the extremely high prevalence of S. suis infections among Vietnamese adult patients with bacterial meningitis. PMID:21767702

  18. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression.

    PubMed

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  19. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression

    PubMed Central

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  20. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains.

    PubMed

    Athey, Taryn B T; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2016-01-01

    Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent. PMID:26954687

  1. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains

    PubMed Central

    Athey, Taryn B. T.; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2016-01-01

    Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent. PMID:26954687

  2. The CodY regulator is essential for virulence in Streptococcus suis serotype 2

    PubMed Central

    Feng, Liping; Zhu, Jiawen; Chang, Haitao; Gao, Xiaoping; Gao, Cheng; Wei, Xiaofeng; Yuan, Fangyan; Bei, Weicheng

    2016-01-01

    The main role of CodY, a global regulatory protein in most low G + C gram-positive bacteria, is in transcriptional repression. To study the functions of CodY in Streptococcus suis serotype 2 (S. suis 2), a mutant codY clone named ∆codY was constructed to explore the phenotypic variation between ∆codY and the wild-type strain. The result showed that the codY mutation significantly inhibited cell growth, adherence and invasion ability of S. suis 2 to HEp-2 cells. The codY mutation led to decreased binding of the pathogen to the host cells, easier clearance by RAW264.7 macrophages and decreased growth ability in fresh blood of Cavia porcellus. The codY mutation also attenuated the virulence of S. suis 2 in BALB/c mice. Morphological analysis revealed that the codY mutation decreased the thickness of the capsule of S. suis 2 and changed the surface structures analylized by SDS-PAGE. Finally, the codY mutation altered the expressions of many virulence related genes, including sialic acid synthesis genes, leading to a decreased sialic acid content in capsule. Overall, mutation of codY modulated bacterial virulence by affecting the growth and colonization of S. suis 2, and at least via regulating sialic acid synthesis and capsule thickness. PMID:26883762

  3. Identification of an Inducible Bacteriophage in a Virulent Strain of Streptococcus suis Serotype 2

    PubMed Central

    Harel, J.; Martinez, G.; Nassar, A.; Dezfulian, H.; Labrie, S. J.; Brousseau, R.; Moineau, S.; Gottschalk, M.

    2003-01-01

    Streptococcus suis infection is considered to be a major problem in the swine industry worldwide. Most virulent Canadian isolates of S. suis serotype 2 do not produce the known virulence markers for this pathogen. PCR-based subtraction hybridization was adapted to isolate unique DNA sequences which were specific to virulent strains of S. suis isolated in Canada. Analysis of some subtracted DNA clones revealed significant homology with bacteriophages of gram-positive bacteria. An inducible phage (named Ss1) was observed in S. suis following the incubation of the virulent strain 89-999 with mitomycin C. Phage Ss1 has a long noncontractile tail and a small isometric nucleocapsid and is a member of the Siphoviridae family. Ss1 phage DNA appears to be present in most Canadian S. suis strains tested in this study, which were isolated from diseased pigs or had proven virulence in mouse or pig models. To our knowledge, this is the first report of the isolation of a phage in S. suis. PMID:14500539

  4. Evaluation of a ceftiofur-washed whole cell Streptococcus suis bacterin in pigs

    PubMed Central

    2004-01-01

    Abstract The efficacy of currently available washed whole cell Streptococcus suis bacterins is generally poor. We developed and tested the efficacy of a novel ceftiofur-washed whole cell bacterin. Sixty-six, 2-week-old specific pathogen free (SPF) pigs were randomly divided into 5 groups. Three groups were vaccinated 28 and 14 d prior to challenge. The 3 ceftiofur-washed whole cell bacterins each contained 1 of 3 different adjuvants (Montanide ISA 25, Montanide ISA 50, and Saponin). Pigs exhibiting severe central nervous system disease or severe joint swelling and lameness were euthanized immediately and necropsied. All remaining pigs were necropsied at 14 d post inoculation. The ceftiofur-washed whole cell S. suis bacterin with Montanide ISA 50 adjuvant significantly (P < 0.05) reduced bacteremia, meningitis, pneumonia, and mortality associated with S. suis challenge. Further work on this novel approach to bacterin production is warranted. PMID:15352553

  5. Ultrastructural study of surface components of Streptococcus suis.

    PubMed Central

    Jacques, M; Gottschalk, M; Foiry, B; Higgins, R

    1990-01-01

    The presence of capsular material on cells of nine reference strains of Streptococcus suis representing serotypes 1 to 8 and 1/2 was determined by transmission electron microscopy after polycationic ferritin labeling, immunostabilization, or fixation with a combination of glutaraldehyde and lysine. All the cells of the reference strains examined were covered with a layer of capsular material whose thickness varied between 20 to 30 nm and 350 to 375 nm when examined by immunostabilization. Capsular material from cells exposed to homologous antiserum was usually thicker than that from polycationic ferritin-labeled cells or cells fixed with glutaraldehyde-lysine. Negative staining revealed detectable surface structures on S. suis strains. All strains carried peritichous, thin, and flexible fimbriae with a diameter of approximately 2 nm and a length of up to 250 nm. This study indicated that morphological differences of surface structure exist among S. suis reference strains. Images PMID:1971617

  6. Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    PubMed Central

    Meijerink, Marjolein; Ferrando, Maria Laura; Lammers, Geraldine; Taverne, Nico; Smith, Hilde E.; Wells, Jerry M.

    2012-01-01

    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body. PMID:22558240

  7. Role of Capsule and Suilysin in Mucosal Infection of Complement-Deficient Mice with Streptococcus suis

    PubMed Central

    Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas

    2014-01-01

    Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3−/− mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3−/− mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3−/− mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3−/− blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR−/− mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity. PMID:24686060

  8. Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis.

    PubMed

    Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas; Baums, Christoph G

    2014-06-01

    Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.

  9. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial

    PubMed Central

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant. PMID:27399785

  10. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial.

    PubMed

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-07-07

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H-a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  11. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    PubMed

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain.

  12. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans.

    PubMed

    Huong, Vu Thi Lan; Ha, Ngo; Huy, Nguyen Tien; Horby, Peter; Nghia, Ho Dang Trung; Thiem, Vu Dinh; Zhu, Xiaotong; Hoa, Ngo Thi; Hien, Tran Tinh; Zamora, Javier; Schultsz, Constance; Wertheim, Heiman Frank Louis; Hirayama, Kenji

    2014-07-01

    Streptococcus suis, a bacterium that affects pigs, is a neglected pathogen that causes systemic disease in humans. We conducted a systematic review and meta-analysis to summarize global estimates of the epidemiology, clinical characteristics, and outcomes of this zoonosis. We searched main literature databases for all studies through December 2012 using the search term "streptococcus suis." The prevalence of S. suis infection is highest in Asia; the primary risk factors are occupational exposure and eating of contaminated food. The pooled proportions of case-patients with pig-related occupations and history of eating high-risk food were 38.1% and 37.3%, respectively. The main clinical syndrome was meningitis (pooled rate 68.0%), followed by sepsis, arthritis, endocarditis, and endophthalmitis. The pooled case-fatality rate was 12.8%. Sequelae included hearing loss (39.1%) and vestibular dysfunction (22.7%). Our analysis identified gaps in the literature, particularly in assessing risk factors and sequelae of this infection.

  13. Two Spx Regulators Modulate Stress Tolerance and Virulence in Streptococcus suis Serotype 2

    PubMed Central

    Zheng, Chengkun; Xu, Jiali; Li, Jinquan; Hu, Luohong; Xia, Jiandong; Fan, Jingyan; Guo, Weina; Chen, Huanchun; Bei, Weicheng

    2014-01-01

    Streptococcus suis serotype 2 is an important zoonotic pathogen causing severe infections in pigs and humans. The pathogenesis of S. suis 2 infections, however, is still poorly understood. Spx proteins are a group of global regulators involved in stress tolerance and virulence. In this study, we characterized two orthologs of the Spx regulator, SpxA1 and SpxA2 in S. suis 2. Two mutant strains (ΔspxA1 and ΔspxA2) lacking the spx genes were constructed. The ΔspxA1 and ΔspxA2 mutants displayed different phenotypes. ΔspxA1 exhibited impaired growth in the presence of hydrogen peroxide, while ΔspxA2 exhibited impaired growth in the presence of SDS and NaCl. Both mutants were defective in medium lacking newborn bovine serum. Using a murine infection model, we demonstrated that the abilities of the mutant strains to colonize the tissues were significantly reduced compared to that of the wild-type strain. The mutant strains also showed a decreased level of survival in pig blood. Microarray analysis revealed a global regulatory role for SpxA1 and SpxA2. Furthermore, we demonstrated for the first time that Spx is involved in triggering the host inflammatory response. Collectively, our data suggest that SpxA1 and SpxA2 are global regulators that are implicated in stress tolerance and virulence in S. suis 2. PMID:25264876

  14. In vitro Transcriptome Analysis of Two Chinese Isolates of Streptococcus suis Serotype 2

    PubMed Central

    Zhang, Dake; Du, Nan; Ma, Sufang; Hu, Qingtao; Lu, Guangwen; Chen, Wei; Zeng, Changqing

    2014-01-01

    The Streptococcus suis serotype 2 (S. suis 2) isolates 05ZYH33 and 98HAH33 have caused severe human infections in China. Using a strand-specific RNA-seq analysis, we compared the in vitro transcriptomes of these two Chinese isolates with that of a reference strain (P1/7). In the 89K genomic island that is specific to these Chinese isolates, a toxin–antitoxin system showed relatively high levels of transcription among the S. suis. The known virulence factors with high transcriptional activity in these two highly-pathogenic strains are mainly involved in adhesion, biofilm formation, hemolysis and the synthesis and transport of the outer membrane protein. Furthermore, our analysis of novel transcripts identified over 50 protein-coding genes with one of them encoding a toxin protein. We also predicted over 30 small RNAs (sRNAs) in each strain, and most of them are involved in riboswitches. We found that six sRNA candidates that are related to bacterial virulence, including cspA and rli38, are specific to Chinese isolates. These results provide insight into the factors responsible for the difference in virulence among the different S. suis 2 isolates. PMID:25526982

  15. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    PubMed

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  16. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures

    PubMed Central

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K.; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-01-01

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes. PMID:27304968

  17. Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence.

    PubMed

    Bonifait, Laetitia; Vaillancourt, Katy; Gottschalk, Marcelo; Frenette, Michel; Grenier, Daniel

    2011-03-24

    Streptococcus suis is a major swine pathogen that is responsible for severe infections such as meningitis, endocarditis, and septicemia. S. suis is also recognized as a zoonotic agent and expresses several virulence factors. The recently identified subtilisin-like protease (SspA) of S. suis plays an important role in the pathogenicity of this bacterium in animal models. The objective of the present study was to clone, purify, and characterize the SspA of serotype 2 S. suis P1/7. The SSU0757 gene encoding SspA was amplified and a 4798-bp DNA fragment was obtained. It was cloned into the expression plasmid pBAD/HisB and then inserted into Escherichia coli to overproduce the protein. The recombinant protease was purified by chromatography procedures and showed a molecular weight of 170 kDa by SDS-PAGE. Its activity was optimal at pH 7 and at temperatures ranging from 25°C to 37°C. It had a high specificity for the chromogenic substrate succinyl-Ala-Ala-Pro-Phe-pNa while specific inhibitors of serine proteases inhibited its activity. In addition to degrading gelatin, the protease hydrolyzed the Aα chain of fibrinogen, which prevented fibrin formation by thrombin. The recombinant subtilisin-like protease also showed toxicity towards brain microvascular endothelial cells. Lastly, sera from pigs infected with S. suis reacted with the recombinant SspA, indicating that it is produced during infections. In conclusion, the SspA of S. suis shared similarities with subtilisin-like proteases produced by other pathogenic streptococci and may contribute to the pathogenic process of S. suis infections.

  18. Identification of Streptococcus suis Meningitis through Population-Based Surveillance, Togo, 2010–2014

    PubMed Central

    Tall, Haoua; Njanpop-Lafourcade, Berthe-Marie; Mounkoro, Didier; Tidjani, Loukoumane; Agbenoko, Kodjo; Alassani, Issifou; Amidou, Moussa; Tamekloe, Stanislas; Laing, Kenneth G.; Witney, Adam A.; Hinds, Jason; van der Linden, Mark P.G.; Gessner, Bradford D.

    2016-01-01

    During 2010–2014, we enrolled 511 patients with suspected bacterial meningitis into surveillance in 2 districts of northern Togo. We identified 15 persons with Streptococcus suis infection; 10 had occupational contact with pigs, and 12 suffered neurologic sequelae. S. suis testing should be considered in rural areas of the African meningitis belt. PMID:27314251

  19. Identification of Streptococcus suis Meningitis through Population-Based Surveillance, Togo, 2010-2014.

    PubMed

    Tall, Haoua; Njanpop-Lafourcade, Berthe-Marie; Mounkoro, Didier; Tidjani, Loukoumane; Agbenoko, Kodjo; Alassani, Issifou; Amidou, Moussa; Tamekloe, Stanislas; Laing, Kenneth G; Witney, Adam A; Hinds, Jason; van der Linden, Mark P G; Gessner, Bradford D; Moïsi, Jennifer C

    2016-07-01

    During 2010-2014, we enrolled 511 patients with suspected bacterial meningitis into surveillance in 2 districts of northern Togo. We identified 15 persons with Streptococcus suis infection; 10 had occupational contact with pigs, and 12 suffered neurologic sequelae. S. suis testing should be considered in rural areas of the African meningitis belt. PMID:27314251

  20. Species-specific real-time PCR assay for the detection of Streptococcus suis from clinical specimens.

    PubMed

    Srinivasan, Velusamy; McGee, Lesley; Njanpop-Lafourcade, Berthe-Marie; Moïsi, Jennifer; Beall, Bernard

    2016-06-01

    A real-time polymerase chain reaction was developed to detect all known strains of Streptococcus suis. The assay was highly specific, and sensitivity was <10 copies/assay for S. suis detection from clinical samples. PMID:27041105

  1. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-(13)C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  2. Genetic diversity of Streptococcus suis serotype 2 isolated from pigs in Brazil.

    PubMed

    Doto, Daniela Sabatini; Moreno, Luisa Zanolli; Calderaro, Franco Ferraro; Matajira, Carlos Emilio Cabrera; de Moura Gomes, Vasco Tulio; Ferreira, Thais Sebastiana Porfida; Mesquita, Renan Elias; Timenetsky, Jorge; Gottschalk, Marcelo; Moreno, Andrea Micke

    2016-04-01

    Streptococcus suis is an emerging zoonotic pathogen that causes septicemia, meningitis, arthritis, and pneumonia in swine and humans. The present study aimed to characterize the genetic diversity of S. suis serotype 2 isolated from pigs showing signs of illness in Brazil using pulsed-field gel electrophoresis (PFGE), single-enzyme amplified fragment length polymorphism (SE-AFLP), and profiling of virulence-associated markers. A total of 110 isolates were studied, 62.7% of which were isolated from the central nervous system and 19.1% from the respiratory tract. Eight genotypes were obtained from the combination of virulence genes, with 43.6% and 5.5% frequencies for the mrp (+) /epf (+) /sly (+) and mrp (-) /epf (-) /sly (-) genotypes, respectively. The presence of isolates with epf gene variation with higher molecular weight also appears to be a characteristic of Brazilian S. suis serotype 2. The PFGE and SE-AFLP were able to type all isolates and, although they presented a slight tendency to cluster according to state and year of isolation, it was also evident the grouping of different herds in the same PFGE subtype and the existence of isolates originated from the same herd classified into distinct subtypes. No further correlation between the isolation sites and mrp/epf/sly genotypes was observed. PMID:27127337

  3. Genetic diversity of Streptococcus suis serotype 2 isolated from pigs in Brazil

    PubMed Central

    Doto, Daniela Sabatini; Moreno, Luisa Zanolli; Calderaro, Franco Ferraro; Matajira, Carlos Emilio Cabrera; de Moura Gomes, Vasco Tulio; Ferreira, Thais Sebastiana Porfida; Mesquita, Renan Elias; Timenetsky, Jorge; Gottschalk, Marcelo; Moreno, Andrea Micke

    2016-01-01

    Streptococcus suis is an emerging zoonotic pathogen that causes septicemia, meningitis, arthritis, and pneumonia in swine and humans. The present study aimed to characterize the genetic diversity of S. suis serotype 2 isolated from pigs showing signs of illness in Brazil using pulsed-field gel electrophoresis (PFGE), single-enzyme amplified fragment length polymorphism (SE-AFLP), and profiling of virulence-associated markers. A total of 110 isolates were studied, 62.7% of which were isolated from the central nervous system and 19.1% from the respiratory tract. Eight genotypes were obtained from the combination of virulence genes, with 43.6% and 5.5% frequencies for the mrp+/epf+/sly+ and mrp−/epf−/sly− genotypes, respectively. The presence of isolates with epf gene variation with higher molecular weight also appears to be a characteristic of Brazilian S. suis serotype 2. The PFGE and SE-AFLP were able to type all isolates and, although they presented a slight tendency to cluster according to state and year of isolation, it was also evident the grouping of different herds in the same PFGE subtype and the existence of isolates originated from the same herd classified into distinct subtypes. No further correlation between the isolation sites and mrp/epf/sly genotypes was observed. PMID:27127337

  4. [Streptococcus pyogenes pathogenic factors].

    PubMed

    Bidet, Ph; Bonacorsi, S

    2014-11-01

    The pathogenicity of ß-hemolytic group A streptococcus (GAS) is particularly diverse, ranging from mild infections, such as pharyngitis or impetigo, to potentially debilitating poststreptococcal diseases, and up to severe invasive infections such as necrotizing fasciitis or the dreaded streptococcal toxic shock syndrome. This variety of clinical expressions, often radically different in individuals infected with the same strain, results from a complex interaction between the bacterial virulence factors, the mode of infection and the immune system of the host. Advances in comparative genomics have led to a better understanding of how, following this confrontation, GAS adapts to the immune system's pressure, either peacefully by reducing the expression of certain virulence factors to achieve an asymptomatic carriage, or on the contrary, by overexpressing them disproportionately, resulting in the most severe forms of invasive infection. PMID:25456681

  5. Isolation and characterization of a native avirulent strain of Streptococcus suis serotype 2: a perspective for vaccine development

    PubMed Central

    Yao, Xinyue; Li, Ming; Wang, Jing; Wang, Changjun; Hu, Dan; Zheng, Feng; Pan, Xiuzhen; Tan, Yinling; Zhao, Yan; Hu, Liwen; Tang, Jiaqi; Hu, Fuquan

    2015-01-01

    Streptococcus suis, an emerging infectious pathogen, is the cause of two large-scale outbreaks of human streptococcal toxic shock syndrome in China, and has attracted much attention from the scientific community. The genetic basis of its pathogenesis remains enigmatic, and no effective prevention measures have been established. To better understand the virulence differentiation of S. suis and develop a promising vaccine, we isolated and sequenced a native avirulent S. suis strain (05HAS68). Animal experiments revealed that 05HAS68 is an avirulent strain and could protect piglets from the attack of virulent strains. Comparative genomics analyses demonstrated the genetic basis for the lack of virulence in 05HAS68, which is characterized by the absence of some important virulence-associated factors and the intact 89K pathogenicity island. Lack of virulence was also illustrated by reduced survival of 05HAS68 compared to a virulent strain in pig whole blood. Further investigations revealed a large-scale genomic rearrangement in 05HAS68, which was proposed to be mediated by transposase genes and/or prophages. This genomic rearrangement may have caused the genomic diversity of S. suis, and resulted in biological discrepancies between 05HAS68 and highly virulent S. suis strains. PMID:25891917

  6. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis.

    PubMed

    Zhu, Jiawen; Zhang, Tengfei; Su, Zhipeng; Li, Lu; Wang, Dong; Xiao, Ran; Teng, Muye; Tan, Meifang; Zhou, Rui

    2016-10-01

    (p)ppGpp-mediated stringent response is one of the main adaption mechanism in bacteria, and the ability to adapt to environment is linked to the pathogenesis of bacterial pathogens. In the zoonotic pathogen Streptococcus suis, there are two (p)ppGpp synthetases, RelA and RelQ. To investigate the regulatory functions of (p)ppGpp/(p)ppGpp synthetases on the pathogenesis of S. suis, the phenotypes of the [(p)ppGpp(0)] mutant ΔrelAΔrelQ and its parental strain were compared. Light and electron microscopy observation showed that the mutant strain had a longer chain-length than its parental strain. Disruption of relA and relQ led to decreased adhesive and invasive ability to HEp-2 cells, and increased sensitivity to the blood killing and phagocytosis. Mouse infection experiments showed that the mutant strain was attenuated and easier to be cleaned up in vivo. Quantitative reverse transcription PCR (qRT-PCR) analysis indicated that the expressions of virulence related genes involving in morphology and virulence were down-regulated in the mutant strain. Our study demonstrated that the (p)ppGpp synthetases or (p)ppGpp can regulate the pathogenesis of this important zoonotic pathogen.

  7. Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2.

    PubMed

    Yin, Supeng; Li, Ming; Rao, Xiancai; Yao, Xinyue; Zhong, Qiu; Wang, Min; Wang, Jing; Peng, Yizhi; Tang, Jiaqi; Hu, Fuquan; Zhao, Yan

    2016-01-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen that triggered two outbreaks of streptococcal toxic shock syndrome (STSS) in China. Our previous research demonstrated that a type IV secretion system (T4SS) harbored in the 89K pathogenicity island contributes to the pathogenicity of S. suis 2. In the present study, a shotgun proteomics approach was employed to identify the effectors secreted by T4SS in S. suis 2, and surface-associated subtilisin-like protease-1 (SspA-1) was identified as a potential virulence effector. Western blot analysis and pull-down assay revealed that SspA-1 secretion depends on T4SS. Knockout mutations affecting sspA-1 attenuated S. suis 2 and impaired the pathogen's ability to trigger inflammatory response in mice. And purified SspA-1 induced the secretion of IL-6, TNF-α, and IL-12p70 in THP-1 cells directly. SspA-1 is the first T4SS virulence effector reported in Gram-positive bacteria. Overall, these findings allow us to gain further insights into the pathogenesis of T4SS and STSS. PMID:27270879

  8. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs.

    PubMed

    Callens, Bénédicte F; Haesebrouck, Freddy; Maes, Dominiek; Butaye, Patrick; Dewulf, Jeroen; Boyen, Filip

    2013-04-01

    Streptococcus suis (S. suis) has often been reported as an important swine pathogen and is considered as a new emerging zoonotic agent. Consequently, it is important to be informed on its susceptibility to antimicrobial agents. In the current study, the Minimum Inhibitory Concentration (MIC) population distribution of nine antimicrobial agents has been determined for nasal S. suis strains, isolated from healthy pigs at the end of the fattening period from 50 closed or semiclosed pig herds. The aim of the study was to report resistance based on both clinical breakpoints (clinical resistance percentage) and epidemiological cutoff values (non-wild-type percentage). Non-wild-type percentages were high for tetracycline (98%), lincomycin (92%), tilmicosin (72%), erythromycin (70%), tylosin (66%), and low for florfenicol (0%) and enrofloxacin (0.3%). Clinical resistance percentages were high for tetracycline (95%), erythromycin (66%), tylosin (66%), and low for florfenicol (0.3%) and enrofloxacin (0.3%). For tiamulin, for which no clinical breakpoint is available, 57% of the isolates did not belong to the wild-type population. Clinical resistance and non-wild-type percentages differed substantially for penicillin. Only 1% of the tested S. suis strains was considered as clinically resistant, whereas 47% of the strains showed acquired resistance when epidemiological cutoff values were used. In conclusion, MIC values for penicillin are gradually increasing, compared to previous reports, although pigs infected with strains showing higher MICs may still respond to treatment with penicillin. The high rate of acquired resistance against tiamulin has not been reported before. Results from this study clearly demonstrate that the use of different interpretive criteria contributes to the extent of differences in reported antimicrobial resistance results. The early detection of small changes in the MIC population distribution of isolates, while clinical failure may not yet be

  9. Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis.

    PubMed

    Willenborg, J; Fulde, M; de Greeff, A; Rohde, M; Smith, H E; Valentin-Weigand, P; Goethe, R

    2011-06-01

    Streptococcus suis is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, S. suis causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of S. suis to glucose availability during growth and to the sugar metabolism regulator catabolite control protein A (CcpA). We found that expression of the virulence-associated genes arcB, representing arcABC operon expression, cps2A, representing capsular locus expression, as well as sly, ofs, sao and epf, differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of ccpA altered the expression of the surface-associated virulence factors arcB, sao and eno, as well as the two currently proven virulence factors in pigs, ofs and cps2A, in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10ΔccpA and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10ΔccpA revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of S. suis.

  10. Temporal and spatial association of Streptococcus suis infection in humans and porcine reproductive and respiratory syndrome outbreaks in pigs in northern Vietnam.

    PubMed

    Huong, V T L; Thanh, L V; Phu, V D; Trinh, D T; Inui, K; Tung, N; Oanh, N T K; Trung, N V; Hoa, N T; Bryant, J E; Horby, P W; Kinh, N V; Wertheim, H F L

    2016-01-01

    Porcine reproductive and respiratory syndrome (PRRS) outbreaks in pigs are associated with increased susceptibility of pigs to secondary bacterial infections, including Streptococcus suis - an important zoonotic pathogen causing bacterial meningitis in humans. This case-control study examined the association between human S. suis infection and PRRS outbreaks in pigs in northern Vietnam. We included 90 S. suis case-patients and 183 non-S. suis sepsis controls from a referral hospital in Hanoi in 2010, a period of major PRRS epizootics in Vietnam. PRRS exposure was determined using data from the National Centre of Veterinary Diagnosis. By univariate analysis, significantly more S. suis patients were reported residing in or adjacent to a PRRS district compared to controls [odds ratio (OR) 2·82, 95% confidence interval (CI) 1·35-5·89 and OR 3·15, 95% CI 1·62-6·15, respectively]. Only residency in adjacent districts remained significantly associated with risk of S. suis infection after adjusting for sex, occupation, and eating practices. SaTScan analysis showed a possible cluster of S. suis infection in humans around PRRS confirmed locations during the March-August period. The findings indicate an epidemiological association between PRRS in pigs and S. suis infections in humans. Effective strategies to strengthen control of PRRS in pigs may help reduce transmission of S. suis infection to humans.

  11. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci

    PubMed Central

    Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping

    2016-01-01

    Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs. PMID:27774436

  12. Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2

    PubMed Central

    Yin, Supeng; Li, Ming; Rao, Xiancai; Yao, Xinyue; Zhong, Qiu; Wang, Min; Wang, Jing; Peng, Yizhi; Tang, Jiaqi; Hu, Fuquan; Zhao, Yan

    2016-01-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen that triggered two outbreaks of streptococcal toxic shock syndrome (STSS) in China. Our previous research demonstrated that a type IV secretion system (T4SS) harbored in the 89K pathogenicity island contributes to the pathogenicity of S. suis 2. In the present study, a shotgun proteomics approach was employed to identify the effectors secreted by T4SS in S. suis 2, and surface-associated subtilisin-like protease-1 (SspA-1) was identified as a potential virulence effector. Western blot analysis and pull-down assay revealed that SspA-1 secretion depends on T4SS. Knockout mutations affecting sspA-1 attenuated S. suis 2 and impaired the pathogen’s ability to trigger inflammatory response in mice. And purified SspA-1 induced the secretion of IL-6, TNF-α, and IL-12p70 in THP-1 cells directly. SspA-1 is the first T4SS virulence effector reported in Gram-positive bacteria. Overall, these findings allow us to gain further insights into the pathogenesis of T4SS and STSS. PMID:27270879

  13. An emerging zoonotic clone in the Netherlands provides clues to virulence and zoonotic potential of Streptococcus suis

    PubMed Central

    Willemse, N.; Howell, K. J.; Weinert, L. A.; Heuvelink, A.; Pannekoek, Y.; Wagenaar, J. A.; Smith, H. E.; van der Ende, A.; Schultsz, C.

    2016-01-01

    Streptococcus suis is a zoonotic swine pathogen and a major public health concern in Asia, where it emerged as an important cause of bacterial meningitis in adults. While associated with food-borne transmission in Asia, zoonotic S. suis infections are mainly occupational hazards elsewhere. To identify genomic differences that can explain zoonotic potential, we compared whole genomes of 98 S. suis isolates from human patients and pigs with invasive disease in the Netherlands, and validated our observations with 18 complete and publicly available sequences. Zoonotic isolates have smaller genomes than non-zoonotic isolates, but contain more virulence factors. We identified a zoonotic S. suis clone that diverged from a non-zoonotic clone by means of gene loss, a capsule switch, and acquisition of a two-component signalling system in the late 19th century, when foreign pig breeds were introduced. Our results indicate that zoonotic potential of S. suis results from gene loss, recombination and horizontal gene transfer events. PMID:27381348

  14. Sialylation of Streptococcus suis serotype 2 is essential for capsule expression but is not responsible for the main capsular epitope.

    PubMed

    Lecours, Marie-Pier; Fittipaldi, Nahuel; Takamatsu, Daisuke; Okura, Masatoshi; Segura, Mariela; Goyette-Desjardins, Guillaume; Van Calsteren, Marie-Rose; Gottschalk, Marcelo

    2012-09-01

    The capsular polysaccharide is a critical virulence factor of the swine and zoonotic pathogen Streptococcus suis serotype 2. The capsule of this bacterium is composed of five different sugars, including terminal sialic acid. To evaluate the role of sialic acid in the pathogenesis of the infection, the neuC gene, encoding for an enzyme essential for sialic acid biosynthesis, was inactivated in a highly virulent S. suis serotype 2 strain. Using transmission electron microscopy, it was shown that inactivation of neuC resulted in loss of expression of the whole capsule. Compared to the parent strain, the ΔneuC mutant strain was more phagocytosed by macrophages and was also severely impaired in virulence in a mouse infection model. Both native and desialylated S. suis serotype 2 purified capsular polysaccharides were recognized by a polyclonal anti-whole cell S. suis serotype 2 serum and a monospecific polyclonal anti-capsule serotype 2 serum. In contrast, only the native capsular polysaccharide was recognized by a monoclonal antibody specific for the sialic acid moiety of the serotype 2 capsule. Together, our results infer that sialylation of S. suis serotype 2 may be essential for capsule expression, but that this sugar is not the main epitope of this serotype.

  15. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis

    PubMed Central

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90–1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89–1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA’) of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84

  16. Comparison of experimental models for Streptococcus suis infection of conventional pigs

    PubMed Central

    Pallarés, Francisco J.; Halbur, Patrick G.; Schmitt, Cameron S.; Roth, James A.; Opriessnig, Tanja; Thomas, Peter J.; Kinyon, Joann M.; Murphy, Dee; Frank, Dagmar E.; Hoffman, Lorraine J.

    2003-01-01

    Four different experimental models for Streptococcus suis-induced disease were compared to find a model that closely mimics naturally occurring disease in conventional pigs. Fourteen, 2-week old pigs free of S. suis type 2 were used in 2 experiments. In experiment 1, 3 pigs were inoculated intravenously (IV) and 3 pigs intranasally (IN) with S. suis. Two out of 3 of the IV-inoculated pigs exhibited signs of severe central nervous system disease (CNS) and were euthanized. Streptococcus suis type 2 was isolated from whole blood, joints, and serosal surfaces of both pigs. No clinical signs and no growth of S. suis were detected in the IN-inoculated pigs. In experiment 2, 4 pigs were inoculated IV and another 4 were inoculated IN with the same isolate as in experiment 1. One hour before inoculation the IN-inoculated pigs were given 5 mL of 1% acetic acid intranasally (IN-AA). All the IV-inoculated pigs showed CNS disease and lameness, and 2 of the pigs became severely affected and were euthanized. All the IN-AA inoculated pigs exhibited roughened hair coats and 2 pigs developed severe CNS disease and were euthanized. Streptococcus suis was isolated from the joints and blood of 3 pigs in the IV-inoculated group. Streptococcus suis was isolated from blood of 2 pigs, meninges of 3 pigs, and joints of 1 pig in the IN-AA inoculated group. Natural exposure to S. suis most likely occurs by the intranasal route. The IN-AA model should serve as a good model for S. suis-induced disease, because the natural route of exposure is intranasal and the IN-AA model was effective in inducing disease that mimics what is observed in the field. PMID:12889730

  17. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine.

    PubMed

    Goyette-Desjardins, Guillaume; Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo; Segura, Mariela

    2016-07-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  18. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation

    PubMed Central

    Liu, Rui; Zhang, Ping; Su, Yiqi; Lin, Huixing; Zhang, Hui; Yu, Lei; Ma, Zhe; Fan, Hongjie

    2016-01-01

    The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis. PMID:27256117

  19. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation.

    PubMed

    Liu, Rui; Zhang, Ping; Su, Yiqi; Lin, Huixing; Zhang, Hui; Yu, Lei; Ma, Zhe; Fan, Hongjie

    2016-01-01

    The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis. PMID:27256117

  20. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    SciTech Connect

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin; Qi, Jianxun; Gao, George Fu

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  1. Functional and Structural Characterization of the Antiphagocytic Properties of a Novel Transglutaminase from Streptococcus suis*

    PubMed Central

    Yu, Jie; Pian, Yaya; Ge, Jingpeng; Guo, Jie; Zheng, Yuling; Jiang, Hua; Hao, Huaijie; Yuan, Yuan; Jiang, Yongqiang; Yang, Maojun

    2015-01-01

    Streptococcus suis serotype 2 (Ss2) is an important swine and human zoonotic pathogen. In the present study, we identified a novel secreted immunogenic protein, SsTGase, containing a highly conserved eukaryotic-like transglutaminase (TGase) domain at the N terminus. We found that inactivation of SsTGase significantly reduced the virulence of Ss2 in a pig infection model and impaired its antiphagocytosis in human blood. We further solved the crystal structure of the N-terminal portion of the protein in homodimer form at 2.1 Å. Structure-based mutagenesis and biochemical studies suggested that disruption of the homodimer directly resulted in the loss of its TGase activity and antiphagocytic ability. Characterization of SsTGase as a novel virulence factor of Ss2 by acting as a TGase would be beneficial for developing new therapeutic agents against Ss2 infections. PMID:26085092

  2. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam.

    PubMed

    Ngo, Thi Hoa; Tran, Thi Bich Chieu; Tran, Thi Thu Nga; Nguyen, Van Dung; Campbell, James; Pham, Hong Anh; Huynh, Huu Tho; Nguyen, Van Vinh Chau; Bryant, Juliet E; Tran, Tinh Hien; Farrar, Jeremy; Schultsz, Constance

    2011-03-28

    Streptococcus suis is a pathogen of major economic significance to the swine industry and is increasingly recognized as an emerging zoonotic agent in Asia. In Vietnam, S. suis is the leading cause of bacterial meningitis in adult humans. Zoonotic transmission is most frequently associated with serotype 2 strains and occupational exposure to pigs or consumption of infected pork. To gain insight into the role of pigs for human consumption as a reservoir for zoonotic infection in southern Vietnam, we determined the prevalence and diversity of S. suis carriage in healthy slaughterhouse pigs. Nasopharyngeal tonsils were sampled from pigs at slaughterhouses serving six provinces in southern Vietnam and Ho Chi Minh City area from September 2006 to November 2007. Samples were screened by bacterial culture. Isolates of S. suis were serotyped and characterized by multi locus sequence typing (MLST) and pulse field gel electrophoresis (PFGE). Antibiotic susceptibility profiles and associated genetic resistance determinants, and the presence of putative virulence factors were determined. 41% (222/542) of pigs carried S. suis of one or multiple serotypes. 8% (45/542) carried S. suis serotype 2 which was the most common serotype found (45/317 strains, 14%). 80% of serotype 2 strains belonged to the MLST clonal complex 1,which was previously associated with meningitis cases in Vietnam and outbreaks of severe disease in China in 1998 and 2005. These strains clustered with representative strains isolated from patients with meningitis in PFGE analysis, and showed similar antimicrobial resistance and virulence factor profiles. Slaughterhouse pigs are a major reservoir of S. suis serotype 2 capable of causing human infection in southern Vietnam. Strict hygiene at processing facilities, and health education programs addressing food safety and proper handling of pork should be encouraged.

  3. MsmK, an ATPase, Contributes to Utilization of Multiple Carbohydrates and Host Colonization of Streptococcus suis.

    PubMed

    Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui

    2015-01-01

    Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.

  4. An occurrence of equine transport pneumonia caused by mixed infection with Pasteurella caballi, Streptococcus suis and Streptococcus zooepidemicus.

    PubMed

    Hayakawa, Y; Komae, H; Ide, H; Nakagawa, H; Yoshida, Y; Kamada, M; Kataoka, Y; Nakazawa, M

    1993-06-01

    An acute death occurred in a racehorse with pneumonia after long-distance transportation in December, 1990. Pasteurella caballi, Streptococcus suis and Streptococcus zooepidemicus were isolated from the lung at high rate. Specific antigens of these bacteria were also demonstrated immunohistologically in the pneumonic lesion. These findings indicated that the disease is equine transport pneumonia caused by a mixed infection of the three bacterial species. This is the first report on the isolation of P. caballi and S. suis from a racehorse in Japan. PMID:8357920

  5. Antimicrobial Resistance Profile and Genotypic Characteristics of Streptococcus suis Capsular Type 2 Isolated from Clinical Carrier Sows and Diseased Pigs in China

    PubMed Central

    Zhang, Chunping; Zhang, Zhongqiu; Song, Li; Fan, Xuezheng; Wen, Fang; Xu, Shixin; Ning, Yibao

    2015-01-01

    Streptococcus suis serotype 2 is an important zoonotic pathogen. Antimicrobial resistance phenotypes and genotypic characterizations of S. suis 2 from carrier sows and diseased pigs remain largely unknown. In this study, 96 swine S. suis type 2, 62 from healthy sows and 34 from diseased pigs, were analyzed. High frequency of tetracycline resistance was observed, followed by sulfonamides. The lowest resistance of S. suis 2 for β-lactams supports their use as the primary antibiotics to treat the infection of serotype 2. In contrast, 35 of 37 S. suis 2 with MLSB phenotypes were isolated from healthy sows, mostly encoded by the ermB and/or the mefA genes. Significantly lower frequency of mrp+/epf+/sly+ was observed among serotype 2 from healthy sows compared to those from diseased pigs. Furthermore, isolates from diseased pigs showed more homogeneously genetic patterns, with most of them clustered in pulsotypes A and E. The data indicate the genetic complexity of S. suis 2 between herds and a close linkage among isolates from healthy sows and diseased pigs. Moreover, many factors, such as extensive use of tetracycline or diffusion of Tn916 with tetM, might have favored for the pathogenicity and widespread dissemination of S. suis serotype 2. PMID:26064892

  6. Sub-MICs of Azithromycin Decrease Biofilm Formation of Streptococcus suis and Increase Capsular Polysaccharide Content of S. suis

    PubMed Central

    Yang, Yan-Bei; Chen, Jian-Qing; Zhao, Yu-Lin; Bai, Jing-Wen; Ding, Wen-Ya; Zhou, Yong-Hui; Chen, Xue-Ying; Liu, Di; Li, Yan-Hua

    2016-01-01

    Streptococcus suis (S. suis) caused serious disease symptoms in humans and pigs. S. suis is able to form thick biofilms and this increases the difficulty of treatment. After growth with 1/2 minimal inhibitory concentration (MIC) of azithromycin, 1/4 MIC of azithromycin, or 1/8 MIC of azithromycin, biofilm formation of S. suis dose-dependently decreased in the present study. Furthermore, scanning electron microscopy analysis revealed the obvious effect of azithromycin against biofilm formation of S. suis. Especially, at two different conditions (1/2 MIC of azithromycin non-treated cells and treated cells), we carried out comparative proteomic analyses of cells by using iTRAQ technology. Finally, the results revealed the existence of 19 proteins of varying amounts. Interestingly, several cell surface proteins (such as ATP-binding cassette superfamily ATP-binding cassette transporter (G7SD52), CpsR (K0FG35), Cps1/2H (G8DTL7), CPS16F (E9NQ13), putative uncharacterized protein (G7SER0), NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (G5L259), putative uncharacterized protein (G7S2D6), amino acid permease (B0M0G6), and NsuB (G5L351)) were found to be implicated in biofilm formation. More importantly, we also found that azithromycin affected expression of the genes cps1/2H, cpsR and cps16F. Especially, after growth with 1/2 MIC of azithromycin and 1/4 MIC of azithromycin, the capsular polysaccharide content of S. suis was significantly higher. PMID:27812354

  7. Human case of bacteremia due to Streptococcus suis serotype 5 in Japan: The first report and literature review.

    PubMed

    Taniyama, Daisuke; Sakurai, Mayu; Sakai, Tetsuya; Kikuchi, Takahide; Takahashi, Takashi

    2016-01-01

    Streptococcus suis is a zoonotic pathogen that can be transferred from pigs to humans. The serotypes 2 and 14 are prevalent among patients with S. suis infections, while other serotypes (i.e., 1, 4, 5, 16, and 24) have been detected in rare human cases. To the best of our knowledge, the present patient handling with raw pork is the first human case of uncomplicated bacteremia due to S. suis serotype 5 in Japan. We confirmed the new sequence type 752 of this isolate. Virulence-associated gene profiling was performed; both sly (encoding the hemolysin suilysin) and mrp (encoding a muramidase-released protein) were detected without amplification of epf (encoding the extracellular factor). Our polymerase chain reaction-based results indicated that this isolate possessed both tet(O), the tetracycline-resistance determinant, and erm(B), the macrolide/lincosamide-resistance determinant. In addition, we provide the review of literature concerning clinical and microbiological features of four human cases of infection due to S. suis serotype 5. Clinicians should be aware of this microorganism when examining and treating patients with fever, who are handling raw pork or having close contact with infected pigs even if they are immunocompetent. PMID:27689023

  8. Capsule loss or death: the position of mutations among capsule genes sways the destiny of Streptococcus suis.

    PubMed

    Lakkitjaroen, Nattakan; Takamatsu, Daisuke; Okura, Masatoshi; Sato, Masumi; Osaki, Makoto; Sekizaki, Tsutomu

    2014-05-01

    Streptococcus suis, an emerging zoonotic pathogen, is responsible for various diseases in swine and humans. Most S. suis strains from clinical cases possess a group of capsular polysaccharide synthesis (cps) genes and phenotypically express capsular polysaccharides (CPs). Although CPs are considered to be an important virulence factor, our previous study showed that many S. suis isolates from porcine endocarditis lost their CPs, and some of these unencapsulated isolates had large insertions or deletions in the cps gene clusters. We further investigated 25 endocarditis isolates with no obvious genetic alterations to elucidate the unencapsulation mechanisms and found that a single-nucleotide substitution and frameshift mutation in two glycosyltransferase genes (cps2E and cps2F) were the main causes of the capsule loss. Moreover, mutations in the genes involved in side-chain formation (cps2J and cps2N), polymerase (cps2I), and flippase (cps2O) appeared to be lethal; however, these lethal effects were relieved by mutations in the cps2EF region. As unencapsulation and even the death of individual cells have recently been suggested to be beneficial to the pathogenesis of infections, the results of the present study provide a further insight into understanding the biological significance of cps mutations during the course of S. suis infections.

  9. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism.

    PubMed

    Han, Huiming; Liu, Cuihua; Wang, Quanhui; Xuan, Chunling; Zheng, Beiwen; Tang, Jiaqi; Yan, Jinghua; Zhang, Jingren; Li, Ming; Cheng, Hao; Lu, Guangwen; Gao, George F

    2012-07-01

    Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen. It causes heavy economic losses in the pig-farming industry and can be associated with severe infections in humans, e.g. streptococcal toxic shock syndrome. Understanding its pathogenesis is critical for prevention and control of diseases caused by S. suis 2. In this study, we show that deletion of a two-component system (TCS), 05SSU1660/1661 (orthologues of the Ihk/Irr TCS of Streptococcus pyogenes), in S. suis 2 strain 05ZYH33 results in notable attenuation of virulence, as exemplified by reduced adherence to mucosal epithelium cells, increased elimination by macrophages, reduced ability to survive in an acidic or oxidative-stressed environment, and lowered pathogenicity in mice. Further analysis of differential proteomics profiles by two-dimensional electrophoresis revealed that while many previously well-known virulence factors, such as suilysin, autolysin and muraminidase-released protein, were not expressed differentially, cell metabolism was downregulated in the Ihk/Irr deletion mutant. In addition, the oxidative-stress response gene for manganese-dependent superoxide dismutase (MnSOD) was also repressed significantly in the mutant. Collectively, our data suggest that the Ihk/Irr TCS contributes to the virulence of S. suis 2 strain 05ZYH33, mainly through alteration of the bacterial cell metabolism.

  10. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling.

    PubMed

    Willenborg, Jörg; Huber, Claudia; Koczula, Anna; Lange, Birgit; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2015-02-27

    Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid.

  11. Clearance of Streptococcus suis in Stomach Contents of Differently Fed Growing Pigs

    PubMed Central

    Warneboldt, Franziska; Sander, Saara J.; Beineke, Andreas; Valentin-Weigand, Peter; Kamphues, Josef; Baums, Christoph Georg

    2016-01-01

    Streptococcus (S.) suis translocates across the intestinal barrier of piglets after intraintestinal application. Based on these findings, an oro-gastrointestinal infection route has been proposed. Thus, the objective of this study was to investigate the survival of S. suis in the porcine stomach. Whereas surviving bacteria of S. suis serotypes 2 and 9 were not detectable after 60 min of incubation in stomach contents with a comparatively high gastric pH of 5 due to feeding of fine pellets, the number of Salmonella Derby bacteria increased under these conditions. Further experiments confirmed the clearance of S. suis serotypes 2 and 9 within 30 min in stomach contents with a pH of 4.7 independently of the bacterial growth phase. Finally, an oral infection experiment was conducted, feeding each of 18 piglets a diet mixed with 1010 CFU of S. suis serotype 2 or 9. Thorough bacteriological screenings of various mesenteric-intestinal lymph nodes and internal organs after different times of exposure did not lead to any detection of the orally applied challenge strains. In conclusion, the porcine stomach constitutes a very efficient barrier against oro-gastrointenstinal S. suis infections. Conditions leading to the passage of S. suis through the stomach remain to be identified. PMID:27509526

  12. A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection.

    PubMed

    Zhang, Hang; Zhang, Chuanpeng; Wang, Hengan; Yan, Ya Xian; Sun, Jianhe

    2016-09-01

    Streptococcus suis (S. suis) is an emerging zoonotic agent that exhibits high level resistance to classic antibiotics and a heavy burden in the swine industry. Therefore alternative antibacterial agents need to be developed. A novel endolysin derived from the S. suis temperate phage phi5218, termed Ply5218, was identified. The minimum inhibitory concentration (MIC) of Ply5218 was 2.5 μg ml(-1) against S. suis strain HA9801, an activity many times greater than the lysins reported previously (MIC of LY7917 and Ply30 against HA9801 were 80 and 64 μg ml(-1), respectively). Ply5218 at 10 μg ml(-1) in vitro exerted broad antibacterial activities against S. suis strains with OD600 ratios decreased from 1 to <0.2 within 1 h. Moreover, Ply5218 showed favorable thermal stability. It was stable at 50°C >30 min, 4°C >30 days, -80°C >7 months, and >60% of the enzyme activity remained after 5 min pre-incubation at 70°C. In vivo, a 0.2 mg dose of Ply5218 protected 90% (9/10) of mice after infection with S. suis HA9801. Finally, Ply5218 maintained high antibacterial activity in some bio-matrices, such as culture media and milk. The data indicate that Ply5218 has all the characteristics to be an effective therapeutic agent against multiple S. suis infections. PMID:27481700

  13. Clearance of Streptococcus suis in Stomach Contents of Differently Fed Growing Pigs.

    PubMed

    Warneboldt, Franziska; Sander, Saara J; Beineke, Andreas; Valentin-Weigand, Peter; Kamphues, Josef; Baums, Christoph Georg

    2016-08-06

    Streptococcus (S.) suis translocates across the intestinal barrier of piglets after intraintestinal application. Based on these findings, an oro-gastrointestinal infection route has been proposed. Thus, the objective of this study was to investigate the survival of S. suis in the porcine stomach. Whereas surviving bacteria of S. suis serotypes 2 and 9 were not detectable after 60 min of incubation in stomach contents with a comparatively high gastric pH of 5 due to feeding of fine pellets, the number of Salmonella Derby bacteria increased under these conditions. Further experiments confirmed the clearance of S. suis serotypes 2 and 9 within 30 min in stomach contents with a pH of 4.7 independently of the bacterial growth phase. Finally, an oral infection experiment was conducted, feeding each of 18 piglets a diet mixed with 10(10) CFU of S. suis serotype 2 or 9. Thorough bacteriological screenings of various mesenteric-intestinal lymph nodes and internal organs after different times of exposure did not lead to any detection of the orally applied challenge strains. In conclusion, the porcine stomach constitutes a very efficient barrier against oro-gastrointenstinal S. suis infections. Conditions leading to the passage of S. suis through the stomach remain to be identified.

  14. Clearance of Streptococcus suis in Stomach Contents of Differently Fed Growing Pigs.

    PubMed

    Warneboldt, Franziska; Sander, Saara J; Beineke, Andreas; Valentin-Weigand, Peter; Kamphues, Josef; Baums, Christoph Georg

    2016-01-01

    Streptococcus (S.) suis translocates across the intestinal barrier of piglets after intraintestinal application. Based on these findings, an oro-gastrointestinal infection route has been proposed. Thus, the objective of this study was to investigate the survival of S. suis in the porcine stomach. Whereas surviving bacteria of S. suis serotypes 2 and 9 were not detectable after 60 min of incubation in stomach contents with a comparatively high gastric pH of 5 due to feeding of fine pellets, the number of Salmonella Derby bacteria increased under these conditions. Further experiments confirmed the clearance of S. suis serotypes 2 and 9 within 30 min in stomach contents with a pH of 4.7 independently of the bacterial growth phase. Finally, an oral infection experiment was conducted, feeding each of 18 piglets a diet mixed with 10(10) CFU of S. suis serotype 2 or 9. Thorough bacteriological screenings of various mesenteric-intestinal lymph nodes and internal organs after different times of exposure did not lead to any detection of the orally applied challenge strains. In conclusion, the porcine stomach constitutes a very efficient barrier against oro-gastrointenstinal S. suis infections. Conditions leading to the passage of S. suis through the stomach remain to be identified. PMID:27509526

  15. Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes.

    PubMed

    Marini, Emanuela; Palmieri, Claudio; Magi, Gloria; Facinelli, Bruna

    2015-07-01

    Integrative conjugative elements (ICEs) are mobile genetic elements that reside in the chromosome but retain the ability to undergo excision and to transfer by conjugation. Genes involved in drug resistance, virulence, or niche adaptation are often found among backbone genes as cargo DNA. We recently characterized in Streptococcus suis an ICE (ICESsu32457) carrying resistance genes [tet(O/W/32/O), tet(40), erm(B), aphA, and aadE] in the 15K unstable genetic element, which is flanked by two ∼1.3kb direct repeats. Remarkably, ∼1.3-kb sequences are conserved in ICESa2603 of Streptococcus agalactiae 2603V/R, which carry heavy metal resistance genes cadC/cadA and mer. In matings between S. suis 32457 (donor) and S. agalactiae 2603V/R (recipient), transconjugants were obtained. PCR experiments, PFGE, and sequence analysis of transconjugants demonstrated a tandem array between ICESsu32457 and ICESa2603. Matings between tandem array-containing S. agalactiae 2603V/R (donor) and Streptococcus pyogenes RF12 (recipient) yielded a single transconjugant containing a hybrid ICE, here named ICESa2603/ICESsu32457. The hybrid formed by recombination of the left ∼1.3-kb sequence of ICESsu32457 and the ∼1.3-kb sequence of ICESa2603. Interestingly, the hybrid ICE was transferable between S. pyogenes strains, thus demonstrating that it behaves as a conventional ICE. These findings suggest that both tandem arrays and hybrid ICEs may contribute to the evolution of antibiotic resistance in streptococci, creating novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.

  16. Response of swine spleen to Streptococcus suis infection revealed by transcription analysis

    PubMed Central

    2010-01-01

    Astract Background Streptococcus suis serotype 2 (SS2), a major swine pathogen and an emerging zoonotic agent, has greatly challenged global public health. Systematical information about host immune response to the infection is important for understanding the molecular mechanism of diseases. Results 104 and 129 unique genes were significantly up-regulated and down-regulated in the spleens of pigs infected with SS2 (WT). The up-regulated genes were principally related to immune response, such as genes involved in inflammatory response; acute-phase/immune response; cell adhesion and response to stress. The down-regulated genes were mainly involved in transcription, transport, material and energy metabolism which were representative of the reduced vital activity of SS2-influenced cells. Only a few genes showed significantly differential expression when comparing avirulent isogenic strain (ΔHP0197) with mock-infected samples. Conclusions Our findings indicated that highly pathogenic SS2 could persistently induce cytokines mainly by Toll-like receptor 2 (TLR2) pathway, and the phagocytosis-resistant bacteria could induce high level of cytokines and secrete toxins to destroy deep tissues, and cause meningitis, septicaemia, pneumonia, endocarditis, and arthritis. PMID:20937098

  17. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones

    PubMed Central

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B. T.; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes. PMID:27433935

  18. A novel virulence-associated protein, vapE, in Streptococcus suis serotype 2.

    PubMed

    Ji, Xue; Sun, Yang; Liu, Jun; Zhu, Lingwei; Guo, Xuejun; Lang, Xulong; Feng, Shuzhang

    2016-03-01

    Streptococcus suis serotype 2 (SS2) is an important pathogen that affects pigs. However, neither its virulence nor its pathogenesis of infection has yet to be fully elucidated. The present study identifies a novel virulence‑associated protein E gene (vapE) of SS2. To investigate the importance of vapE in SS2 infection, a vapE knock‑out mutant based on SS2 wild‑type strain ZY458 was designated 458ΔvapE. 458ΔvapE was generated through homologous recombination, using a combined plasmid with a vapE knock‑out fragment and a pSET4s suicide vector. Additionally, the 458ΔvapE strain was transformed by a pAT18 shuttle plasmid containing the vapE gene. A functionally complemented strain for the vapE gene [termed 458ΔvapE (pvapE)] was constructed. Animal experiments demonstrated that mice infected with ZY458 and 458ΔvapE (pvapE) exhibited severe clinical symptoms, including depression, apathy, fever, anorexia, emaciation, swollen eyes and neural disorders, and died within two days of infection. All mice infected with ZY458, and 85% of mice infected with 458ΔvapE (pvapE), died within 2 days of infection. In contrast, mice inoculated with 458ΔvapE exhibited only mild clinical symptoms in the first 2 days following infection, and recovered within a week. A bacterial colonization assay demonstrated the ability of the 458ΔvapE mutant SS2 strain to colonize the heart, liver, spleen, lung and kidney of infected mice. PCR analysis of the vapE gene revealed that functional vapE was detected in virulent strains, but not in avirulent and carrier strains of S. suis SS2. These findings indicate that vapE is important for the pathogenesis of SS2. PMID:26821177

  19. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid

    PubMed Central

    Wu, Zongfu; Wu, Chunyan; Shao, Jing; Zhu, Zhenzhen; Wang, Weixue; Zhang, Wenwei; Tang, Min; Pei, Na; Fan, Hongjie; Li, Jiguang; Yao, Huochun; Gu, Hongwei; Xu, Xun; Lu, Chengping

    2014-01-01

    Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence. PMID:24759092

  20. Assessment of MALDI-TOF MS as Alternative Tool for Streptococcus suis Identification.

    PubMed

    Pérez-Sancho, Marta; Vela, Ana Isabel; García-Seco, Teresa; Gottschalk, Marcelo; Domínguez, Lucas; Fernández-Garayzábal, José Francisco

    2015-01-01

    The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis. PMID:26347858

  1. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains

    PubMed Central

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  2. Assessment of MALDI-TOF MS as Alternative Tool for Streptococcus suis Identification

    PubMed Central

    Pérez-Sancho, Marta; Vela, Ana Isabel; García-Seco, Teresa; Gottschalk, Marcelo; Domínguez, Lucas; Fernández-Garayzábal, José Francisco

    2015-01-01

    The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis. PMID:26347858

  3. Lgt Processing Is an Essential Step in Streptococcus suis Lipoprotein Mediated Innate Immune Activation

    PubMed Central

    Wichgers Schreur, Paul J.; Rebel, Johanna M. J.; Smits, Mari A.; van Putten, Jos P. M.; Smith, Hilde E.

    2011-01-01

    Background Streptococcus suis causes invasive infections in pigs and occasionally in humans. The host innate immune system plays a major role in counteracting S. suis infections. The main components of S. suis able to activate the innate immune system likely include cell wall constituents that may be released during growth or after cell wall integrity loss, however characterization of these components is still limited. Methology/Principal Findings A concentrated very potent innate immunity activating supernatant of penicillin-treated S. suis was SDS-PAGE fractionated and tested for porcine peripheral blood mononucleated cell (PBMC) stimulating activity using cytokine gene transcript analysis. More than half of the 24 tested fractions increased IL-1β and IL-8 cytokine gene transcript levels in porcine PBMCs. Mass spectrometry of the active fractions indicated 24 proteins including 9 lipoproteins. Genetic inactivation of a putative prolipoprotein diacylglyceryl transferase (Lgt) gene resulted in deficient lipoprotein synthesis as evidenced by palmitate labeling. The Lgt mutant showed strongly reduced activation of porcine PBMCs, indicating that lipoproteins are dominant porcine PBMC activating molecules of S. suis. Conclusion/Significance This study for the first time identifies and characterizes lipoproteins of S. suis as major activators of the innate immune system of the pig. In addition, we provide evidence that Lgt processing of lipoproteins is required for lipoprotein mediated innate immune activation. PMID:21811583

  4. Transcriptional Analysis of PRRSV-Infected Porcine Dendritic Cell Response to Streptococcus suis Infection Reveals Up-Regulation of Inflammatory-Related Genes Expression

    PubMed Central

    Auray, Gaël; Lachance, Claude; Wang, Yingchao; Gagnon, Carl A.; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection. PMID:27213692

  5. Mutations in the Gene Encoding the Ancillary Pilin Subunit of the Streptococcus suis srtF Cluster Result in Pili Formed by the Major Subunit Only

    PubMed Central

    Fittipaldi, Nahuel; Takamatsu, Daisuke; la Cruz Domínguez-Punaro, María de; Lecours, Marie-Pier; Montpetit, Diane; Osaki, Makoto; Sekizaki, Tsutomu; Gottschalk, Marcelo

    2010-01-01

    Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection. PMID:20052283

  6. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner.

    PubMed

    Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283-721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021

  7. Streptococcus suis in employees and the environment of swine slaughterhouses in São Paulo, Brazil: Occurrence, risk factors, serotype distribution, and antimicrobial susceptibility

    PubMed Central

    Soares, Taíssa Cook Siqueira; Gottschalk, Marcelo; Lacouture, Sonia; Megid, Jane; Ribolla, Paulo Eduardo Martins; de Figueiredo Pantoja, José Carlos; Paes, Antonio Carlos

    2015-01-01

    Streptococcus suis is an important pathogen in the swine industry. This article is the first to report the occurrence, risk factors, serotype distribution, and antimicrobial susceptibility of S. suis recovered from employees and environmental samples of swine slaughterhouses in Brazil. Tonsillar swabs from all 139 pig-slaughtering employees and 261 environmental swabs were collected for detection of S. suis and serotyping by monoplex and multiplex polymerase chain reaction, respectively. Antimicrobial susceptibility was determined by the disk-diffusion method. Although S. suis was not detected in any of the tested employees, it was isolated from 25% of the environmental samples. Significant differences (P < 0.05) in the occurrence of S. suis were observed between slaughterhouses and between areas of low, medium, and high risk. The most frequent serotypes were 4 and 29, each accounting for 12% of the isolates, followed by 5, 12, 21, and 31, each accounting for 6%. High rates of susceptibility to the antimicrobials doxycycline (100%), ceftiofur (94%), ampicillin (81%), and cephalexin (75%) were observed. However, multidrug resistance was observed in all the isolates. Because S. suis is present in the environment of swine slaughterhouses, on carcasses and knives, as well as on the hands of employees in all areas, all employees are at risk of infection. PMID:26424907

  8. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner

    PubMed Central

    Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021

  9. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System

    PubMed Central

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-01-01

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system. PMID:27455333

  10. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System.

    PubMed

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-07-21

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.

  11. Streptococcus suis in employees and the environment of swine slaughterhouses in São Paulo, Brazil: Occurrence, risk factors, serotype distribution, and antimicrobial susceptibility.

    PubMed

    Soares, Taíssa Cook Siqueira; Gottschalk, Marcelo; Lacouture, Sonia; Megid, Jane; Ribolla, Paulo Eduardo Martins; Pantoja, José Carlos de Figueiredo; Paes, Antonio Carlos

    2015-10-01

    Streptococcus suis is an important pathogen in the swine industry. This article is the first to report the occurrence, risk factors, serotype distribution, and antimicrobial susceptibility of S. suis recovered from employees and environmental samples of swine slaughterhouses in Brazil. Tonsillar swabs from all 139 pig-slaughtering employees and 261 environmental swabs were collected for detection of S. suis and serotyping by monoplex and multiplex polymerase chain reaction, respectively. Antimicrobial susceptibility was determined by the disk-diffusion method. Although S. suis was not detected in any of the tested employees, it was isolated from 25% of the environmental samples. Significant differences (P < 0.05) in the occurrence of S. suis were observed between slaughterhouses and between areas of low, medium, and high risk. The most frequent serotypes were 4 and 29, each accounting for 12% of the isolates, followed by 5, 12, 21, and 31, each accounting for 6%. High rates of susceptibility to the antimicrobials doxycycline (100%), ceftiofur (94%), ampicillin (81%), and cephalexin (75%) were observed. However, multidrug resistance was observed in all the isolates. Because S. suis is present in the environment of swine slaughterhouses, on carcasses and knives, as well as on the hands of employees in all areas, all employees are at risk of infection. PMID:26424907

  12. Complex Population Structure and Virulence Differences among Serotype 2 Streptococcus suis Strains Belonging to Sequence Type 28

    PubMed Central

    Athey, Taryn B. T.; Auger, Jean-Philippe; Teatero, Sarah; Dumesnil, Audrey; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2015-01-01

    Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases. PMID:26375680

  13. Antimicrobial Activity of Penicillin G and N-acetylcystein on Planktonic and Sessile Cells of Streptococcus suis.

    PubMed

    Espinosa, Ivette; Báez, Michel; Lobo, Evelyn; Martínez, Siomara; Gottschalk, Marcelo

    2016-01-01

    The aim of this study was to investigate the capacity of Streptococcus suis strains to form biofilms and to evaluate the antimicrobial activity of Penicillin G and N-acetylcystein (NAC) on both S. suis sessile and planktonic forms. Only non-typeable isolates of S. suis were correlated with a greater biofilm formation capacity. The MCI of Penicillin G and NAC required for inhibiting biofilm growth were higher than the required concentration for inhibiting planktonic growth. The combinations of NAC and Penicillin G showed a strong synergistic activity that inhibited biofilm formation and disrupted the pre-formed biofilm of S. suis. PMID:27282001

  14. Streptococcus suis Interactions with the Murine Macrophage Cell Line J774: Adhesion and Cytotoxicity

    PubMed Central

    Segura, Mariela; Gottschalk, Marcelo

    2002-01-01

    Streptococcus suis capsular type 2 is an important etiological agent of swine meningitis, and it is also a zoonotic agent. Since one hypothesis of the pathogenesis of S. suis infection is that bacteria enter the bloodstream and invade the meninges and other tissues in close association with mononuclear phagocytes, the objective of the present study was to evaluate the capacity of S. suis type 2 to adhere to macrophages. An enzyme-linked immunosorbent assay technique was standardized to simply and accurately measure the rate of bacterial attachment to phagocytic cells. Results were confirmed by plate counting. Adhesion was dependent on bacterial concentration and incubation time and was not affected by cytochalasin pretreatment of macrophages. Inhibition studies showed that the sialic acid moiety of the S. suis capsule would be, at least in part, responsible for bacterial recognition by macrophages. Serum preopsonization of bacteria increased adhesion levels. Complement would be partially implicated in the serum-enhanced binding of S. suis to cells. Adhesion varied among different S. suis type 2 isolates. However, high bacterial concentrations of several isolates were cytotoxic for cells, and these cytotoxic effects correlated with suilysin production. Indeed, hemolytic strain supernatants, as well as purified suilysin, reproduced cytotoxic effects observed with live bacteria, and these effects were inhibited by cholesterol pretreatment. Bacterial adhesion and cytotoxicity were confirmed by scanning and transmission electron microscopy. We hypothesize that attachment of bacteria to phagocytes could play an important role in the pathogenesis of S. suis infection by allowing bacterial dissemination and causing a bacteremia and/or septicemia. This interaction could also be related to the activation of the host inflammatory response observed during meningitis. PMID:12117940

  15. Streptococcus suis toxic-shock syndrome and meningitis.

    PubMed

    Leelarasamee, A; Nilakul, C; Tien-Grim, S; Srifuengfung, S; Susaengrat, W

    1997-01-01

    Three cases with S. suis bacteremia and meningitis were reported. The first case was a 23-year-old butcher who was a regular drinker of alcohol for two years and developed streptococcal toxic-shock syndrome. The organism was transmitted to him through a minor cut in his right arm. The second cases was a 49-year-old female laborer who had been consuming locally produced alcohol for 20 years and developed fever and meningitis. Unfortunately, she succumbed in seven days despite intensive supportive and cefotaxime treatments. The third case was a 45-year-old regular alcoholic drinker and car painter who was seen at a private hospital due to contusion at his left lateral chest wall. However, fever and confusion due to meningitis was detected upon admission. Irreversible deafness developed within 48 hours of ceftriaxone therapy for meningitis. He finally recovered with deafness. S. suis was isolated from blood and cerebrospinal fluid cultures in all three cases though initially reported to be viridans group of streptococci.

  16. Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA ▿

    PubMed Central

    Escudero, Jose Antonio; San Millan, Alvaro; Gutierrez, Belen; Hidalgo, Laura; La Ragione, Roberto M.; AbuOun, Manal; Galimand, Marc; Ferrándiz, María José; Domínguez, Lucas; de la Campa, Adela G.; Gonzalez-Zorn, Bruno

    2011-01-01

    Streptococcus suis is an emerging zoonotic pathogen. With the lack of an effective vaccine, antibiotics remain the main tool to fight infections caused by this pathogen. We have previously observed a reserpine-sensitive fluoroquinolone (FQ) efflux phenotype in this species. Here, SatAB and SmrA, two pumps belonging to the ATP binding cassette (ABC) and the major facilitator superfamily (MFS), respectively, have been analyzed in the fluoroquinolone-resistant clinical isolate BB1013. Genes encoding these pumps were overexpressed either constitutively or in the presence of ciprofloxacin in this strain. These genes could not be cloned in plasmids in Escherichia coli despite strong expression repression. Finally, site-directed insertion of smrA and satAB in the amy locus of the Bacillus subtilis chromosome using ligated PCR amplicons allowed for the functional expression and study of both pumps. Results showed that SatAB is a narrow-spectrum fluoroquinolone exporter (norfloxacin and ciprofloxacin), susceptible to reserpine, whereas SmrA was not involved in fluoroquinolone resistance. Chromosomal integration in Bacillus is a novel method for studying efflux pumps from Gram-positive bacteria, which enabled us to demonstrate the possible role of SatAB, and not SmrA, in fluoroquinolone efflux in S. suis. PMID:21930876

  17. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is involved in complement evasion.

    PubMed

    Seele, Jana; Beineke, Andreas; Hillermann, Lena-Maria; Jaschok-Kentner, Beate; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter; Baums, Christoph Georg

    2015-04-19

    Streptococcus (S.) suis is one of the most important pathogens in pigs causing meningitis, arthritis, endocarditis and serositis. Furthermore, it is also an emerging zoonotic agent. In our previous work we identified a highly specific IgM protease in S. suis, designated Ide(Ssuis) . The objective of this study was to characterize the function of Ide(Ssuis) in the host-pathogen interaction. Edman-sequencing revealed that Ide(Ssuis) cleaves the heavy chain of the IgM molecule between constant domain 2 and 3. As the C1q binding motif is located in the C3 domain, we hypothesized that Ide(Ssuis) is involved in complement evasion. Complement-mediated hemolysis induced by porcine hyperimmune sera containing erythrocyte-specific IgM was abrogated by treatment of these sera with recombinant Ide(Ssuis) . Furthermore, expression of Ide(Ssuis) reduced IgM-triggered complement deposition on the bacterial surface. An infection experiment of prime-vaccinated growing piglets suggested attenuation in the virulence of the mutant 10Δide(Ssuis). Bactericidal assays confirmed a positive effect of Ide(Ssuis) expression on bacterial survival in porcine blood in the presence of high titers of specific IgM. In conclusion, this study demonstrates that Ide(Ssuis) is a novel complement evasion factor, which is important for bacterial survival in porcine blood during the early adaptive (IgM-dominated) immune response.

  18. Streptococcus anginosus ("Streptococcus milleri"): the unrecognized pathogen.

    PubMed Central

    Ruoff, K L

    1988-01-01

    "Streptococcus milleri" is an unofficial name that has been applied to a group of streptococci which, although basically similar, show various hemolytic, serological, and physiological characteristics. The species name Streptococcus anginosus has recently been recognized as the approved name for these organisms. Streptococci known as "S. milleri" have been implicated as etiologic agents in a variety of serious purulent infections, but because of their heterogeneous characteristics, these organisms may be unrecognized or misidentified by clinical laboratorians. This review describes the bacteriological aspects of organisms known as "S. milleri," their clinical significance, and the problems encountered with their identification in the clinical laboratory. PMID:3060239

  19. Risk Factors of Streptococcus suis Infection in Vietnam. A Case-Control Study

    PubMed Central

    Ho, Dang Trung Nghia; Le, Thi Phuong Tu; Wolbers, Marcel; Cao, Quang Thai; Nguyen, Van Minh Hoang; Tran, Vu Thieu Nga; Le, Thi Phuong Thao; Nguyen, Hoan Phu; Tran, Thi Hong Chau; Dinh, Xuan Sinh; To, Song Diep; Hoang, Thi Thanh Hang; Hoang, Truong; Campbell, James; Nguyen, Van Vinh Chau; Nguyen, Tran Chinh; Nguyen, Van Dung; Ngo, Thi Hoa; Spratt, Brian G.; Tran, Tinh Hien; Farrar, Jeremy; Schultsz, Constance

    2011-01-01

    Background Streptococcus suis infection, an emerging zoonosis, is an increasing public health problem across South East Asia and the most common cause of acute bacterial meningitis in adults in Vietnam. Little is known of the risk factors underlying the disease. Methods and Findings A case-control study with appropriate hospital and matched community controls for each patient was conducted between May 2006 and June 2009. Potential risk factors were assessed using a standardized questionnaire and investigation of throat and rectal S. suis carriage in cases, controls and their pigs, using real-time PCR and culture of swab samples. We recruited 101 cases of S. suis meningitis, 303 hospital controls and 300 community controls. By multivariate analysis, risk factors identified for S. suis infection as compared to either control group included eating “high risk” dishes, including such dishes as undercooked pig blood and pig intestine (OR1 = 2.22; 95%CI = [1.15–4.28] and OR2 = 4.44; 95%CI = [2.15–9.15]), occupations related to pigs (OR1 = 3.84; 95%CI = [1.32–11.11] and OR2 = 5.52; 95%CI = [1.49–20.39]), and exposures to pigs or pork in the presence of skin injuries (OR1 = 7.48; 95%CI = [1.97–28.44] and OR2 = 15.96; 95%CI = [2.97–85.72]). S. suis specific DNA was detected in rectal and throat swabs of 6 patients and was cultured from 2 rectal samples, but was not detected in such samples of 1522 healthy individuals or patients without S. suis infection. Conclusions This case control study, the largest prospective epidemiological assessment of this disease, has identified the most important risk factors associated with S. suis bacterial meningitis to be eating ‘high risk’ dishes popular in parts of Asia, occupational exposure to pigs and pig products, and preparation of pork in the presence of skin lesions. These risk factors can be addressed in public health campaigns aimed at preventing S. suis infection

  20. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence.

    PubMed

    Wu, Zongfu; Shao, Jing; Ren, Haiyan; Tang, Huanyu; Zhou, Mingyao; Dai, Jiao; Lai, Liying; Yao, Huochun; Fan, Hongjie; Chen, Dai; Zong, Jie; Lu, Chengping

    2016-05-01

    Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis.

  1. Clonal distribution of Streptococcus suis isolated from diseased pigs in the central region of Chile

    PubMed Central

    Morales, Bárbara; Ruiz, Álvaro; Lacouture, Sonia; Gottschalk, Marcelo

    2015-01-01

    The characteristics of 29 Chilean field strains of Streptococcus suis recovered between 2007 and 2011 from pigs with clinical signs at different farms were studied. Serotyping with use of the coagglutination test revealed that all but 1 strain belonged to serotype 6; the remaining strain was serotype 22. All the serotype-6 strains were suilysin (hemolysin)-negative; in addition, they were found to be genotypically homogeneous by enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction (ERIC-PCR) and sensitive to ampicillin, ceftiofur, penicillin, and trimethoprim/sulfamethoxazole. The results indicate that, in contrast to what is generally observed in other countries, a single clone of S. suis was isolated from diseased pigs in the central region of Chile. PMID:26424917

  2. Different Foreign Genes Incidentally Integrated into the Same Locus of the Streptococcus suis Genome

    PubMed Central

    Sekizaki, Tsutomu; Takamatsu, Daisuke; Osaki, Makoto; Shimoji, Yoshihiro

    2005-01-01

    Some strains of Streptococcus suis possess a type II restriction-modification (RM) system, whose genes are thought to be inserted into the genome between purH and purD from a foreign source by illegitimate recombination. In this study, we characterized the purHD locus of the S. suis genomes of 28 serotype reference strains by DNA sequencing. Four strains contained the RM genes in the locus, as described before, whereas 11 strains possessed other genetic regions of seven classes. The genetic regions contained a single gene or multiple genes that were either unknown or similar to hypothetical genes of other bacteria. The mutually exclusive localization of the genetic regions with the atypical G+C contents indicated that these regions were also acquired from foreign sources. No transposable element or long-repeat sequence was found in the neighboring regions. An alignment of the nucleotide sequences, including the RM gene regions, suggested that the foreign regions were integrated by illegitimate recombination via short stretches of nucleotide identity. By using a thermosensitive suicide plasmid, the RM genes were experimentally introduced into an S. suis strain that did not contain any foreign genes in that locus. Integration of the plasmid into the S. suis genome did not occur in the purHD locus but occurred at various chromosomal loci, where there were 2 to 10 bp of nucleotide identity between the chromosome and the plasmid. These results suggest that various foreign genes described here were incidentally integrated into the same locus of the S. suis genome. PMID:15659665

  3. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis.

    PubMed

    Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph

    2006-01-01

    Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite

  4. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; de Greeff, Astrid; Benga, Laurentiu; Smith, Hilde E; Valentin-Weigand, Peter; Goethe, Ralph

    2011-02-01

    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance, very little is known about the factors that contribute to its virulence. Recently, we identified a new putative virulence factor in S. suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC operon, which enables S. suis to survive in an acidic environment. In this study, we focused on ArgR, an ADS-associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knockout strain we were able to show that ArgR is essential for arcABC operon expression and necessary for the biological fitness of S. suis. By cDNA expression microarray analyses and quantitative real-time RT-PCR we found that the arcABC operon is the only gene cluster regulated by ArgR, which is in contrast to the situation in many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR, revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to -72 bp upstream of the transcriptional start point. Overall, our results show that in S. suis, ArgR is an essential, system-specific transcriptional regulator of the ADS that interacts directly with the arcABC promoter in vivo.

  5. Population-Based Study of Streptococcus suis Infection in Humans in Phayao Province in Northern Thailand

    PubMed Central

    Takeuchi, Dan; Kerdsin, Anusak; Pienpringam, Anupong; Loetthong, Phacharaphan; Samerchea, Sutit; Luangsuk, Pakkinee; Khamisara, Kasean; Wongwan, Nithita; Areeratana, Prasanee; Chiranairadul, Piphat; Lertchayanti, Suwat; Petcharat, Sininat; Yowang, Amara; Chaiwongsaen, Phanupong; Nakayama, Tatsuya; Akeda, Yukihiro; Hamada, Shigeyuki; Sawanpanyalert, Pathom; Dejsirilert, Surang; Oishi, Kazunori

    2012-01-01

    Background Streptococcus suis infection in humans has received increasing worldwide recognition. Methods and Findings A prospective study of S. suis infection in humans was conducted in Phayao Province in northern Thailand to determine the incidence and the risk behaviors of the disease in this region in 2010. Thirty-one cases were confirmed. The case fatality rate was 16.1%, and the estimated incidence rate was 6.2 per 100,000 in the general population. The peak incidence occurred in May. The median age of the patients was 53 years and 64.5% were men. Consumption of raw pork products was confirmed in 22 cases and the median incubation period (range) was 2 days (0–11) after consumption of raw pork products. Isolates from 31 patients were confirmed as serotype 2 in 23 patients (74.2%) and serotype 14 in eight patients (25.8%). The major sequence types (STs) were ST1 (n = 20) for serotype 2 and ST105 (n = 8) for serotype 14. The epidemiological analysis suggested three possible clusters, which included 17 cases. In the largest possible cluster of 10 cases in Chiang Kham and its neighboring districts in May, the source of infection in four cases was identified as a raw pork dish served at the same restaurant in this district. Microbiological analysis confirmed that three of four cases associated with consumption of raw pork at this restaurant were attributable to an identical strain of serotype 2 with ST1 and pulsotype A2. Conclusions Our data suggest a high incidence rate of S. suis infection in the general population in Phayao Province in 2010 and confirm a cluster of three cases in 31 human cases. Food safety control should be strengthened especially for raw pork products in northern Thailand. PMID:22363601

  6. Genetic and virulence-phenotype characterization of serotypes 2 and 9 of Streptococcus suis swine isolates.

    PubMed

    Blume, Verena; Luque, Inmaculada; Vela, Ana I; Borge, Carmen; Maldonado, Alfonso; Domínguez, Lucas; Tarradas, Carmen; Fernández-Garayzábal, José F

    2009-09-01

    The aim of this study was to analyze the genetic characteristics and virulence phenotypes of Streptococcus suis, specifically, in clinical isolates of serotypes 2 and 9 (n = 195), obtained from diverse geographical areas across Spain. Pulsed-field gel electrophoresis (PFGE) typing identified 97 genetic profiles, 68% of which were represented by single isolates, indicative of a substantial genetic diversity among the S. suis isolates analyzed. Five PFGE profiles accounted for 33.3% of the isolates and were isolated from 38% of the herds in nine different provinces, indicative of the bacterium's widespread distribution in the Spanish swine population. Representative isolates of the most prevalent PFGE profiles of both serotypes were subjected to multilocus sequence typing (MLST) analysis. The results indicated that serotypes 2 and 9 have distinct genetic backgrounds. Serotype 2 isolates belong to the ST1 complex, a highly successful clone that has spread over most European countries. In accordance with isolates of this complex, most serotype 2 isolates also expressed the phenotype MRP(+)EF(+)SLY(+). Serotype 9 isolates belong to the ST61 complex, which is distantly related to the widespread European ST87 clone. Also, in contrast to most isolates of the European ST87 clone, which express the large variant MRP*, the majority of serotype 9 isolates (97.9%) did not express the protein. PMID:19784922

  7. Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism.

    PubMed

    Huang, Kaisong; Zhang, Qiang; Song, Yajing; Zhang, Zhewen; Zhang, Anding; Xiao, Jingfa; Jin, Meilin

    2016-10-01

    Spectinomycin is an aminocyclitol antibiotic used clinically to treat a variety of infections in animals. Here, we characterized drug resistance prevalence in clinical Streptococcus suis isolates and discovered a novel resistance mechanism in which the s5 mutation (Gly26Asp) results in high spectinomycin resistance. Additionally, a novel integrative and conjugative element encompassing a multidrug resistance spw_like-aadE-lnu(B)-lsa(E) cluster and a cadmium resistance operon were identified, suggesting a possible cause for the wide dissemination of spectinomycin resistance in S. suis.

  8. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis.

    PubMed

    Wang, Liping; Zhang, Yuanshu

    2009-10-01

    The postantibiotic effects (PAEs) and postantibiotic sub-MIC effects (PA SMEs) of tilmicosin, erythromycin and tiamulin on erythromycin-susceptible and erythromycin-resistant strains of Streptococcus suis (M phenotype) were investigated in vitro. Tilmicosin and tiamulin induced significantly longer PAE and PA SME against both erythromycin-susceptible and erythromycin-resistant strains than did erythromycin. The durations of PAE and PA SMEs were proportional to the concentrations of drugs used for exposure. The PA SMEs were substantially longer than PAEs on S. suis (P<0.05) regardless of the antimicrobial used for exposure. The results indicated that the PAE and PA SME could help in the design of efficient control strategies for infection especially caused by erythromycin-resistant S. suis and that they may provide additional valuable information for the rational drug use in clinical practice.

  9. GidA, a tRNA Modification Enzyme, Contributes to the Growth, and Virulence of Streptococcus suis Serotype 2

    PubMed Central

    Gao, Ting; Tan, Meifang; Liu, Wanquan; Zhang, Chunyan; Zhang, Tengfei; Zheng, Linlin; Zhu, Jiawen; Li, Lu; Zhou, Rui

    2016-01-01

    Glucose-inhibited division protein (GidA), is a tRNA modification enzyme functioning together with MnmE in the addition of a carboxymethylaminomethyl group to position 5 of the anticodon wobble uridine of tRNA. Here, we report a GidA homolog from a Chinese isolate SC-19 of the zoonotic Streptococcus suis serotype 2 (SS2). gidA disruption led to a defective growth, increased capsule thickness, and reduced hemolytic activity. Moreover, the gidA deletion mutant (ΔgidA) displayed reduced mortality and bacterial loads in mice, reduced ability of adhesion to and invasion in epithelial cells, and increased sensitivity to phagocytosis. The iTRAQ analysis identified 372 differentially expressed (182 up- and 190 down-regulated) proteins in ΔgidA and SC-19. Numerous DNA replication, cell division, and virulence associated proteins were downregulated, whereas many capsule synthesis enzymes were upregulated by gidA disruption. This is consistent with the phenotypes of the mutant. Thus, GidA is a translational regulator that plays an important role in the growth, cell division, capsule biosynthesis, and virulence of SS2. Our findings provide new insight into the regulatory function of GidA in bacterial pathogens. PMID:27148493

  10. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins.

    PubMed

    Wang, Yang; Yi, Li; Wu, Zongfu; Shao, Jing; Liu, Guangjin; Fan, Hongjie; Zhang, Wei; Lu, Chengping

    2012-01-01

    Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.

  11. Comparative Proteomic Analysis of Streptococcus suis Biofilms and Planktonic Cells That Identified Biofilm Infection-Related Immunogenic Proteins

    PubMed Central

    Wang, Yang; Yi, Li; Wu, Zongfu; Shao, Jing; Liu, Guangjin; Fan, Hongjie; Zhang, Wei; Lu, Chengping

    2012-01-01

    Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections. PMID:22514606

  12. Lysogenic Streptococcus suis isolate SS2-4 containing prophage SMP showed increased mortality in zebra fish compared to the wild-type isolate.

    PubMed

    Tang, Fang; Zhang, Wei; Lu, Chengping

    2013-01-01

    Streptococcus suis (S. suis) infection is considered to be a major problem in the swine industry worldwide. Based on the capsular type, 33 serotypes of S. suis have been described, with serotype 2 (SS2) being the most frequently isolated from diseased piglets. Little is known, however, about the pathogenesis and virulence factors of S. suis. Research on bacteriophages highlights a new area in S. suis research. A S. suis serotype 2 bacteriophage, designated SMP, has been previously isolated in our laboratory. Here, we selected a lysogenic isolate in which the SMP phage was integrated into the chromosome of strain SS2-4. Compared to the wild-type isolate, the lysogenic strain showed increased mortality in zebra fish. Moreover the sensitivity of the lysogenic strain to lysozyme was seven times higher than that of the wild-type. PMID:23326601

  13. The CcpA regulon of Streptococcus suis reveals novel insights into the regulation of the streptococcal central carbon metabolism by binding of CcpA to two distinct binding motifs.

    PubMed

    Willenborg, Jörg; de Greeff, Astrid; Jarek, Michael; Valentin-Weigand, Peter; Goethe, Ralph

    2014-04-01

    Streptococcus suis (S. suis) is a neglected zoonotic streptococcus causing fatal diseases in humans and in pigs. The transcriptional regulator CcpA (catabolite control protein A) is involved in the metabolic adaptation to different carbohydrate sources and virulence of S. suis and other pathogenic streptococci. In this study, we determined the DNA binding characteristics of CcpA and identified the CcpA regulon during growth of S. suis. Electrophoretic mobility shift analyses showed promiscuous DNA binding of CcpA to cognate cre sites in vitro. In contrast, sequencing of immunoprecipitated chromatin revealed two specific consensus motifs, a pseudo-palindromic cre motif (WWGAAARCGYTTTCWW) and a novel cre2 motif (TTTTYHWDHHWWTTTY), within the regulatory elements of the genes directly controlled by CcpA. Via these elements CcpA regulates expression of genes involved in carbohydrate uptake and conversion, and in addition in important metabolic pathways of the central carbon metabolism, like glycolysis, mixed-acid fermentation, and the fragmentary TCA cycle. Furthermore, our analyses provide evidence that CcpA regulates the genes of the central carbon metabolism by binding either the pseudo-palindromic cre motif or the cre2 motif in a HPr(Ser)∼P independent conformation.

  14. The Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection

    PubMed Central

    Liu, Jin; Tian, Zhong-Yuan; Xiao, Yun-Cai; Wang, Xi-Liang; Jin, Mei-Lin; Shi, De-Shi

    2016-01-01

    Background Streptococcus suis is an important swine pathogen and zoonotic agent. Infection with this highly pathogenic strain can cause streptococcal toxic shock-like syndrome (STSLS), characterized by a Th-1 inflammatory cytokine storm, and a high mortality rate. Monocyte derived dendritic cells (MoDCs) are known to stimulate Th-1 cell differentiation, but the role of MoDCs in STSLS remains to be elucidated. Methodology and Findings Porcine CD14-positive monocytes, purified from peripheral blood mononuclear cells (PBMCs), were used to generate MoDCs using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Highly pure MoDCs were generated, as proved by their morphology, phenotype analysis, phagocytic ability, and induction of T cells proliferation. The MoDCs were further stimulated by the virulent S. suis serotype 2 (SS2) SC19 strain which triggered a strong release of several pro-inflammatory cytokines, including IL-1β, IL-8, TNF-α, IFN-γ, and IL-12. Furthermore, the stimulated MoDCs induced CD4+ T cell differentiation towards Th-1 cells in vitro. Conclusions The results of this study indicated that the porcine MoDCs stimulated by SS2 could release high levels of Th-1 inflammatory cytokines and induce CD4+ T cell differentiation towards Th-1 cells. Hence, it is likely that porcine MoDCs play an important role in the STSLS caused by SS2. PMID:26974437

  15. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan.

    PubMed

    Arai, Sakura; Tohya, Mari; Yamada, Ryoko; Osawa, Ro; Nomoto, Ryohei; Kawamura, Yoshiaki; Sekizaki, Tsutomu

    2015-09-01

    We here developed a novel loop-mediated isothermal amplification (LAMP) method to detect Streptococcus suis in raw pork meat. This method, designated LAMPSS, targeted the recombination/repair protein (recN) gene of S. suis and detected all serotypes of S. suis, except those taxonomically removed from authentic S. suis, i.e., serotypes 20, 22, 26, 32, 33, and 34. The specificity of LAMPSS was confirmed and its detection limit was 5.4cfu/reaction. Among the 966 raw pork meat samples examined, including sliced pork, minced pork, and the liver, tongue, heart, and small intestine, 255 samples tested positive with LAMPSS. The rate of contamination was higher in the organs than in pork. No significant difference was observed in the total bacterial count between LAMPSS-positive and -negative samples. The number of shops that provided LAMPSS-positive pork was slightly higher in those that sold swine organs and pork than in those that sold only pork, suggesting that cross contamination occurred from the organs to pork. Among the 255 which tested positive for LAMPSS, only 47 samples tested positive for the previously described LAMP specific for S. suis serotype 2. Two isolates of S. suis serotype 2, belonging to sequence type 28, which is potentially hazardous to humans, as well as those of some other serotypes were obtained from 19 out of 47 samples by combining LAMP with a replica plating method. These results suggest that LAMPSS will be a useful tool for the surveillance of raw pork meat in the retail market.

  16. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan.

    PubMed

    Arai, Sakura; Tohya, Mari; Yamada, Ryoko; Osawa, Ro; Nomoto, Ryohei; Kawamura, Yoshiaki; Sekizaki, Tsutomu

    2015-09-01

    We here developed a novel loop-mediated isothermal amplification (LAMP) method to detect Streptococcus suis in raw pork meat. This method, designated LAMPSS, targeted the recombination/repair protein (recN) gene of S. suis and detected all serotypes of S. suis, except those taxonomically removed from authentic S. suis, i.e., serotypes 20, 22, 26, 32, 33, and 34. The specificity of LAMPSS was confirmed and its detection limit was 5.4cfu/reaction. Among the 966 raw pork meat samples examined, including sliced pork, minced pork, and the liver, tongue, heart, and small intestine, 255 samples tested positive with LAMPSS. The rate of contamination was higher in the organs than in pork. No significant difference was observed in the total bacterial count between LAMPSS-positive and -negative samples. The number of shops that provided LAMPSS-positive pork was slightly higher in those that sold swine organs and pork than in those that sold only pork, suggesting that cross contamination occurred from the organs to pork. Among the 255 which tested positive for LAMPSS, only 47 samples tested positive for the previously described LAMP specific for S. suis serotype 2. Two isolates of S. suis serotype 2, belonging to sequence type 28, which is potentially hazardous to humans, as well as those of some other serotypes were obtained from 19 out of 47 samples by combining LAMP with a replica plating method. These results suggest that LAMPSS will be a useful tool for the surveillance of raw pork meat in the retail market. PMID:26043307

  17. Development and evaluation of an immunochromatographic strip for detection of Streptococcus suis type 2 antibody.

    PubMed

    Yang, Junxing; Jin, Meilin; Chen, Jianfeng; Yang, Ying; Zheng, Pei; Zhang, Anding; Song, Yunfeng; Zhou, Hongbo; Chen, Huanchun

    2007-07-01

    In this study, an immunochromatographic strip (ICS) was developed for the detection of antibody against Streptococcus suis serotype 2 (SS2). Colloidal gold particles labeled with staphylococcal protein A (SPA), which can bind to the F(C) fragment of mammalian immunoglobulin, were used as the detector reagent. The capsular polysaccharide (CPS) of SS2 and affinity-purified IgG from a healthy naive pig were immobilized on test and control regions of a nitrocellulose membrane, respectively. The ICS was used to 1) detect anti-CPS antibody in 14 sera taken from 4 SS2-infected pigs, 24 sera from pigs hyperimmunized with SS2, and 68 sera from pigs inoculated or infected with bacteria other than SS2; 2) determine anti-CPS antibody titers of 20 positive sera for comparison with enzyme-linked immunosorbent assay (ELISA); and 3) detect anti-CPS antibody in 226 clinical sera taken from diseased pigs also for comparison with ELISA. An ELISA used as a reference test determined the specificity and sensitivity of the ICS to be 97.1% and 86.3%, respectively. There was excellent agreement between the results obtained by ELISA and the ICS (kappa = 0.843). Additionally, there was strong agreement between the results of bacterial isolation from pig tonsils and ICS test (kappa = 0.658). Because it is rapid and easy to use, the test is suitable for the serological surveillance of SS2 at farms. PMID:17609343

  18. Streptococcus suis type 2 SSU0587 protein is a beta-galactosidase that contributes to bacterial adhesion but not to virulence in mice.

    PubMed

    Tang, Yulong; Zhang, Xiaoyan; Yin, Yulong; Hardwidge, Philip R; Fang, Weihuan

    2014-07-01

    Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain.

  19. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis

    PubMed Central

    2012-01-01

    Background Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (annotated as PerR) in Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the reports on oxidative stress response and gene regulation are limited. Results In the present study, the perR gene deletion mutant ΔperR was constructed in Streptococcus suis serotype 2 strain SC-19, and the mutant strain ΔperR exhibited less sensitivity to H2O2 stress compared to the wild-type. The dpr and metQIN were found to be upregulated in the ΔperR strain compared with SC-19. Electrophoretic mobility shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance protein, and the dpr knockout strains (Δdpr and ΔdprΔperR) were highly sensitive to H2O2. MetQIN is a methionine transporter, and the increased utilization of methionine in the ΔperR strain indirectly affected the peroxide resistance. Using a promoter–EGFP gene fusion reporting system, we found that the PerR regulon was induced by H2O2, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant was attenuated and easily cleared by mice. Conclusions These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays a crucial role in oxidative stress response in S. suis. PMID:22646062

  20. In Vivo Pharmacodynamics of Cefquinome in a Neutropenic Mouse Thigh Model of Streptococcus suis Serotype 2 at Varied Initial Inoculum Sizes

    PubMed Central

    Guo, Chunna; Liao, Xiaoping; Wang, Mingru; Wang, Feng; Yan, Chaoqun; Xiao, Xia; Sun, Jiang

    2015-01-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106 to 108 CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2 = 91% and R2 = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 108 CFU/thigh. PMID:26666923

  1. Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier

    PubMed Central

    Schwerk, Christian; Papandreou, Thalia; Schuhmann, Daniel; Nickol, Laura; Borkowski, Julia; Steinmann, Ulrike; Quednau, Natascha; Stump, Carolin; Weiss, Christel; Berger, Jürgen; Wolburg, Hartwig; Claus, Heike; Vogel, Ulrich; Ishikawa, Hiroshi

    2012-01-01

    Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens. PMID:22253884

  2. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection

    PubMed Central

    Auger, Jean-Philippe; Fittipaldi, Nahuel; Benoit-Biancamano, Marie-Odile; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics. PMID:27409640

  3. Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis

    PubMed Central

    2011-01-01

    Background A critical point during the course of bacterial meningitis is the excessive influx of polymorphnuclear neutrophils (PMNs) from the blood into the brain. Both paracellular and transcellular routes of leukocyte transmigration through the blood-brain barrier have been described in CNS diseases so far. Thus, we investigated the mechanism of PMN transmigration through the blood-CSF barrier under inflammatory conditions. Methods In an "inverted" Transwell culture model of the blood-CSF barrier, the zoonotic agent Streptococcus suis (S. suis) was used to stimulate porcine choroid plexus epithelial cells (PCPECs) specifically from the physiologically relevant basolateral side. Barrier function was analyzed by measuring TEER and TR-dextran-flux, and tight junction morphology was investigated by immunofluorescence. Route and mechanism of PMN transmigration were determined by immunofluorescence, electron microscopy and FACS analysis. Quantitative real time-PCR was used to determine expression levels of ICAM-1 and VCAM-1. Results Here, we show that the transmigration of PMNs through PCPECs was significantly higher after stimulation with TNFα or infection with S. suis strain 10 compared to its non-encapsulated mutant. Barrier function was not significantly affected by PMN migration alone, but in combination with S. suis infection. Tight junction and cytoskeletal actin reorganisation were also observed after stimulation with S. suis or TNFα. Most strikingly, PMNs preferentially migrated across PCPECs via the transcellular route. Extensive sequential analyses of the PMN transmigration process with Apotome®-imaging and electron microscopy revealed that paracellular migrating PMNs stop just before tight junctions. Interestingly, PMNs subsequently appeared to proceed by transcellular migration via funnel-like structures developing from the apical membrane. It is noteworthy that some PMNs contained bacteria during the transmigration process. Flow cytometric and

  4. Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds.

    PubMed

    Wu, Huayu; Gaur, Uma; Mekchay, Supamit; Peng, Xianwen; Li, Lianghua; Sun, Hua; Song, Zhongxu; Dong, Binke; Li, Mingbo; Wimmers, Klaus; Ponsuksili, Siriluck; Li, Kui; Mei, Shuqi; Liu, Guisheng

    2015-11-01

    Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.

  5. Investigation into the role of catabolite control protein A in the metabolic regulation of Streptococcus suis serotype 2 using gene expression profile analysis

    PubMed Central

    LANG, XULONG; WAN, ZHONGHAI; PAN, YING; WANG, XIURAN; WANG, XIAOXU; BU, ZHAOYANG; QIAN, JING; ZENG, HUAZONG; WANG, XINGLONG

    2015-01-01

    Catabolite control protein A (CcpA) serves a key function in the catabolism of Streptococcus suis serotype 2 (S. suis 2) by affecting the biological function and metabolic regulatory mechanisms of this bacterium. The aim of the present study was to identify variations in CcpA expression in S. suis 2 using gene expression profile analysis. Using sequencing and functional analysis, CcpA was demonstrated to play a regulatory role in the expression and regulation of virulence genes, carbon metabolism and immunoregulation in S. suis 2. Gene Ontology and Kyto Encyclopedia of Genes and Genomes analyses indicated that CcpA in S. suis 2 is involved in the regulation of multiple metabolic processes. Furthermore, combined analysis of the transcriptome and metabolite data suggested that metabolites varied due to the modulation of gene expression levels under the influence of CcpA regulation. In addition, metabolic network analysis indicated that CcpA impacted carbon metabolism to a certain extent. Therefore, the present study has provided a more comprehensive analysis of the role of CcpA in the metabolic regulation of S. suis 2, which may facilitate future investigation into this mechanism. Furthermore, the results of the present study provide a foundation for further research into the regulatory function of CcpA and associated metabolic pathways in S. suis 2. PMID:26170923

  6. Amplified fragment length polymorphism of Streptococcus suis strains correlates with their profile of virulence-associated genes and clinical background.

    PubMed

    Rehm, Thomas; Baums, Christoph G; Strommenger, Birgit; Beyerbach, Martin; Valentin-Weigand, Peter; Goethe, Ralph

    2007-01-01

    Amplified fragment length polymorphism (AFLP) typing was applied to 116 Streptococcus suis isolates with different clinical backgrounds (invasive/pneumonia/carrier/human) and with known profiles of virulence-associated genes (cps1, -2, -7 and -9, as well as mrp, epf and sly). A dendrogram was generated that allowed identification of two clusters (A and C) with different subclusters (A1, A2, C1 and C2) and two heterogeneous groups of strains (B and D). For comparison, three strains from each AFLP subcluster and group were subjected to multilocus sequence typing (MLST) analysis. The closest relationship and lowest diversity were found for patterns clustering within AFLP subcluster A1, which corresponded with sequence type (ST) complex 1. Strains within subcluster A1 were mainly invasive cps1 and mrp+ epf+ (or epf*) sly+ cps2+ strains of porcine or human origin. A new finding of this study was the clustering of invasive mrp* cps9 isolates within subcluster A2. MLST analysis suggested that A2 correlates with a single ST complex (ST87). In contrast to A1 and A2, subclusters C1 and C2 contained mainly pneumonia isolates of genotype cps7 or cps2 and epf- sly-. In conclusion, this study demonstrates that AFLP allows identification of clusters of S. suis strains with clinical relevance.

  7. Differential activation of the Toll-like receptor 2/6 complex by lipoproteins of Streptococcus suis serotypes 2 and 9.

    PubMed

    Wichgers Schreur, Paul J; Rebel, Johanna M J; Smits, Mari A; van Putten, Jos P M; Smith, Hilde E

    2010-07-14

    Streptococcus suis causes invasive infections in pigs and occasionally in humans. Worldwide, S. suis serotype 2 is most frequently isolated from diseased piglets, but the less virulent serotype 9 is emerging, at least in Europe. We compared the activation of human Toll-like receptors (hTLRs) by S. suis serotype 2 and 9 strains to better understand the role of the innate immune response in fighting S. suis infections. Neither live nor heat-killed log phase grown S. suis activated the hTLR1/2, hTLR2/6 and hTLR4/MD-2 complexes. However, the hTLR2/6 complex was specifically activated by both serotypes after disruption of the cell wall synthesis using penicillin. Activation levels of the hTLR2/6 complex were higher for serotype 9 strains compared to serotype 2 strains suggesting intrinsic differences in cell wall composition between both serotypes. The hTLR2/6 activating fractions decreased in molecular size after digestion with proteinase K and were sensitive for lipoprotein lipase digestion and NaOH hydrolysis, indicating lipoprotein(s) as active component(s). Overall, our results indicate that S. suis lipoproteins activate TLR2/6 but not TLR1/2 and that the clinically different serotypes 2 and 9 display differential release of TLR ligand when cell wall integrity is compromised.

  8. Molecular typing of Streptococcus suis isolates from Iberian pigs: a comparison with isolates from common intensively-reared commercial pig breeds.

    PubMed

    Sánchez Del Rey, V; Fernández-Garayzábal, J F; Bárcena, C; Briones, V; Domínguez, L; Gottschalk, M; Vela, A I

    2014-12-01

    The Iberian pig (IP) is a traditional Spanish breed variety of the domestic pig (Sus scrofa domesticus) with high economic importance because of the value of the dry-cured products in national and international markets. The genetic characteristics of tonsillar and clinical Streptococcus suis isolates from the IP maintained under extensive or intensive management conditions were investigated. S. suis isolates from IP pigs were compared with S. suis isolates from intensively-farmed pigs of common breeds (CBP). S. suis was isolated from 48.4% of the IP tonsils examined, indicating wide distribution among IP pigs. Serotypes 1 (9.4%), 2 (8.6%) and 9 (7%) were the most commonly found, although a high percentage of S. suis isolates were not typeable by coagglutination testing. No significant differences in carrier rates or serotype diversity were observed between management systems, indicating that intensive farming does not influence S. suis colonisation. Both pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis showed a serotype-based distribution of S. suis IP isolates. Serotypes 1 and 2 S. suis isolates were grouped in the same cluster, whereas isolates of serotypes 9 and 7 were assigned to another cluster. All clinical and most tonsillar serotype 2 IP isolates were assigned to sequence type 1 (ST1) and exhibited the virulence genotype mrp+/epf+/sly+, indicating a high distribution of this genetic lineage among IP as well as a population of serotype 2 common to IPs and CBPs. The only clinical isolate of serotype 9 from IP was assigned to ST123, a sequence type associated with clinical isolates in CBPs in Spain.

  9. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden.

    PubMed

    Aarestrup, F M; Rasmussen, S R; Artursson, K; Jensen, N E

    1998-08-28

    This study was conducted to determine the MIC values of historical and contemporary Streptoccocus suis (serotypes 2 and 7) from Denmark and S. suis (serotype 2) from Sweden. A total of 52 isolates originating from 1967 through 1981 and 156 isolates from 1992 through 1997 in Denmark and 13 isolates from Sweden were examined for their MICs against 20 different antimicrobial agents. Most antimicrobials were active against most isolates. A frequent occurrence of resistance to sulphamethoxazole was observed, with most resistance among historic isolates of serotype 7 and least resistance among isolates from Sweden. A large number of the isolates was resistant to macrolides. However, all historic serotype 2 isolates from Denmark were susceptible, whereas 20.4% of the contemporary isolates were resistant. Among serotype 7 isolates 23.3% of the historic isolates were resistant to macrolides, whereas resistance was found in 44.8% of the contemporary isolates. All isolates from Sweden were susceptible to macrolides. Time-associated frequency of resistance to tetracycline was also found. Only a single historic isolate of serotype 2 was resistant to tetracycline, whereas 43.9% of the contemporary serotype 2 isolates and 15.5% of the contemporary serotype 7 isolates were resistant. Only one (7.7%) of the isolates from Sweden was resistant. The differences in resistance between historic and contemporary isolates from Denmark were statistically significant. This study demonstrated a significant serotype-associated difference in the susceptibility to macrolides and tetracycline and demonstrated that an increase in resistance among S. suis isolates has taken place during the last 15 years to the two most commonly used antimicrobial agents (tylosin and tetracycline) in pig production in Denmark. PMID:9810623

  10. Multilocus sequence typing of the porcine and human gastric pathogen Helicobacter suis.

    PubMed

    Liang, Jungang; Ducatelle, Richard; Pasmans, Frank; Smet, Annemieke; Haesebrouck, Freddy; Flahou, Bram

    2013-03-01

    Helicobacter suis is a Gram-negative bacterium colonizing the majority of pigs, in which it causes gastritis and decreased daily weight gain. H. suis is also the most prevalent gastric non-Helicobacter pylori Helicobacter species in humans, capable of causing gastric disorders. To gain insight into the genetic diversity of porcine and human H. suis strains, a multilocus sequence typing (MLST) method was developed. In a preliminary study, 7 housekeeping genes (atpA, efp, mutY, ppa, trpC, ureI, and yphC) of 10 H. suis isolates cultured in vitro were investigated as MLST candidates. All genes, except the ureI gene, which was replaced by part of the ureAB gene cluster of H. suis, displayed several variable nucleotide sites. Subsequently, internal gene fragments, ranging from 379 to 732 bp and comprising several variable nucleotide sites, were selected. For validation of the developed MLST technique, gastric tissue from 17 H. suis-positive pigs from 4 different herds and from 1 H. suis-infected human patient was used for direct, culture-independent strain typing of H. suis. In addition to the 10 unique sequence types (STs) among the 10 isolates grown in vitro, 15 additional STs could be assigned. Individual animals were colonized by only 1 H. suis strain, whereas multiple H. suis strains were present in all herds tested, revealing that H. suis is a genetically diverse bacterial species. The human H. suis strain showed a very close relationship to porcine strains. In conclusion, the developed MLST scheme may prove useful for direct, culture-independent typing of porcine and human H. suis strains.

  11. Ultrastructural characteristics and molecular identification of Entamoeba suis isolated from pigs with hemorrhagic colitis: implications for pathogenicity.

    PubMed

    Matsubayashi, Makoto; Suzuta, Fumiko; Terayama, Yoshimi; Shimojo, Kengo; Yui, Takeshi; Haritani, Makoto; Shibahara, Tomoyuki

    2014-08-01

    Protozoan parasites of the genus Entamoeba infect many classes of vertebrates and are primarily classified based on morphological criteria. To date, only a few species have been proven to cause disease. Here, we examined the pathology of infected pigs with hemorrhage and detected Entamoeba parasites. Isolates were characterized genetically and ultrastructurally to identify the species. Histopathologically, bleeding and thrombus formation were seen only in the large intestine mucosa, where a large number of trophozoites or some Entamoeba cysts were observed around breakdowns in the lamina propria. No screw-shaped bacteria were detected in the lesions, and no pathogenic bacteria such as Brachyspira spp. were detected in fecal cultures. Interestingly, electron microscopy revealed that the parasites possessed mitochondrial organelles, unlike other Entamoeba spp. The isolates were identified as Entamoeba suis by PCR analysis and sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. In phylogenetic analyses based on the actin gene, the E. suis isolate formed a cluster with Entamoeba histolytica and Entamoeba invadens, as well as with other parasites of the Amoebidae. Whether the pathogenicity of the E. suis isolate is affected by the severity of infection or host health status remains unclear; however, our results suggest that E. suis could cause or exacerbate clinical symptoms such as hemorrhagic colitis or diarrhea.

  12. Enolase of Streptococcus Suis Serotype 2 Enhances Blood-Brain Barrier Permeability by Inducing IL-8 Release.

    PubMed

    Sun, Yingying; Li, Na; Zhang, Jing; Liu, Hongtao; Liu, Jianfang; Xia, Xiaojing; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Lei, Liancheng

    2016-04-01

    Streptococcus suis serotype 2 (SS2) is an emerging zoonosis, and meningitis is the most frequent clinical manifestation, but mechanism of its virulent factor, enolase (Eno), is unknown in meningitis. In this study, Eno was inducibly expressed and added to an in vitro Transwell co-culture model of the blood-brain barrier (BBB) consisted of porcine brain microvascular endothelial cells (PBMECs) and astrocytes (ACs), the results showed that Eno induces a significant increase in BBB permeability and promotes the release of IL-8 et al. cytokines. Furthermore, IL-8 could significantly destroy the integrity of the BBB model in vitro. In mice models administered Eno for 24 h, Eno could significantly promote Evans blue (EB) moving from the blood to the brain and significantly increased the serum and brain levels of IL-8, as detected by ELISA. While G31P (IL-8 receptor antagonist) significantly decreased the concentration of EB in the brains of mice injected with Eno. The present study demonstrated that SS2 Eno may play an important role in disrupting BBB integrity by prompting IL-8 release. PMID:26732390

  13. Multiple-class antimicrobial resistance surveillance in swine Escherichia coli F4, Pasteurella multocida and Streptococcus suis isolates from Ontario and the impact of the 2004-2006 Porcine Circovirus type-2 Associated Disease outbreak.

    PubMed

    Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A

    2014-02-01

    The objective of this work was to describe trends in multiple-class antimicrobial resistance present in clinical isolates of Escherichia coli F4, Pasteurella multocida and Streptococcus suis from Ontario swine 1998-2010. Temporal changes in multiple-class resistance varied by the pathogens examined; significant yearly changes were apparent for the E. coli and P. multocida data. Although not present in the E. coli data, significant increases in multiple-class resistance within P. multocida isolates occurred from 2003 to 2005, coinciding with the expected increase in antimicrobials used to treat clinical signs of Porcine Circovirus Associated Disease (PCVAD) before it was confirmed. Prospective temporal scan statistics for multiple-class resistance suggest that significant clusters of increased resistance may have been found in the spring of 2004; months before the identification of the PCVAD outbreak in the fall of 2004.

  14. Simultaneous Quantification and Differentiation of Streptococcus suis Serotypes 2 and 9 by Quantitative Real-Time PCR, Evaluated in Tonsillar and Nasal Samples of Pigs

    PubMed Central

    Dekker, Niels; Daemen, Ineke; Verstappen, Koen; de Greeff, Astrid; Smith, Hilde; Duim, Birgitta

    2016-01-01

    Invasive Streptococcus suis (S. suis) infections in pigs are often associated with serotypes 2 and 9. Mucosal sites of healthy pigs can be colonized with these serotypes, often multiple serotypes per pig. To unravel the contribution of these serotypes in pathogenesis and epidemiology, simultaneous quantification of serotypes is needed. A quantitative real-time PCR (qPCR) targeting cps2J (serotypes 2 and 1/2) and cps9H (serotype 9) was evaluated with nasal and tonsillar samples from S. suis exposed pigs. qPCR specifically detected serotypes in all pig samples. The serotypes loads in pig samples estimated by qPCR showed, except for serotype 9 in tonsillar samples (correlation coefficient = 0.25), moderate to strong correlation with loads detected by culture (correlation coefficient > 0.65), and also in pigs exposed to both serotypes (correlation coefficient > 0.75). This qPCR is suitable for simultaneous differentiation and quantification of important S. suis serotypes. PMID:27376336

  15. Oligosaccharide-receptor interaction of the Gal alpha 1-4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesin specificities.

    PubMed

    Haataja, S; Tikkanen, K; Nilsson, U; Magnusson, G; Karlsson, K A; Finne, J

    1994-11-01

    The sugar binding specificities of two groups of Streptococcus suis, a pig pathogen that causes meningitis also in man, were determined. Both the group represented by a recently characterized strain inhibitable by galactose and N-acetylgalactosamine (type PN) and the group inhibitable by galactose (type PO) were found by hemagglutination and solid-phase binding inhibition experiments to recognize the disaccharide Gal alpha 1-4Gal of the P1 and Pk blood group antigens. Both types preferred the disaccharide in terminal position. PN showed some, whereas PO showed almost no, binding to the globoside oligosaccharide containing an additional GalNAc beta 1-3 residue. The complete hydrogen bonding patterns were determined by using deoxy and other synthetic derivatives of the receptor disaccharide, and the constructed models of the interactions were compared with that of Escherichia coli PapG396 adhesin. The essential hydroxyls for binding were the HO-4', HO-6', HO-2, and HO-3 hydroxyls on the beta' alpha-side of the Gal alpha 1-4Gal molecule. Type PO adhesin also formed weak interactions with the hydroxyls HO-6 and HO-3'. The mechanism differed from that of E. coli, which binds to a cluster of five hydroxyls (HO-6, HO-2', HO-3', HO-4', and HO-6') and thus to a different part of the receptor disaccharide. These results represent the first example of the comparison of the saccharide receptor hydrogen bonding patterns of two bacterial organisms of different origin and show that the same saccharide may be recognized by two different binding mechanisms.

  16. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2

    PubMed Central

    Li, Quan; Liu, Hanze; Du, Dechao; Yu, Yanfei; Ma, Caifeng; Jiao, Fangfang; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2015-01-01

    Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5′-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions. PMID:26636044

  17. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    PubMed

    Lin, Xian; Huang, Canhui; Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  18. Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs.

    PubMed

    Gómez-Gascón, Lidia; Cardoso-Toset, Fernando; Tarradas, Carmen; Gómez-Laguna, Jaime; Maldonado, Alfonso; Nielsen, Jens; Olaya-Abril, Alfonso; Rodríguez-Ortega, Manuel J; Luque, Inmaculada

    2016-08-01

    The efforts made to develop vaccines against Streptococcus suis have failed because of lack of common antigens cross-reactive against different serotypes of this species. The cell wall-anchored proteins can be good vaccine candidates due to their high expression and accessibility to antibodies, among these, a cell-wall protein, DNA-nuclease (SsnA), present in most of the S. suis serotypes and clinical isolates collected from infected pigs, was selected. An experimental challenge against S. suis serotype 2 in a pig model was used to validate the efficacy of recombinant SsnA combined with aluminium hydroxide plus Quil A as adjuvants, previously tested in mice by our research group with good results. In our study, clinical characteristics, bacterial load and spread, haematological and immunological parameters and the antibody response, including the opsonophagocytosis analysis of the sera were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs that are challenged with a virulent strain in our conventional vaccination model. Further studies are necessary to evaluate the use of rSsnA as a vaccine candidate for swine. PMID:27477507

  19. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis.

    PubMed

    Zhang, Tengfei; Zhu, Jiawen; Wei, Shun; Luo, Qingping; Li, Lu; Li, Shengqing; Tucker, Alexander; Shao, Huabin; Zhou, Rui

    2016-06-03

    The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp(0) strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp(+)]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR.

  20. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis

    PubMed Central

    Zhang, Tengfei; Zhu, Jiawen; Wei, Shun; Luo, Qingping; Li, Lu; Li, Shengqing; Tucker, Alexander; Shao, Huabin; Zhou, Rui

    2016-01-01

    The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp0 strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp+]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR. PMID:27255540

  1. Identification of Lipoprotein Homologues of Pneumococcal PsaA in the Equine Pathogens Streptococcus equi and Streptococcus zooepidemicus

    PubMed Central

    Harrington, Dean J.; Greated, Joanne S.; Chanter, Neil; Sutcliffe, Iain C.

    2000-01-01

    Streptococcus equi and Streptococcus zooepidemicus are major etiological agents of upper and lower airway disease in horses. Despite the considerable animal suffering and economic burden associated with these diseases, the factors that contribute to the virulence of these equine pathogens have not been extensively investigated. Here we demonstrate the presence of a homologue of the Streptococcus pneumoniae PsaA protein in both of these equine pathogens. Inhibition of signal peptide processing by the antibiotic globomycin confirmed the lipoprotein nature of the mature proteins, and surface exposure was confirmed by their release from intact cells by mild trypsinolysis. PMID:10992520

  2. Antioxidant Activity and Antibacterial Effects on Clinical Isolated Streptococcus suis and Staphylococcus intermedius of Extracts from Several Parts of Cladogynos orientalis and Their Phytochemical Screenings.

    PubMed

    Sithisarn, Pongtip; Rojsanga, Piyanuch; Sithisarn, Patchima; Kongkiatpaiboon, Sumet

    2015-01-01

    The in vitro antioxidant and antibacterial assays against clinically isolated Streptococcus suis and Staphylococcus intermedius of the extracts prepared by decoction and ethanolic reflux of different parts of Chettaphangki (Cladogynos orientalis Zipp. ex Span), including the leaves, roots, and stems, using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay and disc diffusion method were conducted. Quantitative analysis of total phenolic and total flavonoid contents in the extracts using spectrophotometric methods was also performed. Finally, phytochemical screening by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) was conducted. Leaf ethanolic reflux extract (100 g) contained the highest total phenolic and total flavonoid contents of 7.21 ± 0.28 μg gallic acid equivalent (GAE) and 11.51 ± 2.02 μg rutin equivalent (RE), respectively. Chettaphangki extracts promoted low antioxidant activity with EC50 values in the range of 0.27-0.48 mg/mL. Extracts and fractions from the roots and stems of this plant promoted low to intermediate antibacterial activity against S. intermedius with the inhibition zones between 7 and 14 mm. The chromatographic data suggested that the leaf extracts of C. orientalis contained rutin while the root and stem extracts contained scopoletin and chettaphanin I. Rutin promoted strong antioxidant activity while chettaphanin I showed low antibacterial activity against Staphylococcus intermedius.

  3. Antioxidant Activity and Antibacterial Effects on Clinical Isolated Streptococcus suis and Staphylococcus intermedius of Extracts from Several Parts of Cladogynos orientalis and Their Phytochemical Screenings

    PubMed Central

    Sithisarn, Pongtip; Rojsanga, Piyanuch; Sithisarn, Patchima; Kongkiatpaiboon, Sumet

    2015-01-01

    The in vitro antioxidant and antibacterial assays against clinically isolated Streptococcus suis and Staphylococcus intermedius of the extracts prepared by decoction and ethanolic reflux of different parts of Chettaphangki (Cladogynos orientalis Zipp. ex Span), including the leaves, roots, and stems, using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay and disc diffusion method were conducted. Quantitative analysis of total phenolic and total flavonoid contents in the extracts using spectrophotometric methods was also performed. Finally, phytochemical screening by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) was conducted. Leaf ethanolic reflux extract (100 g) contained the highest total phenolic and total flavonoid contents of 7.21 ± 0.28 μg gallic acid equivalent (GAE) and 11.51 ± 2.02 μg rutin equivalent (RE), respectively. Chettaphangki extracts promoted low antioxidant activity with EC50 values in the range of 0.27–0.48 mg/mL. Extracts and fractions from the roots and stems of this plant promoted low to intermediate antibacterial activity against S. intermedius with the inhibition zones between 7 and 14 mm. The chromatographic data suggested that the leaf extracts of C. orientalis contained rutin while the root and stem extracts contained scopoletin and chettaphanin I. Rutin promoted strong antioxidant activity while chettaphanin I showed low antibacterial activity against Staphylococcus intermedius. PMID:26347795

  4. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.

    PubMed

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Read, Timothy D; Dean, Deborah

    2016-01-01

    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. PMID:27576537

  5. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen

    PubMed Central

    Joseph, Sandeep J.; Marti, Hanna; Didelot, Xavier; Read, Timothy D.; Dean, Deborah

    2016-01-01

    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct. Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. PMID:27576537

  6. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens

    PubMed Central

    2009-01-01

    Background Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT)-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified using IVIAT may be useful

  7. Identification of the Novel Lincosamide Resistance Gene lnu(E) Truncated by ISEnfa5-cfr-ISEnfa5 Insertion in Streptococcus suis: De Novo Synthesis and Confirmation of Functional Activity in Staphylococcus aureus

    PubMed Central

    Zhao, Qin; Wendlandt, Sarah; Li, Hui; Li, Jun; Wu, Congming; Shen, Jianzhong

    2014-01-01

    The novel lincosamide resistance gene lnu(E), truncated by insertion of an ISEnfa5-cfr-ISEnfa5 segment, was identified in Streptococcus suis. The gene lnu(E) encodes a 173-amino-acid protein with ≤69.4% identity to other lincosamide nucleotidyltransferases. The lnu(E) gene and its promoter region were de novo synthesized, and Staphylococcus aureus RN4220 carrying a shuttle vector with the cloned lnu(E) gene showed a 16-fold increase in the lincomycin MIC. Mass spectrometry experiments demonstrated that Lnu(E) catalyzed the nucleotidylation of lincomycin. PMID:24366733

  8. Thalamic abscess caused by a rare pathogen: streptococcus constellatus

    PubMed Central

    Şenol, Özgür; Süslü, Hikmet Turan; Tatarlı, Necati; Tiryaki, Mehmet; Güçlü, Bülent

    2016-01-01

    Streptococcus constellatus is a microorganism that lives commensally in the oropharyngeal region, urogenital region, and intestinal tract. However, it can cause infection in patients with certain predisposing factors. Rarely, this microorganism can cause a brain abscess. Thalamic localization of brain abscesses is much rarer than abscesses in other locations of the brain. Brain abscess caused by streptococcus constellatus are very rarely been reported in the literature. We present a rare case of a left-sided thalamic abscess caused by streptococcus constellatus in a 25-year-old male patient who was injured by shrapnel pieces in the head and who was malnourished. The patient was successfully treated by stereotactic aspiration and antibiotherapy. PMID:27800109

  9. Streptococcus parasanguinis: new pathogen associated with asymptomatic mastitis in sheep.

    PubMed Central

    Fernández-Garayzábal, J. F.; Fernández, E.; Las Heras, A.; Pascual, C.; Collins, M. D.; Domínguez, L.

    1998-01-01

    We describe two unusual cases in sheep of subclinical mastitis caused by Streptococcus parasanguinis. This bacterium has been associated with the development of experimental endocarditis; its presence at relatively high concentrations in apparently healthy sheep milk may pose a health risk in persons with predisposing heart lesions. PMID:9866743

  10. Misidentification of Streptococcus uberis as a human pathogen: a case report and literature review.

    PubMed

    Di Domenico, Enea Gino; Toma, Luigi; Prignano, Grazia; Pelagalli, Lorella; Police, Andrea; Cavallotti, Claudia; Torelli, Riccardo; Sanguinetti, Maurizio; Ensoli, Fabrizio

    2015-04-01

    Streptococcus uberis is an environmental bacterium responsible for bovine mastitis. It is occasionally described as a human pathogen, though in most cases the identification was based on biochemical phenotyping techniques. This report shows that the biochemical phenotyping may incorrectly identify Enterococcus faecium as S. uberis. PMID:25578263

  11. Misidentification of Streptococcus uberis as a human pathogen: a case report and literature review.

    PubMed

    Di Domenico, Enea Gino; Toma, Luigi; Prignano, Grazia; Pelagalli, Lorella; Police, Andrea; Cavallotti, Claudia; Torelli, Riccardo; Sanguinetti, Maurizio; Ensoli, Fabrizio

    2015-04-01

    Streptococcus uberis is an environmental bacterium responsible for bovine mastitis. It is occasionally described as a human pathogen, though in most cases the identification was based on biochemical phenotyping techniques. This report shows that the biochemical phenotyping may incorrectly identify Enterococcus faecium as S. uberis.

  12. Streptococcus iniae and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  13. Disease manifestations and pathogenic mechanisms of Group A Streptococcus.

    PubMed

    Walker, Mark J; Barnett, Timothy C; McArthur, Jason D; Cole, Jason N; Gillen, Christine M; Henningham, Anna; Sriprakash, K S; Sanderson-Smith, Martina L; Nizet, Victor

    2014-04-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436

  14. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

    PubMed Central

    Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor

    2014-01-01

    SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436

  15. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans

    PubMed Central

    2014-01-01

    Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795

  16. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  17. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis

    PubMed Central

    Ward, Philip N; Holden, Matthew TG; Leigh, James A; Lennard, Nicola; Bignell, Alexandra; Barron, Andy; Clark, Louise; Quail, Michael A; Woodward, John; Barrell, Bart G; Egan, Sharon A; Field, Terence R; Maskell, Duncan; Kehoe, Michael; Dowson, Christopher G; Chanter, Neil; Whatmore, Adrian M; Bentley, Stephen D; Parkhill, Julian

    2009-01-01

    Background Streptococcus uberis, a Gram positive bacterial pathogen responsible for a significant proportion of bovine mastitis in commercial dairy herds, colonises multiple body sites of the cow including the gut, genital tract and mammary gland. Comparative analysis of the complete genome sequence of S. uberis strain 0140J was undertaken to help elucidate the biology of this effective bovine pathogen. Results The genome revealed 1,825 predicted coding sequences (CDSs) of which 62 were identified as pseudogenes or gene fragments. Comparisons with related pyogenic streptococci identified a conserved core (40%) of orthologous CDSs. Intriguingly, S. uberis 0140J displayed a lower number of mobile genetic elements when compared with other pyogenic streptococci, however bacteriophage-derived islands and a putative genomic island were identified. Comparative genomics analysis revealed most similarity to the genomes of Streptococcus agalactiae and Streptococcus equi subsp. zooepidemicus. In contrast, streptococcal orthologs were not identified for 11% of the CDSs, indicating either unique retention of ancestral sequence, or acquisition of sequence from alternative sources. Functions including transport, catabolism, regulation and CDSs encoding cell envelope proteins were over-represented in this unique gene set; a limited array of putative virulence CDSs were identified. Conclusion S. uberis utilises nutritional flexibility derived from a diversity of metabolic options to successfully occupy a discrete ecological niche. The features observed in S. uberis are strongly suggestive of an opportunistic pathogen adapted to challenging and changing environmental parameters. PMID:19175920

  18. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  19. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence.

    PubMed

    Brown, J S; Gilliland, S M; Holden, D W

    2001-05-01

    Restricted iron availability is a major obstacle to growth and survival of pathogenic bacteria during infection. In contrast to Gram-negative pathogens, little is known about how Gram-positive pathogens obtain this essential metal. We have identified two Streptococcus pneumoniae genetic loci, pit1 and pit2, encoding homologues of ABC iron transporters that are required for iron uptake by this organism. S. pneumoniae strains containing disrupted copies of either pit1 or pit2 had decreased sensitivity to the iron-dependent antibiotic streptonigrin, and a strain containing disrupted copies of both pit1 and pit2 was unable to use haemoglobin as an iron source and had a reduced rate of iron uptake. The pit2- strain was moderately and the pit1-/pit2- strain strongly attenuated in virulence in mouse models of pulmonary and systemic infection, showing that the pit loci play a critical role during in vivo growth of S. pneumoniae. The pit2 locus is contained within a 27 kb region of chromosomal DNA that has several features of Gram-negative bacterial pathogenicity islands. This probable pathogenicity island (PPI-1) is the first to be described for S. pneumoniae, and its acquisition is likely to have played a significant role in the evolution of this important human pathogen.

  20. In vitro susceptibility of porcine respiratory pathogens to tilmicosin.

    PubMed

    DeRosa, D C; Veenhuizen, M F; Bade, D J; Shryock, T R

    2000-11-01

    Bacterial isolates obtained from swine with various clinical diseases were tested for susceptibility to tilmicosin by minimum inhibitory concentration (MIC) and Kirby-Bauer disk diffusion tests using National Committee on Clinical Laboratory Standards methodology. The tilmicosin MIC90 was < or =0.125 microg/ml for Erysiopelothrix rhusiopathiae, < or = 1 microg/ml for Haemophilus parasuis isolates, 8 microg/ml for Actinobacillus suis and Pasteurella multocida type A, 16 microg/ml for toxigenic and nontoxigenic P. multocida type D, 64 microg/ml for Bordetella bronchiseptica, and >128 microg/ml for Staphylococcus hyicus and Streptococcus suis. The results of disk diffusion testing matched well with the MIC results for each pathogen. This in vitro survey of tilmicosin activity against various swine isolates suggests that further clinical evaluation of tilmicosin in swine may be warranted for disease associated with E. rhusiopathiae, H. parasuis, and A. suis but not B. bronchiseptica, S. suis, or S. hyicus. PMID:11108454

  1. [Past and present of streptococcus pyogenes: some pathogenic factors and their genetic determination].

    PubMed

    Totolian, A A

    2015-01-01

    In this review two aspects dealt with Streptococcus pyogenes--one of the leading agent responsible for infectious diseases and another related to their complications in humans worldwide--are given. In the first part of the review the comparative evaluation of laboratory diagnostic approaches and methods used in the second half of the twentieth century and molecular technologies developed during last twenty years are described. In the second part the role of the main microbial pathogenic factors as well as the data on intra- and interspecies genetic exchange with extrachromosomal genetic elements and their influence on biological properties of the pathogen are discussed. Essential for today possibilities for molecular epidemiology of streptococcal pathology approaches must be introduces in diagnostic laboratories within the country.

  2. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  3. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    PubMed Central

    Beres, Stephen B.; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J.; Zhu, Luchang; Flores, Anthony R.; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E.; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G.; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A.; Raiford, Annessa; Jenkins, Leslie

    2016-01-01

    ABSTRACT For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. PMID:27247229

  4. A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth.

    PubMed

    Joseph, Pascale; Ouahrani-Bettache, Safia; Montero, Jean-Louis; Nishimori, Isao; Minakuchi, Tomoko; Vullo, Daniela; Scozzafava, Andrea; Winum, Jean-Yves; Köhler, Stephan; Supuran, Claudiu T

    2011-02-01

    A β-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA II, has been cloned, purified, and characterized kinetically. bsCA II showed high catalytic activity for the hydration of CO(2) to bicarbonate, with a k(cat) of 1.1×10(6), and k(cat)/K(m) of 8.9×10(7)M(-1)s(-1). A panel of sulfonamides and sulfamates have been investigated for inhibition of this enzyme. All types of activities, from the low nanomolar to the micromolar, have been detected for these derivatives, which showed inhibition constants in the range of 7.3nM-8.56μM. The best bsCA II inhibitors were some glycosylated sulfanilamides, aliphatic sulfamates, and halogenated sulfanilamides, with inhibition constants of 7.3-87nM. Some of these dual inhibitors of bsCA I and II, also inhibited bacterial growth in vitro, in liquid cultures. These promising data on live bacteria allow us to propose bacterial β-CA inhibition as an approach for obtaining anti-infective agents with a new mechanism of action compared to classical antibiotics. PMID:21251841

  5. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region.

    PubMed

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas

    2007-12-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known

  6. Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes

    PubMed Central

    Le Breton, Yoann; Belew, Ashton T.; Valdes, Kayla M.; Islam, Emrul; Curry, Patrick; Tettelin, Hervé; Shirtliff, Mark E.; El-Sayed, Najib M.; McIver, Kevin S.

    2015-01-01

    Streptococcus pyogenes (Group A Streptococcus, GAS) remains a major public health burden worldwide, infecting over 750 million people leading to over 500,000 deaths annually. GAS pathogenesis is complex, involving genetically distinct GAS strains and multiple infection sites. To overcome fastidious genetic manipulations and accelerate pathogenesis investigations in GAS, we developed a mariner-based system (Krmit) for en masse monitoring of complex mutant pools by transposon sequencing (Tn-seq). Highly saturated transposant libraries (Krmit insertions in ca. every 25 nucleotides) were generated in two distinct GAS clinical isolates, a serotype M1T1 invasive strain 5448 and a nephritogenic serotype M49 strain NZ131, and analyzed using a Bayesian statistical model to predict GAS essential genes, identifying sets of 227 and 241 of those genes in 5448 and NZ131, respectively. A large proportion of GAS essential genes corresponded to key cellular processes and metabolic pathways, and 177 were found conserved within the GAS core genome established from 20 available GAS genomes. Selected essential genes were validated using conditional-expression mutants. Finally, comparison to previous essentiality analyses in S. sanguinis and S. pneumoniae revealed significant overlaps, providing valuable insights for the development of new antimicrobials to treat infections by GAS and other pathogenic streptococci. PMID:25996237

  7. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes.

    PubMed

    Hamada, Shigeyuki; Kawabata, Shigetada; Nakagawa, Ichiro

    2015-01-01

    Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.

  8. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes

    PubMed Central

    HAMADA, Shigeyuki; KAWABATA, Shigetada; NAKAGAWA, Ichiro

    2015-01-01

    Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85–1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these. PMID:26666305

  9. Novel impedimetric immunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva.

    PubMed

    Ahmed, Asif; Rushworth, Jo V; Wright, John D; Millner, Paul A

    2013-12-17

    Streptococcus pyogenes , also known as group A streptococcus (GAS), is a Gram positive human pathogen responsible for invasive and noninvasive human infections with a high incidence rate. Traditional detection methods involve cell culture and PCR, which are limited by long processing times or the need for high cost equipment. Impedance-based electrochemical immunosensors provide an alternative by which precise and rapid quantitative detection of the organism can help with rapid clinical decisions. To bring a biosensor for point-of-care applications to market, strict optimization of each level of construction and operation is required. In this paper, commercial screen-printed gold electrodes have been used to construct polytyramine (Ptyr)-based immunosensors. Biotin tagged whole antibodies against S. pyogenes were conjugated to Ptyr amine group via biotin-NeutrAvidin coupling. Sensors were optimized at each level of construction, particularly for Ptyr electrodeposition and antibody concentration, to optimize signal and specificity. Scanning electron microscopy, fluorescence microscopy, and on-sensor analysis (HRP conjugated enhanced chemiluminescence-based semiquantitative method) to detect Ptyr surface amine and bound antibody were performed as supporting techniques. Cumulative and single shot incubations had shown detection range of 100 to 10(5) cells per 10 μL and 100 to 10(4) cells per 10 μL of bacteria in PBS, respectively. Sensors were also able to specifically detect S. pyogenes in 50% (v/v) human saliva, with good selectivity and low cross-reactivity.

  10. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps.

    PubMed

    Buchanan, John T; Simpson, Amelia J; Aziz, Ramy K; Liu, George Y; Kristian, Sascha A; Kotb, Malak; Feramisco, James; Nizet, Victor

    2006-02-21

    The innate immune response plays a crucial role in satisfactory host resolution of bacterial infection. In response to chemotactic signals, neutrophils are early responding cells that migrate in large numbers to sites of infection. The recent discovery of secreted neutrophil extracellular traps (NETs) composed of DNA and histones opened a novel dimension in our understanding of the microbial killing capacity of these specialized leukocytes. M1 serotype strains of the pathogen Group A Streptococcus (GAS) are associated with invasive infections including necrotizing fasciitis (NF) and express a potent DNase (Sda1). Here we apply a molecular genetic approach of allelic replacement mutagenesis, single gene complementation, and heterologous expression to demonstrate that DNase Sda1 is both necessary and sufficient to promote GAS neutrophil resistance and virulence in a murine model of NF. Live fluorescent microscopic cell imaging and histopathological analysis are used to establish for the first time a direct linkage between NET degradation and bacterial pathogenicity. Inhibition of GAS DNase activity with G-actin enhanced neutrophil clearance of the pathogen in vitro and reduced virulence in vivo. The results demonstrate a significant role for NETs in neutrophil-mediated innate immunity, and at the same time identify a novel therapeutic target against invasive GAS infection.

  11. Presence of Helicobacter suis on pork carcasses.

    PubMed

    De Cooman, L; Houf, K; Smet, A; Flahou, B; Ducatelle, R; De Bruyne, E; Pasmans, F; Haesebrouck, F

    2014-09-18

    Helicobacter (H.) suis is a world-wide spread pathogen which not only colonizes the stomach of pigs, but is also the most prevalent gastric non-H. pylori Helicobacter (NHPH) species in humans. H. suis infections are associated with gastric lesions both in pigs and in humans. Recently, the presence of viable H. suis bacteria has been demonstrated in minced pork, suggesting that manipulation or consumption of contaminated pig meat is a possible route of transmission of this zoonotic agent. The main goal of this study was to determine the extent of pork carcass contamination with H. suis at slaughter. In two consecutive studies, the occurrence of H. suis DNA was assessed in scalding water, head and mouth swabs, mesenteric lymph nodes, palatine tonsils and on the chest, shoulder and ham region of pork carcasses from three slaughterhouses using qPCR with ureA gene based H. suis-specific primers. H. suis DNA was detected on carcasses in all slaughterhouses, in 8.3% of all 1083 samples. It was found in all sampled matrices, except for the palatine tonsils and scalding water samples. Contamination levels of dressed pork samples did not exceed 184 genomic equivalents per 100cm(2) (shoulder, ham) or 300cm(2) (chest). All positive PCR products were subjected to sequence analysis of the ureA gene to confirm the identification of H. suis bacteria. Using multilocus sequence typing (MLST) on a selection of the positive samples, 5 unique sequence types (STs) could be assigned. Multiple H. suis strains were present on samples derived from one specific pig herd. Since H. suis DNA was detected in 11% (n: 90) of the mesenteric lymph nodes derived at the slaughterhouse, it was determined whether these organisms can colonize the mesenteric lymph nodes after experimental infection. Despite high-level colonization of the porcine stomachs with the H. suis strain, no H. suis DNA was detected in the mesenteric lymph nodes at four weeks after experimental infection. This might indicate that

  12. Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection

    PubMed Central

    Harris, Simon R.; Robinson, Carl; Steward, Karen F.; Webb, Katy S.; Paillot, Romain; Parkhill, Julian; Holden, Matthew T.G.; Waller, Andrew S.

    2015-01-01

    Strangles, the most frequently diagnosed infectious disease of horses worldwide, is caused by Streptococcus equi. Despite its prevalence, the global diversity and mechanisms underlying the evolution of S. equi as a host-restricted pathogen remain poorly understood. Here, we define the global population structure of this important pathogen and reveal a population replacement in the late 19th or early 20th Century. Our data reveal a dynamic genome that continues to mutate and decay, but also to amplify and acquire genes despite the organism having lost its natural competence and become host-restricted. The lifestyle of S. equi within the horse is defined by short-term acute disease, strangles, followed by long-term infection. Population analysis reveals evidence of convergent evolution in isolates from post-acute disease samples as a result of niche adaptation to persistent infection within a host. Mutations that lead to metabolic streamlining and the loss of virulence determinants are more frequently found in persistent isolates, suggesting that the pathogenic potential of S. equi reduces as a consequence of long-term residency within the horse post-acute disease. An example of this is the deletion of the equibactin siderophore locus that is associated with iron acquisition, which occurs exclusively in persistent isolates, and renders S. equi significantly less able to cause acute disease in the natural host. We identify several loci that may similarly be required for the full virulence of S. equi, directing future research toward the development of new vaccines against this host-restricted pathogen. PMID:26160165

  13. Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection.

    PubMed

    Harris, Simon R; Robinson, Carl; Steward, Karen F; Webb, Katy S; Paillot, Romain; Parkhill, Julian; Holden, Matthew T G; Waller, Andrew S

    2015-09-01

    Strangles, the most frequently diagnosed infectious disease of horses worldwide, is caused by Streptococcus equi. Despite its prevalence, the global diversity and mechanisms underlying the evolution of S. equi as a host-restricted pathogen remain poorly understood. Here, we define the global population structure of this important pathogen and reveal a population replacement in the late 19th or early 20th Century. Our data reveal a dynamic genome that continues to mutate and decay, but also to amplify and acquire genes despite the organism having lost its natural competence and become host-restricted. The lifestyle of S. equi within the horse is defined by short-term acute disease, strangles, followed by long-term infection. Population analysis reveals evidence of convergent evolution in isolates from post-acute disease samples as a result of niche adaptation to persistent infection within a host. Mutations that lead to metabolic streamlining and the loss of virulence determinants are more frequently found in persistent isolates, suggesting that the pathogenic potential of S. equi reduces as a consequence of long-term residency within the horse post-acute disease. An example of this is the deletion of the equibactin siderophore locus that is associated with iron acquisition, which occurs exclusively in persistent isolates, and renders S. equi significantly less able to cause acute disease in the natural host. We identify several loci that may similarly be required for the full virulence of S. equi, directing future research toward the development of new vaccines against this host-restricted pathogen.

  14. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles*

    PubMed Central

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-01-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. PMID:26018414

  15. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms.

    PubMed

    Wang, Wei; Tao, Rui; Tong, Zhongchun; Ding, Yonglin; Kuang, Rong; Zhai, Shafei; Liu, Jun; Ni, Longxing

    2012-02-01

    Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.

  16. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  17. Genome Sequence of Chlamydia suis MD56, Isolated from the Conjunctiva of a Weaned Piglet

    PubMed Central

    Donati, Manuela; Huot-Creasy, Heather; Humphrys, Michael; Di Paolo, Maria; Di Francesco, Antonietta

    2014-01-01

    Chlamydia suis is a natural pathogen of pigs (Sus scrofa) and causes conjunctivitis, pneumonia, enteritis, and various reproductive disorders that adversely impact this economically important animal. Here, we report the first C. suis genome, that of C. suis MD56, isolated from a conjunctival swab of a weaned piglet. PMID:24812227

  18. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus.

    PubMed

    Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.

  19. Effects of phosphoglucomutase gene (PGM) in Streptococcus parauberis on innate immune response and pathogenicity of olive flounder (Paralichthys olivaceus).

    PubMed

    Woo, Sung Ho; Park, Soo Il

    2014-12-01

    In recent years, Streptococcus parauberis infection has been an emerging problem in aquaculture in South Korea because of its more frequent isolation than other streptococcal bacteria including Streptococcus iniae. To develop effective treatment and prophylaxis methods against this emerging disease by S. parauberis, it is necessary to understand the underlying pathogenic mechanisms. To uncover the pathogenicity, the mutant strain of S. parauberis with a deleted phosphoglucomutase (PGM) gene which has been known to be an important virulence factor in bacterial pathogens was generated to investigate the relationship between virulence and gene function using an allelic exchange mutagenesis method. Allelic exchange mutagenesis of the phosphoglucomutase gene resulted in phenotype changes including decreased extracellular capsules, reduced buoyancy, increased hydrophobicity and reduced growth. Moreover, the S. parauberis mutant was more sensitive to innate immune clearance mechanisms including serum, mucus and phagocyte killing and could not induce mortality in olive flounder. These phenotype changes and the attenuated virulence of the pathogen to fish could be due to the reduction in capsule production by mutation of the PGM gene. The results provide evidences that phosphoglucomutase expression contributes to S. parauberis virulence in fish by affecting bacterial survival against the host's humoral and cellular defense mechanisms.

  20. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    PubMed Central

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert

    2014-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. PMID:25512311

  1. An Overview of the Carbonic Anhydrases from Two Pathogens of the Oral Cavity: Streptococcus mutans and Porphyromonas gingivalis.

    PubMed

    Capasso, Clemente; Supuran, Claudiu T

    2016-01-01

    Among the crowd of bacteria provoking disease of the oral cavity during the weakened of immune system, Streptococcus mutans and Porphyromonas gingivalis are the main microorganisms implicated in caries formation and periodontitis, respectively. The life cycle of the pathogens, such as protozoa, fungi and bacteria, is influenced by a superfamily of enzymes, called carbonic anhydrases (CAs, EC 4.2.1.1). These metalloenzymes, being crucial for the survival of the pathogen, have been considered as novel anti-infective targets. In fact, bicarbonate and protons, produced by the CA catalyzed carbon dioxide as substrate, are two fundamental ions implicated in the pH regulation, biosynthetic reactions, and adaptation of the pathogen to the host or in the possibility of the pathogen to avoid the host immune system. Bacteria genome encodes for the α-, β- and γ-CAs. Recently, our groups using the recombinant DNA technology prepared and characterized the CAs belonging to the β- and γ-classes encoded by the genome of the two oral cavity pathogens S. mutans and P. gingivalis. An extensive inhibition study was carried out using typical anion/sulfonamide inhibitors of these classes of CAs. We discovered numerous inhibitors, which had in vitro an effective inhibitory activity against the bacterial CAs considered, here, as alternative anti-infective targets.

  2. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense.

    PubMed

    Voyich, Jovanka M; Braughton, Kevin R; Sturdevant, Daniel E; Vuong, Cuong; Kobayashi, Scott D; Porcella, Stephen F; Otto, Michael; Musser, James M; DeLeo, Frank R

    2004-07-15

    Neutrophils are a critical component of human innate host defense and efficiently kill the vast majority of invading microorganisms. However, bacterial pathogens such as group A Streptococcus (GAS) successfully avert destruction by neutrophils to cause human infections. Relatively little is known about how pathogens detect components of the innate immune system to respond and survive within the host. In this study, we show that inactivation of a two-component gene regulatory system designated Ihk-Irr significantly attenuates streptococcal virulence in mouse models of soft tissue infection and bacteremia. Microarray analysis of wild-type and irr-negative mutant (irr mutant) GAS strains revealed that Ihk-Irr influenced expression of 20% of all transcripts in the pathogen genome. Notably, at least 11 genes involved in cell wall synthesis, turnover, and/or modification were down-regulated in the irr mutant strain. Compared with the wild-type strain, significantly more of the irr mutant strain was killed by human neutrophil components that destroy bacteria by targeting the cell envelope (cell wall and/or membrane). Unexpectedly, expression of ihk and irr was dramatically increased in the wild-type strain exposed to these same neutrophil products under conditions that favored cell envelope damage. We report a GAS mechanism for detection of innate host defense that initiates the pathogen survival response, in which cell wall synthesis is critical. Importantly, our studies identify specific genes in the pathogen survival response as potential targets to control human infections.

  3. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions.

    PubMed

    Kreikemeyer, Bernd; McIver, Kevin S; Podbielski, Andreas

    2003-05-01

    Streptococcus pyogenes (group A streptococcus, GAS) is a very important human pathogen with remarkable adaptation capabilities. Survival within the harsh host surroundings requires sensing potential on the bacterial side, which leads in particular to coordinately regulated virulence factor expression. GAS 'stand-alone' response regulators (RRs) and two-component signal transduction systems (TCSs) link the signals from the host environment with adaptive responses of the bacterial cell. Numerous putative regulatory systems emerged from GAS genome sequences. Only three RRs [Mga, RofA-like protein (RALP) and Rgg/RopB] and three TCSs (CsrRS/CovRS, FasBCAX and Ihk/Irr) have been studied in some detail with respect to their growth-phase-dependent activity and their influence on GAS-host cell interaction. In particular, the Mga-, RALP- and Rgg/RopB-regulated pathways display interconnected activities that appear to influence GAS colonization, persistence and spreading mechanisms, in a growth-phase-related fashion. Here, we have summarized our current knowledge about these RRs and TCSs to highlight the questions that should be addressed in future research on GAS pathogenicity.

  4. Investigations of selected pathogens among village pigs in Central Papua, Indonesia.

    PubMed

    Nugroho, Widi; Cargill, Colin Frank; Putra, I Made; Kirkwood, Roy Neville; Trott, Darren John; Salasia, Siti Isrina Oktavia; Slipranata, Mitra; Reichel, Michael Philipp

    2016-01-01

    Village pig husbandry is an important part of livestock production in Papua Province, Eastern Indonesia. However, high level of disease and mortality constrains production. The aim of this study was to investigate the prevalence of the selected pathogens in village pigs in the Jayawijaya Region of Papua Province, Indonesia. Two studies were conducted: Study 1 determined the prevalence of selected pathogens in dead or moribund pigs sent to the main local market for sale. Study 2 recorded the prevalence of the selected pathogens, on pig farms in the Subdistrict of Wamena that had not recorded a case of pig mortality during the duration of Study 1. Blood samples of individuals from both groups were tested for CSF antigen and antibody, as well as antibody against PCV2. Organs with evident pathological changes from Study 1 and tonsilar swabs from Study 2 were subjected to bacteriological culture and identification of Streptococcus suis and Streptococcus zooepidemicus. Faecal samples from both studies were examined for eggs of strongyle parasites, Trichuris suis, Ascaris suum, Strongyloides ransomi and coccidia. The main infections in both studies were CSF, PCV2 and strongyle parasites, but prevalence was higher in Study 1 (P < 0.05). T. suis and S. zooepidemicus were prevalent in pigs in Study 1, but rare in healthy pigs (P < 0.05). Infections with coccidia, A. suum and S. ransomi were common but did not differ between groups (P < 0.05), with S. suis infections uncommon in both studies. This suggests that infections with CSF, PCV2, strongyle and T. suis are important pathogens in village pig farms in Jayawijaya. Local pig husbandry practices, such as confining pigs and heat-treating pig feeds, may be practical solutions to help minimize infection in village pigs in Jayawijaya.

  5. Intestinal Tritrichomonas suis (=T. foetus) infection in Japanese cats.

    PubMed

    Doi, Junko; Hirota, Junichi; Morita, Akihiko; Fukushima, Kanae; Kamijyo, Hiromi; Ohta, Hiroshi; Yamasaki, Masahiro; Takahashi, Toru; Katakura, Ken; Oku, Yuzaburo

    2012-04-01

    Tritrichomonas suis (=T. foetus) has recently been reported to be a causative agent of chronic large-bowel diarrhea in cats. While the disease was previously attributed to Pentatrichomonas hominis, the etiologic agent for feline trichomonal diarrhea was identified as T. suis. Although feline trichomonosis due to T. suis has been reported at prevalences ranging from 14 to 31% in Europe and the U.S., no reports of the pathogen have been published to date in Japan. In 2008, however, we encountered a case of feline trichomonosis at the Veterinary Teaching Hospital of Hokkaido University. The parasite was identified as T. suis by nested PCR amplification of partial internal transcribed spacer region 1 and 5.8S ribosomal RNA gene sequences with T. suis-specific primers and DNA sequencing of the amplified products. We then conducted surveys for feline trichomonosis in three different animal hospitals using either cultivation and/or PCR-based assays. The results revealed that 13 of 147 samples (8.8%) were positive for T. suis, and that 5 of the 13 infected cats, which ranged between 1 month and 7.5 years-old, showed chronic diarrhea. Seven of the infected cats were purebred and 6 were mixed breed. These findings suggested that feline trichomonosis is prevalent in Japan, and that T. suis may play a role as a causative agent of feline chronic diarrhea.

  6. RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus

    PubMed Central

    Miller, Eric W.; Cao, Tram N.; Pflughoeft, Kathryn J.; Sumby, Paul

    2014-01-01

    RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined. PMID:25091277

  7. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans.

    PubMed

    Gao, Xiong-Zhuo; Li, Lan-Fen; Su, Xiao-Dong; Zhao, XiaoJun; Liang, Yu-He

    2007-10-01

    The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni2+-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 A resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 A, beta = 98.82 degrees.

  8. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of Smu.1475c from caries pathogen Streptococcus mutans.

    PubMed

    Zhou, Yan-Feng; Mi, Wei; Li, Lanfen; Zhang, Xiaoyan; Liang, Yu-He; Su, Xiao-Dong; Wei, Shicheng

    2006-02-01

    The gene smu.1475c encodes a putative protein of 211 residues in Streptococcus mutans, a primary pathogen for human dental caries. In this work, smu.1475c was cloned into pET28a and expressed in good amount from the E. coli strain BL21 (DE3). Smu.1475c protein was purified to homogeneity in a two-step procedure of Ni2+ chelating and size exclusion chromatography. Crystals were obtained by hanging-drop vapor-diffusion method and diffracted to 2.7 angstroms resolution. The crystal belongs to orthorhombic space group P2(1)2(1)2(1) with cell dimension of a = 68.3 angstroms, b = 105.9 angstroms, c = 136.2 angstroms. The asymmetric unit is expected to contain four molecules with solvent content of 49.4%.

  9. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae

    PubMed Central

    Acebo, Paloma; Martin-Galiano, Antonio J.; Navarro, Sara; Zaballos, Ángel; Amblar, Mónica

    2012-01-01

    Streptococcus pneumoniae is the main etiological agent of community-acquired pneumonia and a major cause of mortality and morbidity among children and the elderly. Genome sequencing of several pneumococcal strains revealed valuable information about the potential proteins and genetic diversity of this prevalent human pathogen. However, little is known about its transcriptional regulation and its small regulatory noncoding RNAs. In this study, we performed deep sequencing of the S. pneumoniae TIGR4 strain RNome to identify small regulatory RNA candidates expressed in this pathogen. We discovered 1047 potential small RNAs including intragenic, 5′- and/or 3′-overlapping RNAs and 88 small RNAs encoded in intergenic regions. With this approach, we recovered many of the previously identified intergenic small RNAs and identified 68 novel candidates, most of which are conserved in both sequence and genomic context in other S. pneumoniae strains. We confirmed the independent expression of 17 intergenic small RNAs and predicted putative mRNA targets for six of them using bioinformatics tools. Preliminary results suggest that one of these six is a key player in the regulation of competence development. This study is the biggest catalog of small noncoding RNAs reported to date in S. pneumoniae and provides a highly complete view of the small RNA network in this pathogen. PMID:22274957

  10. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus

    PubMed Central

    Liu, Zhuyun; Treviño, Jeanette; Ramirez-Peña, Esmeralda; Sumby, Paul

    2012-01-01

    Summary Bacterial pathogens use cell-surface-associated adhesion molecules to promote host attachment and colonization, and the ability to modulate adhesion expression is critical to pathogen success. Here, we show that the human-specific pathogen the group A Streptococcus (GAS) uses a small regulatory RNA (sRNA) to regulate the expression of adhesive pili. The fibronectin / fibrinogen-binding / haemolytic-activity / streptokinase-regulator-X (FasX) sRNA, previously shown to positively regulate expression of the secreted virulence factor streptokinase (SKA), negatively regulates the production of pili on the GAS cell surface. FasX base-pairs to the extreme 5’ end of mRNA from the pilus biosynthesis operon, and this RNA:RNA interaction reduces the stability of the mRNA, while also inhibiting translation of at least the first gene in the pilus biosynthesis operon (cpa, which encodes a minor pilin protein). The negative regulation of pilus expression by FasX reduces the ability of GAS to adhere to human keratinocytes. Our findings cement FasX sRNA as an important regulator of virulence factor production in GAS and identify that FasX uses at least three distinct mechanisms, positive (ska mRNA) and negative (pilus operon mRNA) regulation of mRNA stability, and negative regulation of mRNA translation (cpa mRNA), to post-transcriptionally regulate target mRNAs during infection. PMID:22882718

  11. Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    PubMed Central

    Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops. PMID:21633709

  12. [The prevalence of different Streptococcus pneumoniaе serotypes in the children presenting with ENT infections or carrying nasopharyngeal pathogens].

    PubMed

    Boronina, L G; Samatova, E V; Druĭ, A E; Panina, E Iu; Kochneva, N A; Vodovoz, N Iu; Murunova, N V; Gruzdev, A I; Lakhno, T I

    2013-01-01

    The objective of the present study was to elucidate the etiopathological significance of various Streptococcus pneumoniae serotypes in the children presenting with ENT infections and carrying nasopharyngeal pathogens. The incidence of the latter condition was 19.5% in the children free from S. pneumoniae infection in comparison with 20.9% and 30.7% in those having diagnosis of otitis media and rhinosinusitis respectively. Fifty five (88.8%) of the 62 isolated streptococcal strains were grouped into types with the use of multiplex PCR. Twelve serotypes were identified in the patients presenting with rhinosinusitis with the predominance of 6A/6B and 3 (40.5%) compared with seven isolated from the carriers of nasopharyngeal pathogens. In this group, type 3 also prevailed (26.5%) whereas other serotypes occurred less frequently: 23F (13,4%), indivisible totality of 8, 9V, 9A, 1F, 11A, 211B, 11C, 11D, 12F, 15A, and 33F (13.4%), 20 (6.7%), 19A (6.7%), 14 (6.7%), 6A,6B (6.7%). The serotypes of S. pneumoniae isolated from the patients with rhinosinusitis were found to show 55.3% identity with those present in the composition of the conjugated 7-valent pneumococcal vaccines, 63.2% identity with the 10-valent vaccine, 81.6% identity with the 11p-valnet vaccine, and 84.2% identity with the 13-valent vaccine.

  13. A Multi-Serotype Approach Clarifies the Catabolite Control Protein A Regulon in the Major Human Pathogen Group A Streptococcus

    PubMed Central

    DebRoy, Sruti; Saldaña, Miguel; Travisany, Dante; Montano, Andrew; Galloway-Peña, Jessica; Horstmann, Nicola; Yao, Hui; González, Mauricio; Maass, Alejandro; Latorre, Mauricio; Shelburne, Samuel A.

    2016-01-01

    Catabolite control protein A (CcpA) is a highly conserved, master regulator of carbon source utilization in gram-positive bacteria, but the CcpA regulon remains ill-defined. In this study we aimed to clarify the CcpA regulon by determining the impact of CcpA-inactivation on the virulence and transcriptome of three distinct serotypes of the major human pathogen Group A Streptococcus (GAS). CcpA-inactivation significantly decreased GAS virulence in a broad array of animal challenge models consistent with the idea that CcpA is critical to gram-positive bacterial pathogenesis. Via comparative transcriptomics, we established that the GAS CcpA core regulon is enriched for highly conserved CcpA binding motifs (i.e. cre sites). Conversely, strain-specific differences in the CcpA transcriptome seems to consist primarily of affected secondary networks. Refinement of cre site composition via analysis of the core regulon facilitated development of a modified cre consensus that shows promise for improved prediction of CcpA targets in other medically relevant gram-positive pathogens. PMID:27580596

  14. A Multi-Serotype Approach Clarifies the Catabolite Control Protein A Regulon in the Major Human Pathogen Group A Streptococcus.

    PubMed

    DebRoy, Sruti; Saldaña, Miguel; Travisany, Dante; Montano, Andrew; Galloway-Peña, Jessica; Horstmann, Nicola; Yao, Hui; González, Mauricio; Maass, Alejandro; Latorre, Mauricio; Shelburne, Samuel A

    2016-01-01

    Catabolite control protein A (CcpA) is a highly conserved, master regulator of carbon source utilization in gram-positive bacteria, but the CcpA regulon remains ill-defined. In this study we aimed to clarify the CcpA regulon by determining the impact of CcpA-inactivation on the virulence and transcriptome of three distinct serotypes of the major human pathogen Group A Streptococcus (GAS). CcpA-inactivation significantly decreased GAS virulence in a broad array of animal challenge models consistent with the idea that CcpA is critical to gram-positive bacterial pathogenesis. Via comparative transcriptomics, we established that the GAS CcpA core regulon is enriched for highly conserved CcpA binding motifs (i.e. cre sites). Conversely, strain-specific differences in the CcpA transcriptome seems to consist primarily of affected secondary networks. Refinement of cre site composition via analysis of the core regulon facilitated development of a modified cre consensus that shows promise for improved prediction of CcpA targets in other medically relevant gram-positive pathogens. PMID:27580596

  15. Inhibitory Effect of Dodonaea viscosa var. angustifolia on the Virulence Properties of the Oral Pathogens Streptococcus mutans and Porphyromonas gingivalis

    PubMed Central

    Owotade, Foluso John

    2013-01-01

    Aim. This study investigated the effect of Dodonaea viscosa var. angustifolia (DVA) on the virulence properties of cariogenic Streptococcus mutans and Porphyromonas gingivalis implicated in periodontal diseases. Methods. S. mutans was cultured in tryptone broth containing a crude leaf extract of DVA for 16 hours, and the pH was measured after 10, 12, 14, and 16 h. Biofilms of S. mutans were grown on glass slides for 48 hours and exposed to plant extract for 30 minutes; the adherent cells were reincubated and the pH was measured at various time intervals. Minimum bactericidal concentration of the extracts against the four periodontal pathogens was determined. The effect of the subinhibitory concentration of plant extract on the production of proteinases by P. gingivalis was also evaluated. Results. DVA had no effect on acid production by S. mutans biofilms; however, it significantly inhibited acid production in planktonic cells. Periodontal pathogens were completely eliminated at low concentrations ranging from 0.09 to 0.02 mg/mL of crude plant extracts. At subinhibitory concentrations, DVA significantly reduced Arg-gingipain (24%) and Lys-gingipain (53%) production by P. gingivalis (P ≤ 0.01). Conclusions. These results suggest that DVA has the potential to be used to control oral infections including dental caries and periodontal diseases. PMID:24223061

  16. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis

    PubMed Central

    CHEN, Chih-YU; CHUNG, Ying-CHIEN

    2012-01-01

    Dental caries is still a major oral health problem in most industrialized countries. The development of dental caries primarily involves Lactobacilli spp. and Streptococcus mutans. Although antibacterial ingredients are used against oral bacteria to reduce dental caries, some reports that show partial antibacterial ingredients could result in side effects. Objectives The main objective is to test the antibacterial effect of water-soluble chitosan while the evaluation of the mouthwash appears as a secondary aim. Material and Methods The chitosan was obtained from the Application Chemistry Company (Taiwan). The authors investigated the antibacterial effects of water-soluble chitosan against oral bacteria at different temperatures (25-37ºC) and pH values (pH 5-8), and evaluated the antibacterial activities of a self-made water-soluble chitosan-containing mouthwash by in vitro and in vivo experiments, and analyzed the acute toxicity of the mouthwashes. The acute toxicity was analyzed with the pollen tube growth (PTG) test. The growth inhibition values against the logarithmic scale of the test concentrations produced a concentrationresponse curve. The IC50 value was calculated by interpolation from the data. Results The effect of the pH variation (5-8) on the antibacterial activity of water-soluble chitosan against tested oral bacteria was not significant. The maximal antibacterial activity of water-soluble chitosan occurred at 37ºC. The minimum bactericidal concentration (MBC) of water-soluble chitosan on Streptococcus mutans and Lactobacilli brevis were 400 µg/mL and 500 µg/mL, respectively. Only 5 s of contact between water-soluble chitosan and oral bacteria attained at least 99.60% antibacterial activity at a concentration of 500 µg/mL. The water-soluble chitosan-containin g mouthwash significantly demonstrated antibacterial activity that was similar to that of commercial mouthwashes (>99.91%) in both in vitro and in vivo experiments. In addition, the alcohol

  17. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans

    SciTech Connect

    Gao, Xiong-Zhuo; Li, Lan-Fen; Su, Xiao-Dong; Zhao, XiaoJun; Liang, Yu-He

    2007-10-01

    The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°.

  18. Sulfonamide inhibition study of the β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    PubMed

    Dedeoglu, Nurcan; DeLuca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-06-01

    Streptococcus mutans, the oral pathogenic bacterium provoking dental caries formation, encodes for a β-class carbonic anhydrase (CA, EC 4.2.1.1), SmuCA. This enzyme was cloned, characterized and investigated for its inhibition profile with the major class of CA inhibitors, the primary sulfonamides. SmuCA has a good catalytic activity for the CO2 hydration reaction, with a kcat of 4.2×10(5) s(-1) and kcat/Km of 5.8×10(7) M(-1)×s(-1), and is efficiently inhibited by most sulfonamides (KIs of 246 nM-13.5 μM). The best SmuCA inhibitors were bromosulfanilamide, deacetylated acetazolamide, 4-hydroxymethylbenzenesulfonamide, a pyrimidine-substituted sulfanilamide derivative, aminobenzolamide and compounds structurally similar to it, as well as acetazolamide, methazolamide, indisulam and valdecoxib. These compounds showed inhibition constants ranging between 246 and 468 nM. Identification of effective inhibitors of this enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. PMID:25913199

  19. Sequential necrotizing fasciitis caused by the monomicrobial pathogens Streptococcus equisimilis and extended-spectrum beta-lactamase-producing Escherichia coli.

    PubMed

    Endo, Akiko; Matsuoka, Ryosuke; Mizuno, Yasushi; Doi, Asako; Nishioka, Hiroaki

    2016-08-01

    Necrotizing fasciitis is a rapidly progressing bacterial infection of the superficial fascia and subcutaneous tissue that is associated with a high mortality rate and is caused by a single species of bacteria or polymicrobial organisms. Escherichia coli is rarely isolated from patients with monomicrobial disease. Further, there are few reports of extended-spectrum beta-lactamase (ESBL)-producing E. coli associated with necrotizing fasciitis. We report here our treatment of an 85-year-old man who was admitted because of necrotizing fasciitis of his right thigh. Streptococcus equisimilis was detected as a monomicrobial pathogen, and the infection was cured by amputation of the patient's right leg and the administration of antibiotics. However, 5 days after discontinuing antibiotic therapy, he developed necrotizing fasciitis on his right upper limb and died. ESBL-producing E. coli was the only bacterial species isolated from blood and skin cultures. This case demonstrates that ESBL-producing E. coli can cause monomicrobial necrotizing fasciitis, particularly during hospitalization and that a different bacterial species can cause disease shortly after a previous episode.

  20. Crystal Structures of Δ1-Pyrroline-5-carboxylate Reductase from Human Pathogens Neisseria meningitides and Streptococcus pyogenes

    PubMed Central

    Nocek, B.; Chang, C.; Li, H.; Lezondra, L.; Holzle, D.; Collart, F.; Joachimiak, A.

    2009-01-01

    L-Proline is an amino acid that plays an important role in proteins uniquely contributing to protein folding, structure, and stability, and this amino acid serves as a sequence-recognition motif. Proline biosynthesis can occur via two pathways, one from glutamate and the other from arginine. In both pathways, the last step of biosynthesis, the conversion of Δ1-pyrroline-5-carboxylate (P5C) to L-proline, is catalyzed by Δ1-pyrroline-5-carboxylate reductase (P5CR) using NAD(P)H as a cofactor. We have determined the first crystal structure of P5CR from two human pathogens, Neisseria meningitides and Streptococcus pyogenes, at 2.0Å and 2.15Å resolution, respectively. The catalytic unit of P5CR is a dimer composed of two domains, but the biological unit seems to be species-specific. The N-terminal domain of P5CR is an α/β/α sandwich, a Rossmann fold. The C-terminal dimerization domain is rich in α-helices and shows domain swapping. Comparison of the native structure of P5CR to structures complexed with L-proline and NADP+ in two quite different primary sequence backgrounds provides unique information about key functional features: the active site and the catalytic mechanism. The inhibitory L-proline has been observed in the crystal structure. PMID:16233902

  1. Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View

    PubMed Central

    Koehorst, Jasper J.; Martins dos Santos, Vitor A. P.; Schaap, Peter J.

    2015-01-01

    Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of domains participating in metabolic pathways that were inferred to be functional. Promiscuity was defined by adapting existing measures based on domain abundance and versatility. The approach proved to be successful in capturing bacterial metabolic flexibility and species diversity, indicating that it can be described in terms of reuse and sharing functional domains in different proteins involved in metabolic activity. Additionally, we showed striking differences among metabolic organisation of the pathogenic serotype 2 Streptococcus suis and other strains. PMID:26366735

  2. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. PMID:24495985

  3. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry.

  4. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  5. Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis.

    PubMed

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi; Nakano, Kazuhiko

    2014-12-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. PMID:25287921

  6. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Katagiri, Takayuki; Hirono, Ikuo; Rodkhum, Channarong

    2014-05-19

    Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 (n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 (n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns (cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia (Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria. PMID:24842288

  7. First Isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea.

    PubMed

    Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee

    2016-01-01

    Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea.

  8. First Isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea.

    PubMed

    Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee

    2016-01-01

    Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea. PMID:26555114

  9. In Vitro Bactericidal and Bacteriolytic Activity of Ceragenin CSA-13 against Planktonic Cultures and Biofilms of Streptococcus pneumoniae and Other Pathogenic Streptococci

    PubMed Central

    Menéndez, Margarita; García, Ernesto

    2014-01-01

    Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models. PMID:25006964

  10. Genome sequence of Helicobacter suis supports its role in gastric pathology.

    PubMed

    Vermoote, Miet; Vandekerckhove, Tom Theo Marie; Flahou, Bram; Pasmans, Frank; Smet, Annemieke; De Groote, Dominic; Van Criekinge, Wim; Ducatelle, Richard; Haesebrouck, Freddy

    2011-03-17

    Helicobacter (H.) suis has been associated with chronic gastritis and ulcers of the pars oesophagea in pigs, and with gastritis, peptic ulcer disease and gastric mucosa-associated lymphoid tissue lymphoma in humans. In order to obtain better insight into the genes involved in pathogenicity and in the specific adaptation to the gastric environment of H. suis, a genome analysis was performed of two H. suis strains isolated from the gastric mucosa of swine. Homologs of the vast majority of genes shown to be important for gastric colonization of the human pathogen H. pylori were detected in the H. suis genome. H. suis encodes several putative outer membrane proteins, of which two similar to the H. pylori adhesins HpaA and HorB. H. suis harbours an almost complete comB type IV secretion system and members of the type IV secretion system 3, but lacks most of the genes present in the cag pathogenicity island of H. pylori. Homologs of genes encoding the H. pylori neutrophil-activating protein and γ-glutamyl transpeptidase were identified in H. suis. H. suis also possesses several other presumptive virulence-associated genes, including homologs for mviN, the H. pylori flavodoxin gene, and a homolog of the H. pylori vacuolating cytotoxin A gene. It was concluded that although genes coding for some important virulence factors in H. pylori, such as the cytotoxin-associated protein (CagA), are not detected in the H. suis genome, homologs of other genes associated with colonization and virulence of H. pylori and other bacteria are present.

  11. Bioethics and cara sui.

    PubMed

    Gillett, Grant

    2005-01-01

    Cara sui (care of the self) is a guiding thread in Foucault's later writings on ethics. Following Foucault in that inquiry, we are urged beyond our fairly superficial conceptions of consequences, harms, benefits, and the rights of persons, and led to examine ourselves and try to articulate the sense of life that animates ethical reasoning. The result is a nuanced understanding with links to virtue ethics and post-modern approaches to ethics and subjectivity. The approach I have articulated draws on the phenomenology of Levinas and Heidegger, the Virtue ethics of Baier, and the post-structuralist writing of Michel Foucault. The subject is seen as negotiable, embodied, provisional and able to be transformed in a way that denies essentialism about human beings, their moral status, and the idea of the good. The human being emerges as responsible because, properly, responsive to the context of discourse in which morality becomes articulated. When we import this style of thinking into bioethics we find that it reaches beyond issues of policy or right conduct and allows us to use the biomedical sciences and the clinical world to revise and interrogate our understanding of ourselves and the theoretical foundations of health care ethics.

  12. Development and Validation of a Real-Time PCR for Chlamydia suis Diagnosis in Swine and Humans

    PubMed Central

    Geldhof, Julie

    2014-01-01

    Pigs are the natural host for Chlamydia suis, a pathogen which is phylogenetically highly related to the human pathogen C. trachomatis. Chlamydia suis infections are generally treated with tetracyclines. In 1998, tetracyline resistant C. suis strains emerged on U.S. pig farms and they are currently present in the Belgian, Cypriote, German, Israeli, Italian and Swiss pig industry. Infections with tetracycline resistant C. suis strains are mainly associated with severe reproductive failure leading to marked economical loss. We developed a sensitive and specific TaqMan probe-based C. suis real-time PCR for examining clinical samples of both pigs and humans. The analytical sensitivity of the real-time PCR is 10 rDNA copies/reaction without cross-amplifying DNA of other Chlamydia species. The PCR was successfully validated using conjunctival, pharyngeal and stool samples of slaughterhouse employees, as well as porcine samples from two farms with evidence of reproductive failure and one farm without clinical disease. Chlamydia suis was only detected in diseased pigs and in the eyes of humans. Positive humans had no clinical complaints. PCR results were confirmed by culture in McCoy cells. In addition, Chlamydia suis isolates were also examined by the tet(C) PCR, designed for demonstrating the tetracycline resistance gene tet(C). The tet(C) gene was only present in porcine C. suis isolates. PMID:24816542

  13. Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans.

    PubMed

    De Puysseleyr, Kristien; De Puysseleyr, Leentje; Geldhof, Julie; Cox, Eric; Vanrompay, Daisy

    2014-01-01

    Pigs are the natural host for Chlamydia suis, a pathogen which is phylogenetically highly related to the human pathogen C. trachomatis. Chlamydia suis infections are generally treated with tetracyclines. In 1998, tetracyline resistant C. suis strains emerged on U.S. pig farms and they are currently present in the Belgian, Cypriote, German, Israeli, Italian and Swiss pig industry. Infections with tetracycline resistant C. suis strains are mainly associated with severe reproductive failure leading to marked economical loss. We developed a sensitive and specific TaqMan probe-based C. suis real-time PCR for examining clinical samples of both pigs and humans. The analytical sensitivity of the real-time PCR is 10 rDNA copies/reaction without cross-amplifying DNA of other Chlamydia species. The PCR was successfully validated using conjunctival, pharyngeal and stool samples of slaughterhouse employees, as well as porcine samples from two farms with evidence of reproductive failure and one farm without clinical disease. Chlamydia suis was only detected in diseased pigs and in the eyes of humans. Positive humans had no clinical complaints. PCR results were confirmed by culture in McCoy cells. In addition, Chlamydia suis isolates were also examined by the tet(C) PCR, designed for demonstrating the tetracycline resistance gene tet(C). The tet(C) gene was only present in porcine C. suis isolates.

  14. [Primary human demodicosis. A disease sui generis].

    PubMed

    Hsu, C-K; Zink, A; Wei, K-J; Dzika, E; Plewig, G; Chen, W

    2015-03-01

    Human Demodex mites (Demodex folliculorum and Demodex brevis) are unique in that they are an obligate human ectoparasite that can inhabit the pilosebaceous unit lifelong without causing obvious host immune response in most cases. The mode of symbiosis between humans and human Demodex mites is unclear, while the pathogenicity of human Demodex mites in many inflammatory skin diseases is now better understood. Primary human demodicosis is a skin disease sui generis not associated with local or systemic immunosuppression. Diagnosis is often underestimated and differentiation from folliculitis, papulopustular rosacea and perioral dermatitis is not always straightforward. Dependent on the morphology and degree of inflammation, the clinical manifestations can be classified into spinulate, papulopustular, nodulocystic, crustic and fulminant demodicosis. Therapy success can be achieved only with acaricides/arachidicides. The effective doses, optimal regimen and antimicrobial resistance remain to be determined. PMID:25744530

  15. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    PubMed

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection.

  16. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition

    PubMed Central

    Lefébure, Tristan; Stanhope, Michael J

    2007-01-01

    Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002

  17. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma. PMID:26103808

  18. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma.

  19. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-01-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli. PMID:22139924

  20. Prophage-mediated modulation of interaction of Streptococcus thermophilus J34 with human intestinal epithelial cells and its competition against human pathogens.

    PubMed

    Guigas, C; Faulhaber, K; Duerbeck, D; Neve, H; Heller, K J

    2016-01-01

    The human intestinal microbiota plays an important role in human health. While adhesion to gastrointestinal mucosa is a prerequisite for colonisation, inhibition of adhesion is a property which may prevent or reduce infections by food borne pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus represent the two lactic bacteria constituting the yoghurt culture. These starter cultures have been claimed to be probiotic. In our study we compared two S. thermophilus strains (i.e. lysogenic strain J34 and corresponding non-lysogenic [prophage-cured] strain J34-6), with respect to (1) their in vitro adhesion properties to HT29 cells and (2) their cell surface hydrophobicities. Effects of the two strains on inhibition of adhesion of the pathogens Listeria monocytogenes Scott A, Staphylococcus aureus 6732 and Salmonella enteritidis S489 were studied in vitro with HT29 cell cultures. Lysogenic strain J34 was shown to be considerably more effective than the non-lysogenic derivative strain J34-6. PMID:26689226

  1. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.

    PubMed

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-04-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.

  2. Persistent infection of the chin with an unusual skin pathogen (Streptococcus milleri): a sign of intraoral carcinoma.

    PubMed

    Buckley, D A; Murphy, A; Dervan, P; Hone, R; O'Dwyer, T; O'Loughlin, S

    1998-01-01

    Streptococcus milleri is a commensal of the oropharynx and gastrointestinal tract which is not generally associated with skin disease. We now report a patient who presented with a pustular mass of the chin with lower lip anaesthesia. He was initially thought to have sycosis barbae, but response to treatment was poor and lesional swabs repeatedly cultured S. milleri. After some delay, squamous cell carcinoma of the mouth, involving the mandible and overlying skin, was detected. We consider that the S. milleri either invaded through the tumour from the mouth or root canal or colonized the skin from saliva dribbled over the numb lower lip. Isolation of an unusual organism and numbness of the chin are features that should suggest the need for early radiography. PMID:9667108

  3. Preparation and evaluation of antimicrobial activity of nanosystems for the control of oral pathogens Streptococcus mutans and Candida albicans

    PubMed Central

    Pupe, Carolina Gonçalves; Villardi, Michele; Rodrigues, Carlos Rangel; Rocha, Helvécio Vinícius Antunes; Maia, Lucianne Cople; de Sousa, Valeria Pereira; Cabral, Lucio Mendes

    2011-01-01

    Background Diseases that affect the buccal cavity are a public health concern nowadays. Chlorhexidine and nystatin are the most commonly used drugs for the control of buccal affections. In the search for more effective antimicrobials, nanotechnology can be successfully used to improve the physical chemical properties of drugs whilst avoiding the undesirable side effects associated with its use. Herein described are studies using nystatin and chlorhexidine with sodium montmorillonite (MMTNa), and chlorhexidine with β-cyclodextrin and two derivatives methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin in the development of antimicrobial nanosystems. Methods The nanosystems were prepared by kneading and solubilization followed by freeze-drying technique. The nanosystems were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Nanosystem antimicrobial activity against Streptococcus mutans and Candida albicans strains was evaluated with inhibition halo analysis. Results The nanocarriers MMTNa and cyclodextrins showed good yields. XRPD, FTIR, and DSC analysis confirmed the proposed nanosystems formation and the suitability of the production methods. The nanosystems that showed best antimicrobial effect were chlorhexidine gluconate (CHX) and cyclodextrin inclusion complexes and CHX:MMTNa 60% cation exchange capacity – 24 hours. Conclusion The nanosystem formulations present higher stability for all chlorhexidine inclusion complexes compared with pure chlorhexidine. The nystatin nanosystems have the potential to mask the bitter taste, justifying subsequent in-vivo studies. For these reasons, further studies are being carried out to evaluate their application in professional formulations. PMID:22114490

  4. Effects of Helicobacter suis γ- Glutamyl Transpeptidase on Lymphocytes: Modulation by Glutamine and Glutathione Supplementation and Outer Membrane Vesicles as a Putative Delivery Route of the Enzyme

    PubMed Central

    Zhang, Guangzhi; Ducatelle, Richard; Pasmans, Frank; D’Herde, Katharina; Huang, Liping; Smet, Annemieke; Haesebrouck, Freddy; Flahou, Bram

    2013-01-01

    Helicobacter (H.) suis colonizes the stomach of the majority of pigs as well as a minority of humans worldwide. Infection causes chronic inflammation in the stomach of the host, however without an effective clearance of the bacteria. Currently, no information is available about possible mechanisms H. suis utilizes to interfere with the host immune response. This study describes the effect on various lymphocytes of the γ-glutamyl transpeptidase (GGT) from H. suis. Compared to whole cell lysate from wild-type H. suis, lysate from a H. suis ggt mutant strain showed a decrease of the capacity to inhibit Jurkat T cell proliferation. Incubation of Jurkat T cells with recombinantly expressed H. suis GGT resulted in an impaired proliferation, and cell death was shown to be involved. A similar but more pronounced inhibitory effect was also seen on primary murine CD4+ T cells, CD8+ T cells, and CD19+ B cells. Supplementation with known GGT substrates was able to modulate the observed effects. Glutamine restored normal proliferation of the cells, whereas supplementation with reduced glutathione strengthened the H. suis GGT-mediated inhibition of proliferation. H. suis GGT treatment abolished secretion of IL-4 and IL-17 by CD4+ T cells, without affecting secretion of IFN-γ. Finally, H. suis outer membrane vesicles (OMV) were identified as a possible delivery route of H. suis GGT to lymphocytes residing in the deeper mucosal layers. Thus far, this study is the first to report that the effects on lymphocytes of this enzyme, not only important for H. suis metabolism but also for that of other Helicobacter species, depend on the degradation of two specific substrates: glutamine and reduced glutatione. This will provide new insights into the pathogenic mechanisms of H. suis infection in particular and infection with gastric helicobacters in general. PMID:24147103

  5. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species.

    PubMed

    Giovanetti, Eleonora; Brenciani, Andrea; Morroni, Gianluca; Tiberi, Erika; Pasquaroli, Sonia; Mingoia, Marina; Varaldo, Pietro E

    2014-01-01

    Φm46.1 - Streptococcus pyogenes bacteriophage carrying mef(A) and tet(O), respectively, encoding resistance to macrolides (M phenotype) and tetracycline - is widespread in S. pyogenes but has not been reported outside this species. Φm46.1 is transferable in vitro among S. pyogenes isolates, but no information is available about its transferability to other Streptococcus species. We thus investigated Φm46.1 for its ability to be transduced in vitro to recipients of different Streptococcus species. Transductants were obtained from recipients of Streptococcus agalactiae, Streptococcus gordonii, and Streptococcus suis. Retransfer was always achieved, and from S. suis to S. pyogenes occurred at a much greater frequency than in the opposite direction. In transductants Φm46.1 retained its functional properties, such as inducibility with mitomycin C, presence both as a prophage and as a free circular form, and transferability. The transductants shared the same Φm46.1 chromosomal integration site as the donor, at the 3' end of a conserved RNA uracil methyltransferase (rum) gene, which is an integration hotspot for a variety of genetic elements. No transfer occurred to recipients of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus salivarius, even though rum-like genes were also detected in the sequenced genomes of these species. A largely overlapping 18-bp critical sequence, where the site-specific recombination process presumably takes place, was identified in the rum genes of all recipients, including those of the species yielding no transductants. Growth assays to evaluate the fitness cost of Φm46.1 acquisition disclosed a negligible impact on S. pyogenes, S. agalactiae, and S. gordonii transductants and a noticeable fitness advantage in S. suis. The S. suis transductant also displayed marked overexpression of the autolysin-encoding gene atl.

  6. Nationwide survey of the development of drug-resistant pathogens in the pediatric field: drug sensitivity of Streptococcus pneumoniae in Japan.

    PubMed

    Sato, Yoshitake; Toyonaga, Yoshikiyo; Hanaki, Hideaki; Nonoyama, Masato; Oishi, Tomohiro; Sunakawa, Keisuke

    2009-12-01

    We evaluated the resistance to 20 different antibacterial agents of 362 clinically isolated strains of Streptococcus pneumoniae accumulated from October 2000 to July 2001 (phase 1) and of 332 different strains accumulated from January to June 2004 (phase 2), from institutions throughout Japan that participated in the surveys carried out by the Drug-Resistant Pathogen Surveillance Group in Pediatric Infectious Disease. In phase 1, the proportions of penicillin-sensitive S. pneumoniae (PSSP), penicillin-insensitive S. pneumoniae (PISP), and penicillin-resistant S. pneumoniae (PRSP) were 35.4%, 34.8%, and 29.8%, respectively, and the proportions were almost the same in phase 2: 33.1%, 37.0%, and 29.8%, respectively. Comparison of the MIC(90) values of the antibacterial agents for PRSP in phase 1 and phase 2 revealed that these values for cefditoren, cefpodoxime, cefdinir, faropenem, ceftriaxone, cefotaxime, meropenem, and vancomycin increased by twofold to fourfold during the 3 years between phase 1 and phase 2. However the MIC(90) of rokitamycin increased more than fourfold. The proportion of S. pneumoniae that were PISP + PRSP remained almost constant over the 3 years between phase 1 and phase 2. The background factors of patient age, previous administration of antibacterial agents, and attendance at a day nursery were examined; we found that in phase 1, the proportion of PISP + PRSP was significantly higher than that of PSSP in patients under 4 years old who had previously received antibacterial agents, but no significant differences were found in any of these background factors in the phase 2 survey. No significant difference was found in the proportions of penicillin-resistant bacteria according to whether or not the child had attended a day nursery. PMID:20012731

  7. Autoinducer-2 of Streptococcus mitis as a Target Molecule to Inhibit Pathogenic Multi-Species Biofilm Formation In Vitro and in an Endotracheal Intubation Rat Model

    PubMed Central

    Wang, Zhengli; Xiang, Qingqing; Yang, Ting; Li, Luquan; Yang, Jingli; Li, Hongong; He, Yu; Zhang, Yunhui; Lu, Qi; Yu, Jialin

    2016-01-01

    Streptococcus mitis (S. mitis) and Pseudomonas aeruginosa (P. aeruginosa) are typically found in the upper respiratory tract of infants. We previously found that P. aeruginosa and S. mitis were two of the most common bacteria in biofilms on newborns’ endotracheal tubes (ETTs) and in their sputa and that S. mitis was able to produce autoinducer-2 (AI-2), whereas P. aeruginosa was not. Recently, we also found that exogenous AI-2 and S. mitis could influence the behaviors of P. aeruginosa. We hypothesized that S. mitis contributes to this interspecies interaction and that inhibition of AI-2 could result in inhibition of these effects. To test this hypothesis, we selected PAO1 as a representative model strain of P. aeruginosa and evaluated the effect of S. mitis as well as an AI-2 analog (D-ribose) on mono- and co-culture biofilms in both in vitro and in vivo models. In this context, S. mitis promoted PAO1 biofilm formation and pathogenicity. Dual-species (PAO1 and S. mitis) biofilms exhibited higher expression of quorum sensing genes than single-species (PAO1) biofilms did. Additionally, ETTs covered in dual-species biofilms increased the mortality rate and aggravated lung infection compared with ETTs covered in mono-species biofilms in an endotracheal intubation rat model, all of which was inhibited by D-ribose. Our results demonstrated that S. mitis AI-2 plays an important role in interspecies interactions with PAO1 and may be a target for inhibition of biofilm formation and infection in ventilator-associated pneumonia. PMID:26903968

  8. Tetracycline Susceptibility in Chlamydia suis Pig Isolates.

    PubMed

    Donati, Manuela; Balboni, Andrea; Laroucau, Karine; Aaziz, Rachid; Vorimore, Fabien; Borel, Nicole; Morandi, Federico; Vecchio Nepita, Edoardo; Di Francesco, Antonietta

    2016-01-01

    The aims of the present study were to assess the prevalence of Chlamydia suis in an Italian pig herd, determine the tetracycline susceptibility of C. suis isolates, and evaluate tet(C) and tetR(C) gene expression. Conjunctival swabs from 20 pigs were tested for C. suis by real-time polymerase chain reaction, and 55% (11) were positive. C. suis was then isolated from 11 conjunctival swabs resampled from the same herd. All positive samples and isolates were positive for the tet(C) resistance gene. The in vitro susceptibility to tetracycline of the C. suis isolates showed MIC values ranging from 0.5 to 4 μg/mL. Tet(C) and tetR(C) transcripts were found in all the isolates, cultured both in the absence and presence of tetracycline. This contrasts with other Gram-negative bacteria in which both genes are repressed in the absence of the drug. Further investigation into tet gene regulation in C. suis is needed.

  9. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  10. Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon

    PubMed Central

    Chan, Wai Ting; Yeo, Chew Chieng; Sadowy, Ewa; Espinosa, Manuel

    2014-01-01

    Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary19A-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed. PMID:25538695

  11. Characterisation of acid-base abnormalities in pigs experimentally infected with Chlamydia suis.

    PubMed

    Reinhold, Petra; Hartmann, Helmut; Constable, Peter D

    2010-05-01

    This study characterises the acid-base abnormalities in pigs experimentally infected with Chlamydia suis (Henderson-Hasselbalch equation and Constable's simplified strong ion equation). Eight pigs were challenged with the respiratory pathogen C. suis and four pigs served as non-infected controls. Pigs were monitored from 7 days before challenge to 8 days post-inoculation. Clinical examination was performed twice daily and venous blood samples were collected every two days. Blood-gas analysis, haemoxymetry, serum biochemical analysis and electrophoresis were performed in order to characterise the acid-base derangement. Aerosol challenge with C. suis resulted in severe acid-base disturbance characterised by acute respiratory acidosis and strong ion (metabolic) acidosis secondary to anaerobic metabolism and hyper L-lactataemia. Maximal changes were seen at day 3 post-inoculation when severe clinical signs of respiratory dysfunction were evident. The results of the study provide new information regarding the pathophysiology of respiratory infection caused by C. suis and the applicability and diagnostic utility of different approaches for assessing acid-base status in pigs.

  12. Complex epidemiology and zoonotic potential for Cryptosporidium suis in rural Madagascar.

    PubMed

    Bodager, Jonathan R; Parsons, Michele B; Wright, Patricia C; Rasambainarivo, Fidisoa; Roellig, Dawn; Xiao, Lihua; Gillespie, Thomas R

    2015-01-15

    Cryptosporidium spp. is the most important parasitic diarrheal agent in the world, is among the top four causes of moderate-to-severe diarrheal disease in young children in developing nations, and is problematic as an opportunistic co-infection with HIV. In addition, Cryptosporidium is a persistent challenge for livestock production. Despite its zoonotic potential, few studies have examined the ecology and epidemiology of this pathogen in rural systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. To improve our understanding of the zoonotic potential of Cryptosporidium species in the rural tropics, we screened humans, livestock, peridomestic rodents, and wildlife using PCR-RFLP and sequencing-based approaches to distinguish species of Cryptosporidium in rural southeastern Madagascar. Cryptosporidium of multiple species/genotypes were apparent in this study system. Interestingly, C. suis was the dominant species of Cryptosporidium in the region, infecting humans (n=1), cattle (n=18), pigs (n=3), and rodents (n=1). The broad species range of C. suis and the lack of common cattle Cryptosporidium species (Cryptosporidium parvum and Cryptosporidium andersoni) in this system are unique. This report represents the fifth confirmed case of C. suis infection in humans, and the first case in Africa. Few rural human and livestock populations have been screened for Cryptosporidium using genus-specific genotyping methods. Consequently, C. suis may be more widespread in human and cattle populations than previously believed.

  13. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), long recognized as a mammalian pathogen, is an emerging pathogen to fish. We show that a GBS serotype Ia, multilocus sequence type ST-7 isolate from a human neonatal meningitis clinical case causes disease signs and mortality in N...

  14. Effect of Different Adjuvants on Protection and Side-Effects Induced by Helicobacter suis Whole-Cell Lysate Vaccination.

    PubMed

    Bosschem, Iris; Bayry, Jagadeesh; De Bruyne, Ellen; Van Deun, Kim; Smet, Annemieke; Vercauteren, Griet; Ducatelle, Richard; Haesebrouck, Freddy; Flahou, Bram

    2015-01-01

    Helicobacter suis (H. suis) is a widespread porcine gastric pathogen, which is also of zoonotic importance. The first goal of this study was to investigate the efficacy of several vaccine adjuvants (CpG-DNA, Curdlan, Freund's Complete and Incomplete, Cholera toxin), administered either subcutaneously or intranasally along with H. suis whole-cell lysate, to protect against subsequent H. suis challenge in a BALB/c infection model. Subcutaneous immunization with Freund's complete (FC)/lysate and intranasal immunization with Cholera toxin (CT)/lysate were shown to be the best options for vaccination against H. suis, as determined by the amount of colonizing H. suis bacteria in the stomach, although adverse effects such as post-immunization gastritis/pseudo-pyloric metaplasia and increased mortality were observed, respectively. Therefore, we decided to test alternative strategies, including sublingual vaccine administration, to reduce the unwanted side-effects. A CCR4 antagonist that transiently inhibits the migration of regulatory T cells was also included as a new adjuvant in this second study. Results confirmed that immunization with CT (intranasally or sublingually) is among the most effective vaccination protocols, but increased mortality was still observed. In the groups immunized subcutaneously with FC/lysate and CCR4 antagonist/lysate, a significant protection was observed. Compared to the FC/lysate immunized group, gastric pseudo-pyloric metaplasia was less severe or even absent in the CCR4 antagonist/lysate immunized group. In general, an inverse correlation was observed between IFN-γ, IL-4, IL-17, KC, MIP-2 and LIX mRNA expression and H. suis colonization density, whereas lower IL-10 expression levels were observed in partially protected animals.

  15. Effect of Different Adjuvants on Protection and Side-Effects Induced by Helicobacter suis Whole-Cell Lysate Vaccination

    PubMed Central

    Bosschem, Iris; Bayry, Jagadeesh; De Bruyne, Ellen; Van Deun, Kim; Smet, Annemieke; Vercauteren, Griet; Ducatelle, Richard; Haesebrouck, Freddy; Flahou, Bram

    2015-01-01

    Helicobacter suis (H. suis) is a widespread porcine gastric pathogen, which is also of zoonotic importance. The first goal of this study was to investigate the efficacy of several vaccine adjuvants (CpG-DNA, Curdlan, Freund’s Complete and Incomplete, Cholera toxin), administered either subcutaneously or intranasally along with H. suis whole-cell lysate, to protect against subsequent H. suis challenge in a BALB/c infection model. Subcutaneous immunization with Freund’s complete (FC)/lysate and intranasal immunization with Cholera toxin (CT)/lysate were shown to be the best options for vaccination against H. suis, as determined by the amount of colonizing H. suis bacteria in the stomach, although adverse effects such as post-immunization gastritis/pseudo-pyloric metaplasia and increased mortality were observed, respectively. Therefore, we decided to test alternative strategies, including sublingual vaccine administration, to reduce the unwanted side-effects. A CCR4 antagonist that transiently inhibits the migration of regulatory T cells was also included as a new adjuvant in this second study. Results confirmed that immunization with CT (intranasally or sublingually) is among the most effective vaccination protocols, but increased mortality was still observed. In the groups immunized subcutaneously with FC/lysate and CCR4 antagonist/lysate, a significant protection was observed. Compared to the FC/lysate immunized group, gastric pseudo-pyloric metaplasia was less severe or even absent in the CCR4 antagonist/lysate immunized group. In general, an inverse correlation was observed between IFN-γ, IL-4, IL-17, KC, MIP-2 and LIX mRNA expression and H. suis colonization density, whereas lower IL-10 expression levels were observed in partially protected animals. PMID:26115373

  16. Oral colonization and cariogenicity of Streptococcus gordonii in specific pathogen-free TAN:SPFOM(OM)BR rats consuming starch or sucrose diets.

    PubMed

    Tanzer, J M; Baranowski, L K; Rogers, J D; Haase, E M; Scannapieco, F A

    2001-04-01

    The significance of Streptococcus gordonii in dental caries is undefined, as is that of other alpha-amylase-binding bacteria (ABB) commonly found in the mouth. To clarify the ecological and cariological roles of S. gordonii our specific pathogen-free Osborne-Mendel rats, TAN:SPFOM(OM)BR, were fed either diet 2000 (containing 56% confectioner's sugar, most of which is sucrose) or diet 2000CS (containing 56% cornstarch, in lieu of confectioner's sugar) and inoculated with S. gordonii strains. Uninoculated rats were free of both indigenous mutans streptococci (MS) and ABB, including S. gordonii, as shown by culture on mitis salivarius and blood agars of swabs and sonicates of dentitions after weanlings had consumed these diets for 26 days. ABB were detected by radiochemical assay using [125I]-amylase reactive to alpha-amylase-binding protein characteristic of the surface of S. gordonii and other ABB. No ABB were detected (detection limit < 1 colony-forming units in 10(6) colony-forming units). Thus the TAN:SPFOM(OM)BR colony presents a 'clean animal model' for subsequent study. Consequently, S. gordonii strains Challis or G9B were used to inoculate weanling rat groups consuming either the high-sucrose diet 2000 or the cornstarch diet 2000CS. Two additional groups fed each of these diets remained unioculated. Recoveries of inoculants were tested 12 and 26 days later by oral swabs and sonication of the molars of one hemimandible of each animal, respectively. Uninoculated animals were reconfirmed to be free of ABB and mutans streptococci, but inoculated ones eating diet 2000CS had S. gordonii recoveries of 1-10% or, if eating diet 2000, 10-30% of total colony-farming units in sonicates. There were no statistically significant differences among the inoculated and uninoculated animal groups' caries scores when they ate the cornstarch diet. Lesion scores for sucrose-eating rats were, however, from 2.4-5.1-fold higher than for cornstarch-eating rats, P < 0.001, and were

  17. FINE STRUCTURE OF BRUCELLA SUIS SPHEROPLASTS

    PubMed Central

    Hines, William D.; Freeman, Bob A.; Pearson, Gary R.

    1964-01-01

    Hines, William D. (University of Chicago, Chicago, Ill.), Bob A. Freeman, and Gary R. Pearson. Fine structure of Brucella suis spheroplasts. J. Bacteriol. 87:1492–1498. 1964.—Spheroplasts of Brucella suis, prepared by treatment with penicillin and glycine, and normal cells were sectioned and studied by electron microscopy. These spheroplasts differed from the normal cell in that they were greatly expanded and coccoid in shape. The cell wall and cytoplasmic membrane were more easily demonstrated in the spheroplasts. The cell wall and cytoplasmic membrane of normal cells appeared structureless, but in the spheroplasts both were shown to consist of two dark layers sandwiching a lighter layer. The cytoplasm of the spheroplasts was more dilute than that of normal cells and, in the case of glycine-induced spheroplasts, tended to aggregate. Images PMID:14188733

  18. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans

    PubMed Central

    Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.

    2016-01-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  19. The TolC Homologue of Brucella suis Is Involved in Resistance to Antimicrobial Compounds and Virulence▿

    PubMed Central

    Posadas, Diana M.; Martín, Fernando A.; Sabio y García, Julia V.; Spera, Juan M.; Delpino, M. Victoria; Baldi, Pablo; Campos, Eleonora; Cravero, Silvio L.; Zorreguieta, Angeles

    2007-01-01

    Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other α-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of E. coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host. PMID:17088356

  20. A mouse model for Chlamydia suis genital infection.

    PubMed

    Donati, Manuela; Di Paolo, Maria; Favaroni, Alison; Aldini, Rita; Di Francesco, Antonietta; Ostanello, Fabio; Biondi, Roberta; Cremonini, Eleonora; Ginocchietti, Laura; Cevenini, Roberto

    2015-02-01

    A mouse model for Chlamydia suis genital infection was developed. Ninety-nine mice were randomly divided into three groups and intravaginally inoculated with chlamydia: 45 mice (group 1) received C. suis purified elementary bodies (EBs), 27 (group 2) were inoculated with C. trachomatis genotype E EBs and 27 mice (group 3) with C. trachomatis genotype F EBs. Additionally, 10 mice were used as a negative control. At seven days post-infection (dpi) secretory anti-C. suis IgA were recovered from vaginal swabs of all C. suis inoculated mice. Chlamydia suis was isolated from 93, 84, 71 and 33% vaginal swabs at 3, 5, 7 and 12 dpi. Chlamydia trachomatis genotype E and F were isolated from 100% vaginal swabs up to 7 dpi and from 61 and 72%, respectively, at 12 dpi. Viable C. suis and C. trachomatis organisms were isolated from uterus and tubes up to 16 and 28 dpi, respectively. The results of the present study show the susceptibility of mice to intravaginal inoculation with C. suis. A more rapid course and resolution of C. suis infection, in comparison to C. trachomatis, was highlighted. The mouse model could be useful for comparative investigations involving C. suis and C. trachomatis species.

  1. Safety assessment of dairy microorganisms: Streptococcus thermophilus.

    PubMed

    Delorme, Christine

    2008-09-01

    Streptococcus thermophilus is a major dairy starter used in yogurt and cheese production. In Streptococcus genus, S. thermophilus is the only one food species among commensal and opportunistic pathogen species. Comparative genomics suggest that this species recently emerged and evolved by combination of loss-of-function and horizontal gene transfer events. These gene transfer events detected in S. thermophilus have originated from other dairy species and might contribute to its adaptation to the milk environment.

  2. Infections Associated with Streptococcus intermedius in Children.

    PubMed

    Faden, Howard S

    2016-09-01

    Streptococcus intermedius is a viridans Streptococcus belonging to the Anginosus group. In the past 7 years, it has been associated with abscesses in 48 children, 40% of whom had complicated and/or life-threatening illness. It was the sole pathogen in 35 cases. Seventy-five percent of the infections occurred in winter and spring. None occurred in infants younger than 1 year.

  3. The immune response against Chlamydia suis genital tract infection partially protects against re-infection.

    PubMed

    De Clercq, Evelien; Devriendt, Bert; Yin, Lizi; Chiers, Koen; Cox, Eric; Vanrompay, Daisy

    2014-09-25

    The aim of the present study was to reveal the characteristic features of genital Chlamydia suis infection and re-infection in female pigs by studying the immune response, pathological changes, replication of chlamydial bacteria in the genital tract and excretion of viable bacteria. Pigs were intravaginally infected and re-infected with C. suis strain S45, the type strain of this species. We demonstrated that S45 is pathogenic for the female urogenital tract. Chlamydia replication occurred throughout the urogenital tract, causing inflammation and pathology. Furthermore, genital infection elicited both cellular and humoral immune responses. Compared to the primo-infection of pigs with C. suis, re-infection was characterized by less severe macroscopic lesions and less chlamydial elementary bodies and inclusions in the urogenital tract. This indicates the development of a certain level of protection following the initial infection. Protective immunity against re-infection coincided with higher Chlamydia-specific IgG and IgA antibody titers in sera and vaginal secretions, higher proliferative responses of peripheral blood mononuclear cells (PBMC), higher percentages of blood B lymphocytes, monocytes and CD8⁺ T cells and upregulated production of IFN-γ and IL-10 by PBMC.

  4. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    PubMed

    Lefébure, Tristan; Richards, Vince P; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).

  5. Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae

    PubMed Central

    Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370

  6. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages

    PubMed Central

    Rajasekaran, Parthiban; Alexander, Jeffry C.; Seleem, Mohamed N.; Jain, Neeta; Sriranganathan, Nammalwar; Wattam, Alice R.; Setubal, João C.; Boyle, Stephen M.

    2012-01-01

    Peptide nucleic acids (PNAs) are single-stranded, synthetic nucleic acid analogues containing a pseudopeptide backbone in place of the phosphodiester sugar–phosphate. When PNAs are covalently linked to cell-penetrating peptides (CPPs) they readily penetrate the bacterial cell envelope, inhibit expression of targeted genes and cause growth inhibition both of Gram-positive and Gram-negative bacteria. However, the effectiveness of PNAs against Brucella, a facultative intracellular bacterial pathogen, was unknown. The susceptibility of a virulent Brucella suis strain to a variety of PNAs was assessed in pure culture as well as in murine macrophages. The studies showed that some of the PNAs targeted to Brucella genes involved in DNA (polA, dnaG, gyrA), RNA (rpoB), cell envelope (asd), fatty acid (kdtA, acpP) and protein (tsf) synthesis inhibit the growth of B. suis in culture and in macrophages after 24 h of treatment. PNA treatment inhibited Brucella growth by interfering with gene expression in a sequence-specific and dose-dependent manner at micromolar concentrations. The most effective PNA in broth culture was that targeting polA at ca. 12 μM. In contrast, in B. suis-infected macrophages, the most effective PNAs were those targeting asd and dnaG at 30 μM; both of these PNAs had little inhibitory effect on Brucella in broth culture. The polA PNA that inhibits wild-type B. suis also inhibits the growth of wild-type Brucella melitensis 16M and Brucella abortus 2308 in culture. This study reveals the potential usefulness of antisense PNA constructs as novel therapeutic agents against intracellular Brucella. PMID:23305655

  7. Recent advances in understanding the molecular basis of group B Streptococcus virulence

    PubMed Central

    Maisey, Heather C.; Doran, Kelly S.; Nizet, Victor

    2009-01-01

    Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host–pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention. PMID:18803886

  8. Survival of Helicobacter suis bacteria in retail pig meat.

    PubMed

    De Cooman, Lien; Flahou, Bram; Houf, Kurt; Smet, Annemieke; Ducatelle, Richard; Pasmans, Frank; Haesebrouck, Freddy

    2013-08-16

    Helicobacter (H.) suis colonizes the gastric mucosa of pigs world-wide and is the most prevalent non-Helicobacter pylori Helicobacter species in humans. This agent might be transmitted to humans by manipulation or consumption of contaminated pork. H. suis is a very fastidious micro-organism and is extremely difficult to isolate. Therefore, we developed a non-culture dependent, quantitative detection method allowing differentiation of viable from dead H. suis bacteria in pork. This was established by a combination of ethidium bromide monoazide (EMA) treatment and real-time (RT)-PCR. This EMA RT-PCR was applied to 50 retail pork samples. In two samples, viable H. suis bacteria were detected. Sequence analysis of the obtained PCR products confirmed the presence of H. suis DNA. Viable H. suis bacteria persisted for at least 48h in experimentally contaminated pork. In conclusion, consumption of contaminated pork may constitute a new route of transmission for H. suis infections in humans. PMID:23880243

  9. Quantification of bovine oxylipids during intramammary Streptococcus uberis infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus uberis mastitis results in severe mammary tissue damage in dairy cows due to uncontrolled inflammation. Oxylipids are potent lipid mediators that orchestrate pathogen-induced inflammatory responses, however, changes in oxylipid biosynthesis during S. uberis mastitis are unknown. Thus, ...

  10. Surgical innovation as sui generis surgical research.

    PubMed

    Lotz, Mianna

    2013-12-01

    Successful innovative 'leaps' in surgical technique have the potential to contribute exponentially to surgical advancement, and thereby to improved health outcomes for patients. Such innovative leaps often occur relatively spontaneously, without substantial forethought, planning, or preparation. This feature of surgical innovation raises special challenges for ensuring sufficient evaluation and regulatory oversight of new interventions that have not been the subject of controlled investigatory exploration and review. It is this feature in particular that makes early-stage surgical innovation especially resistant to classification as 'research', with all of the attendant methodological and ethical obligations--of planning, regulation, monitoring, reporting, and publication--associated with such a classification. This paper proposes conceptual and ethical grounds for a restricted definition according to which innovation in surgical technique is classified as a form of sui generis surgical 'research', where the explicit goal of adopting such a definition is to bring about needed improvements in knowledge transfer and thereby benefit current and future patients.

  11. Trichuris suis and Trichuris trichiura are different nematode species.

    PubMed

    Cutillas, C; Callejón, R; de Rojas, M; Tewes, B; Ubeda, J M; Ariza, C; Guevara, D C

    2009-09-01

    In this paper, a morphological and biometrical study by optical microscopy and scanning electronic microscopy (SEM) of Trichuris suis isolated from different hosts (Sus scrofa domestica and Sus scrofa scrofa) and Trichuris trichiura isolated from chimpanzee, has been carried out. Our results demonstrate the existence of typical pericloacal papillae in both species. Biometrical parameters of T. suis and T. trichiura overlapped but males and females of T. trichiura tended to be shorter and thinner than those of T. suis. Our results suggest that T. suis and T. trichiura cannot be differentiated using standard procedures as morphological and biometrical determinations. Thus, the ITS1-5.8S-ITS2 region of the ribosomal DNA was sequenced to allow a differentiation between T. suis and T. trichiura on genetic level. The ITS1 and ITS2 sequences derived from T. trichiura eggs isolated from feces of primates (Colobus guereza kikuyensis and Nomascus gabriellae) showed clear differences to the respective sequences of T. suis derived from eggs of different porcine hosts. The 5.8S gene was similar between the two species. Sequences obtained from different populations of the same species showed no significant differences indicating that the ITS1-5.8S-ITS2 sequences reported in this study are representative for T. trichiura and T. suis, respectively. Phylogenetic relationships have been determined attending to the ITS1 and ITS2 sequences from different species of the genus Trichuris. In conclusion, T. trichiura and T. suis are considered to be closely related but genetically different species. Both species can be easily and reliably distinguished by a PCR-RFLP analysis of the ITS1 and ITS2 sequences with different restriction enzymes.

  12. Streptococcus-Zebrafish Model of Bacterial Pathogenesis

    PubMed Central

    Neely, Melody N.; Pfeifer, John D.; Caparon, Michael

    2002-01-01

    Due to its small size, rapid generation time, powerful genetic systems, and genomic resources, the zebrafish has emerged as an important model of vertebrate development and human disease. Its well-developed adaptive and innate cellular immune systems make the zebrafish an ideal model for the study of infectious diseases. With a natural and important pathogen of fish, Streptococcus iniae, we have established a streptococcus- zebrafish model of bacterial pathogenesis. Following injection into the dorsal muscle, zebrafish developed a lethal infection, with a 50% lethal dose of 103 CFU, and died within 2 to 3 days. The pathogenesis of infection resembled that of S. iniae in farmed fish populations and that of several important human streptococcal diseases and was characterized by an initial focal necrotic lesion that rapidly progressed to invasion of the pathogen into all major organ systems, including the brain. Zebrafish were also susceptible to infection by the human pathogen Streptococcus pyogenes. However, disease was characterized by a marked absence of inflammation, large numbers of extracellular streptococci in the dorsal muscle, and extensive myonecrosis that occurred far in advance of any systemic invasion. The genetic systems available for streptococci, including a novel method of mutagenesis which targets genes whose products are exported, were used to identify several mutants attenuated for virulence in zebrafish. This combination of a genetically amenable pathogen with a well-defined vertebrate host makes the streptococcus-zebrafish model of bacterial pathogenesis a powerful model for analysis of infectious disease. PMID:12065534

  13. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  14. Uptake of benzimidazoles by Trichuris suis in vivo in pigs

    PubMed Central

    Hansen, Tina V.A.; Friis, Christian; Nejsum, Peter; Olsen, Annette; Thamsborg, Stig Milan

    2014-01-01

    It is recognized that the clinical efficacy of single dose benzimidazoles (BZs) against the nematode, Trichuris suis of pigs and the closely related Trichuris trichiura in humans is only poor to moderate. Recent in vitro studies have indicated that a low uptake of fenbendazole (FBZ) in T. suis may be responsible for its poor efficacy. The aim of this study was to investigate this hypothesis by measuring the concentrations of FBZ and its metabolites, oxfendazole (OXF) and FBZ sulphone (FBZSO2), in T. suis isolated from FBZ treated pigs and in plasma of the pigs. The highest concentration of FBZ measured in T. suis was 66.6 pmol/mg dry worm tissue which was approximately half of what was measured in a previous in vitro study. The correlation between drug concentrations in plasma and in T. suis worms was highly positive for OXF (r = 0.93, P = 0.0007) and FBZSO2 (r = 0.85, P = 0.007), but no correlation was found for FBZ. This study shows that the low uptake of FBZ observed for T. suis in vitro, also takes place in vivo. The high and significant correlations between OXF and FBZSO2 concentrations in plasma of the pigs and T. suis (and the lack of this correlation for FBZ) suggests that the metabolites reach the worms via the blood–enterocyte interface while FBZ primarily reaches the worms via the intestinal lumen of the host. PMID:25057460

  15. Experimental infection of pigs with 'Candidatus Helicobacter suis'.

    PubMed

    Hellemans, A; Chiers, K; Decostere, A; De Bock, M; Haesebrouck, F; Ducatelle, R

    2007-05-01

    'Candidatus Helicobacter suis' is a spiral-shaped bacterium that colonizes the stomach of more than 60% of slaughter pigs. The role of 'Candidatus Helicobacter suis' in gastric disease of pigs is still unclear. Experimental studies in pigs are lacking because this bacterium is unculturable until now. An inoculation protocol using 'Candidatus Helicobacter suis' infected mouse stomach homogenate was used to reproduce the infection in pigs. Control animals were inoculated using negative mouse stomach homogenate. Pigs were inoculated three times with one-week intervals and euthanized 6 weeks post inoculation. Tissue samples were taken from different mucosal stomach regions to detect 'Candidatus Helicobacter suis' by PCR and urease test. Mucosal inflammation was evaluated on formalin-fixed tissue samples. Lesions in the pars oesophagea were scored macroscopically. Infection was successful in all challenged animals, with the antrum and the fundus being predominantly positive. Infection was associated with infiltration of lymphocytes and plasma cells in the antral mucosa, evolving to follicular gastritis. No apparent inflammation of the fundic stomach region was detected in the infected animals. A clear link between 'Candidatus Helicobacter suis' and pars oesophageal lesions could not be found.

  16. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    PubMed

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  17. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    PubMed

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  18. Transcriptome-Wide Identification of Hfq-Associated RNAs in Brucella suis by Deep Sequencing

    PubMed Central

    Saadeh, Bashir; Caswell, Clayton C.; Berta, Philippe; Wattam, Alice Rebecca; Roop, R. Martin

    2015-01-01

    ABSTRACT Recent breakthroughs in next-generation sequencing technologies have led to the identification of small noncoding RNAs (sRNAs) as a new important class of regulatory molecules. In prokaryotes, sRNAs are often bound to the chaperone protein Hfq, which allows them to interact with their partner mRNA(s). We screened the genome of the zoonotic and human pathogen Brucella suis 1330 for the presence of this class of RNAs. We designed a coimmunoprecipitation strategy that relies on the use of Hfq as a bait to enrich the sample with sRNAs and eventually their target mRNAs. By deep sequencing analysis of the Hfq-bound transcripts, we identified a number of mRNAs and 33 sRNA candidates associated with Hfq. The expression of 10 sRNAs in the early stationary growth phase was experimentally confirmed by Northern blotting and/or reverse transcriptase PCR. IMPORTANCE Brucella organisms are facultative intracellular pathogens that use stealth strategies to avoid host defenses. Adaptation to the host environment requires tight control of gene expression. Recently, small noncoding RNAs (sRNAs) and the sRNA chaperone Hfq have been shown to play a role in the fine-tuning of gene expression. Here we have used RNA sequencing to identify RNAs associated with the B. suis Hfq protein. We have identified a novel list of 33 sRNAs and 62 Hfq-associated mRNAs for future studies aiming to understand the intracellular lifestyle of this pathogen. PMID:26553849

  19. Case report: Helicobacter suis infection in a pig veterinarian.

    PubMed

    Joosten, Myrthe; Flahou, Bram; Meyns, Tom; Smet, Annemieke; Arts, Joris; De Cooman, Lien; Pasmans, Frank; Ducatelle, Richard; Haesebrouck, Freddy

    2013-10-01

    This study describes a non-Helicobacter (H.) pylori Helicobacter (NHPH) infection in a pig veterinarian. The patient suffered from reflux esophagitis and general dyspeptic symptoms and was referred to the hospital for upper gastrointestinal endoscopy. Histologic examination of corpus and antrum biopsies revealed a chronic gastritis. Large spiral-shaped non-H. pylori helicobacters could be visualized and were identified as H. suis by PCR. The patient was treated with a triple therapy, consisting of amoxicillin, clarithromycin, and pantoprazole for 10 days. Successful eradication was confirmed after a follow-up gastrointestinal endoscopy and PCR 10 weeks after treatment. A mild chronic gastritis was, however, still observed at this point in time. This case report associates porcine H. suis strains with gastric disease in humans, thus emphasizing the zoonotic importance of H. suis bacteria from pigs.

  20. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  1. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    PubMed Central

    Wang, Deguo; Liu, Yanhong

    2015-01-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  2. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-06-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  3. Streptococcus agalactiae mastitis: a review.

    PubMed Central

    Keefe, G P

    1997-01-01

    Streptococcus agalactiae continues to be a major cause of subclinical mastitis in dairy cattle and a source of economic loss for the industry. Veterinarians are often asked to provide information on herd level control and eradication of S. agalactiae mastitis. This review collects and collates relevant publications on the subject. The literature search was conducted in 1993 on the Agricola database. Articles related to S. agalactiae epidemiology, pathogen identification techniques, milk quality consequences, and control, prevention, and therapy were included. Streptococcus agalactiae is an oblique parasite of the bovine mammary gland and is susceptible to treatment with a variety of antibiotics. Despite this fact, where state or provincial census data are available, herd prevalence levels range from 11% (Alberta, 1991) to 47% (Vermont, 1985). Infection with S. agalactiae is associated with elevated somatic cell count and total bacteria count and a decrease in the quantity and quality of milk products produced. Bulk tank milk culture has, using traditional milk culture techniques, had a low sensitivity for identifying S. agalactiae at the herd level. New culture methods, using selective media and large inocula, have substantially improved the sensitivity of bulk tank culture. Efficacy of therapy on individual cows remains high. Protocols for therapy of all infected animals in a herd are generally successful in eradicating the pathogen from the herd, especially if they are followed up with good udder hygiene techniques. PMID:9220132

  4. Development of a LAMP assay for rapid detection of different intimin variants of attaching and effacing microbial pathogens.

    PubMed

    Xue-han, Zhang; Qing, Ye; Ya-dong, Liu; Bin, Li; Renata, Ivanek; Kong-wang, He

    2013-11-01

    Intimin harboured by pathogenic Escherichia coli (E. coli) strains is a key virulence factor involved in host cell adherence and colonization. Twenty-seven intimin-encoding E. coli attaching and effacing (eae) gene variants have been reported according to their 3' binding domain sequences. In our study, we developed a specific and sensitive loop-mediated isothermal amplification (LAMP) assay to detect all known intimin variants. Four primers specific for six regions of eae genes were designed using online software. The eae-LAMP assay was highly specific and detected all 27 tested eae variants; no cross-reactions were observed with genes from enterotoxigenic E. coli (ETEC), E. coli BL21, Salmonella, Shigella, Listeria monocytogenes, or Streptococcus suis type 2 (SS2). With the lowest detection limit of approximately 10 copies per reaction the eae-LAMP assay was 100 times more sensitive than conventional PCR. These results, and the results of tests involving food and faecal samples artificially contaminated with E. coli O157 : H7 (eaeγ+), show that the eae-LAMP assay is a simple, rapid, sensitive and specific tool for detecting intimin variants from pathogenic strains of E. coli. The eae-LAMP assay has great potential for wider applications, not only in the laboratory but also in the field setting, as it does not require specialized equipment. PMID:23893919

  5. Identification of Mycoplasma suis antigens and development of a multiplex microbead immunoassay.

    PubMed

    Guimaraes, Ana M S; Santos, Andrea P; Timenetsky, Jorge; Bower, Leslie P; Strait, Erin; Messick, Joanne B

    2014-03-01

    The aims of the current study were to identify Mycoplasma suis antigens and develop a multiplex microbead immunoassay (MIA). A M. suis-expression library was screened for immunogens using sera from infected pigs. Based on bioinformatics, putative antigens were identified within positive inserts; gene fragments were expressed and purified as polyhistidine fusion proteins, and immunoreactivity was confirmed by Western blot. Selected antigens were used to develop a MIA. Sera from noninfected and infected pigs were used to set the median fluorescent intensity (MFI) cutoffs and as positive controls, respectively. Assay specificity was tested using sera from pigs seropositive for other pathogens (2 different pigs seropositive for each pathogen). Samples from 51 field pigs and 2 pigs during the course of acute (pig 1) and chronic (pig 2) infections were tested using MIA, indirect hemagglutination assay (IHA), and quantitative polymerase chain reaction (qPCR). Sixteen reactive plaques (52 genes) were detected. A heat-shock protein (GrpE), a nicotinamide adenine dinucleotide-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPN), and 4 proteins from paralogous gene families (PGFs) were identified as antigens by Western blot. While GrpE, GAPN, and 1 PGF protein were strong antigens, the others were not suitable as MIA targets. A MIA using GrpE, GAPN, and the strongly reactive PGF protein was developed. Cross-reactivity with sera from pigs infected with Mycoplasma hyopneumoniae, Porcine circovirus-2, Porcine parvovirus, Porcine reproductive and respiratory syndrome virus, and Porcine respiratory coronavirus with this MIA was not observed. Pig 2 was consistently positive by MIA and qPCR, whereas pig 1, initially negative, seroconverted before becoming qPCR positive. Only 2 samples (from pig 1) were IHA positive. Five (9.8%) field samples were qPCR positive and 40 (78.43%) were positive for all 3 MIA antigens; however, all were IHA negative. In summary, the MIA is specific

  6. Draft Genome Sequences for Seven Streptococcus parauberis Isolates from Wild Fish in the Chesapeake Bay.

    PubMed

    Haines, Ashley; Nebergall, Emily; Besong, Elvira; Council, Kimaya; Lambert, Onaysha; Gauthier, David

    2016-01-01

    Streptococcus parauberis is a pathogen of cattle and fish, closely related Streptococcus uberis and Streptococcus iniae We report the genomes of seven S. parauberis strains recovered from striped bass (Morone saxatilis) in the Chesapeake Bay. The availability of these genomes will allow comparative genomic analysis of Chesapeake Bay S. parauberis strains versus S. parauberis cultured from other animal hosts and geographic regions. PMID:27540054

  7. Draft Genome Sequences for Seven Streptococcus parauberis Isolates from Wild Fish in the Chesapeake Bay

    PubMed Central

    Nebergall, Emily; Besong, Elvira; Council, Kimaya; Lambert, Onaysha; Gauthier, David

    2016-01-01

    Streptococcus parauberis is a pathogen of cattle and fish, closely related Streptococcus uberis and Streptococcus iniae. We report the genomes of seven S. parauberis strains recovered from striped bass (Morone saxatilis) in the Chesapeake Bay. The availability of these genomes will allow comparative genomic analysis of Chesapeake Bay S. parauberis strains versus S. parauberis cultured from other animal hosts and geographic regions. PMID:27540054

  8. Draft Genome Sequences for Seven Streptococcus parauberis Isolates from Wild Fish in the Chesapeake Bay.

    PubMed

    Haines, Ashley; Nebergall, Emily; Besong, Elvira; Council, Kimaya; Lambert, Onaysha; Gauthier, David

    2016-08-18

    Streptococcus parauberis is a pathogen of cattle and fish, closely related Streptococcus uberis and Streptococcus iniae We report the genomes of seven S. parauberis strains recovered from striped bass (Morone saxatilis) in the Chesapeake Bay. The availability of these genomes will allow comparative genomic analysis of Chesapeake Bay S. parauberis strains versus S. parauberis cultured from other animal hosts and geographic regions.

  9. Isolation of Actinobacillus suis from a cat's lung.

    PubMed Central

    Daignault, D; Chouinard, L; Møller, K; Ahrens, P; Messier, S; Higgins, R

    1999-01-01

    Actinobacillus suis has been isolated from the lungs of 9-month-old cat. The bacterium was characterized biochemically as well as genetically, and its sensitivity profile to different antimicrobial agents was established. The role of this isolate in the cat's condition is discussed. PMID:9919368

  10. Requirement of MgtC for Brucella suis Intramacrophage Growth: a Potential Mechanism Shared by Salmonella enterica and Mycobacterium tuberculosis for Adaptation to a Low-Mg2+ Environment

    PubMed Central

    Lavigne, Jean-Philippe; O'Callaghan, David; Blanc-Potard, Anne-Béatrice

    2005-01-01

    A Brucella suis mgtC mutant is defective for growth within macrophages and in low-Mg2+ medium. These phenotypes are strikingly similar to those observed with mgtC mutants from Salmonella enterica and Mycobacterium tuberculosis, two other pathogens that proliferate within phagosomes. MgtC appears as a remarkable virulence factor that would have been acquired by distantly related intracellular pathogens to contribute to the adaptation to a low-Mg2+ environment in the phagosome. PMID:15845525

  11. 21 CFR 866.3720 - Streptococcus spp. exo-enzyme reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3720 Streptococcus spp. exo-enzyme reagents. (a) Identification. Streptococcus spp. exoenzyme reagents are devices used... information on these diseases. Pathogenic streptococci are associated with infections, such as sore...

  12. 21 CFR 866.3720 - Streptococcus spp. exo-enzyme reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3720 Streptococcus spp. exo-enzyme reagents. (a) Identification. Streptococcus spp. exoenzyme reagents are devices used... information on these diseases. Pathogenic streptococci are associated with infections, such as sore...

  13. First case of a dog bite wound infection caused by Streptococcus minor in human.

    PubMed

    Tré-Hardy, M; Saussez, T; Yombi, J C; Rodriguez-Villalobos, H

    2016-11-01

    We report the first case of human infection caused by Streptococcus minor in a 51-year-old immunocompetent woman admitted for dog bite injuries. At present, the role of Streptococcus minor in bite wound infections is unknown. Further studies on virulence factors are needed to elucidate its pathogenicity mechanisms. PMID:27688883

  14. Mycoplasma suis antigens recognized during humoral immune response in experimentally infected pigs.

    PubMed

    Hoelzle, L E; Hoelzle, K; Ritzmann, M; Heinritzi, K; Wittenbrink, M M

    2006-01-01

    Today, serodiagnostic tests for Mycoplasma suis infections in pigs have low accuracies. The development of novel serodiagnostic strategies requires a detailed analysis of the humoral immune response elicited by M. suis and, in particular, the identification of antigenic proteins of the agent. For this study, indirect enzyme-linked immunosorbent assay (ELISA) and immunoblot analyses were performed using pre- and sequential postinoculation sera from M. suis-infected and mock-infected control pigs. M. suis purified from porcine blood served as the antigen. Eight M. suis-specific antigens (p33, p40, p45, p57, p61, p70, p73, and p83) were identified as targets of the immunoglobulin G (IgG) antibody response during experimental infection, with p40, p45, and p70 being the preferentially recognized M. suis antigens. Besides the M. suis-specific antigens, porcine immunoglobulins were identified in blood-derived M. suis preparations. By immunoglobulin depletion, the specificity of the M. suis antigen for use in indirect ELISA was significantly improved. M. suis-specific Western blot and ELISA reactions were observed in all infected pigs by 14 days postinfection at the latest and until week 14, the end of the experiments. During acute clinical attacks of eperythrozoonosis, a derailment of the antibody response, determined by decreases in both the M. suis net ELISA values and the numbers of M. suis-specific immunoblot bands, was accompanied by peaking levels of autoreactive IgG antibodies. In conclusion, the M. suis-specific antigens found to stimulate specific IgG antibodies are potentially useful for the development of novel serodiagnostic tests.

  15. Streptococcus Adherence and Colonization

    PubMed Central

    Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2009-01-01

    Summary: Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a “coat of many colors,” enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed. PMID:19721085

  16. The BtaF Trimeric Autotransporter of Brucella suis Is Involved in Attachment to Various Surfaces, Resistance to Serum and Virulence

    PubMed Central

    Ruiz-Ranwez, Verónica; Posadas, Diana M.; Estein, Silvia M.; Abdian, Patricia L.; Martin, Fernando A.; Zorreguieta, Angeles

    2013-01-01

    The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle. PMID:24236157

  17. [Streptococcus intermedius: a rare cause of brain abscess in children].

    PubMed

    Jouhadi, Z; Sadiki, H; Hafid, I; Najib, J

    2013-03-01

    Streptococcus intermedius is a member of the Streptococcus anginosus group, also known as the Streptococcus milleri group. Although this is a commensal agent of the mouth and upper airways, it has been recognized as an important pathogen in the formation of abscesses. However, it has rarely been involved in the formation of brain abscess in children. We report 4 pediatric cases of brain abscess caused by S. intermedius. Three boys and 1 girl, all aged over 2 years, were admitted for a febrile meningeal syndrome and seizures, caused by a S. intermedius brain abscess. Diagnosis was obtained by brain imaging combined with culture of cerebrospinal fluid. The outcome was favorable after antibiotic therapy and abscess puncture. S. intermedius should be considered a potential pathogen involved in the development of brain abscess in children.

  18. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  19. Actinobacillus suis strains isolated from healthy and diseased swine are clonal and carry apxICABDvar. suis and apxIICAvar. suis toxin genes.

    PubMed Central

    Van Ostaaijen, J; Frey, J; Rosendal, S; MacInnes, J I

    1997-01-01

    Actinobacillus suis isolates recovered from both healthy and diseased pigs were characterized by biochemical testing, serotyping, restriction endonuclease fingerprinting, and apx toxin gene typing. The clinical isolates analyzed were collected over a 10-year period from approximately 40 different locations in southwestern Ontario, Canada. Little variation in the biochemical profiles of these isolates was seen, and all isolates reacted strongly with rabbit antisera prepared against one of the strains. Similarly, by using BamHI and BglII for restriction endonuclease fingerprinting (REF) analysis, all isolates were found to belong to a single REF group. Minor variations could be detected, especially in the BglII fingerprints, but overall the patterns were remarkably similar. Sequences that could be amplified by PCR with primers to the apxICA and apxIICA genes of Actinobacillus pleuropneumoniae were detected in all strains. Although no amplification was obtained with primers to the A. pleuropneumoniae apxIBD genes, sequences with homology to apxIBD were detected by hybridization. There was no evidence of apxIII homologs. Taken together, these data suggest that A. suis isolates are genotypically and phenotypically very similar, regardless of their source, and that they contain genes similar to, but not identical to, the apxICABD and apxIICA genes of A. pleuropneumoniae. PMID:9114394

  20. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex

    PubMed Central

    2014-01-01

    Background Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly

  1. Acute Mastoiditis Caused by Streptococcus pneumoniae.

    PubMed

    Obringer, Emily; Chen, Judy L

    2016-05-01

    Acute mastoiditis (AM) is a relatively rare complication of acute otitis media (AOM). The most common pathogens include Streptococcus pneumoniae, Streptococcus pyogenes, and Staphylococcus aureus. Pneumococcal vaccination and changes in antibiotic prescribing recommendations for AOM may change the incidence of AM in the future. Diagnosis of AM can be made based on clinical presentation, but computed tomography of the temporal bone with contrast should be considered if there is concern for complicated AM. Both extracranial and intracranial complications of AM may occur. Previously, routine cortical mastoidectomy was recommended for AM treatment, but new data suggest that a more conservative treatment approach can be considered, including intravenous (IV) antibiotics alone or IV antibiotics with myringotomy. [Pediatr Ann. 2016;45(5):e176-e179.]. PMID:27171806

  2. Phage 3396 from a Streptococcus dysgalactiae subsp. equisimilis pathovar may have its origins in streptococcus pyogenes.

    PubMed

    Davies, Mark R; McMillan, David J; Van Domselaar, Gary H; Jones, Malcolm K; Sriprakash, Kadaba S

    2007-04-01

    Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Phi3396. Exhibiting high homology to the GAS phage Phi315.1, the chimeric nature of Phi3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Phi3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.

  3. Genome Sequence of the Oral Probiotic Streptococcus salivarius JF

    PubMed Central

    2016-01-01

    Streptococcus salivarius is a nonpathogenic Gram-positive bacterium and the predominant colonizer of the oral microbiota. It finds a wide application in the prevention of upper respiratory tract infections, also reducing the frequency of other main pathogens. Here, we present the complete genome sequence of the oral probiotic S. salivarius JF. PMID:27660775

  4. Genome Sequence of the Oral Probiotic Streptococcus salivarius JF.

    PubMed

    Jia, Fang

    2016-01-01

    Streptococcus salivarius is a nonpathogenic Gram-positive bacterium and the predominant colonizer of the oral microbiota. It finds a wide application in the prevention of upper respiratory tract infections, also reducing the frequency of other main pathogens. Here, we present the complete genome sequence of the oral probiotic S. salivarius JF. PMID:27660775

  5. Streptococcus bovis meningitis and hemorrhoids.

    PubMed

    Smith, Adam Hewitt; Sra, Harminder K; Bawa, Sandeep; Stevens, Richard

    2010-07-01

    We report a case of Streptococcus bovis (Streptococcus gallolyticus subsp. pasteurianus) meningitis, a rare cause of central nervous system (CNS) infection in an adult, and comment on the importance of investigation of the lower gastrointestinal tract to identify a portal of entry in cases of systemic Streptococcus bovis infection. PMID:20421434

  6. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice.

    PubMed

    Yin, Hengfu; Gao, Peng; Liu, Chengwu; Yang, Jun; Liu, Zhongchi; Luo, Da

    2013-01-01

    In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.

  7. Comparative analysis of Tritrichomonas foetus (Riedmüller, 1928) cat genotype, T. foetus (Riedmüller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci.

    PubMed

    Slapeta, Jan; Müller, Norbert; Stack, Colin M; Walker, Giselle; Lew-Tabor, Ala; Tachezy, Jan; Frey, Caroline F

    2012-12-01

    The parasitic protists in the genus Tritrichomonas cause significant disease in domestic cattle and cats. To assess the genetic diversity of feline and bovine isolates of Tritrichomonas foetus (Riedmüller, 1928) Wenrich and Emmerson, 1933, we used 10 different genetic regions, namely the protein coding genes of cysteine proteases 1, 2 and 4-9 (CP1, 2, 4-9) involved in the pathogenesis of the disease caused by the parasite. The cytosolic malate dehydrogenase 1 (MDH1) and internal transcribed spacer region 2 of the rDNA unit (ITS2) were included as additional markers. The gene sequences were compared with those of Tritrichomonas suis (Davaine, 1875) Morgan and Hawkins, 1948 and Tritrichomonas mobilensisCulberson et al., 1986. The study revealed 100% identity for all 10 genes among all feline isolates (=T. foetus cat genotype), 100% identity among all bovine isolates (=T. foetus cattle genotype) and a genetic distinctness of 1% between the cat and cattle genotypes of T. foetus. The cattle genotype of T. foetus was 100% identical to T. suis at nine loci (CP1, 2, 4-8, ITS2, MDH1). At CP9, three out of four T. suis isolates were identical to the T. foetus cattle genotype, while the T. suis isolate SUI-H3B sequence contained a single unique nucleotide substitution. Tritrichomonas mobilensis was 0.4% and 0.7% distinct from the cat and cattle genotypes of T. foetus, respectively. The genetic differences resulted in amino acid changes in the CP genes, most pronouncedly in CP2, potentially providing a platform for elucidation of genotype-specific host-pathogen interactions of T. foetus. On the basis of this data we judge T. suis and T. foetus to be subjective synonyms. For the first time, on objective nomenclatural grounds, the authority of T. suis is given to Davaine, 1875, rather than the commonly cited Gruby and Delafond, 1843. To maintain prevailing usage of T. foetus, we are suppressing the senior synomym T. suisDavaine, 1875 according to Article 23.9, because it has

  8. The prevalence of Isospora suis and Strongyloides ransomi in suckling piglets in The Netherlands.

    PubMed

    Eysker, M; Boerdam, G A; Hollanders, W; Verheijden, J H

    1994-12-01

    Faecal samples from suckling piglets from 113 litters on 25 farms in the Netherlands were examined to study the prevalence of gastrointestinal parasites, in particular Strongyloides ransomi and Isospora suis. S. ransomi was not found but I. suis was demonstrated in 17 of the 25 farms and in 41 out of 77 litters of these farms (53%). No other parasites were found. On the basis of these results, a longitudinal study on the incidence and significance of I. suis was performed on 10 farms (5 litters/farm). I. suis was found on 9 out of 10 farms and in 56% of the litters. Farms differed in infection levels, measured as the numbers of patent litters, and in the onset of patency. Other parasites were only found in faecal samples from the sows and from farrowing pens. These were, in order of prevalence, Balantidium coli, Ascaris suum, Eimeria spinosa, E. debliecki and E. suis. PMID:7740744

  9. Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198.

    PubMed

    Georgalaki, Marina; Papadimitriou, Konstantinos; Anastasiou, Rania; Pot, Bruno; Van Driessche, Gonzalez; Devreese, Bart; Tsakalidou, Effie

    2013-02-01

    Streptococcus macedonicus ACA-DC 198 was found to produce a second lantibiotic named macedovicin in addition to macedocin. Macedovicin was purified to homogeneity and mass spectrometric analysis identified a peptide of approximately 3.4 kDa. Partial N-terminal sequence analysis and tandem mass spectrometry revealed that macedovicin was identical to bovicin HJ50 and thermophilin 1277 produced by Streptococcus bovis and Streptococcus thermophilus, respectively. Macedovicin inhibits a broad spectrum of lactic acid bacteria, several food spoilage species (e.g. Clostridium spp.) and oral streptococci. We determined the complete biosynthetic gene cluster of macedovicin. Even though the gene clusters of macedovicin, thermophilin 1277 and bovicin HJ50 were almost identical at the nucleotide level, there were important differences in their predicted genes and proteins. Bovicin HJ50-like lantibiotics were also found to be encoded by Streptococcus suis strains SC84 and D12, Enterococcus columbae PLCH2, Clostridium perfringens JGS1721 and several Bacillus strains. All these lantibiotics contained a number of conserved amino acids that may be important for their biosynthesis and activity, while phylogenetic analysis supported their dispersion by horizontal gene transfer. In conclusion, the production of multiple bacteriocins may enhance the bio-protective potential of S. macedonicus during food fermentation.

  10. Significantly higher frequency of Helicobacter suis in patients with idiopathic parkinsonism than in control patients

    PubMed Central

    Blaecher, C; Smet, A; Flahou, B; Pasmans, F; Ducatelle, R; Taylor, D; Weller, C; Bjarnason, I; Charlett, A; Lawson, A J; Dobbs, R J; Dobbs, S M; Haesebrouck, F

    2013-01-01

    Background There is increased proportional mortality from Parkinson's disease amongst livestock farmers. The hypokinesia of Parkinson's disease has been linked to Helicobacter pylori. H. suis is the most common zoonotic helicobacter in man. Aim To compare the frequency of H. suis, relative to H. pylori, in gastric biopsies of patients with idiopathic parkinsonism (IP) and controls from gastroenterology services. Methods DNA extracts, archived at a Helicobacter Reference Laboratory, from IP patient and gastroenterology service biopsies were examined anonymously for H. suis, using species-specific RT-PCR. Results Relative risk of having H. suis in 60 IP patients compared with 256 controls was 10 times greater than that of having H. pylori. In patients with IP and controls, respectively, frequencies of H. suis were 27 (exact binomial 95% C.I. 15, 38) and 2 (0, 3)%, and of H. pylori, 28 (17, 40) and 16 (12, 21)%. Excess of H. suis in IP held when only the antral or corporal biopsy was considered. Of 16 IP patients with H. suis, 11 were from 19 with proven H. pylori eradication, 3 from 17 pre-H. pylori eradication, 2 from 24 H. pylori culture/PCR-negative. Frequency was different between groups (P = 0.001), greatest where H. pylori had been eradicated. Even without known exposure to anti-H. pylori therapy, H. suis was more frequent in IP patients (5/41) than in controls (1/155) (P = 0.002). Partial multilocus sequence typing confirmed that strains from IP patients (6) and control (1) differed from RT-PCR standard strain. Conclusions Greater frequency of H. suis in idiopathic parkinsonism appears exaggerated following H. pylori eradication. Multilocus sequence testing comparison with porcine strains may clarify whether transmission is from pigs/porcine products or of human-adapted, H. suis-like, bacteria. PMID:24117797

  11. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains.

    PubMed

    Neemuchwala, Alefiya; Teatero, Sarah; Patel, Samir N; Fittipaldi, Nahuel

    2016-01-01

    Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen. PMID:27559344

  12. Streptococcus agalactie involved in the etiology of sexually transmitted diseases.

    PubMed

    Frey, Marcos Noronha; Ioppi, Ana Elisa Empinotti; Bonamigo, Renan Rangel; Prado, Guilherme Pinheiro

    2011-01-01

    Streptococcus agalactiae is an important microorganism involved in a number of conditions in pregnant women, newborns, elderly people (over 65 years of age) and individuals with chronic disabling illnesses. This pathogen is infrequently found among patients outside this age range or clinical profile(1-5) and is rarely reported in the etiology of sexually transmitted diseases. Here we describe a case of an otherwise healthy 19 year-old male, who presented with ulcerative genital and oral lesions in association with urethral and ocular discharge, suggestive of Streptococcus agalactiae infection acquired through sexual contact.

  13. Molecular Epidemiology and Genomics of Group A Streptococcus

    PubMed Central

    Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé

    2014-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818

  14. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains

    PubMed Central

    Teatero, Sarah; Patel, Samir N.

    2016-01-01

    Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen. PMID:27559344

  15. Colonisation endpoints in Streptococcus pneumoniae vaccine trials.

    PubMed

    Auranen, Kari; Rinta-Kokko, Hanna; Goldblatt, David; Nohynek, Hanna; O'Brien, Katherine L; Satzke, Catherine; Simell, Birgit; Tanskanen, Antti; Käyhty, Helena

    2013-12-17

    Evaluating vaccine efficacy for protection against colonisation (VEcol) with bacterial pathogens is an area of growing interest. In this article, we consider estimation of VEcol for colonisation with Streptococcus pneumoniae (the pneumococcus). Colonisation is a common, recurrent and multi-type endpoint that requires both careful definition of the vaccine efficacy parameter and the corresponding method of estimation. We review recent developments in the area and provide practical guidelines for choosing the estimand and the estimation method in trials with a colonisation endpoint. We concentrate on methods that are based on a cross-sectional study design, in which only one nasopharyngeal sample is obtained per study subject.

  16. Acid tolerance mechanisms utilized by Streptococcus mutans

    PubMed Central

    Matsui, Robert; Cvitkovitch, Dennis

    2010-01-01

    Since its discovery in 1924 by J Clarke, Streptococcus mutans has been the focus of rigorous research efforts due to its involvement in caries initiation and progression. Its ability to ferment a range of dietary carbohydrates can rapidly drop the external environmental pH, thereby making dental plaque inhabitable to many competing species and can ultimately lead to tooth decay. Acid production by this oral pathogen would prove suicidal if not for its remarkable ability to withstand the acid onslaught by utilizing a wide variety of highly evolved acid-tolerance mechanisms. The elucidation of these mechanisms will be discussed, serving as the focus of this review. PMID:20210551

  17. Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus strains within the "Streptococcus milleri group".

    PubMed Central

    Whiley, R A; Fraser, H; Hardie, J M; Beighton, D

    1990-01-01

    A biochemical scheme was developed by which strains of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus can reliably be distinguished from within the "Streptococcus milleri group." Strains identified as S. intermedius were differentiated by the ability to produce detectable levels of alpha-glucosidase, beta-galactosidase, beta-D-fucosidase, beta-N-acetylgalactosaminidase, beta-N-acetylglucosaminidase, and sialidase with 4-methylumbelliferyl-linked fluorogenic substrates in microdilution trays after 3 h of incubation at 37 degrees C, together with the production of hyaluronidase. Strains of S. constellatus and S. anginosus were differentiated by the production of alpha-glucosidase and hyaluronidase by the former and the production of beta-glucosidase by the latter. The majority of strains of the S. milleri group obtained from dental plaque were identified as S. intermedius, as were most strains isolated from abscesses of the brain and liver. Strains of S. constellatus and S. anginosus were from a wider variety of infections, both oral and nonoral, than were strains of S. intermedius, with the majority of strains from urogenital infections being identified as S. anginosus. PMID:2380375

  18. Serologic studies of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus morbillorum by crossed immunoelectrophoresis.

    PubMed

    Coleman, R M; Lambe, D W

    1979-07-01

    A reference antigen-antibody system for Streptococcus intermedius, Streptococcus constellatus, and Streptococcus morbillorum was established with crossed immunoelectrophoresis. A comparison of S. intermedius, S. constellatus, and S. morbillorum with crossed immunoelectrophoresis and crossed immunoelectrophoresis with intermediate gel indicated that S. intermedius and S. constellatus are closely related antigenically with as many as six common cytoplasmic antigens. S. morbillorum was antigenically more distinct; antiserum of one strain of S. morbillorum was monospecific, indicating that specific serogroups of S. morbillorum exist. Crossed immunoelectrophoresis and tandem crossed immunoelectrophoresis revealed that S. intermedius, S. constellatus, and S. morbillorum also share some common antigens with Streptococcus sanguis and Streptococcus mitis, but S. intermedius, S. constellatus, and S. morbillorum are antigenically distinct from Streptococcus mutans and Streptococcus bovis.

  19. Novel real-time PCR assays using TaqMan minor groove binder probes for identification of fecal carriage of Streptococcus bovis/Streptococcus equinus complex from rectal swab specimens.

    PubMed

    Lopes, Paulo Guilherme Markus; Cantarelli, Vlademir Vicente; Agnes, Grasiela; Costabeber, Ane Micheli; d'Azevedo, Pedro Alves

    2014-03-01

    Real-time PCR based on the recN and gyrB genes was developed to detect four Streptococcus bovis/Streptococcus equinus complex (SBEC) subspecies from rectal swab specimens. The overall prevalence was 35.2%: Streptococcus gallolyticus subsp. gallolyticus (11.1%), S. gallolyticus subsp. pasteurianus (13%), Streptococcus infantarius subsp. coli (20.4%), and S. infantarius subsp. infantarius (11.1%). To conclude, these real-time PCR assays provide a reliable molecular method to detect SBEC pathogenic subspecies from rectal swab specimens.

  20. Mechanisms of genome evolution of Streptococcus

    PubMed Central

    Andam, Cheryl P.; Hanage, William P.

    2014-01-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. PMID:25461843

  1. Mechanisms of genome evolution of Streptococcus.

    PubMed

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci.

  2. Brucella suis in armadillos (Chaetophractus villosus) from La Pampa, Argentina.

    PubMed

    Kin, Marta S; Fort, Marcelo; de Echaide, Susana T; Casanave, Emma B

    2014-06-01

    Brucellosis is a zoonotic disease transmitted from an animal reservoir to humans. Both, wildlife and domestic animals, contribute to the spreading of these zoonosis. The surveillance of the animal health status is strictly regulated for domestic animals, whereas disease monitoring in wildlife does not exist. The aim of the present study was to provide data on the prevalence of anti-Brucella antibodies in Chaetophractus villosus from a region of La Pampa, Argentina to assess public health risks. The C. villosus is endemic to South America, and in Argentina it represents a food resource for human consumption. A total of 150 sera of armadillos bleeding between 2007 and 2010 were tested using buffered plate antigen test (BPAT), serum agglutination test (SAT), 2-mercaptoethanol (2-ME) and complement fixation test (CFT), for the detection of anti-Brucella antibodies. Antibodies to Brucella sp. were found in 16% (24:150) of the armadillos tested using the BPAT test. All 24 positive samples were confirmed by the SAT, 2-ME and CFT tests. Strain isolation was attempted from liver and spleen samples of two animals with positive serology. Isolates were characterized by conventional biotyping and identification of specific DNA using polymerase chain reaction (PCR). A total of 2 isolates were recovered from spleen and liver. Both of them were identified as Brucella suis biovar 1. This preliminary study provides the first report on the seroprevalence of brucellosis and describes the first isolate of B. suis biovar 1 in C. villosus in Argentina. PMID:24685240

  3. The Brucella suis virB operon is induced intracellularly in macrophages.

    PubMed

    Boschiroli, Maria Laura; Ouahrani-Bettache, Safia; Foulongne, Vincent; Michaux-Charachon, Sylvie; Bourg, Gisele; Allardet-Servent, Annick; Cazevieille, Chantal; Liautard, Jean Pierre; Ramuz, Michel; O'Callaghan, David

    2002-02-01

    A type IV secretion system similar to the VirB system of the phytopathogen Agrobacterium tumefaciens is essential for the intracellular survival and multiplication of the mammalian pathogen Brucella. Reverse transcriptase-PCR showed that the 12 genes encoding the Brucella suis VirB system form an operon. Semiquantitative measurements of virB mRNA levels by slot blotting showed that transcription of the virB operon, but not the flanking genes, is regulated by environmental factors in vitro. Flow cytometry used to measure green fluorescent protein expression from the virB promoter confirmed the data from slot blots. Fluorescence-activated cell sorter analysis and fluorescence microscopy showed that the virB promoter is induced in macrophages within 3 h after infection. Induction only occurred once the bacteria were inside the cells, and phagosome acidification was shown to be the major signal inducing intracellular expression. Because phagosome acidification is essential for the intracellular multiplication of Brucella, we suggest that it is the signal that triggers the secretion of unknown effector molecules. These effector molecules play a role in the remodeling of the phagosome to create the unique intracellular compartment in which Brucella replicates. PMID:11830669

  4. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  5. Role of γ-glutamyltranspeptidase in the pathogenesis of Helicobacter suis and Helicobacter pylori infections.

    PubMed

    Zhang, Guangzhi; Ducatelle, Richard; De Bruyne, Ellen; Joosten, Myrthe; Bosschem, Iris; Smet, Annemieke; Haesebrouck, Freddy; Flahou, Bram

    2015-03-13

    Helicobacter (H.) suis can colonize the stomach of pigs as well as humans, causing chronic gastritis and other gastric pathological changes including gastric ulceration and mucosa-associated lymphoid tissue (MALT) lymphoma. Recently, a virulence factor of H. suis, γ-glutamyl transpeptidase (GGT), has been demonstrated to play an important role in the induction of human gastric epithelial cell death and modulation of lymphocyte proliferation depending on glutamine and glutathione catabolism. In the present study, the relevance of GGT in the pathogenesis of H. suis infection was studied in mouse and Mongolian gerbil models. In addition, the relative importance of H. suis GGT was compared with that of the H. pylori GGT. A significant and different contribution of the GGT of H. suis and H. pylori was seen in terms of bacterial colonization, inflammation and the evoked immune response. In contrast to H. pyloriΔggt strains, H. suisΔggt strains were capable of colonizing the stomach at levels comparable to WT strains, although they induced significantly less overall gastric inflammation in mice. This was characterized by lower numbers of T and B cells, and a lower level of epithelial cell proliferation. In general, compared to WT strain infection, ggt mutant strains of H. suis triggered lower levels of Th1 and Th17 signature cytokine expression. A pronounced upregulation of B-lymphocyte chemoattractant CXCL13 was observed, both in animals infected with WT and ggt mutant strains of H. suis. Interestingly, H. suis GGT was shown to affect the glutamine metabolism of gastric epithelium through downregulation of the glutamine transporter ASCT2.

  6. Streptococcus agalactiae infection in zebrafish larvae.

    PubMed

    Kim, Brandon J; Hancock, Bryan M; Del Cid, Natasha; Bermudez, Andres; Traver, David; Doran, Kelly S

    2015-02-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β (il1b) and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis. PMID:25617657

  7. Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over

    PubMed Central

    2012-01-01

    Background Due to the parallel increase of the number of free-ranging wild boar and domestic pigs reared outdoor, the risk that they interact has become higher. Contacts with wild boar can be the origin of disease outbreaks in pigs, as it has been documented for brucellosis in some European countries. This study aimed at quantifying the occurrence of contacts between wild boar and outdoor domestic pigs in Switzerland, and identifying risk factors for these contacts. Furthermore, exposed pigs were tested for pathogen spill-over, taking Brucella suis as an example because B. suis is widespread in Swiss wild boar while domestic pigs are officially free of brucellosis. Results Thirty-one percent of the game-wardens and 25% of the pig owners participating to a country-wide questionnaire survey reported contacts, including approaches of wild boar outside the fence, intrusions, and mating. Seventeen piggeries (5%) reported the birth of cross-bred animals. Risk factors for contacts identified by a uni- and multivariable logistic regression approach were: distance between pigs enclosure and houses, proximity of a forest, electric fences, and fences ≤ 60 cm. Pigs of the Mangalitza breed were most at risk for mating with wild boar (births of cross-bred animals). Blood and tissues of 218 outdoor pigs from 13 piggeries were tested for an infection with Brucella suis, using rose bengal test, complement fixation test, and an IS711-based real-time PCR. One piggery with previous wild boar contacts was found infected with B. suis, however, epidemiological investigations failed to identify the direct source of infection. Conclusions Results show that interactions between wild boar and outdoor pigs are not uncommon, pointing at the existing risk of pathogen spill-over. Provided data on risk factors for these interactions could help the risk-based implementation of protection measures for piggeries. The documentation of a brucellosis outbreak in pigs despite the freedom

  8. Macrolide Resistance in Streptococcus pneumoniae

    PubMed Central

    Schroeder, Max R.; Stephens, David S.

    2016-01-01

    Streptococcus pneumoniae is a common commensal and an opportunistic pathogen. Suspected pneumococcal upper respiratory infections and pneumonia are often treated with macrolide antibiotics. Macrolides are bacteriostatic antibiotics and inhibit protein synthesis by binding to the 50S ribosomal subunit. The widespread use of macrolides is associated with increased macrolide resistance in S. pneumoniae, and the treatment of pneumococcal infections with macrolides may be associated with clinical failures. In S. pneumoniae, macrolide resistance is due to ribosomal dimethylation by an enzyme encoded by erm(B), efflux by a two-component efflux pump encoded by mef (E)/mel(msr(D)) and, less commonly, mutations of the ribosomal target site of macrolides. A wide array of genetic elements have emerged that facilitate macrolide resistance in S. pneumoniae; for example erm(B) is found on Tn917, while the mef (E)/mel operon is carried on the 5.4- or 5.5-kb Mega element. The macrolide resistance determinants, erm(B) and mef (E)/mel, are also found on large composite Tn916-like elements most notably Tn6002, Tn2009, and Tn2010. Introductions of 7-valent and 13-valent pneumococcal conjugate vaccines (PCV-7 and PCV-13) have decreased the incidence of macrolide-resistant invasive pneumococcal disease, but serotype replacement and emergence of macrolide resistance remain an important concern. PMID:27709102

  9. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    SciTech Connect

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.; Hunter, Neil; Guss, J. Mitchell; Collyer, Charles A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.

  10. Experimental infections by Brucella suis type 4 in Alaskan rodents.

    PubMed

    Miller, L G; Neiland, K A

    1980-10-01

    The susceptibility of nine species of rodents and one species of lagomorph to Brucella suis type 4 was studied experimentally. The rodent species included: guinea pig (Cavia porcellus), Scandinavian lemming (Lemmus lemmus), brown lemming (L. sibiricus), northern red-backed vole (Clethrionomys rutilis), varying lemmings (Dicrostonyx stevensoni and D. rubricatus), yellow-cheeked vole (Microtus xanthognathus), flying squirrel (Glaucomys sabrinus) and ground squirrel (Citellus parryii). The lagomorph, Lepus americanus (varying hare), was also studied. All of these species were readily infected by intraperitoneal inoculations of brucellae. Pathologic responses were not marked in most of these species. However, both species of varying lemmings responded dramatically to infections initiated by about as few as two cfu. All individuals of both species that were not killed eventually died from the infection. PMID:7463596

  11. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study

    PubMed Central

    Dittrich, Sabine; Rattanavong, Sayaphet; Lee, Sue J; Panyanivong, Phonepasith; Craig, Scott B; Tulsiani, Suhella M; Blacksell, Stuart D; Dance, David A B; Dubot-Pérès, Audrey; Sengduangphachanh, Amphone; Phoumin, Phonelavanh; Paris, Daniel H; Newton, Paul N

    2015-01-01

    Summary Background Scrub typhus (caused by Orientia tsutsugamushi), murine typhus (caused by Rickettsia typhi), and leptospirosis are common causes of febrile illness in Asia; meningitis and meningoencephalitis are severe complications. However, scarce data exist for the burden of these pathogens in patients with CNS disease in endemic countries. Laos is representative of vast economically poor rural areas in Asia with little medical information to guide public health policy. We assessed whether these pathogens are important causes of CNS infections in Laos. Methods Between Jan 10, 2003, and Nov 25, 2011, we enrolled 1112 consecutive patients of all ages admitted with CNS symptoms or signs requiring a lumbar puncture at Mahosot Hospital, Vientiane, Laos. Microbiological examinations (culture, PCR, and serology) targeted so-called conventional bacterial infections (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Rickettsia typhi/Rickettsia spp, and Leptospira spp infections in blood or cerebrospinal fluid (CSF). We analysed and compared causes and clinical and CSF characteristics between patient groups. Findings 1051 (95%) of 1112 patients who presented had CSF available for analysis, of whom 254 (24%) had a CNS infection attributable to a bacterial or fungal pathogen. 90 (35%) of these 254 infections were caused by O tsutsugamushi, R typhi/Rickettsia spp, or Leptospira spp. These pathogens were significantly more frequent than conventional bacterial infections (90/1051 [9%] vs 42/1051 [4%]; p<0·0001) by use of conservative diagnostic definitions. CNS infections had a high mortality (236/876 [27%]), with 18% (13/71) for R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp combined, and 33% (13/39) for conventional bacterial infections (p=0·076). Interpretation Our data suggest that R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp infections are important causes of CNS infections in Laos

  12. Scabies Mites Alter the Skin Microbiome and Promote Growth of Opportunistic Pathogens in a Porcine Model

    PubMed Central

    Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first

  13. Bullous impetigo caused by Streptococcus salivarius: a case report.

    PubMed Central

    Brook, I

    1980-01-01

    A 19-month-old child presented with bullous impetigo around the perineal region, penis, and left foot. Streptococcus salivarius was the only isolate recovered from the lesions. The child was treated with parenteral penicillin, debridement of the bulli, and local application of silver sulphadiazine cream. This case of bullous impetigo illustrates another aspect of the pathogenicity of Strep. salivarius. Images Fig. 1 Fig. 2 PMID:7002959

  14. Impact of immunization against SpyCEP during invasive disease with two streptococcal species: Streptococcus pyogenes and Streptococcus equi

    PubMed Central

    Turner, Claire E.; Kurupati, Prathiba; Wiles, Siouxsie; Edwards, Robert J.; Sriskandan, Shiranee

    2009-01-01

    Currently there is no licensed vaccine against the human pathogen Streptococcus pyogenes. The highly conserved IL-8 cleaving S. pyogenes cell envelope proteinase SpyCEP is surface expressed and is a potential vaccine candidate. A recombinant N-terminal part of SpyCEP (CEP) was expressed and purified. AntiCEP antibodies were found to neutralize the IL-8 cleaving activity of SpyCEP. CEP-immunized mice had reduced bacterial dissemination from focal S. pyogenes intramuscular infection and intranasal infection. We also identified a functional SpyCEP-homolog protease SeCEP, expressed by the equine pathogen Streptococcus equi, which was able to cleave both human and equine IL-8. CEP-immunized mice also demonstrated reduced bacterial dissemination from S. equi intramuscular infection. Therefore immunization against SpyCEP may provide protection against other streptococci species with homologous proteases. PMID:19563892

  15. Autofluorescence microscopy for the detection of nematode eggs and protozoa, in particular Isospora suis, in swine faeces.

    PubMed

    Daugschies, A; Bialek, R; Joachim, A; Mundt, H C

    2001-05-01

    Parasites from swine faeces were examined for autofluorescence. Oocysts of Eimeria polita, E. scabra and Isospora suis, cysts of Balantidium coli and eggs of Oesophagostomum dentatum, Strongyloides ransomi and Trichuris suis (but not those of Ascaris suum) emitted light after excitation with UV light. I. suis oocyst counts in McMaster chambers utilising autofluorescence were compared to those from conventional bright field microscopy. Similarly, faecal smears containing I. suis were examined using the same techniques. Autofluorescence was superior to bright field microscopy in detecting oocysts after flotation and was highly significantly more sensitive when direct smears were examined. PMID:11403385

  16. STREPTOCOCCUS PHOCAE ISOLATED FROM A SPOTTED SEAL (PHOCA LARGHA) WITH PYOMETRA IN ALASKA

    PubMed Central

    Hueffer, Karsten; Lieske, Camilla L.; McGilvary, Lisa M.; Hare, Rebekah F.; Miller, Debra L.; O’Hara, Todd M.

    2013-01-01

    A spotted seal harvested by subsistence hunters in Kotzebue Sound, Alaska (USA), showed a grossly enlarged uterus and associated lymph nodes. Streptococcus phocae was isolated from the purulent uterine discharge. Histopathologic examination revealed inflammation that was limited to the uterine mucosa. Lymph nodes draining the affected organ were reactive but no evidence of active infection was found in the lymph nodes. This report is the first Streptococcus phocae isolated from spotted seals as well as the first report of pyometra as the main pathologic finding associated with this pathogen. Isolation of this pathogen from Alaska expands the reported range to arctic pinnipeds. Zoonotic potential remains unknown. PMID:22946378

  17. Streptococcus pneumoniae NanC

    PubMed Central

    Owen, C. David; Lukacik, Petra; Potter, Jane A.; Sleator, Olivia; Taylor, Garry L.; Walsh, Martin A.

    2015-01-01

    Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold. PMID:26370075

  18. Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus).

    PubMed

    Park, Seong Bin; Kwon, Kyoung; Cha, In Seok; Jang, Ho Bin; Nho, Seong Won; Fagutao, Fernand F; Kim, Young Kyu; Yu, Jong Earn; Jung, Tae Sung

    2014-01-01

    A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.

  19. Pelistega suis sp. nov., isolated from domestic and wild animals.

    PubMed

    Vela, Ana I; Perez Sancho, Marta; Domínguez, Lucas; Busse, Hans-Jürgen; Fernández-Garayzábal, Jose F

    2015-12-01

    Biochemical and molecular genetic studies were performed on three novel Gram-stain-negative, catalase- and oxidase-positive, bacilli-shaped organisms isolated from the tonsils of two pigs and one wild boar. The micro-organism was identified as a species of the genus Pelistega based on its cellular morphological and biochemical tests. The closest phylogenetic relative of the novel bacilli was Pelistega indica HM-7T (98.2 % 16S rRNA gene sequence similarity to the type strain). groEL and gyrB sequence analysis showed interspecies divergence from the closest 16S rRNA gene phylogenetic relative, P. indica of 87.0.% and 69 %, respectively. The polyamine pattern contains predominantly putrescine and 2-hydroxyputrescine. The major quinone is ubiquinone Q-8 and in the polar lipid profile, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid are predominant. The novel bacterial isolate can be distinguished from P. indica by several biochemical characteristics, such as the production of l-pyrrolydonil arylamidase but not gamma-glutamyl-transferase, and the utilization of different carbon sources. Based on both phenotypic and phylogenetic findings, the novel bacterium is classified as representing a novel species of the genus Pelistega, for which the name Pelistega suis sp. nov. is proposed. The type strain is 3340-03T ( = CECT 8400T = CCUG 64465T). PMID:26449759

  20. Pelistega suis sp. nov., isolated from domestic and wild animals.

    PubMed

    Vela, Ana I; Perez Sancho, Marta; Domínguez, Lucas; Busse, Hans-Jürgen; Fernández-Garayzábal, Jose F

    2015-12-01

    Biochemical and molecular genetic studies were performed on three novel Gram-stain-negative, catalase- and oxidase-positive, bacilli-shaped organisms isolated from the tonsils of two pigs and one wild boar. The micro-organism was identified as a species of the genus Pelistega based on its cellular morphological and biochemical tests. The closest phylogenetic relative of the novel bacilli was Pelistega indica HM-7T (98.2 % 16S rRNA gene sequence similarity to the type strain). groEL and gyrB sequence analysis showed interspecies divergence from the closest 16S rRNA gene phylogenetic relative, P. indica of 87.0.% and 69 %, respectively. The polyamine pattern contains predominantly putrescine and 2-hydroxyputrescine. The major quinone is ubiquinone Q-8 and in the polar lipid profile, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid are predominant. The novel bacterial isolate can be distinguished from P. indica by several biochemical characteristics, such as the production of l-pyrrolydonil arylamidase but not gamma-glutamyl-transferase, and the utilization of different carbon sources. Based on both phenotypic and phylogenetic findings, the novel bacterium is classified as representing a novel species of the genus Pelistega, for which the name Pelistega suis sp. nov. is proposed. The type strain is 3340-03T ( = CECT 8400T = CCUG 64465T).

  1. Genetic manipulation of Streptococcus pyogenes (the Group A Streptococcus, GAS).

    PubMed

    Le Breton, Yoann; McIver, Kevin S

    2013-01-01

    Streptococcus pyogenes (the Group A Streptococcus, GAS) is a Gram-positive bacterium responsible for a wide spectrum of diseases ranging from mild superficial infections (pharyngitis, impetigo) to severe, often life-threatening invasive diseases (necrotizing fasciitis, streptococcal toxic shock syndrome) in humans. This unit describes molecular techniques for the genetic manipulation of S. pyogenes with detailed protocols for transformation, gene disruption, allelic exchange, transposon mutagenesis, and genetic complementation. PMID:24510894

  2. Identification of Streptococcus bovis and Streptococcus salivarius in clinical laboratories.

    PubMed Central

    Ruoff, K L; Ferraro, M J; Holden, J; Kunz, L J

    1984-01-01

    Streptococci identified as Streptococcus bovis, S. bovis variant, and Streptococcus salivarius were examined with respect to physiological and serological characteristics and cellular fatty acid content. Similarities in physiological reactions and problems encountered in serological analysis were noted, suggesting that an expanded battery of physiological tests is needed to definitively identify these streptococci. Cellular fatty acid analysis provided an accurate method for distinguishing S. salivarius from S. bovis and S. bovis variant. PMID:6490816

  3. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  4. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines.

    PubMed Central

    AlonsoDeVelasco, E; Verheul, A F; Verhoef, J; Snippe, H

    1995-01-01

    Although pneumococcal conjugate vaccines are close to being licensed, a more profound knowledge of the virulence factors responsible for the morbidity and mortality caused by Streptococcus pneumoniae is necessary. This review deals with the major structures of pneumococci involved in the pathogenesis of pneumococcal disease and their interference with the defense mechanisms of the host. It is well known that protection against S. pneumoniae is the result of phagocytosis of invading pathogens. For this process, complement and anticapsular polysaccharide antibodies are required. Besides, relatively recent experimental data suggest that protection is also mediated by the removal of disintegrating pneumococci and their degradation products (cell wall, pneumolysin). These structures seem to be major contributors to illness and death caused by pneumococci. An effective conjugate vaccine should therefore preferably include the capsular polysaccharide and at least one of these inflammatory factors. PMID:8531887

  5. Extended semen for artificial insemination in swine as a potential transmission mechanism for infectious Chlamydia suis.

    PubMed

    Hamonic, G; Pasternak, J A; Käser, T; Meurens, F; Wilson, H L

    2016-09-01

    Although typically unnoticed, Chlamydia infections in swine have been shown to be both widespread and may impact production characteristics and reproductive performance in swine. Serum titers suggest Chlamydia infection within boar studs is common, and infected boars are known to shed chlamydia in their ejaculates. Although the transmission of viruses in chilled extended semen (ES) is well established, the inclusion of antibiotics in commercially available extender is generally believed to limit or preclude the transmission of infectious bacteria. The objective of this study was to evaluate the potential of ES used in artificial insemination to support transmission of the obligate intracellular bacteria Chlamydia suis (C suis) under standard industry conditions. First, the effect of C suis on sperm quality during storage was assessed by flow cytometry. Only concentrations above 5 × 10(5) viable C suis/mL caused significant spermicidal effects which only became evident after 7 days of storage at 17 °C. No significant effect on acrosome reaction was observed using any chlamydial concentration. Next, an in vitro infection model of swine testicular fibroblast cells was established and used to evaluate the effect of chilled storage on C suis viability under variable conditions. Storage in Androhep ES reduced viability by 34.4% at a multiplicity of infection of 1.25, an effect which increased to 53.3% when the multiplicity of infection decreased to 0.1. Interestingly, storage in semen extender alone (SE) or ES with additional antibiotics had no effect on bacterial viability. To rule out a secondary effect on extender resulting from metabolically active sperm, C suis was stored in fresh and expended SE and again no significant effect on bacterial viability was observed. Fluorescent microscopy of C suis in ES shows an association between bacteria and the remaining gel fraction after storage suggesting that the apparent reduction of bacterial viability in the presence

  6. Characterization of Arcobacter suis isolated from water buffalo (Bubalus bubalis) milk.

    PubMed

    Giacometti, Federica; Salas-Massó, Nuria; Serraino, Andrea; Figueras, Maria José

    2015-10-01

    During a survey in a dairy plant in Italy, the second strain (strain FG 206) of Arcobacter suis described in the literature was isolated from raw water buffalo milk. The objective of this study was to confirm the species identification, better define the species by comparing its characteristics with those of the reference strain (F41(T) = CECT 7833(T) = LMG 26152(T)) and to investigate its potential clinical relevance by detecting the virulence gene pattern of the new strain. Phenotypical characterization and 16S rRNA-RFLP gave a complete overlap of results for the two strains. As expected, an RFLP pattern common to A. suis and Arcobacter defluvii was obtained by MseI endonuclease digestion, and a pattern specific for A. suis was obtained by BfaI endonuclease digestion. 16S rRNA sequencing and multilocus phylogenetic analysis (MLPA) showed a robust relatedness of strain FG 206 to the A. suis type strain F41(T). The recovery of strain FG 206 from a dairy plant shows that this species of Arcobacter is present in the food chain. Like the type strain recovered from pig meat, the species A. suis may not be confined to a single type of food.

  7. Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.

    PubMed

    Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi

    2009-12-01

    The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.

  8. Trichuris suis ova, lecithin and other fancy molecules.

    PubMed

    Schölmerich, Jürgen

    2014-01-01

    During the last 20 years, treatment paradigms as well as drugs used for IBD have changed significantly. However, there are still many unmet needs and a significant number of patients needing better therapy. It is obvious from this situation that many attempts have been made to implement new drugs and treatment algorithms including biologicals, new formulations of old drugs and 'fancy molecules or approaches'. For about 10 years, the application of Trichuris suis ova has been promoted and used in quite a number of patients. Two early studies suggested positive effects in ulcerative colitis as well as in Crohn's disease. These studies were based on experimental data in animal models as well as in vitro experiments. However, two large randomized controlled trials were not able to provide significant clinical effects in active Crohn's disease as compared to placebo, although a biological reaction (eosinophilia) was found. Another approach is the use of locally released phosphatidylcholine in ulcerative colitis. This approach is based on decreased phosphatidylcholine concentrations in the colonic mucus in patients, and showed positive effects in a number of monocentric trials in steroid-refractory and chronic active ulcerative colitis. A dose-finding study gave a positive signal in the highest-dose group and this approach is being tested further in controlled trials. Many other 'fancy molecules' including cannabis, vitamin D, thalidomide, hyaluronic acid, lidocaine, clonidine, chondroitin sulfate, naltrexone and melatonin have been tested in patients with claims of success. For most of those, however, controlled data in appropriate studies are lacking. Many more substances have been used in animal models and are probably applied in individual patients. Results of preliminary studies on some of the molecules mentioned are presented.

  9. Helicobacter suis Causes Severe Gastric Pathology in Mouse and Mongolian Gerbil Models of Human Gastric Disease

    PubMed Central

    Flahou, Bram; Haesebrouck, Freddy; Pasmans, Frank; D'Herde, Katharina; Driessen, Ann; Van Deun, Kim; Smet, Annemieke; Duchateau, Luc; Chiers, Koen; Ducatelle, Richard

    2010-01-01

    Background “Helicobacter (H.) heilmannii” type 1 is the most prevalent gastric non-H. pylori Helicobacter species in humans suffering from gastric disease. It has been shown to be identical to H. suis, a bacterium which is mainly associated with pigs. To obtain better insights into the long-term pathogenesis of infections with this micro-organism, experimental infections were carried out in different rodent models. Methodology/Principal Findings Mongolian gerbils and mice of two strains (BALB/c and C57BL/6) were infected with H. suis and sacrificed at 3 weeks, 9 weeks and 8 months after infection. Gastric tissue samples were collected for PCR analysis, histological and ultrastructural examination. In gerbils, bacteria mainly colonized the antrum and a narrow zone in the fundus near the forestomach/stomach transition zone. In both mice strains, bacteria colonized the entire glandular stomach. Colonization with H. suis was associated with necrosis of parietal cells in all three animal strains. From 9 weeks after infection onwards, an increased proliferation rate of mucosal epithelial cells was detected in the stomach regions colonized with H. suis. Most gerbils showed a marked lymphocytic infiltration in the antrum and in the forestomach/stomach transition zone, becoming more pronounced in the course of time. At 8 months post infection, severe destruction of the normal antral architecture at the inflamed sites and development of mucosa-associated lymphoid tissue (MALT) lymphoma-like lesions were observed in some gerbils. In mice, the inflammatory response was less pronounced than in gerbils, consisting mainly of mononuclear cell infiltration and being most severe in the fundus. Conclusions/Significance H. suis causes death of parietal cells, epithelial cell hyperproliferation and severe inflammation in mice and Mongolian gerbil models of human gastric disease. Moreover, MALT lymphoma-like lesions were induced in H. suis-infected Mongolian gerbils. Therefore, the

  10. Streptococcus agalactiae infection in domestic rabbits, Oryctolagus cuniculus.

    PubMed

    Ren, S Y; Geng, Y; Wang, K Y; Zhou, Z Y; Liu, X X; He, M; Peng, X; Wu, C Y; Lai, W M

    2014-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) has emerged as an important pathogen that affects humans and animals, including aquatic species. In August 2011, a severe infectious disease affecting rabbits, which caused 42% mortality, occurred in Mianyang, Sichuan Province, China. The main clinical signs included acute respiratory distress syndrome, fever, paddling and convulsions. A Gram-positive, chain-forming coccus was isolated from the primary organs and tissues of diseased rabbits and then identified as S. agalactiae by morphology, biochemical and physiological characteristics, 16S rDNA and gyrB gene sequences analysis. All isolates of S. agalactiae showed a similar antibiotic susceptibility, which were sensitive to florfenicol, ampicillin,gentamicin and norfloxacin, as well as being resistant to penicillin, amoxicillin and tetracycline. To our knowledge, this is the first report on S. agalactiae natural infection in domestic rabbits.

  11. Early recognition of Streptococcus pneumoniae in patients with community-acquired pneumonia.

    PubMed

    Bohte, R; Hermans, J; van den Broek, P J

    1996-03-01

    The objective of this study was to assess the predictive value of signs, symptoms, and rapidly available laboratory parameters for pneumococci in community-acquired pneumonia (CAP). A prospective study on patients with CAP who were admitted to hospital was conducted. Clinical and laboratory data were collected according to a protocol. Two hundred sixty-eight patients aged 18 years or older, not living in a nursing home or not admitted to hospital within one week of this admission, with a new infiltrate on the chest radiograph consistent with pneumonia were included. According to microbiological and serological tests, patients were allocated to one of two aetiological groups, Streptococcus pneumoniae or "other pathogens". Seventy-three variables were examined for a correlation with one of the aetiological categories by means of univariate and multivariate analysis. The resulting discriminant function was considered a clinical test for which posttest probabilities for pneumococcal pneumonia were calculated. Streptococcus pneumoniae was demonstrated in 79 patients and other pathogens in 83; no pathogens were detectable in 106 patients. The variables "cardiovascular disease", "acute onset", "pleuritic pain", "gram-positive bacteria in the sputum Gram stain", and "leucocyte count" correctly predicted the cause of CAP in 80% of all cases in both groups. Depending on the prevalence of Streptococcus pneumoniae, posttest probabilities for pneumococcal pneumonia were up to 90%. It is concluded that data on history, together with the result of the Gram stain of sputum and the leucocyte count, can help to distinguish Streptococcus pneumoniae from other pathogens causing CAP.

  12. Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand.

    PubMed

    Areechon, Nontawith; Kannika, Korntip; Hirono, Ikuo; Kondo, Hidehiro; Unajak, Sasimanas

    2016-03-24

    Streptococcus agalactiaeserotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscineS. agalactiaeserotypes Ia and III.

  13. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia

    PubMed Central

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  14. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia.

    PubMed

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites; Pereira, Ulisses Pádua

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  15. Immunoproteomic analysis of the antibody response obtained in tilapia following immunization with a Streptococcus iniae vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae is one of the most economically important Gram-positive pathogens in cultured fish species worldwide. Research has shown that vaccination is a tool that can be used in the prevention of streptococcal disease. The USDA-ARS patented S. iniae vaccine has been demonstrated to be ef...

  16. Significance, management and prevention of Streptococcus agalactiae infection during the perinatal period.

    PubMed

    Berner, Reinhard

    2004-06-01

    The highest annual death rate during the first five decades of life occurs in the first year, particularly during the perinatal period between the onset of labor and 72 h after birth. Invasive bacterial disease evoking the severe inflammatory response syndrome is a leading cause of perinatal morbidity and mortality. Group B streptococcus (Streptococcus agalactiae) is the most important pathogen in this period of life, although the concept of intrapartum antimicrobial prophylaxis has impressively reduced the rate of culture-proven invasive infection in neonates. This strategy, however, has considerable limitations since group B streptococcus-related stillbirths or prematurity and late-onset sepsis cannot be prevented. Moreover, the use of intrapartum antimicrobial prophylaxis has significantly increased the use of antibiotics during labor and therefore may select for intrapartum infections caused by other bacteria, including those resistant to antibiotics. Several advances in the development of vaccines and research on virulence factors and pathways involved in the immune response to group B streptococcus have been accomplished within the last years, including complete sequencing of the group B streptococcus genome. Development of effective vaccines and implementation of vaccination strategies will be one of the key challenges in the future for prevention of neonatal group B Streptococcus infections.

  17. Comparative analysis of the localization of lipoteichoic acid in Streptococcus agalactiae and Streptococcus pyogenes.

    PubMed Central

    Mattingly, S J; Johnston, B P

    1987-01-01

    The cellular locations of deacylated lipoteichoic acid (dLTA) and lipoteichoic acid (LTA) were examined in late-exponential-phase cells of a serotype III strain of Streptococcus agalactiae (group B streptococci [GBS]) isolated from an infant with late-onset meningitis and compared with a fresh clinical isolate of Streptococcus pyogenes (group A streptococci [GAS]). LTA and dLTA were found to be associated with the protoplast membranes of both organisms, with only dLTA found in mutanolysin cell wall digests. Both organisms released dLTA during growth, but only the GAS released substantial levels of LTA into the culture medium. However, penicillin treatment (5 micrograms/ml for 60 min) of GBS resulted in the recovery of LTA in cell wall digests as well as in the culture medium. These results suggest that under normal growth conditions, the hydrophobic region (glycolipid) of LTA remains associated with the cytoplasmic membrane of GBS and unavailable for hydrophobic interactions at the cell surface with epithelial cells. In contrast, release of LTA into the environment by the GAS allows the fatty acid moieties to interact with hydrophobic domains on the surface of epithelial cells. These results may help explain the marked differences in the specificity of binding between these two major streptococcal pathogens for human fetal and adult epithelial cells. PMID:3308704

  18. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China

    PubMed Central

    Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  19. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China.

    PubMed

    Bi, Yanliang; Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  20. Genome Sequences of Brucella abortus and Brucella suis Strains Isolated from Bovine in Zimbabwe

    PubMed Central

    Ledwaba, Betty; Mafofo, Joseph

    2014-01-01

    This is a report of whole-genome sequences of a Brucella abortus strain and two Brucella suis strains isolated from bovine in Zimbabwe. These strains were selected based on their origin and data obtained when using multiplex PCR assays, then sequenced using next-generation sequencing technologies. PMID:25342680

  1. Chao Yuanfang: Imperial Physician of the Sui Dynasty and an Early Pertussis Observer?

    PubMed Central

    Liang, Yan; Salim, Abdulbaset M.; Wu, Wendy; Kilgore, Paul E.

    2016-01-01

    Early Chinese texts contain extensive disease descriptions, including various texts that contain descriptions of modern-day conditions. During the Sui Dynasty, a leading scholar, Chao Yuanfang, may have authored a leading treatise 1400 years ago. Although these texts are the subject of ongoing research, evidence suggests that a clinical syndrome consistent with pertussis was observed in ancient China. PMID:26977422

  2. An experimental Helicobacter suis infection causes gastritis and reduced daily weight gain in pigs.

    PubMed

    De Bruyne, Ellen; Flahou, Bram; Chiers, Koen; Meyns, Tom; Kumar, Smitha; Vermoote, Miet; Pasmans, Frank; Millet, Sam; Dewulf, Jeroen; Haesebrouck, Freddy; Ducatelle, Richard

    2012-12-01

    Helicobacter suis is a zoonotically important bacterium, that has been associated with gastritis and ulcerative lesions of the pars oesophagea of the stomach in pigs. Its exact role in these pathologies, however, still remains controversial. Therefore, a total of 29 medicated early weaned piglets were inoculated intragastrically or orally, with a total of 2 × 10(9) viable H. suis bacteria and the effect on gastric pathology and weight gain was determined. Twenty-three medicated early weaned piglets were inoculated with a sterile culture medium and used as sham-inoculated controls. The animals were euthanized between 28 and 42 days after inoculation. Infected animals showed a more severe gastritis compared to the control group. There was also a significant reduction of approximately 60 g per day (10%) in weight gain in H. suis inoculated animals compared to the sham-inoculated control animals. In conclusion, this study demonstrates for the first time that a pure in vitro culture of H. suis not only causes gastritis but also a marked decrease of the daily weight gain in experimentally infected pigs.

  3. Study of the epidemiology of Pneumocystis carinii f. sp. suis in abattoir swine in Portugal.

    PubMed

    Esgalhado, Rita; Esteves, Francisco; Antunes, Francisco; Matos, Olga

    2013-01-01

    Pneumocystis has been identified in various mammalian species, including domestic, wild and zoo animals. This study's main objectives were: (1) to estimate the prevalence of the Pneumocystis carinii f. sp. suis infection in slaughtered pigs in Portugal, (2) assess the prevalence differences within distinct age groups of animals, (3) determine the possible associations between pulmonary lesions and the infection, and (4) genetically characterize the P. carinii f. sp. suis isolates recovered from infected animals using PCR with DNA sequencing. An epidemiological cross-sectional study was conducted using 215 pig lung tissue samples which demonstrated a global prevalence of 7% (14 positive samples). This value was later validated by statistical analysis as being representative of the national population prevalence. Regarding the assessment of relations between the different variables investigated during the study (age, gender, geographical region, type of farming, weight and pulmonary lesion) and the P. carinii f. sp. suis infection, no significant statistical differences were found, and apparently, no predisposing factors could be defined. Nevertheless, infection by Pneumocystis in pigs is ubiquitous and it can be detected in healthy animals. Thus, the colonization of P. carinii f. sp. suis among healthy individuals suggests that asymptomatic carriers can be an effective reservoir for susceptible animals and participate in the transmission of infection. The present data confirmed that porcine Pneumocystis is genetically distinct from Pneumocystis DNA detected in other mammalian hosts.

  4. Worm burden-dependent disruption of the porcine colon microbiota by Trichuris suis infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The similar biology of several helminth infections in pigs and humans provides an excellent animal model to study the interaction between the host and parasite infection that could have important consequences for human health. We had observed that pigs infected with the whipworm Trichuris suis for 2...

  5. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  6. Trichuris suis and Oesophagostomum dentatum Show Different Sensitivity and Accumulation of Fenbendazole, Albendazole and Levamisole In Vitro

    PubMed Central

    Hansen, Tina V. A.; Nejsum, Peter; Friis, Christian; Olsen, Annette; Thamsborg, Stig Milan

    2014-01-01

    Background The single-dose benzimidazoles used against Trichuris trichiura infections in humans are not satisfactory. Likewise, the benzimidazole, fenbendazole, has varied efficacy against Trichuris suis whereas Oesophagostomum dentatum is highly sensitive to the drug. The reasons for low treatment efficacy of Trichuris spp. infections are not known. Methodology We studied the effect of fenbendazole, albendazole and levamisole on the motility of T. suis and O. dentatum and measured concentrations of the parent drug compounds and metabolites of the benzimidazoles within worms in vitro. The motility and concentrations of drug compounds within worms were compared between species and the maximum specific binding capacity (Bmax) of T. suis and O. dentatum towards the benzimidazoles was estimated. Comparisons of drug uptake in living and killed worms were made for both species. Principal findings The motility of T. suis was generally less decreased than the motility of O. dentatum when incubated in benzimidazoles, but was more decreased when incubated in levamisole. The Bmax were significantly lower for T. suis (106.6, and 612.7 pmol/mg dry worm tissue) than O. dentatum (395.2, 958.1 pmol/mg dry worm tissue) when incubated for 72 hours in fenbendazole and albendazole respectively. The total drug concentrations (pmol/mg dry worm tissue) were significantly lower within T. suis than O. dentatum whether killed or alive when incubated in all tested drugs (except in living worms exposed to fenbendazole). Relatively high proportions of the anthelmintic inactive metabolite fenbendazole sulphone was measured within T. suis (6–17.2%) as compared to O. dentatum (0.8–0.9%). Conclusion/Significance The general lower sensitivity of T. suis towards BZs in vitro seems to be related to a lower drug uptake. Furthermore, the relatively high occurrence of fenbendazole sulphone suggests a higher detoxifying capacity of T. suis as compared to O. dentatum. PMID:24699263

  7. Activity of Faropenem against Middle Ear Fluid Pathogens from Children with Acute Otitis Media in Costa Rica and Israel▿

    PubMed Central

    Stone, Kimberley Clawson; Dagan, Ron; Arguedas, Adriano; Leibovitz, Eugene; Wang, Elaine; Echols, Roger M.; Janjic, Nebojsa; Critchley, Ian A.

    2007-01-01

    Faropenem was tested against 1,188 middle ear fluid pathogens from children in Israel and Costa Rica. Against Streptococcus pneumoniae and Haemophilus influenzae, faropenem was the most active β-lactam, with activity that was similar to or greater than of the other oral antimicrobial classes studied. Faropenem was also active against Moraxella catarrhalis and Streptococcus pyogenes. PMID:17387157

  8. Activity of faropenem against middle ear fluid pathogens from children with acute otitis media in Costa Rica and Israel.

    PubMed

    Stone, Kimberley Clawson; Dagan, Ron; Arguedas, Adriano; Leibovitz, Eugene; Wang, Elaine; Echols, Roger M; Janjic, Nebojsa; Critchley, Ian A

    2007-06-01

    Faropenem was tested against 1,188 middle ear fluid pathogens from children in Israel and Costa Rica. Against Streptococcus pneumoniae and Haemophilus influenzae, faropenem was the most active beta-lactam, with activity that was similar to or greater than of the other oral antimicrobial classes studied. Faropenem was also active against Moraxella catarrhalis and Streptococcus pyogenes. PMID:17387157

  9. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  10. Whole-genome mapping reveals a large chromosomal inversion on Iberian Brucella suis biovar 2 strains.

    PubMed

    Ferreira, Ana Cristina; Dias, Ricardo; de Sá, Maria Inácia Corrêa; Tenreiro, Rogério

    2016-08-30

    Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2.

  11. Whole-genome mapping reveals a large chromosomal inversion on Iberian Brucella suis biovar 2 strains.

    PubMed

    Ferreira, Ana Cristina; Dias, Ricardo; de Sá, Maria Inácia Corrêa; Tenreiro, Rogério

    2016-08-30

    Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2. PMID:27527786

  12. [Pathogenicity and pneumococcal capsular genes].

    PubMed

    García, E; García, P; López, R

    1994-01-01

    Pneumococci remain to be one of the most prominent human pathogens. Increasing efforts are being dedicated to the development of improved vaccines with wider specificity. Since a clear understanding of the genetics of capsular types in Streptococcus pneumoniae is missing, our efforts are oriented to characterize, at the molecular level, the genes involved in capsular polysaccharide biosynthesis. We have cloned and sequenced a chromosomal DNA fragment of a clinical isolate of type 3 pneumococcus and showed that it contains a type 3 specific gene as well as genes common to other serotypes.

  13. Recombination-deficient Streptococcus sanguis

    SciTech Connect

    Daneo-Moore, L.; Volpe, A.

    1985-05-01

    A UV-sensitive derivative was obtained from Streptococcus sanguis Challis. The organism could be transformed with a number of small streptococcal plasmids at frequencies equal to, or 1 logarithm below, the transformation frequencies for the parent organism. However, transformation with chromosomal DNA was greatly impaired in the UV-sensitive derivative.

  14. Bloodborne pathogens

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000453.htm Bloodborne pathogens To use the sharing features on this page, please enable JavaScript. A pathogen is something that causes disease. Germs that can ...

  15. Localised mitogenic activity in horses following infection with Streptococcus equi.

    PubMed

    McLean, R; Rash, N L; Robinson, C; Waller, A S; Paillot, R

    2015-06-01

    Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, a highly contagious upper respiratory disease of equids. Streptococcus equi produces superantigens (sAgs), which are thought to contribute to strangles pathogenicity through non-specific T-cell activation and pro-inflammatory response. Streptococcus equi infection induces abscesses in the lymph nodes of the head and neck. In some individuals, some abscess material remains into the guttural pouch and inspissates over time to form chondroids which can harbour live S. equi. The aim of this study was to determine the sites of sAg production during infection and therefore improve our understanding of their role. Abscess material, chondroids and serum collected from Equidae with signs of strangles were tested in mitogenic assays. Mitogenic sAg activity was only detected in abscess material and chondroids. Our data support the localised in vivo activity of sAg during both acute and carrier phases of S. equi infection.

  16. Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.

    PubMed

    Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B

    2009-07-01

    This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly. PMID:19528580

  17. Molecular characterization of virulence genes of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in equines

    PubMed Central

    Javed, R.; Taku, A. K.; Gangil, Rakhi; Sharma, R. K.

    2016-01-01

    Aim: The aim was to determine the occurrence of streptococci in equines in Jammu (R. S. Pura, Katra), characterization of Streptococci equi subsp. equi and Streptococcus equi subsp. zooepidemicus with respect to their virulence traits and to determine antibiotic sensitivity pattern of virulent Streptococcus isolates. Materials and Methods: A total of 96 samples were collected from both clinically affected animals (exhibiting signs of respiratory tract disease) and apparently healthy animals and were sent to laboratory. The organisms were isolated on Columbia nalidixic acid agar containing 5% sheep blood as well as on sheep blood agar and confirmed by cultural characteristics and biochemical tests. Molecular detection of Streptococcus was done directly from cultures using sodA and seM gene-based polymerase chain reaction (PCR). Antibiogram was performed against five antibiotics such as amoxicillin, penicillin G, streptomycin, rifampicin, and methicillin. Results: During this study, a total 40 streptococcal isolates were obtained out of which 2 isolates were of S. equi subsp. equi, 12 isolates were from S. equi subsp. zooepidemicus. In the PCR-based detection, we revealed amplicons of 235 bp and 679 bp for confirmation of sodA and seM gene, respectively. In antibiogram, two isolates of S. equi subsp. equi were found resistant to penicillin G, and all other isolates were found sensitive to amoxicillin and streptomycin. Conclusion: The majority of streptococcal infections was due to S. equi subsp. Zooepidemicus, and thus was recognized as a potential pathogen of diseases of equines besides S. equi subsp. equi.

  18. Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana.

    PubMed

    Koia, Jonni; Moyle, Richard; Hendry, Caroline; Lim, Lionel; Botella, José Ramón

    2013-03-01

    The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5' untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.

  19. Use of a Mycoplasma suis-PCR protocol for screening a population of captive peccaries (Tayassu tajacu and Tayassu pecari).

    PubMed

    Vieira, Rafael Felipe da Costa; Molento, Marcelo Beltrão; Guimarães, Ana Marcia Sa; Santos, Andrea Pires Dos; Bonat, Marcelo; Javorouski, Manoel Lucas; Popp, Luciene; Santos, Leonilda Correia Dos; Moraes, Wanderlei; Cubas, Zalmir Silvino; Vieira, Thállitha Samih Wischral Jayme; Vidotto, Odilon; Filho, Ivan Roque Barros; Biondo, Alexander Welker; Messick, Joanne Belle

    2011-01-01

    Mycoplasma suis is a hemotropic bacteria of red blood cells and the causative agent of swine eperythrozoonosis. Diagnosis of infection may be reached by direct examination of blood smears; however, the use of polymerase chain reaction (PCR) of the 16S RNA gene of M. suis improves the sensitivity and specificity of detection. The aim of this study was to screen peccaries (Tayassu tajacu and T. pecari) for M. suis infection using a specific conventional PCR. A total of 28 blood samples from captive collared and white-lipped peccaries were collected, DNA extracted and a specific M. suis PCR assay performed. All samples were negatives by both blood smear examination and PCR testing. To verify the presence of amplifiable DNA, PCR for beta-actin gene was performed in all samples. This study was part of an active surveillance program, which is crucial for monitoring animal health status, particularly in wildlife species.

  20. Drug resistance profile and serotype of streptococcus of pneumoniae infected pediatric patients.

    PubMed

    Wang, Jiefei; Huang, Nannan; Wang, Guangzhou; Yu, Fengqin

    2016-07-01

    To investigate the surveillance of drug resistance and serotype monitoring of steptococcus pneumoniae in hospitalized children. the pathogenic bacteria isolation and identification methods were employed to do the bacteria isolation identification and drug sensitive test on the specimens from Women & Infants Hospital of Zhengzhou. From the specimens, there were 134 detected strains of Streptococcus pneumoniae, and the drug resistance to erythromycin and clindamycin were respectively 97.7% and 89.9%, and the drug resistance to tetracycline, azithromycin and paediatric compound sulfamethoxazole were respectively 86. 3%, 58. 3%, 51. 2%. The vancomycin resistant Streptococcus pneumoniae were often not found. the Streptococcus pneumoniae in children were generally with drug resistant in Zhengzhou area. It shall strengthen drug resistance surveillance, and reasonably choose antibacterial agents. PMID:27592480

  1. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    PubMed

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  2. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    PubMed

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges. PMID:25161960

  3. Genetic diversity of geographically distinct Streptococcus dysgalactiae isolates from fish

    PubMed Central

    Abdelsalam, M.; Eissa, A.E.; Chen, S.-C.

    2013-01-01

    Streptococcus dysgalactiae is an emerging pathogen of fish. Clinically, infection is characterized by the development of necrotic lesions at the caudal peduncle of infected fishes. The pathogen has been recently isolated from different fish species in many countries. Twenty S. dysgalactiae isolates collected from Japan, Taiwan, Malaysia and Indonesia were molecularly characterized by biased sinusoidal field gel electrophoresis (BSFGE) using SmaI enzyme, and tuf gene sequencing analysis. DNA sequencing of ten S. dysgalactiae revealed no genetic variation in the tuf amplicons, except for three strains. The restriction patterns of chromosomal DNA measured by BSFGE were differentiated into six distinct types and one subtype among collected strains. To our knowledge, this report gives the first snapshot of S. dysgalactiae isolates collected from different countries that are localized geographically and differed on a multinational level. This genetic unrelatedness among different isolates might suggest a high recombination rate and low genetic stability. PMID:25750757

  4. Clinical analysis of cases of neonatal Streptococcus agalactiae sepsis.

    PubMed

    Zeng, S J; Tang, X S; Zhao, W L; Qiu, H X; Wang, H; Feng, Z C

    2016-01-01

    With the advent of antibiotic resistance, pathogenic bacteria have become a major threat in cases of neonatal sepsis; however, guidelines for treatment have not yet been standardized. In this study, 15 cases of neonatal Streptococcus agalactiae sepsis from our hospital were retrospectively analyzed. Of these, nine cases showed early-onset and six cases showed late-onset sepsis. Pathogens were characterized by genotyping and antibiotic sensitivity tests on blood cultures. Results demonstrated that in cases with early-onset sepsis, clinical manifestations affected mainly the respiratory tract, while late-onset sepsis was accompanied by intracranial infection. Therefore, we suggest including a cerebrospinal fluid examination when diagnosing neonatal sepsis. Bacterial genotyping indicated the bacteria were mainly type Ib, Ia, and III S. agalactiae. We recommend treatment with penicillin or ampicillin, since bacteria were resistant to clindamycin and tetracycline. In conclusion, our results provide valuable information for the clinical treatment of S. agalactiae sepsis in neonatal infants.

  5. Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae

    PubMed Central

    Zafar, M. Ammar; Zuniga, Marisol; Roche, Aoife M.; Hamaguchi, Shigeto; Weiser, Jeffrey N.

    2016-01-01

    Herein, we studied a virulent isolate of the leading bacterial pathogen Streptococcus pneumoniae in an infant mouse model of colonization, disease and transmission, both with and without influenza A (IAV) co-infection. To identify vulnerable points in the multiple steps involved in pneumococcal pathogenesis, this model was utilized for a comprehensive analysis of population bottlenecks. Our findings reveal that in the setting of IAV co-infection the organism must pass through single cell bottlenecks during bloodstream invasion from the nasopharynx within the host and in transmission between hosts. Passage through these bottlenecks was not associated with genetic adaptation by the pathogen. The bottleneck in transmission occurred between bacterial exit from one host and establishment in another explaining why the number of shed organisms in secretions is critical to overcoming it. These observations demonstrate how viral infection, and TLR-dependent innate immune responses it stimulates and that are required to control it, drive bacterial contagion. PMID:27732665

  6. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses

    PubMed Central

    2013-01-01

    Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress. PMID:23834488

  7. GLYOXYLATE FERMENTATION BY STREPTOCOCCUS ALLANTOICUS

    PubMed Central

    Valentine, R. C.; Drucker, H.; Wolfe, R. S.

    1964-01-01

    Valentine, R. C. (University of Illinois, Urbana), H. Drucker, and R. S. Wolfe. Glyoxylate fermentation by Streptococcus allantoicus. J. Bacteriol. 87:241–246. 1964.—Extracts of Streptococcus allantoicus were found to degrade glyoxylate, yielding tartronic semialdehyde and CO2. Tartronic semialdehyde was prepared chemically, and its properties were compared with the enzymatic product: reduction by sodium borohydride yielded glycerate; heating at 100 C yielded glycolaldehyde and CO2; autoxidation yielded mesoxalic semialdehyde; periodate oxidation yielded glyoxylate and a compound presumed to be formate. Tartronic semialdehyde reductase was present in extracts of S. allantoicus and in a species of Pseudomonas grown on allantoin. A scheme for the synthesis of acetate from glyoxylate by S. allantoicus is discussed. PMID:14151040

  8. Three Streptococcus pneumoniae sialidases: three different products.

    PubMed

    Xu, Guogang; Kiefel, Milton J; Wilson, Jennifer C; Andrew, Peter W; Oggioni, Marco R; Taylor, Garry L

    2011-02-16

    Streptococcus penumoniae is a major human pathogen responsible for respiratory tract infections, septicemia, and meningitis and continues to produce numerous cases of disease with relatively high mortalities. S. pneumoniae encodes up to three sialidases, NanA, NanB, and NanC, that have been implicated in pathogenesis and are potential drug targets. NanA has been shown to be a promiscuous sialidase, hydrolyzing the removal of Neu5Ac from a variety of glycoconjugates with retention of configuration at the anomeric center, as we confirm by NMR. NanB is an intramolecular trans-sialidase producing 2,7-anhydro-Neu5Ac selectively from α2,3-sialosides. Here, we show that the first product of NanC is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) that can be slowly hydrated by the enzyme to Neu5Ac. We propose that the three pneumococcal sialidases share a common catalytic mechanism up to the final product formation step, and speculate on the roles of the enzymes in the lifecycle of the bacterium.

  9. Parallel Evolution in Streptococcus pneumoniae Biofilms

    PubMed Central

    Churton, Nicholas W. V.; Misra, Raju V.; Howlin, Robert P.; Allan, Raymond N.; Jefferies, Johanna; Faust, Saul N.; Gharbia, Saheer E.; Edwards, Richard J.; Clarke, Stuart C.; Webb, Jeremy S.

    2016-01-01

    Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characterization and whole-genome sequencing of biofilm-derived S. pneumoniae serotype 22F pneumococcal SCVs to investigate diversification during biofilm formation. Phenotypic profiling revealed that SCVs exhibit reduced growth rates, reduced capsule expression, altered metabolic profiles, and increased biofilm formation compared to the ancestral strain. Whole-genome sequencing of 12 SCVs from independent biofilm experiments revealed that all SCVs studied had mutations within the DNA-directed RNA polymerase delta subunit (RpoE). Mutations included four large-scale deletions ranging from 51 to 264 bp, one insertion resulting in a coding frameshift, and seven nonsense single-nucleotide substitutions that result in a truncated gene product. This work links mutations in the rpoE gene to SCV formation and enhanced biofilm development in S. pneumoniae and therefore may have important implications for colonization, carriage, and persistence of the organism. Furthermore, recurrent mutation of the pneumococcal rpoE gene presents an unprecedented level of parallel evolution in pneumococcal biofilm development. PMID:27190203

  10. Quorum sensing in group A Streptococcus

    PubMed Central

    Jimenez, Juan Cristobal; Federle, Michael J.

    2014-01-01

    Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies. PMID:25309879

  11. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection.

    PubMed

    Loof, Torsten G; Deicke, Christin; Medina, Eva

    2014-01-01

    The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.

  12. Oesophagostomum dentatum and Trichuris suis infections in pigs born and raised on contaminated paddocks.

    PubMed

    Mejer, H; Roepstorff, A

    2006-09-01

    Transmission of Oesophagostomum dentatum and Trichuris suis was studied in outdoor reared pigs. Six farrowing paddocks were naturally contaminated in May to mid-June 2001 by experimentally infected seeder pigs. In early July 1 sow farrowed on each paddock and starting at week 3 post-partum (p.p.) the offspring was slaughtered serially every 2 weeks for parasite recovery. Faeces were collected regularly for parasite egg counts and acid-insoluble ash (AIA) content as an indicator of geophagy. Weaning took place at week 7 p.p. by removing the sow. Paddock infection levels were estimated in mid-June (O. dentatum) and late November (O. dentatum and T. suis) using helminth-naïve tracer pigs. Soil and vegetation samples were collected regularly. Despite a high initial contamination by the seeder pigs, O. dentatum paddock infectivity was negligible to low throughout the raising of the experimental piglets, which had a slow accumulation of nodular worms ending with a mean of 422 worms/pig at week 19 p.p. As only few eggs developed to infectivity overall T. suis transmission was minimal. The first T. suis were recovered at week 11 p.p. and the highest mean burden of 21 worms/pig was recorded at week 19 p.p. The experimental pigs initially had a high faecal level of AIA although it decreased over time. The results are discussed in relation to the biological characteristics of the 2 parasites and their occurrence in organic pig production. PMID:16740181

  13. Brucella suis infection associated with feral swine hunting - three states, 2007-2008.

    PubMed

    2009-06-12

    Historically, brucellosis from Brucella suis infection occurred among workers in swine slaughterhouses. In 1972, the U.S. Department of Agriculture National Brucellosis Eradication Program was expanded to cover swine herds. Subsequent elimination of brucellosis in commercial swine resulted in a decrease in B. suis-associated illness in humans. Currently, swine-associated brucellosis in humans in the United States is predominantly associated with exposure to infected feral swine (i.e., wild boar or wild hogs). In May and July 2008, CDC was contacted by the state health departments in South Carolina and Pennsylvania regarding two cases of brucellosis possibly linked to feral swine hunts. Both state health departments contacted the state health department in Florida, where the hunts took place. The subsequent investigation, conducted jointly by the three state health departments and CDC, determined that the two patients had confirmed brucellosis from B. suis infection and the brother of one patient had probable brucellosis. All three exposures were associated with feral swine hunting, and at least two patients did not have symptoms until 4-6 months after exposure. The findings from this investigation suggest that clinicians treating patients with unexplained febrile illness should consider brucellosis in the differential diagnosis and obtain a thorough history of travel (e.g., to enzootic areas), food consumption, occupation, and recreational activities, including feral swine hunting. Cross-agency collaboration by state health departments and agriculture agencies is needed on brucellosis investigations to reduce the risk for illness through contact with infected animals.

  14. Seroepidemiologic survey for Chlamydia suis in wild boar (Sus scrofa) populations in Italy.

    PubMed

    Di Francesco, Antonietta; Donati, Manuela; Morandi, Federico; Renzi, Maria; Masia, Marco Antonio; Ostanello, Fabio; Salvatore, Daniela; Cevenini, Roberto; Baldelli, Raffaella

    2011-07-01

    We used serology to estimate the prevalence of exposure to chlamydiae in Italian populations of wild boars (Sus scrofa). Sera from 173 hunter-killed wild boars harvested during the 2006-2009 hunting seasons in three Italian regions were tested for antibodies to Chlamydia suis, Chlamydophila pecorum, Chlamydophila abortus, and Chlamydophila psittaci by the microimmunofluorescence test. Antibody titers to chlamydiae ≥ 1:32 were detected in 110 of the 173 samples tested (63.6%). Specific reactivity could be assessed only in 44 sera with antibody titers to C. suis that were two- to threefold higher than antibody titers against the other chlamydial species; the other 66 sera had similar reactivity against all the chlamydia species tested. Antibody to C. suis was detected in sera from wild boar populations with rare or no known contact with domestic pigs. These results suggest that the wild boar could be a chlamydia reservoir and may acquire chlamydiae independent of contacts with the domestic pig. PMID:21719838

  15. Secretion of RNA-Containing Extracellular Vesicles by the Porcine Whipworm, Trichuris suis.

    PubMed

    Hansen, Eline Palm; Kringel, Helene; Williams, Andrew R; Nejsum, Peter

    2015-06-01

    Trichuris suis is a common parasitic helminth of pigs. As with many other parasites, T. suis ensures its own survival by evading host immune responses, but little is known about how this is achieved. MicroRNAs (miRNA) have been shown to be involved in various immunological processes by post-transcriptional regulation of specific genes, and the potential of using these molecules as biomarkers of disease is currently being examined. It has recently been shown that parasites may secrete extracellular structures such as exosomes and microvesicles, containing proteins and miRNA. The fusion of these structures with host cells has been demonstrated, and a role of exosome-derived miRNA in host gene regulation has been suggested. In the present study, we show that exosome- and microvesicular-like structures are secreted by T. suis L1 larvae and also demonstrate the presence of miRNA-sized RNA inside these structures. A potential role of these molecules in host-parasite interactions is suggested. In addition, an electron-dense layer covering the surface of the larvae was observed, which may play a function in host immune evasion.

  16. Isolation and Characterization of Unsaturated Fatty Acid Auxotrophs of Streptococcus pneumoniae and Streptococcus mutans▿

    PubMed Central

    Altabe, Silvia; Lopez, Paloma; de Mendoza, Diego

    2007-01-01

    Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis. PMID:17827283

  17. Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA.

    PubMed

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-03-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  18. Inhibition of Streptococcus mutans Biofilm Formation by Streptococcus salivarius FruA▿

    PubMed Central

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-01-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  19. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  20. Genome Sequence of Streptococcus phocae subsp. phocae Strain ATCC 51973T Isolated from a Harbor Seal (Phoca vitulina)

    PubMed Central

    Poblete-Morales, Matías

    2015-01-01

    Streptococcus phocae subsp. phocae is a pathogen that affects different pinniped and mammalian species. This announcement reports the genome sequence of the type strain ATCC 51973 isolated in Norway from clinical specimens of harbor seal (Phoca vitulina), revealing interesting genes related to possible virulence factors. PMID:26586875

  1. Structural and Molecular Basis of the Role of Starch and Sucrose in Streptococcus mutans Biofilm Development▿ †

    PubMed Central

    Klein, M. I.; Duarte, S.; Xiao, J.; Mitra, S.; Foster, T. H.; Koo, H.

    2009-01-01

    The interaction of sucrose and starch with bacterial glucosyltransferases and human salivary amylase may enhance the pathogenic potential of Streptococcus mutans within biofilms by influencing the structural organization of the extracellular matrix and modulating the expression of genes involved in exopolysaccharide synthesis and specific sugar transport and two-component systems. PMID:19028906

  2. Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco.

    PubMed

    Kadri, Zaina; Vandamme, Peter; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; Elfahime, El Mostafa; Farricha, Omar El; Swings, Jean; Amar, Mohamed

    2015-02-01

    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain.

  3. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Wescombe, Philip A; Rösler, Berenice; Hale, John D; Tagg, John R; Doran, Kelly S

    2015-09-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy.

  4. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization

    PubMed Central

    Patras, Kathryn A.; Wescombe, Philip A.; Rösler, Berenice; Hale, John D.; Tagg, John R.

    2015-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy. PMID:26077762

  5. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Wescombe, Philip A; Rösler, Berenice; Hale, John D; Tagg, John R; Doran, Kelly S

    2015-09-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy. PMID:26077762

  6. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-01-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191

  7. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-06-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.

  8. Tricuspid valve endocarditis with Group B Streptococcus after an elective abortion: the need for new data.

    PubMed

    Palys, Erica E; Li, John; Gaut, Paula L; Hardy, W David

    2006-01-01

    Streptococcus agalactiae, commonly known as Group B streptococcus (GBS), was originally discovered as a cause of bovine mastitis. GBS colonizes the genital tract of up to 40% of women and has become a major pathogen in neonatal meningitis. GBS endocarditis is thought to be an uncommon manifestation of this infection and carries a higher mortality compared to other streptococcal pathogens. Studies have shown that endocarditis after abortion has an incidence of about one per million. However, this figure was published prior to routine use of echocardiography for diagnosis. The American Heart Association has recently declared transesophageal echocardiography the gold standard for endocarditis diagnosis. This case report illustrates that, given the potentially devastating consequences of endocarditis, there is a need for updated studies to adequately assess the true incidence of this infection. Pending the outcome of these studies, routine GBS screening and prophylactic antibiotics prior to abortion should be recommended.

  9. Group A Streptococcus endometritis following medical abortion.

    PubMed

    Gendron, Nicolas; Joubrel, Caroline; Nedellec, Sophie; Campagna, Jennifer; Agostini, Aubert; Doucet-Populaire, Florence; Casetta, Anne; Raymond, Josette; Poyart, Claire; Kernéis, Solen

    2014-07-01

    Medical abortion is not recognized as a high-risk factor for invasive pelvic infection. Here, we report two cases of group A Streptococcus (GAS; Streptococcus pyogenes) endometritis following medical abortions with a protocol of oral mifepristone and misoprostol. PMID:24829245

  10. Group A Streptococcus Endometritis following Medical Abortion

    PubMed Central

    Gendron, Nicolas; Joubrel, Caroline; Nedellec, Sophie; Campagna, Jennifer; Agostini, Aubert; Doucet-Populaire, Florence; Casetta, Anne; Raymond, Josette; Kernéis, Solen

    2014-01-01

    Medical abortion is not recognized as a high-risk factor for invasive pelvic infection. Here, we report two cases of group A Streptococcus (GAS; Streptococcus pyogenes) endometritis following medical abortions with a protocol of oral mifepristone and misoprostol. PMID:24829245

  11. Emergence of a Streptococcus pneumoniae clinical isolate highly resistant to telithromycin and fluoroquinolones.

    PubMed

    Faccone, Diego; Andres, Patricia; Galas, Marcelo; Tokumoto, Marta; Rosato, Adriana; Corso, Alejandra

    2005-11-01

    Streptococcus pneumoniae is a major pathogen causing community-acquired pneumonia and acute bronchitis. Macrolides, fluoroquinolones (FQs), and, recently, telithromycin (TEL) constitute primary therapeutic options, and rare cases of resistance have been reported. In this report, we describe the emergence of an S. pneumoniae clinical isolate with high-level TEL resistance (MIC, 256 microg/ml) and simultaneous resistance to FQs. Ongoing studies are oriented to elucidate the precise mechanism of resistance to TEL.

  12. Adapting a diet from sugar to meat: double-dealing genes of Streptococcus pyogenes.

    PubMed

    Rosch, Jason W; Tuomanen, Elaine

    2007-04-01

    Intuitively, paralogues created by gene duplication should retain related functions. However, a study of the two lactose metabolic operons of Streptococcus pyogenes, reported in this issue of Molecular Microbiology, indicates that paralogues might evolve very different functions, in this case changing from a metabolic enzyme to a regulator of virulence. Divergence of paralogues could be a newly recognized theme in the metamorphosis of a bacteria from innocuous to pathogenic. PMID:17493119

  13. Endocarditis caused by unusual Streptococcus species (Streptococcus pluranimalium)

    PubMed Central

    Fotoglidis, A; Pagourelias, E; Kyriakou, P; Vassilikos, V

    2015-01-01

    Background Infective endocarditis in intravenous drug abusers is caused mainly by Staphylococcus species and usually affects the right heart valves. Case Description We report the case of a 37-years-old intravenous drug abuser, who was diagnosed with infective endocarditis of the mitral and aortic valve. An unusual Streptococcus species (Streptococcus pluranimalium) was isolated from surgical specimens (peripheral arterial emboli, valves’ vegetations) which, according to the literature, is related to animals’ diseases such as infective endocarditis in adult broiler parents, with no references existing regarding causing such disease in humans. This unusual coccus infection caused specific clinical features (sizable vegetation on mitral valve >2cm, smaller vegetations on aortic valve, systemic emboli), resistance to antimicrobial therapy, rapid progression of the disease (despite of medical therapy and surgical replacement of both valves), and finally the death of the patient two months after the initial presentation of infective endocarditis. Conclusion Unusual cases of infective endocarditis in intravenous drug abusers are emerging and are characterized by changing microbiological profile and varying clinical characteristics. Clinical doctors must be aware of these cases, especially when their patients present an atypical clinical course, and reappraise their medical management. Hippokratia 2015; 19 (2):182-185. PMID:27418771

  14. Streptococcus milleri in the appendix.

    PubMed Central

    Poole, P M; Wilson, G

    1977-01-01

    The appendix was investigated as a possible habitat of Streptococcus milleri. Both normal and inflamed appendices were examined and the isolation rates compared. S. milleri was present in a quarter of the normal appendices and more than half of those associated with apendicitis--a difference that was statistically highly significant. The isolation rates throughout were indepencent of age. There was a pronounced connection between the presence of S. milleri in the appendix and the purulent manifestations of appendicitis. S. milleri was isolated from other abdominal sites associated with appendicitis. The frequency of isolation was increased by culture in an enrichment broth containing nalidixic acid and sulphadimidine. PMID:591633

  15. Streptococcus milleri in the appendix.

    PubMed

    Poole, P M; Wilson, G

    1977-10-01

    The appendix was investigated as a possible habitat of Streptococcus milleri. Both normal and inflamed appendices were examined and the isolation rates compared. S. milleri was present in a quarter of the normal appendices and more than half of those associated with apendicitis--a difference that was statistically highly significant. The isolation rates throughout were indepencent of age. There was a pronounced connection between the presence of S. milleri in the appendix and the purulent manifestations of appendicitis. S. milleri was isolated from other abdominal sites associated with appendicitis. The frequency of isolation was increased by culture in an enrichment broth containing nalidixic acid and sulphadimidine.

  16. Pneumonia and empyema caused by Streptococcus intermedius that shows the diagnostic importance of evaluating the microbiota in the lower respiratory tract.

    PubMed

    Noguchi, Shingo; Yatera, Kazuhiro; Kawanami, Toshinori; Yamasaki, Kei; Fukuda, Kazumasa; Naito, Keisuke; Akata, Kentarou; Nagata, Shuya; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2014-01-01

    The bacterial species in the Streptococcus anginosus group (S. constellatus, S. anginosus, S. intermedius) are important causative pathogens of bacterial pneumonia, pulmonary abscesses and empyema. However, the bacteria in this group are primarily oral resident bacteria and unable to grow significantly on ordinary aerobic culture media. We experienced a case of pneumonia and empyema caused by Streptococcus intermedius detected using a 16S rRNA gene sequencing analysis of bronchoalveolar lavage fluid and pleural effusion, but not sputum. Even when applying the molecular method, sputum samples are occasionally unsuitable for identifying the causative pathogens of lower respiratory tract infections.

  17. Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs.

    PubMed

    Baele, M; Decostere, A; Vandamme, P; Ceelen, L; Hellemans, A; Mast, J; Chiers, K; Ducatelle, R; Haesebrouck, F

    2008-06-01

    A new cultivation method was successfully applied for the in vitro isolation of a hitherto uncultured spiral Helicobacter species associated with ulceration of the non-glandular stomach and gastritis in pigs and formerly described as 'Candidatus Helicobacter suis'. Three isolates, HS1(T), HS2 and HS3, were subcultured from the stomach mucosa of three pigs after slaughter and were analysed using a polyphasic taxonomic approach. The novel isolates grew on biphasic culture plates or very moist agar bases in microaerobic conditions and exhibited urease, oxidase and catalase activities. Sequencing of the 16S rRNA gene, the 23S rRNA gene, the partial hsp60 gene and partial ureAB genes confirmed that the strains present in the gastric mucosa of pigs constituted a separate taxon, corresponding to 'Helicobacter heilmannii' type 1 strains as detected in the gastric mucosa of humans and other primates. For all genes sequenced, the highest sequence similarities were obtained with Helicobacter felis, Helicobacter bizzozeronii and Helicobacter salomonis, Helicobacter species isolated from the gastric mucosa of dogs and cats, which have also been detected in the human gastric mucosa and which are commonly referred to as 'Helicobacter heilmannii' type 2. SDS-PAGE of whole-cell proteins of strains HS1(T), HS2 and HS3 differentiated them from other Helicobacter species of gastric origin. The results of the polyphasic taxonomic analysis confirmed that the novel isolates constitute a novel taxon corresponding to 'Helicobacter heilmannii' type 1 strains from humans and to 'Candidatus H. suis' from pigs. The name Helicobacter suis sp. nov. is proposed for the novel isolates with the type strain HS1(T) (=LMG 23995(T)=DSM 19735(T)).

  18. Thermoregulation of capsule production by Streptococcus pyogenes.

    PubMed

    Kang, Song Ok; Wright, Jordan O; Tesorero, Rafael A; Lee, Hyunwoo; Beall, Bernard; Cho, Kyu Hong

    2012-01-01

    The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface.

  19. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    PubMed

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B

  20. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    PubMed

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B

  1. Molecular characterization of virulence genes of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in equines

    PubMed Central

    Javed, R.; Taku, A. K.; Gangil, Rakhi; Sharma, R. K.

    2016-01-01

    Aim: The aim was to determine the occurrence of streptococci in equines in Jammu (R. S. Pura, Katra), characterization of Streptococci equi subsp. equi and Streptococcus equi subsp. zooepidemicus with respect to their virulence traits and to determine antibiotic sensitivity pattern of virulent Streptococcus isolates. Materials and Methods: A total of 96 samples were collected from both clinically affected animals (exhibiting signs of respiratory tract disease) and apparently healthy animals and were sent to laboratory. The organisms were isolated on Columbia nalidixic acid agar containing 5% sheep blood as well as on sheep blood agar and confirmed by cultural characteristics and biochemical tests. Molecular detection of Streptococcus was done directly from cultures using sodA and seM gene-based polymerase chain reaction (PCR). Antibiogram was performed against five antibiotics such as amoxicillin, penicillin G, streptomycin, rifampicin, and methicillin. Results: During this study, a total 40 streptococcal isolates were obtained out of which 2 isolates were of S. equi subsp. equi, 12 isolates were from S. equi subsp. zooepidemicus. In the PCR-based detection, we revealed amplicons of 235 bp and 679 bp for confirmation of sodA and seM gene, respectively. In antibiogram, two isolates of S. equi subsp. equi were found resistant to penicillin G, and all other isolates were found sensitive to amoxicillin and streptomycin. Conclusion: The majority of streptococcal infections was due to S. equi subsp. Zooepidemicus, and thus was recognized as a potential pathogen of diseases of equines besides S. equi subsp. equi. PMID:27651677

  2. [Streptococcus pyogenes and the brain: living with the enemy].

    PubMed

    Dale, R C

    Streptococcus pyogenes (or group A beta hemolytic streptococcus) is a pathogenic bacterium that can give rise to a range of invasive and autoimmune diseases, although it is more widely known as the cause of tonsillitis. It is particularly interesting to note that this germ only causes disease in humans. For many years it has been acknowledged that it can cause an autoimmune brain disease (Sydenham s chorea). Yet, the spectrum of post streptococcal brain disorders has recently been extended to include other movement disorders such as tics or dystonia. A number of systematic psychiatric studies have shown that certain emotional disorders generally accompany the movement disorder (particularly, obsessive compulsive disorder). The proposed pathogenetic mechanism is that of a neuronal dysfunction in which antibodies play a mediating role. The antibodies that are produced after the streptococcal infection cross react with neuronal proteins, and more especially so in individuals with a propensity. This represents a possible model of immunological mimicry and its potential importance with respect to certain idiopathic disorders such as Tourette syndrome and obsessive compulsive disorder.

  3. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  4. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress.

  5. Detection of Streptococcus pyogenes using rapid visual molecular assay.

    PubMed

    Zhao, Xiangna; He, Xiaoming; Li, Huan; Zhao, Jiangtao; Huang, Simo; Liu, Wei; Wei, Xiao; Ding, Yiwei; Wang, Zhaoyan; Zou, Dayang; Wang, Xuesong; Dong, Derong; Yang, Zhan; Yan, Xiabei; Huang, Liuyu; Du, Shuangkui; Yuan, Jing

    2015-09-01

    Streptococcus pyogenes is an increasingly important pathogen in many parts of the world. Rapid and accurate detection of S. pyogenes aids in the control of the infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of S. pyogenes. The assay incorporates two methods: a chromogenic analysis using a calcein/Mn(2+) complex and real-time turbidity monitoring to assess the reaction. Both methods detected the target DNA within 60 min under 64°C isothermal conditions. The assay used specifically designed primers to target spy1258, and correctly identified 111 strains of S. pyogenes and 32 non-S. pyogenes strains, including other species of the genus Streptococcus. Tests using reference strains showed that the LAMP assay was highly specific. The sensitivity of the assay, with a detection limit of 1.49 pg DNA, was 10-fold greater than that of PCR. The LAMP assay established in this study is simple, fast and sensitive, and does not rely upon any special equipment; thus, it could be employed in clinical diagnosis.

  6. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  7. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    PubMed Central

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  8. Induction of Cytokines by Glucosyltransferases of Streptococcus mutans

    PubMed Central

    Chia, Jean-San; Lien, Huei-Ting; Hsueh, Po-Ren; Chen, Pei-Min; Sun, Andy; Chen, Jen-Yang

    2002-01-01

    Production of proinflammatory cytokines is implicated in the pathogenesis of viridans streptococcus-induced α-streptococcal shock syndrome and infective endocarditis. Streptococcus mutans, one of the opportunistic pathogens causing infective endocarditis, was reported previously to stimulate monocytes and epithelial and endothelial cells in vitro to produce various cytokines. We found that glucosyltransferases (GTFs) GtfC and GtfD of S. mutans stimulated predominantly the production of interleukin-6 (IL-6) from T cells cultured in vitro. The level of IL-6 but not of tumor necrosis factor alpha in blood was significantly elevated when rats were injected intravenously with S. mutans GS-5, whereas IL-6 was detected at a much lower level when rats were challenged with NHS1DD, an isogenic mutant defective in the expression of GTFs. The serum IL-6 level was elevated in patients with endocarditis caused by different species of viridans streptococci which express GTF homologues. Affinity column-purified GTFs reduced the levels of detectable IL-2 of T cells stimulated by another bacterial antigen, tetanus toxoid. These results suggested that GTFs might modulate the production of Th1-type cytokines and that GTFs of S. mutans play a significant role in stimulating the production of the proinflammatory cytokine IL-6 in vivo. PMID:12093691

  9. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages.

    PubMed

    Romero, Patricia; Croucher, Nicholas J; Hiller, N Luisa; Hu, Fen Z; Ehrlich, Garth D; Bentley, Stephen D; García, Ernesto; Mitchell, Tim J

    2009-08-01

    Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them. PMID:19502408

  10. Toxin-Antitoxin Systems in Clinical Pathogens

    PubMed Central

    Fernández-García, Laura; Blasco, Lucia; Lopez, Maria; Bou, German; García-Contreras, Rodolfo; Wood, Thomas; Tomas, María

    2016-01-01

    Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens. PMID:27447671

  11. Toxin-Antitoxin Systems in Clinical Pathogens.

    PubMed

    Fernández-García, Laura; Blasco, Lucia; Lopez, Maria; Bou, German; García-Contreras, Rodolfo; Wood, Thomas; Tomas, María

    2016-01-01

    Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens. PMID:27447671

  12. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250.

    PubMed

    Czabańska, Anna; Neiwert, Olga; Lindner, Buko; Leigh, James; Holst, Otto; Duda, Katarzyna A

    2012-11-01

    Lipoteichoic acid (LTA) is an amphiphilic polycondensate located in the cell envelope of Gram-positive bacteria. In this study, LTAs were isolated from the three bovine mastitis species Streptococcus uberis 233, Streptococcus dysgalactiae 2023, and Streptococcus agalactiae 0250. Structural investigations of these LTAs were performed applying 1D and 2D nuclear magnetic resonance experiments as well as chemical analyses and mass spectrometry. Compositional analysis revealed the presence of glycerol (Gro), Glc, alanine (Ala), and 16:0, 16:1, 18:0, 18:1. The LTAs of the three Streptococcus strains possessed the same structure, that is, a lipid anchor comprised of α-Glcp-(1→2)-α-Glcp-(1→3)-1,2-diacyl-sn-Gro and the hydrophilic backbone consisting of poly(sn-Gro-1-phosphate) randomly substituted at O-2 of Gro by d-Ala.

  13. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250.

    PubMed

    Czabańska, Anna; Neiwert, Olga; Lindner, Buko; Leigh, James; Holst, Otto; Duda, Katarzyna A

    2012-11-01

    Lipoteichoic acid (LTA) is an amphiphilic polycondensate located in the cell envelope of Gram-positive bacteria. In this study, LTAs were isolated from the three bovine mastitis species Streptococcus uberis 233, Streptococcus dysgalactiae 2023, and Streptococcus agalactiae 0250. Structural investigations of these LTAs were performed applying 1D and 2D nuclear magnetic resonance experiments as well as chemical analyses and mass spectrometry. Compositional analysis revealed the presence of glycerol (Gro), Glc, alanine (Ala), and 16:0, 16:1, 18:0, 18:1. The LTAs of the three Streptococcus strains possessed the same structure, that is, a lipid anchor comprised of α-Glcp-(1→2)-α-Glcp-(1→3)-1,2-diacyl-sn-Gro and the hydrophilic backbone consisting of poly(sn-Gro-1-phosphate) randomly substituted at O-2 of Gro by d-Ala. PMID:23036931

  14. Antibody binding to Streptococcus mitis and Streptococcus oralis cell fractions

    PubMed Central

    Wirth, Katherine A.; Bowden, George H.; Richmond, Dorothy A.; Sheridan, Michael J.; Cole, Michael F.

    2008-01-01

    Summary Objective To determine which cell fraction(s) of Streptococcus mitis biovar 1 serve as the best source of antigens recognized by salivary SIgA antibodies in infants. Design Whole cells of 38 reference and wild-type isolates of Streptococcus mitis, S. oralis, S. gordonii, Enterococcus casseliflavus, and E. faecalis were fractionated into cell walls CW), protease-treated cell walls (PTCW), cell membranes (CM) and cell protein (CP). Whole cells and these fractions were tested for binding by rabbit anti-S. mitis SK145 and anti-S. oralis SK100 sera, and also by salivary SIgA antibodies from infants and adults. Results Anti-SK145 and anti-SK100 sera bound whole cells and fractions of all strains of S. mitis and S. oralis variably. Cluster analysis of antibody binding data placed the strains into S. mitis, S. oralis and ‘Non-S. mitis/non-S. oralis’ clusters. Antigens from CW and CM best discriminated S. mitis from S. oralis. CM bound the most infant salivary SIgA antibody and PTCW bound the least. In contrast, adult salivary SIgA antibody bound all of the cell fractions and at higher levels. Conclusions Presumably the relatively short period of immune stimulation and immunological immaturity in infants, in contrast to adults, result in low levels of salivary SIgA antibody that preferentially bind CM of S. mitis but not PTCW. By utilizing isolated cell walls and membranes as sources of antigens for proteomics it may be possible to identify antigens common to oral streptococci and dissect the fine specificity of salivary SIgA antibodies induced by oral colonization by S. mitis. PMID:17904095

  15. Pathogen intelligence.

    PubMed

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  16. Pathogen intelligence

    PubMed Central

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  17. Solitary Pyomyositis of the Left Rhomboideus Muscle Caused by Streptococcus anginosus and Streptococcus intermedius in an Immunocompetent Person.

    PubMed

    Tanaka, Yasuhiro; Takaya, Kenichi; Yamamoto, Go; Shinzato, Isaku; Takafuta, Toshiro

    2015-01-01

    Primary pyomyositis is a bacterial infection of the skeletal muscle commonly affecting children with Staphylococcus aureus most often isolated as a pathogen. However, pyomyositis caused by anaerobic bacteria is rare in adults. Here, we report a case of solitary Pyomyositis of the left rhomboideus muscle in an immunocompetent person. A 70-year-old Japanese male presented with high fever and left shoulder pain. His muscle below the lower edge of the left scapula was tender and swollen. His laboratory examinations revealed severe inflammation. Computed tomography showed a solitary low-density area around a contrast enhancement in the left rhomboideus muscle. He was diagnosed as having solitary pyomyositis. Although his symptoms did not improve despite empiric intravenous administration of antibiotics, an incision was performed. Streptococcus anginosus and Streptococcus intermedius were isolated from the culture of drainage fluid. His symptoms gradually disappeared after the incisional drainage and continuous administration of antibiotics. Pyomyositis did not recur after his discharge. To the best of our knowledge, this is the first report on anaerobic pyomyositis of the shoulder muscle.

  18. Beta-hemolytic Streptococcus dysgalactiae strains isolated from horses are a genetically distinct population within the Streptococcus dysgalactiae taxon.

    PubMed

    Pinho, Marcos D; Erol, Erdal; Ribeiro-Gonçalves, Bruno; Mendes, Catarina I; Carriço, João A; Matos, Sandra C; Preziuso, Silvia; Luebke-Becker, Antina; Wieler, Lothar H; Melo-Cristino, Jose; Ramirez, Mario

    2016-01-01

    The pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis. Characterization of a subset of horse isolates by multilocus sequence analysis (MLSA) and 16S rRNA gene sequence showed that most equine isolates could also be differentiated from S. dysgalactiae strains from other animal species, supporting the existence of a horse specific genomovar. Draft genome information confirms the distinctiveness of the horse genomovar and indicates the presence of potentially horse-specific virulence factors. While this genomovar represents most of the isolates recovered from horses, a smaller MLST and MLSA defined sub-population seems to be able to cause infections in horses, other animals and humans, indicating that transmission between hosts of strains belonging to this group may occur. PMID:27530432

  19. Beta-hemolytic Streptococcus dysgalactiae strains isolated from horses are a genetically distinct population within the Streptococcus dysgalactiae taxon

    PubMed Central

    Pinho, Marcos D.; Erol, Erdal; Ribeiro-Gonçalves, Bruno; Mendes, Catarina I.; Carriço, João A.; Matos, Sandra C.; Preziuso, Silvia; Luebke-Becker, Antina; Wieler, Lothar H.; Melo-Cristino, Jose; Ramirez, Mario

    2016-01-01

    The pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis. Characterization of a subset of horse isolates by multilocus sequence analysis (MLSA) and 16S rRNA gene sequence showed that most equine isolates could also be differentiated from S. dysgalactiae strains from other animal species, supporting the existence of a horse specific genomovar. Draft genome information confirms the distinctiveness of the horse genomovar and indicates the presence of potentially horse-specific virulence factors. While this genomovar represents most of the isolates recovered from horses, a smaller MLST and MLSA defined sub-population seems to be able to cause infections in horses, other animals and humans, indicating that transmission between hosts of strains belonging to this group may occur. PMID:27530432

  20. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans.

    PubMed

    Chung, J Y; Choo, J H; Lee, M H; Hwang, J K

    2006-03-01

    The occurrence of dental caries is mainly associated with oral pathogens, especially cariogenic Streptococcus mutans. Preliminary antibacterial screening revealed that the extract of Myristica fragrans, widely cultivated for the spice and flavor of foods, possessed strong inhibitory activity against S. mutans. The anticariogenic compound was successfully isolated from the methanol extract of M. fragrans by repeated silica gel chromatography, and its structure was identified as macelignan by instrumental analysis using 1D-NMR, 2D-NMR and EI-MS. The minimum inhibitory concentration (MIC) of macelignan against S. mutans was 3.9 microg/ml, which was much lower than those of other natural anticariogenic agents such as 15.6 microg/ml of sanguinarine, 250 microg/ml of eucalyptol, 500 microg/ml of menthol and thymol, and 1000 microg/ml of methyl salicylate. Macelignan also possessed preferential activity against other oral microorganisms such as Streptococcus sobrinus, Streptococcus salivarius, Streptococcus sanguis, Lactobacillus acidophilus and Lactobacillus casei in the MIC range of 2-31.3 microg/ml. In particular, the bactericidal test showed that macelignan, at a concentration of 20 microg/ml, completely inactivated S. mutans in 1 min. The specific activity and fast-effectiveness of macelignan against oral bacteria strongly suggest that it could be employed as a natural antibacterial agent in functional foods or oral care products.

  1. Fatal Streptococcus canis infections in intensively housed shelter cats.

    PubMed

    Pesavento, P A; Bannasch, M J; Bachmann, R; Byrne, B A; Hurley, K F

    2007-03-01

    Three independent, fatal outbreaks of Streptococcus canis infection occurred in a 2-year period in shelter cats. The outbreaks occurred in Northern California (Yolo County), Southern California (Kern County), and North Carolina (Guilford County). An estimation of the affected population is >150 cats among 3 affected shelters, with a mortality rate of up to 30%. Among 20 cats submitted for necropsy there were 2 distinct pathologic presentations. The first (shelters 1 and 2) was skin ulceration and chronic respiratory infection that progressed, in some cats, to necrotizing sinusitis and meningitis. The second (shelter 3) was rapid progression from necrotizing fasciitis with skin ulceration to toxic shock-like syndrome, sepsis, and death. S canis was the sole pathogen identified in most cases. Whether hypervirulent S canis strains exist is unknown; there is little understanding of how these bacteria cause invasive disease in cats.

  2. The role of Streptococcus intermedius in brain abscess.

    PubMed

    Mishra, A K; Fournier, P-E

    2013-04-01

    Brain abscess represents a significant medical problem, despite recent advances made in detection and therapy. Streptococcus intermedius, a commensal organism, has the potential to cause significant morbidity. S. intermedius expresses one or more members of a family of structurally and antigenically related surface proteins termed antigen I/II, which plays a potential role in its pathogenesis. It is involved in binding to human fibronectin and laminin and in inducing IL-8 release from monocytes, which promotes neutrophil chemotaxis and activation. There are few published data on the role of this organism in brain abscess. This review focuses on the clinical evidence, pathogenic role, mechanism of predisposition, and currently employed strategies to fight against S. intermedius associated to brain abscess.

  3. Fatal Streptococcus canis infections in intensively housed shelter cats.

    PubMed

    Pesavento, P A; Bannasch, M J; Bachmann, R; Byrne, B A; Hurley, K F

    2007-03-01

    Three independent, fatal outbreaks of Streptococcus canis infection occurred in a 2-year period in shelter cats. The outbreaks occurred in Northern California (Yolo County), Southern California (Kern County), and North Carolina (Guilford County). An estimation of the affected population is >150 cats among 3 affected shelters, with a mortality rate of up to 30%. Among 20 cats submitted for necropsy there were 2 distinct pathologic presentations. The first (shelters 1 and 2) was skin ulceration and chronic respiratory infection that progressed, in some cats, to necrotizing sinusitis and meningitis. The second (shelter 3) was rapid progression from necrotizing fasciitis with skin ulceration to toxic shock-like syndrome, sepsis, and death. S canis was the sole pathogen identified in most cases. Whether hypervirulent S canis strains exist is unknown; there is little understanding of how these bacteria cause invasive disease in cats. PMID:17317801

  4. An Unusual Cause of Flexor Tenosynovitis: Streptococcus mitis

    PubMed Central

    Ulucay, Cağatay; Ozler, Turhan

    2014-01-01

    Summary: Streptococcus mitis is a commensal organism of the human oropharynx that rarely causes infection in healthy individuals. Herein, we describe a previously healthy 35-year-old woman who presented with acute pyogenic flexor tenosynovitis of the left index finger due to S. mitis infection. The patient’s infection was treated successfully via surgical and medical interventions, and during follow-up, it was determined that she was complement component C3 deficient. Tenosynovitis is an emergent clinical syndrome that can result in permanent disability or amputation. To the best of our knowledge, this case report is the first to describe tenosynovitis due to S. mitis; in addition, it highlights the importance of initiating therapy with antibiotics that are effective against this rare pathogen. PMID:25587497

  5. A plasmid in Streptococcus pneumoniae.

    PubMed Central

    Smith, M D; Guild, W R

    1979-01-01

    Plasmid deoxyribonucleic acid has been detected in three related laboratory strains of Streptococcus pneumoniae. Strains D39S, R36, and R36NC each contain a minimum of two copies per cell of a 2.0-megadalton plasmid (pDP1). A plasmid twice as large as this smaller one is also present in much lower quantity in these strains, but neither plasmid is present in four strains related to these or in a drug-resistant clinical isolate from Paris. The plasmid yield was not amplified in the presence of chloramphenicol. No phenotype has been correlated with the presence of pDP1, which has existed in strains carried for many years in laboratory collections. Images PMID:33961

  6. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae.

    PubMed

    Rego, Sara; Heal, Timothy J; Pidwill, Grace R; Till, Marisa; Robson, Alice; Lamont, Richard J; Sessions, Richard B; Jenkinson, Howard F; Race, Paul R; Nobbs, Angela H

    2016-07-29

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  7. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    PubMed Central

    2012-01-01

    Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized

  8. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis.

    PubMed

    Mancini, Daiana T; Matos, Karina S; da Cunha, Elaine F F; Assis, Tamiris M; Guimarães, Ana P; França, Tanos C C; Ramalho, Teodorico C

    2012-01-01

    Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.

  9. Trichuris suis ova: testing a helminth-based therapy as an extension of the hygiene hypothesis.

    PubMed

    Jouvin, Marie-Hélène; Kinet, Jean-Pierre

    2012-07-01

    The hygiene hypothesis, which was put forward more than 20 years ago by Strachan, proposes that the recent increase in allergic and autoimmune diseases is due to increasing hygiene standards. Since then, numerous epidemiologic and animal studies have provided support for this hypothesis and showed that certain microorganisms, helminths in particular, have immunomodulatory effects. More recently, studies have led to the identification of some of the mechanisms underlying these immunomodulatory effects. Substances, or crude extracts, produced by worms and responsible for these effects have been analyzed. Clinical trials have been performed mainly with pig whipworm, which was chosen because it is likely to be nonpathogenic in human subjects. Eggs of the pig whipworm (Trichuris suis ova) have been shown to be safe in multiple studies. Efficacy has been demonstrated in patients with inflammatory bowel diseases and in 1 case of pecan allergy. Altogether, this information supports further investigation of T suis ova in patients with immune-mediated diseases, particularly in areas in which there is currently no therapy, such as food allergy. PMID:22742834

  10. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae

    PubMed Central

    Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A.; Zalacain, Magdalena; Holmes, David J.; O'Dwyer, Karen

    2015-01-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). PMID:26014938

  11. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae.

    PubMed

    Min, Sharon; Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A; Zalacain, Magdalena; Holmes, David J; O'Dwyer, Karen

    2015-08-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system).

  12. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal.

  13. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal. PMID:26752013

  14. Immune responses and protection against experimental Brucella suis biovar 1 challenge in nonvaccinated or B. abortus strain RB51-vaccinated cattle.

    PubMed

    Olsen, S C; Hennager, S G

    2010-12-01

    Twenty Hereford heifers approximately 9 months of age were vaccinated with saline (control) or 2 × 10(10) CFU of the Brucella abortus strain RB51 (RB51) vaccine. Immunologic responses after inoculation demonstrated significantly greater (P < 0.05) antibody and proliferative responses to RB51 antigens in cattle vaccinated with RB51 than in the controls. Pregnant cattle received a conjunctival challenge at approximately 6 months of gestation with 10(7) CFU of B. suis bv. 1 strains isolated from naturally infected cattle. The fluorescence polarization assay and the buffered acid plate agglutination test had the highest sensitivities in detecting B. suis-infected cattle between 2 and 12 weeks after experimental infection. Serologic responses and lymphocyte proliferative responses to B. suis antigens did not differ between control and RB51 vaccinees after experimental infection. No abortions occurred in cattle in either treatment group after challenge, although there appeared to be an increased incidence of retained placenta after parturition in both the control and the RB51 vaccination treatment groups. Our data suggest that the mammary gland is a preferred site for B. suis localization in cattle. Vaccination with RB51 did not reduce B. suis infection rates in maternal or fetal tissues. In conclusion, although B. suis is unlikely to cause abortions and fetal losses in cattle, our data suggest that RB51 vaccination will not protect cattle against B. suis infection after exposure.

  15. Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis.

    PubMed

    Dhotre, Shree V; Mehetre, Gajanan T; Dharne, Mahesh S; Suryawanshi, Namdev M; Nagoba, Basavraj S

    2014-08-01

    Streptococcus tigurinus is a new member of the Streptococcus viridians group and is closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. Accurate identification of S. tigurinus is facilitated only by newer molecular methods like 16S rRNA gene analysis. During the course of study on bacteraemia and infective endocarditis with reference to periodontitis and viridians group of streptococci, a strain of S. tigurinus isolated from subgingival plaque of a patient with periodontitis identified by 16S rRNA gene analysis, which was originally identified as Streptococcus pluranimalium by Vitek 2. Confirmation by 16S rRNA gene analysis showed 99.39% similarity (1476/1485 bp) with S. tigurinus AZ_3a(T) (AORU01000002). To the best of our knowledge, this is the first report of isolation of S. tigurinus from the oral cavity of a periodontitis patient.

  16. Draft Genome Sequence of Helicobacter suis Strain SNTW101, Isolated from a Japanese Patient with Nodular Gastritis.

    PubMed

    Matsui, Hidenori; Takahashi, Tetsufumi; Murayama, Somay Y; Uchiyama, Ikuo; Yamaguchi, Katsushi; Shigenobu, Shuji; Suzuki, Masato; Rimbara, Emiko; Shibayama, Keigo; Øverby, Anders; Nakamura, Masahiko

    2016-01-01

    We present here the draft whole-genome shotgun sequence of an uncultivated strain SNTW101 of Helicobacter suis, which has been maintained in the stomachs of mice. This strain was originally isolated from gastric biopsy specimens of a urea breath test-negative Japanese patient suffering from nodular gastritis. PMID:27609915

  17. Identification of Source of Brucella suis Infection in Human by Using Whole-Genome Sequencing, United States and Tonga.

    PubMed

    Quance, Christine; Robbe-Austerman, Suelee; Stuber, Tod; Brignole, Tom; DeBess, Emilio E; Boyd, Laurel; LeaMaster, Brad; Tiller, Rebekah; Draper, Jenny; Humphrey, Sharon; Erdman, Matthew M

    2016-01-01

    Brucella suis infection was diagnosed in a man from Tonga, Polynesia, who had butchered swine in Oregon, USA. Although the US commercial swine herd is designated brucellosis-free, exposure history suggested infection from commercial pigs. We used whole-genome sequencing to determine that the man was infected in Tonga, averting a field investigation.

  18. Identification of Source of Brucella suis Infection in Human by Whole-Genome Sequencing, United States and Tonga

    PubMed Central

    Quance, Christine; Stuber, Tod; Brignole, Tom; DeBess, Emilio E.; Boyd, Laurel; LeaMaster, Brad; Tiller, Rebekah; Draper, Jenny; Humphrey, Sharon; Erdman, Matthew M.

    2016-01-01

    Brucella suis infection was diagnosed in a man from Tonga, Polynesia, who had butchered swine in Oregon, USA. Although the US commercial swine herd is designated brucellosis-free, exposure history suggested infection from commercial pigs. We used whole-genome sequencing to determine that the man was infected in Tonga, averting a field investigation. PMID:26689610

  19. Draft Genome Sequence of Helicobacter suis Strain SNTW101, Isolated from a Japanese Patient with Nodular Gastritis

    PubMed Central

    Takahashi, Tetsufumi; Murayama, Somay Y.; Uchiyama, Ikuo; Yamaguchi, Katsushi; Shigenobu, Shuji; Suzuki, Masato; Rimbara, Emiko; Shibayama, Keigo; Øverby, Anders; Nakamura, Masahiko

    2016-01-01

    We present here the draft whole-genome shotgun sequence of an uncultivated strain SNTW101 of Helicobacter suis, which has been maintained in the stomachs of mice. This strain was originally isolated from gastric biopsy specimens of a urea breath test-negative Japanese patient suffering from nodular gastritis. PMID:27609915

  20. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    PubMed

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis.

  1. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    PubMed

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. PMID:25805186

  2. PREVALENCE, PATHOLOGY, AND RISK FACTORS ASSOCIATED WITH STREPTOCOCCUS PHOCAE INFECTION IN SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS), 2004-10.

    PubMed

    Bartlett, Georgina; Smith, Woutrina; Dominik, Clare; Batac, Francesca; Dodd, Erin; Byrne, Barbara A; Jang, Spencer; Jessup, David; Chantrey, Julian; Miller, Melissa

    2016-01-01

    Recent studies have implicated beta-hemolytic streptococci as opportunistic pathogens of marine mammals, including southern sea otters (Enhydra lutris nereis), but little is known about their prevalence or pathophysiology. Herein, we focus on risk factors for sea otter infection by a single beta-hemolytic streptococcal species, Streptococcus phocae. Streptococcus phocae was first identified as a marine mammal pathogen in 1994, and the first report in southern sea otters was in 2009. Its broad host range encompasses fish, pinnipeds, cetaceans, and mustelids, with S. phocae now recognized as an important pathogen of marine species worldwide. We assessed risk factors and lesion patterns for S. phocae infection in southern sea otters. Using archival necropsy data, S. phocae prevalence was 40.5% in fresh dead otters examined 2004-10. Skin trauma of any type was identified as a significant risk factor for S. phocae infection. The risk of infection was similar regardless of the cause and relative severity of skin trauma, including mating or fight wounds, shark bite, and anthropogenic trauma. Streptococcus phocae-infected sea otters were also more likely to present with abscesses or bacterial septicemia. Our findings highlight the importance of S. phocae as an opportunistic pathogen of sea otters and suggest that the most likely portal of entry is damaged skin. Even tiny skin breaks appear to facilitate bacterial colonization, invasion, abscess formation, and systemic spread. Our data provide important insights for management and care of marine species.

  3. PREVALENCE, PATHOLOGY, AND RISK FACTORS ASSOCIATED WITH STREPTOCOCCUS PHOCAE INFECTION IN SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS), 2004-10.

    PubMed

    Bartlett, Georgina; Smith, Woutrina; Dominik, Clare; Batac, Francesca; Dodd, Erin; Byrne, Barbara A; Jang, Spencer; Jessup, David; Chantrey, Julian; Miller, Melissa

    2016-01-01

    Recent studies have implicated beta-hemolytic streptococci as opportunistic pathogens of marine mammals, including southern sea otters (Enhydra lutris nereis), but little is known about their prevalence or pathophysiology. Herein, we focus on risk factors for sea otter infection by a single beta-hemolytic streptococcal species, Streptococcus phocae. Streptococcus phocae was first identified as a marine mammal pathogen in 1994, and the first report in southern sea otters was in 2009. Its broad host range encompasses fish, pinnipeds, cetaceans, and mustelids, with S. phocae now recognized as an important pathogen of marine species worldwide. We assessed risk factors and lesion patterns for S. phocae infection in southern sea otters. Using archival necropsy data, S. phocae prevalence was 40.5% in fresh dead otters examined 2004-10. Skin trauma of any type was identified as a significant risk factor for S. phocae infection. The risk of infection was similar regardless of the cause and relative severity of skin trauma, including mating or fight wounds, shark bite, and anthropogenic trauma. Streptococcus phocae-infected sea otters were also more likely to present with abscesses or bacterial septicemia. Our findings highlight the importance of S. phocae as an opportunistic pathogen of sea otters and suggest that the most likely portal of entry is damaged skin. Even tiny skin breaks appear to facilitate bacterial colonization, invasion, abscess formation, and systemic spread. Our data provide important insights for management and care of marine species. PMID:26555115

  4. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis.

    PubMed

    Trigo, Gabriela; Dinis, Márcia; França, Angela; Bonifácio Andrade, Elva; Gil da Costa, Rui M; Ferreira, Paula; Tavares, Delfina

    2009-07-01

    Streptococcus agalactiae is a contagious, mastitis-causing pathogen that is highly adapted to survive in the bovine mammary gland. This study used a BALB/c mouse model of Streptococcus agalactiae mastitis to evaluate leukocyte populations in regional lymph nodes and cytokine expression in the mammary gland involved in the immune response against Streptococcus agalactiae. It was found that the bacteria replicated efficiently in the mammary gland, peaking after 24 h and increasing by 100-fold. Dissemination of bacteria to systemic organs was observed 6 h after infection. At the same time, a massive infiltration of polymorphonuclear cells and an increase in the inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha were detected in mammary glands, indicating an early inflammatory response. A decrease in the levels of inflammatory cytokines in mammary glands was observed 72 h after infection, accompanied by an increase in the levels of IL-12 and IL-10, which were related to a gradual decrease in bacterial load. An increase in the number of macrophages and B220(+) lymphocytes and similar increases in both CD4(+) and CD8(+) T cells in regional lymph nodes were observed, being most pronounced 5 days after infection. Moreover, increased levels of anti-Streptococcus agalactiae antibodies in the mammary gland were observed 10 days after infection. Overall, these data suggest that the host exhibits both innate and acquired immune responses in response to Streptococcus agalactiae mastitis.

  5. A repA-based ELISA for discriminating cattle vaccinated with Brucella suis 2 from those naturally infected with Brucella abortus and Brucella melitensis.

    PubMed

    Wang, Jing-Yu; Wu, Ning; Liu, Wan-Hua; Ren, Juan-Juan; Tang, Pan; Qiu, Yuan-Hao; Wang, Chi-Young; Chang, Ching-Dong; Liu, Hung-Jen

    2014-01-01

    The commonest ways of diagnosing brucellosis in animals include the Rose-Bengal plate agglutination test, the buffered plate agglutination test (BPA), the slide agglutination test, the complement fixation test, and the indirect enzyme linked immunosorbent assay (I-ELISA). However, these methods cannot discriminate the Brucella vaccine strain (Brucella suis strain 2; B. suis S2) from naturally acquired virulent strains. Of the six common Brucella species, Brucella melitensis, Brucella abortus, and B. suis are the commonest species occurring in China. To develop an ELISA assay that can differentiate between cows inoculated with B. suis S2 and naturally infected with B. abortus and B. melitensis, genomic sequences from six Brucella spp. (B. melitensis, B. abortus, B. suis, Brucella canis, Brucella neotomae and Brucella ovis) were compared using Basic Local Alignment Search Tool software. One particular gene, the repA-related gene, was found to be a marker that can differentiate B. suis from B. abortus and B. melitensis. The repA-related gene of B. suis was PCR amplified and subcloned into the pET-32a vector. Expressed repA-related protein was purified and used as an antigen. The repA-based ELISA was optimized and used as specific tests. In the present study, serum from animals inoculated with the B. suis S2 vaccine strain had positive repA-based ELISA results. In contrast, the test-positive reference sera against B. abortus and B. melitensis had negative repA-based ELISA results. The concordance rate between B. abortus antibody-negative (based on the repA-based ELISA) and the Brucella gene-positive (based on the 'Bruce ladder' multiplex PCR) was 100%. Therefore, the findings suggest that the repA-based ELISA is a useful tool for differentiating cows vaccinated with the B. suis S2 and naturally infected with B. abortus and B. melitensis.

  6. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens.

    PubMed

    Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A; Tarantilis, Petros A; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2013-02-26

    In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.

  7. Population dynamics and intra-litter transmission patterns of Isospora suis in suckling piglets under on-farm conditions.

    PubMed

    Sotiraki, S; Roepstorff, A; Nielsen, J P; Maddox-Hyttel, C; Enøe, C; Boes, J; Murrell, K D; Thamsborg, S M

    2008-03-01

    The aim of this study was to investigate the intra-litter infection dynamics of Isospora suis under natural conditions, and to study any association between parasite transmission and the contamination level of the farrowing pen by applying different interventions in order to reduce the transmission of I. suis infection within the litter. The study was divided in 2 trials including in total 22 litters (254 piglets). The first trial included 4 litters (where standard procedures practiced routinely on the farm piglets were applied) and the piglets were followed coprologically from farrowing until 2 weeks after weaning. The sows of those litters were also examined at various intervals before and after farrowing. The second trial included the application of 3 different management procedures: (A) standard farm hygiene and management procedures, (B) standard farm hygiene and management procedures+the first piglets found to excrete I. suis oocysts in each pen were removed from the pen, and (C) reduced cleaning. Each procedure was studied in 2 litters. This was replicated 3 times to yield a total of 18 litters. The results suggested that (i) the sow does not play an important role in transmission of I. suis in the farrowing pen; (ii) in natural infections, both the age of the piglet age at onset of oocyst excretion and the oocyst excretion patterns may vary considerably; (iii) the course of oocyst excretion or development of diarrhoea is related to the time of initial infection and (iii) piglets, which are heavy at birth, are more prone to acquire I. suis infection. Moreover, it was demonstrated that cleaning could be an effective means of restricting the spread of the parasite within the litter and thus the development of diarrhoea.

  8. Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda.

    PubMed

    Nissen, Sofie; Al-Jubury, Azmi; Hansen, Tina V A; Olsen, Annette; Christensen, Henrik; Thamsborg, Stig M; Nejsum, Peter

    2012-08-13

    The whipworms Trichuris trichiura and Trichuris suis in humans and pigs, respectively, are believed to be two different species yet closely related. Morphologically, adult worms, eggs and larvae of the two species are indistinguishable. The aim of this study was to examine the genetic variation of Trichuris sp. mainly recovered from natural infected pigs and humans. Worm material isolated from humans and pigs living in the same geographical region in Uganda were analyzed by PCR, cloning and sequencing. Measurements of morphometric characters were also performed. The analysis of the ITS-2 (internal transcribed spacer) region showed a high genetic variation in the human-derived worms with two sequence types, designated type 1 and type 2, differing with up to 45%, the type 2 being identical to the sequence found in pig-derived worms. A single human-derived worm showed exclusively the type 2-genotype (T. suis-type) and three cases of 'heterozygote' worms in humans were identified. However, the analysis showed that sympatric Trichuris primarily assorted with host origin. Sequence analysis of a part of the genetically conserved β-tubulin gene confirmed two separate populations/species but also showed that the 'heterozygote' worms had a T. suis-like β-tubulin gene. A PCR-RFLP on the ITS-2 region was developed, that could distinguish between worms of the pig, human and 'heterozygote' type. The data suggest that Trichuris in pigs and humans belong to two different populations (i.e. are two different species). However, the data presented also suggest that cross-infections of humans with T. suis takes place. Further studies on sympatric Trichuris populations are highly warranted in order to explore transmission dynamics and unravel the zoonotic potential of T. suis.

  9. [Culture media for the detection and the identification of Streptococcus agalactiae].

    PubMed

    de la Rosa, M; Pérez, M; Carazo, C; Pareja, L; Orts, A; Cantudo, P

    1994-01-01

    Streptococcus agalactiae, a Group B streptococcus, is the main cause of bacterial perinatal infection and is also an important opportunistic pathogen. Detection and identification of S. agalactiae are straight forward with special culture media, where Group B streptococci show a specific, typical pink or red pigment. To quickly and easily detect the pigment, culture media should contain: (i) starch; (ii) an inhibitor of the folate pathway; (iii) animal serum; (iv) a pepsic proteic hydrolysate; and (v) glucose, together with a high-capacity buffer. When selective antibiotics are added to culture media designed in this way, it is possible to detect S. agalactiae directly from clinical samples by observation of its pigment after less than 12 hours of aerobic incubation.

  10. 21 CFR 866.3740 - Streptococcus spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3740 Streptococcus spp. serological reagents. (a) Identification. Streptococcus spp. serological reagents are devices... streptococci are associated with infections, such as sore throat, impetigo (an infection characterized by...

  11. 21 CFR 866.3740 - Streptococcus spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3740 Streptococcus spp. serological reagents. (a) Identification. Streptococcus spp. serological reagents are devices... streptococci are associated with infections, such as sore throat, impetigo (an infection characterized by...

  12. Phenotypic and genotypic heterogeneity among Streptococcus iniae isolates recovered from cultured and wild fish in North America, Central America and the Caribbean Islands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae, the etiological agent of streptococcosis in fish, is an important pathogen of cultured and wild fish worldwide. During the last decade outbreaks of streptococcosis have occurred in a wide range of cultured and wild fish in the Americas and Caribbean islands. To gain a better und...

  13. Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic Streptococci and Enterococci.

    PubMed

    Kreikemeyer, Bernd; Gámez, Gustavo; Margarit, Immaculada; Giard, Jean-Christophe; Hammerschmidt, Sven; Hartke, Axel; Podbielski, Andreas

    2011-03-01

    Oligocomponent pilus structures, recently discovered in many important Gram-positive pathogens, represent a new class of virulence factors with adhesive and matrix protein-binding activity. Some of these proteins have emerged as very promising lead components of protein-based vaccines against Streptococci. These extended surface structures play key roles in host cell and tissue adherence, paracellular translocation, and biofilm formation of major Gram-positive pathogens such as Streptococcus pyogenes, S. agalactiae, S. pneumoniae as well as in opportunistic and nosocomial pathogens like Enterococci. Here, we discuss the similarities and differences of: (1) the genomic organization of the various regions encoding pilus proteins, (2) the number, type, and assembly of the proteins constituting the pili, (3) their expression and regulation mechanisms, (4) their role in bacterial virulence, and (5) their potential as vaccine candidate antigens.

  14. Galactokinase activity in Streptococcus thermophilus

    SciTech Connect

    Hutkins, R.; Morris, H.A.; McKay, L.L.

    1985-10-01

    ATP-dependent phosphorylation of (/sup 14/C)galactose by 11 strains of streptococcus thermophilus indicated that these organisms possessed the Leloir enzyme, galactokinase (galK). Activities were 10 times higher in fully induced, galactose-fermenting (Gal/sup +/) strains than in galactose-nonfermenting (Gal/sup -/) strains. Lactose-grown, Gal/sup -/ cells released free galactose into the medium and were unable to utilize residual galactose or to induce galK above basal levels. Gal/sup +/ S. thermophilus 19258 also released galactose into the medium, but when lactose was depleted, growth on galactose commenced, and galK increased from 0.025 to 0.22 ..mu..mol of galactose phosphorylated per min per mg of protein. When lactose was added to galactose-grown cells of S. thermophilus 19258, galK activity rapidly decreased. These results suggest that galK in Gal/sup +/ S. thermophilus is subject to an induction-repression mechanism, but that galK cannot be induced in Gal/sup -/ strains.

  15. Borrowed philosophy: bedside physicalism and the need for a sui generis metaphysic of medicine.

    PubMed

    Whatley, Shawn D

    2014-12-01

    The character of medicine has changed over the last 100 years such that medicine is more interested in diseases than the people who suffer from them. Despite notable efforts to address this, the medical humanities do not challenge doctors' fundamental view of the world. Students adopt a metaphysic of physicalism during basic science training that gets carried into medical training. While necessary for medical science, physicalism is insufficient for clinical care. Physicalism offers no foundation for the sine qua non of medicine, the doctor-patient relationship. The character of medicine will not see a renewed interest in humanity until educators address the insufficiency of physicalism for clinical care, and clinicians partner with experts in the humanities to build a sui generis philosophy of medicine. PMID:25040366

  16. Borrowed philosophy: bedside physicalism and the need for a sui generis metaphysic of medicine.

    PubMed

    Whatley, Shawn D

    2014-12-01

    The character of medicine has changed over the last 100 years such that medicine is more interested in diseases than the people who suffer from them. Despite notable efforts to address this, the medical humanities do not challenge doctors' fundamental view of the world. Students adopt a metaphysic of physicalism during basic science training that gets carried into medical training. While necessary for medical science, physicalism is insufficient for clinical care. Physicalism offers no foundation for the sine qua non of medicine, the doctor-patient relationship. The character of medicine will not see a renewed interest in humanity until educators address the insufficiency of physicalism for clinical care, and clinicians partner with experts in the humanities to build a sui generis philosophy of medicine.

  17. Streptococcus orisasini sp. nov. and Streptococcus dentasini sp. nov., isolated from the oral cavity of donkeys.

    PubMed

    Takada, Kazuko; Saito, Masanori; Tsudukibashi, Osamu; Hiroi, Takachika; Hirasawa, Masatomo

    2013-08-01

    Four Gram-positive, catalase-negative, coccoid isolates that were obtained from donkey oral cavities formed two distinct clonal groups when characterized by phenotypic and phylogenetic studies. From the results of biochemical tests, the organisms were tentatively identified as a streptococcal species. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two of the isolates were related most closely to Streptococcus ursoris with 95.6 % similarity based on the 16S rRNA gene and to Streptococcus ratti with 92.0 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates, however, were related to Streptococcus criceti with 95.0 and 89.0 % similarities based on the 16S rRNA and groEL genes, respectively. From both phylogenetic and phenotypic evidence, the four isolates formed two distinct clonal groups and are suggested to represent novel species of the genus Streptococcus. The names proposed for these organisms are Streptococcus orisasini sp. nov. (type strain NUM 1801(T) = JCM 17942(T) = DSM 25193(T)) and Streptococcus dentasini sp. nov. (type strain NUM 1808(T) = JCM 17943(T) = DSM 25137(T)).

  18. Distribution of Streptococcus troglodytae and Streptococcus dentirousetti in chimpanzee oral cavities.

    PubMed

    Miyanohara, Mayu; Imai, Susumu; Okamoto, Masaaki; Saito, Wataru; Nomura, Yoshiaki; Momoi, Yasuko; Tomonaga, Masaki; Hanada, Nobuhiro

    2013-05-01

    The aim of this study was to analyze the distribution and phenotypic properties of the indigenous streptococci in chimpanzee (Pan troglodytes) oral cavities. Eleven chimpanzees (aged from 9 to 44 years, mean ± SD, 26.9 ± 12.6 years) in the Primate Research Institute of Kyoto University were enrolled in this research and brushing bacterial samples collected from them. Streptococci were isolated from the oral cavities of all chimpanzees. The isolates (n = 46) were identified as thirteen species by 16S rRNA genes analysis. The predominant species was Streptococcus sanguinis of mitis streptococci from five chimpanzees (45%). Mutans streptococci were isolated from six chimpanzees (55%). The predominant species in the mutans streptococci were Streptococcus troglodytae from four chimpanzees (36%), this species having been proposed as a novel species by us, and Streptococcus dentirousetti from three chimpanzees (27%). Streptococcus mutans was isolated from one chimpanzee (9%). However, Streptococcus sobrinus, Streptococcus macacae and Streptococcus downei, which are indigenous to human and monkey (Macaca fasciclaris) oral habitats, were not isolated. Of the mutans streptococci, S. troglodytae, S. dentirousetti, and S. mutans possessed strong adherence activity to glass surface.

  19. Helicobacter suis KB1 derived from pig gastric lymphoid follicles induces the formation of gastric lymphoid follicles in mice through the activation of B cells and CD4 positive cells.

    PubMed

    Yamamoto, Koji; Tanaka, Hiroshi; Nishitani, Yosuke; Nishiumi, Shin; Miki, Ikuya; Takenaka, Mamoru; Nobutani, Kentaro; Mimura, Takuya; Ben Suleiman, Yahaya; Mizuno, Shigeto; Kawai, Mikihiko; Uchiyama, Ikuo; Yoshida, Masaru; Azuma, Takeshi

    2011-07-01

    "Helicobacter heilmannii" ("H. heilmannii"), which belongs to the genus Helicobacter, is a group of bacterial species that display a long spiral-shaped morphology. Recent studies have demonstrated that "H. heilmannii" type 1 is actually H. suis, which mainly colonizes the stomachs of various animals and humans. However, the influence of H. suis on gastric diseases remains to be fully elucidated. In this report, we revealed the relationship between natural H. suis infection and follicular gastritis in the pig stomachs. From sequence analysis of the 16S rRNA, urease A, and urease B genes, the presence of H. suis was confirmed in pig gastric lymphoid follicles, and this bacterium was named H. suis KB1. In addition, H. suis KB1 was inoculated into C57BL/6J mice, and the following mouse model of the pathogenesis of follicular gastritis by H. suis infection was established: H. suis KB1 colonizes the mouse stomach, and moreover, induces the development of lymphoid follicles and acquired immune responses characterized by the activation of B cells and CD4 positive cells. These results may lead to better understanding of the relationship between H. suis and gastric diseases, especially follicular gastritis; and furthermore, our findings emphasize the zoonotic aspects of animal-human infection by H. suis.

  20. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus.

    PubMed

    Teng, Jade L L; Huang, Yi; Tse, Herman; Chen, Jonathan H K; Tang, Ying; Lau, Susanna K P; Woo, Patrick C Y

    2014-10-20

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the "sanguinis group." As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the "mitis group." On the basis of the findings, we propose a novel group, named "sinensis group," to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy.

  1. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans.

    PubMed

    Pelkonen, Sinikka; Lindahl, Susanne B; Suomala, Päivi; Karhukorpi, Jari; Vuorinen, Sakari; Koivula, Irma; Väisänen, Tia; Pentikäinen, Jaana; Autio, Tiina; Tuuminen, Tamara

    2013-07-01

    Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) is a zoonotic pathogen for persons in contact with horses. In horses, S. zooepidemicus is an opportunistic pathogen, but human infections associated with S. zooepidemicus are often severe. Within 6 months in 2011, 3 unrelated cases of severe, disseminated S. zooepidemicus infection occurred in men working with horses in eastern Finland. To clarify the pathogen's epidemiology, we describe the clinical features of the infection in 3 patients and compare the S. zooepidemicus isolates from the human cases with S. zooepidemicus isolates from horses. The isolates were analyzed by using pulsed-field gel electrophoresis, multilocus sequence typing, and sequencing of the szP gene. Molecular typing methods showed that human and equine isolates were identical or closely related. These results emphasize that S. zooepidemicus transmitted from horses can lead to severe infections in humans. As leisure and professional equine sports continue to grow, this infection should be recognized as an emerging zoonosis.

  2. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis. [Streptococcus sanguis; Streptococcus faecalis; Escherichia coli

    SciTech Connect

    Houng, H.; Lynn, A.R.; Rosen, B.P.

    1986-11-01

    Calcium transport was investigated in membrane vesicles prepared from the oral bacterium Streptococcus sanguis. Procedures were devised for the preparation of membrane vesicles capable of accumulation /sup 45/Ca/sup 2 +/. Uptake was ATP dependent and did not require a proton motive force. Calcium transport in these vesicles was compared with /sup 45/Ca/sup 2 +/ accumulation in membrane vesicles from Streptococcus faecalis and Escherichia coli. The data support the existence of an ATP-driven calcium pump in S. sanguis similar to that in S. faecalis. This pump, which catalyzes uptake into membrane vesicles, would be responsible for extrusion of calcium from intact cells.

  3. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    SciTech Connect

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.

  4. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE PAGESBeta

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven da