Literature-Based Gene Curation and Proposed Genetic Nomenclature for Cryptococcus
Inglis, Diane O.; Skrzypek, Marek S.; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin
2014-01-01
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. PMID:24813190
Literature-based gene curation and proposed genetic nomenclature for cryptococcus.
Inglis, Diane O; Skrzypek, Marek S; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin; Stajich, Jason E
2014-07-01
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1981-09-01
Preliminary results provide strong evidence to show that the fungi, Candida and Cryptococcus , can be raoidly differentiated by a lectin test. SFor Oro...SUMMATION LECTIN-YEAST INTERACTIONS Objective: To find a lectin that selectively agglutinates Cryptococcus neoformans (the etiologic agent of...peanut), Conavalia ensiformis (Con A) and mango extract may potentially be utilized to differentiate Cryptococcus from the other yeasts most commonly
Molecular detection of fungi of public health importance in wild animals from Southern Brazil.
Losnak, Debora O; Rocha, Francielle R; Almeida, Barbara S; Batista, Keila Z S; Althoff, Sérgio L; Haupt, Josiane; Ruiz, Luciana S; Anversa, Laís; Lucheis, Simone B; Paiz, Laís M; Donalisio, Maria Rita; Richini Pereira, Virginia B
2018-07-01
Some animals have an important relationship with fungal infections, and searching for pathogens in animal samples may be an opportunity for eco-epidemiological research. Since studies involving wildlife are generally restricted, using samples from road kills is an alternative. The aim of this study was to verify whether pathogenic fungi of public health importance occur in wildlife road kills from Santa Catarina State, Brazil. Organ samples (n = 1063) from 297 animals were analysed according to Polymerase Chain Reaction (PCR) using universal primers to detect fungi in general and, subsequently, using primers specific to Paracoccidioides brasiliensis, Histoplasma capsulatum and Cryptococcus spp. There were 102 samples positive for fungal species. Eight samples were positive for P. brasiliensis, three samples were positive for Cryptococcus spp. and one sample had coinfection by these two fungi. No sample was positive for Histoplasma spp. according to the molecular detection. Genetic sequencing allowed the identification of Fungal sp. in 89 samples, Cryptococcus neoformans in two samples and Aspergillus penicillioides in three samples. This study shows the importance of wild animals in the epidemiology of fungal infections and assists in the mapping of pathogen occurrence in a region that was not previously evaluated. © 2018 Blackwell Verlag GmbH.
Profiling a killer, the development of Cryptococcus neoformans
Kozubowski, Lukasz; Heitman, Joseph
2012-01-01
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085
Janbon, Guilhem
2018-01-01
In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.
Nitrogen Source-Dependent Capsule Induction in Human-Pathogenic Cryptococcus Species
Frazzitta, Aubrey E.; Vora, Haily; Price, Michael S.; Tenor, Jennifer L.; Betancourt-Quiroz, Marisol; Toffaletti, Dena L.; Cheng, Nan
2013-01-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO2 (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host. PMID:23975889
Nitrogen source-dependent capsule induction in human-pathogenic cryptococcus species.
Frazzitta, Aubrey E; Vora, Haily; Price, Michael S; Tenor, Jennifer L; Betancourt-Quiroz, Marisol; Toffaletti, Dena L; Cheng, Nan; Perfect, John R
2013-11-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.
Rising to the challenge of multiple Cryptococcus species and the diseases they cause.
Idnurm, Alexander; Lin, Xiaorong
2015-05-01
Cryptococcus neoformans and Cryptococcus gattii are well-studied basidiomyceteous yeasts that are capable of causing disease in healthy and immunocompromised people. The Conference on Cryptococcus and Cryptococcosis (ICCC) is held every three years: the accompanying Special Issue stems from the 9th ICCC and covers a subset of the topics related to these fungi in detail. This conference started with a revised and reduced estimate of disease burden globally, in part due to improved treatment for HIV(+) people. However, mortality from cryptococcosis remains consistently high for those unfortunate to have limited access to therapies or without underlying immunodeficiencies. As such, there are yet still great distances to be covered to address antifungal drug availability, the need for new antifungal agents and the timing and doses of these agents in conjunction with antiviral therapy, underscoring the importance of continued research. A notable point from the 9th ICCC was the research addressing the variation in the pathogen and host populations. Analysis of cryptococcal strain variability, particularly at the molecular level, has resolved distinct lineages with the consequence of a taxonomic revision that divides C. neoformans and C. gattii into seven Cryptococcus species. Similarly, analysis of host factors in so called "immune-competent" individuals revealed previously unrecognized risk factors. Research on these species has established them as important model organisms to understand gene evolution and function in other fungi and eukaryotes. The stage is set for the refinement of research directions, leading ultimately to better treatment of this monophyletic clade of pathogens in the genus Cryptococcus. Copyright © 2015 Elsevier Inc. All rights reserved.
Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.
Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo
2010-08-01
A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.
Amoeba provide insight into the origin of virulence in pathogenic fungi.
Casadevall, Arturo
2012-01-01
Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.
Gomes, Felipe E E S; Arantes, Thales D; Fernandes, José A L; Ferreira, Leonardo C; Romero, Héctor; Bosco, Sandra M G; Oliveira, Maria T B; Del Negro, Gilda M B; Theodoro, Raquel C
2018-01-01
Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of Cryptococcus neoformans and Cryptococcus gattii , which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i) they are polymorphic sequences; (ii) their self-splicing is inhibited by some drugs; and (iii) their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial LSU rRNA gene in 77 Cryptococcus isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the LSU rRNA gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic ( p < 0.001). Further virulence assays are needed to confirm this finding. In addition, in vitro antifungal tests indicated that the presence of LSU rRNA introns may influence the minimum inhibitory concentration (MIC) of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of Cryptococcus as potential molecular markers for antifungal resistance, as well as therapeutic targets.
Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi
Fortwendel, Jarrod R.
2013-01-01
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence. PMID:24855584
Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi
de Paula e Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Gullo, Fernanda Patrícia; Sangalli-Leite, Fernanda; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Rossi, Suélen Andrea; Benaducci, Tatiane; Wolf, Vanessa Gonçalves; Regasini, Luis Octávio; Petrônio, Maicon Segalla; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José Soares
2014-01-01
This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14) compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI) documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action. PMID:25505923
Patel, Kunal D; Scarano, Frank J; Kondo, Miwako; Hurta, Robert A R; Neto, Catherine C
2011-12-28
Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 μg/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.
Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.
Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader
2013-01-01
Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.
Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto
2015-01-09
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing
2011-04-01
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.
Findley, Keisha; Sun, Sheng; Fraser, James A; Hsueh, Yen-Ping; Averette, Anna Floyd; Li, Wenjun; Dietrich, Fred S; Heitman, Joseph
2012-01-01
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.
Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome
Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.
2016-01-01
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984
Sexual Reproduction of Human Fungal Pathogens
Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.
2014-01-01
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958
Innate Immunity against Cryptococcus, from Recognition to Elimination
Wormley, Floyd L.
2018-01-01
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906
Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings
Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J.; Zia, Mohammadali; Pestechian, Nader
2013-01-01
Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases. PMID:23901339
3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.
Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław
2013-05-03
We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. Copyright © 2013 Elsevier Inc. All rights reserved.
Vanhove, Mathieu; Beale, Mathew A; Rhodes, Johanna; Chanda, Duncan; Lakhi, Shabir; Kwenda, Geoffrey; Molloy, Sile; Karunaharan, Natasha; Stone, Neil; Harrison, Thomas S; Bicanic, Tihana; Fisher, Matthew C
2017-04-01
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Freij, Joudeh B.; Hann-Soden, Christopher; Taylor, John
2017-01-01
ABSTRACT Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages. PMID:28435888
Casadevall, Arturo; Freij, Joudeh B; Hann-Soden, Christopher; Taylor, John
2017-01-01
Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages.
Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai
2016-06-29
Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.
Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections.
Taghavi, Mehdi; Khosravi, Alireza; Mortaz, Esmaeil; Nikaein, Donya; Athari, Seyyed Shamsadin
2017-08-05
Recent years have seen the rise of invasive fungal infections, which are mostly due to the increase in patients. Three major opportunistic fungal species in human are Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans that pose the biggest concern for these immunocompromised patients' mortality. The growing occurrence of opportunistic fungal infections has sparked the interest to understand defense mechanisms against pathogenic fungi. Toll-like receptors (TLRs), as a part of innate immune system, play an important role for recognizing the invading microorganisms and initiating sufficient immune responses. Recent studies have revealed an integrated role for TLR, signaling inactivating immune defense mechanisms against exact fungi. Among TLRs, TLR2 and TLR4 are the major participants in fungi recognition. The present paper highlights the role of TLR participants in fungal recognition as well as their mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2012-01-01
Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.
Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander
2012-01-01
The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925
Litvintseva, Anastasia P.; Carbone, Ignazio; Rossouw, Jenny; Thakur, Rameshwari; Govender, Nelesh P.; Mitchell, Thomas G.
2011-01-01
Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis – an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm. PMID:21589919
Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia
2013-01-01
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966
Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia
2014-04-01
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus.
Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R
2017-06-01
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha
2014-01-01
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoformans. High CO2 conditions induced robust development of monokaryotic hyphae and spores in C. gattii. Conversely, high CO2 completely repressed hyphae development in sexual mating. Both CAN1 and CAN2 were dispensable for CO2 induced morphogenetic transitions. However, C. gattii CAN2 was essential for growth in ambient air similar to its reported role in C. neoformans. Both can1 and can2 mutants retained full pathogenic potential in vitro and in vivo. These results provide insight into C. gattii adaptation for arboreal growth and production of infectious propagules by β-CA independent mechanism(s).
Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha
2014-01-01
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoformans. High CO2 conditions induced robust development of monokaryotic hyphae and spores in C. gattii. Conversely, high CO2 completely repressed hyphae development in sexual mating. Both CAN1 and CAN2 were dispensable for CO2 induced morphogenetic transitions. However, C. gattii CAN2 was essential for growth in ambient air similar to its reported role in C. neoformans. Both can1 and can2 mutants retained full pathogenic potential in vitro and in vivo. These results provide insight into C. gattii adaptation for arboreal growth and production of infectious propagules by β-CA independent mechanism(s). PMID:25478697
Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.
Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot; Paulitz, Timothy
2017-01-01
In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.
Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning
2015-04-01
Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s). © 2015 FEBS.
Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine.
Waller, Stefanie Bressan; Cleff, Marlete Brum; Serra, Emanoele Figueiredo; Silva, Anna Luiza; Gomes, Angelita Dos Reis; de Mello, João Roberto Braga; de Faria, Renata Osório; Meireles, Mário Carlos Araújo
2017-03-01
This work aimed to review the main plants of Lamiaceae family with activity against pathogenic fungi of medical and veterinary interest. Published studies in the main international databases between January 2002 and June 2016 showed that 55 botanical species belonging to 27 genus presented antifungal activity in different forms of extractions, mainly essential oils. Pathogenic fungi of Aspergillus spp., Candida spp., Malassezia spp., Cryptococcus spp., Sporothrix spp., Microsporum spp., Trichophyton spp. and Epidermophyton spp. genus were in vitro sensitive to several plants of Lamiaceae family. Chemical molecules isolated were described as promising use as antifungals in mycoses, highlighting estragole, 1,8-cineole, terpineol-4, γ-terpinene, among others. However, it should be alert to need of universal standardization in the laboratories tests with natural products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gilbert, Nicole M.; Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2012-01-01
ABSTRACT Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. PMID:22354955
Cell wall proteome of pathogenic fungi.
Karkowska-Kuleta, Justyna; Kozik, Andrzej
2015-01-01
A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.
Nenoff, P; Reinel, D; Krüger, C; Grob, H; Mugisha, P; Süß, A; Mayser, P
2015-07-01
Besides dermatophytoses, a broad range of cutaneous infections due to yeasts and moulds may occur in subtropical and tropical countries where they can affect travellers. Not to be forgotten are endemic occurring dimorphic or biphasic fungi in countries with hot climate, which cause systemic and secondary cutaneous infections in immunosuppressed and immunocompetent people. In the tropics, the prevalence of pityriasis versicolor, caused by the lipophilic yeast Malassezia spp., is about 30-40 %, in distinct areas even 50 %. Increased hyperhidrosis under tropical conditions and simultaneously humidity congestion have to be considered as significant disposing factors for pityriasis versicolor. In tropical countries, therefore, an exacerbation of a preexisting pityriasis versicolor in travellers is not rare. Today, mostly genital yeast infections due to the new species Candida africana can be found worldwide. Due to migration from Africa this yeast pathogen has reached Germany and Europe. Eumycetomas due to mould fungi are rarely diagnosed in Europe. These deep cutaneous mould infections are only found in immigrants from African countries. The therapy of eumycetoma is protracted and often not successful. Cutaneous cryptococcoses due to the yeast species Cryptococcus neoformans and Cryptococcus gattii occur worldwide; however, they are found more frequently in the tropics. Immunosuppressed patients, especially those with HIV/AIDS, are affected by cryptococcoses. Furthermore, Cryptococcus gattii also causes infections in immunocompetent hosts in Central Africa, Australia, California, and Central America.Rarely found are infections due to dimorphic fungi after travel to countries where these fungal pathogens are endemic. In individual cases, cutaneous or lymphogenic transferred sporotrichosis due to Sporothrix schenkii can occur. Furthermore, scarcely known is secondary cutaneous coccidioidomycosis due to Coccidioides immitis after travelling to desert-like endemic regions in southwestern states of the United States and in Latin America, where primary respiratory infection due to this biphasic fungus can be acquired. The antifungal agent itraconazole is the treatment of choice for sporotrichosis and coccidioidomycosis. Talaromyces marneffei-until recently known as Penicillium marneffei-is only found in Southeastern Asia. Mycosis due to this dimorphic fungus has to be considered as an AIDS-defining opportunistic infection. After hematogeneous spread, Talaromyces marneffei affects the skin and mucous membranes of the mouth. Amphotericin B and itraconazole can be used for therapy.
Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems
Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot
2017-01-01
In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists. PMID:28898288
Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J Andrew
2018-05-16
Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans , these pH changes are primarily sensed by the fungal-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, likely promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly-related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes such as alterations in pH. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.
Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L
2015-05-01
Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.
Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.
de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio
2015-11-01
Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.
Thornton, Christopher R
2009-05-01
Pseudallescheria boydii has long been known to cause white grain mycetoma in immunocompetent humans, but it has recently emerged as an opportunistic pathogen of humans, causing potentially fatal invasive infections in immunocompromised individuals and evacuees of natural disasters, such as tsunamis and hurricanes. The diagnosis of P. boydii is problematic since it exhibits morphological characteristics similar to those of other hyaline fungi that cause infectious diseases, such as Aspergillus fumigatus and Scedosporium prolificans. This paper describes the development of immunoglobulin M (IgM) and IgG1 kappa-light chain monoclonal antibodies (MAbs) specific to P. boydii and certain closely related fungi. The MAbs bind to an immunodominant carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and hyphal cell walls of P. boydii and Scedosporium apiospermum. The MAbs do not react with S. prolificans, Scedosporium dehoogii, or a large number of clinically relevant fungi, including A. fumigatus, Candida albicans, Cryptococcus neoformans, Fusarium solani, and Rhizopus oryzae. The MAbs were used in immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to accurately differentiate P. boydii from other infectious fungi and to track the pathogen in environmental samples. Specificity of the DAS-ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of environmental isolates.
Cotesta, Simona; Perruccio, Francesca; Knapp, Britta; Fu, Yue; Studer, Christian; Pries, Verena; Riedl, Ralph; Helliwell, Stephen B.; Petrovic, Katarina T.; Movva, N. Rao; Sanglard, Dominique; Tao, Jianshi; Hoepfner, Dominic
2016-01-01
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. PMID:27855158
Fungi from interior organs of free-living small mammals in Czechoslovakia and Yugoslavia.
Hubálek, Z; Rosický, B; Otcenásek, M
1980-01-01
A total of 308 fungi was isolated from interior organs (lungs, spleen, liver) of 529 small mammals belonging to 21 species, 7 families and 3 orders (Insectivora, Chiroptera, Rodentia), some of these being potentially pathogenic to vertebrates (e.g. Aspergillus flavus, A. fumigatus, Geotrichum candidum, Mucor pusillus, Rhizopus arrhizus). In one vole (Microtus arvalis) captured in South Moravia, adiaspiromycosis (Emmonsia crescens) was demonstrated. Comparison of mycoflora of hair and that of interior organs of wild small mammals revealed that out of the total number of isolates the following fungi were represented in a higher proportion from visceral organs than from the hair: Aspergillus (A. amstelodami, A. flavus, A. repens), Aureobasidium (A. pullulans), Candida, Cladosporium (C. herbarum), Cryptococcus, Fusarium, Gliocladium (G. deliquescens), Helminthosporium, Kloeckera, Mucor (M. fragilis, M. hiemalis, M. pusillus), Paecilomyces marquandii, Penicillium (P. purpurogenum), Phoma, Rhizopus arrhizus, Scopulariopsis (S. candida, S. koningii) and Torulopsis.
[Groups and sources of yeasts in house dust].
Glushakova, A M; Zheltikova, T M; Chernov, I Iu
2004-01-01
House dust contains bacteria, mycelial fungi, microarthropods, and yeasts. The house dust samples collected in 25 apartments in Moscow and the Moscow region were found to contain yeasts belonging to the genera Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, and Trichosporon. The most frequently encountered microorganisms were typical epiphytic yeasts, such as Cryptococcus diffluens and Rhodotorula mucilaginosa, which are capable of long-term preservation in an inactive state. The direct source of epiphytic yeasts occurring in the house dust might be the indoor plants, which were contaminated with these yeasts, albeit to a lesser degree than outdoor plants. Along with the typical epiphytic yeasts, the house dust contained the opportunistic yeast pathogens Candida catenulata, C. guillermondii, C. haemulonii, C. rugosa, and C. tropicalis, which are known as the causal agents of candidiasis. We failed to reveal any correlation between the abundance of particular yeast species in the house dust, residential characteristics, and the atopic dermatitis of the inhabitants.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R.; Brennan, Richard G.
2017-01-01
SUMMARY Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. PMID:28298477
Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.
Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A
1993-04-01
Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.
Supaphon, Preuttiporn; Phongpaichit, Souwalak; Rukachaisirikul, Vatcharin; Sakayaroj, Jariya
2013-01-01
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodocea serrulata (Family Cymodoceaceae), Halophila ovalis and Thalassia hemprichii (Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporum gypseum and Penicillium marneffei . Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C . serrulata , Trichoderma spp. PSU-ES8 and PSU-ES38 from H . ovalis , and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T . hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses. PMID:23977310
Supaphon, Preuttiporn; Phongpaichit, Souwalak; Rukachaisirikul, Vatcharin; Sakayaroj, Jariya
2013-01-01
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae), Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.
Iron and copper as virulence modulators in human fungal pathogens.
Ding, Chen; Festa, Richard A; Sun, Tian-Shu; Wang, Zhan-You
2014-07-01
Fungal pathogens have evolved sophisticated machinery to precisely balance the fine line between acquiring essential metals and defending against metal toxicity. Iron and copper are essential metals for many processes in both fungal pathogens and their mammalian hosts, but reduce viability when present in excess. However, during infection, the host uses these two metals differently. Fe has a long-standing history of influencing virulence in pathogenic fungi, mostly in regards to Fe acquisition. Numerous studies demonstrate the requirement of the Fe acquisition pathway of Candida, Cryptococcus and Aspergillus for successful systemic infection. Fe is not free in the host, but is associated with Fe-binding proteins, leading fungi to develop mechanisms to interact with and to acquire Fe from these Fe-bound proteins. Cu is also essential for cell growth and development. Essential Cu-binding proteins include Fe transporters, superoxide dismutase (SOD) and cytochrome c oxidase. Although Cu acquisition plays critical roles in fungal survival in the host, recent work has revealed that Cu detoxification is extremely important. Here, we review fungal responses to altered metal conditions presented by the host, contrast the roles of Fe and Cu during infection, and outline the critical roles of fungal metal homeostasis machinery at the host-pathogen axis. © 2014 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain inhibi...
Johnston, Simon A; May, Robin C
2013-03-01
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.
Cryptococcus albidus infection in a California sea lion (Zalophus californianus).
Mcleland, Shannon; Duncan, Colleen; Spraker, Terry; Wheeler, Elizabeth; Lockhart, Shawn R; Gulland, Frances
2012-10-01
Sporadic cases of cryptococcosis have been reported in marine mammals, typically due to Cryptococcus neoformans and, more recently, to Cryptococcus gattii in cetaceans. Cryptococcus albidus, a ubiquitous fungal species not typically considered to be pathogenic, was recovered from a juvenile California sea lion (Zalophus californianus) rescued near San Francisco Bay, California. Yeast morphologically consistent with a Cryptococcus sp. was identified histologically in a lymph node and C. albidus was identified by an rDNA sequence from the lung. Infection with C. albidus was thought to have contributed to mortality in this sea lion, along with concurrent bacterial pneumonia. Cryptococcus albidus should be considered as a potential pathogen with a role in marine mammal morbidity and mortality.
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R; Brennan, Richard G; Cramer, Robert A
2017-06-01
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans , Cryptococcus neoformans , and Aspergillus fumigatus . While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. Copyright © 2017 American Society for Microbiology.
Stress signaling pathways for the pathogenicity of Cryptococcus.
Bahn, Yong-Sun; Jung, Kwang-Woo
2013-12-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.
Stress Signaling Pathways for the Pathogenicity of Cryptococcus
Jung, Kwang-Woo
2013-01-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas. PMID:24078305
Antifungal susceptibilities of Cryptococcus neoformans.
Archibald, Lennox K; Tuohy, Marion J; Wilson, Deborah A; Nwanyanwu, Okey; Kazembe, Peter N; Tansuphasawadikul, Somsit; Eampokalap, Boonchuay; Chaovavanich, Achara; Reller, L Barth; Jarvis, William R; Hall, Gerri S; Procop, Gary W
2004-01-01
Susceptibility profiles of medically important fungi in less-developed countries remain uncharacterized. We measured the MICs of amphotericin B, 5-flucytosine, fluconazole, itraconazole, and ketoconazole for Cryptococcus neoformans clinical isolates from Thailand, Malawi, and the United States and found no evidence of resistance or MIC profile differences among the countries.
Lu, Weiping; Gu, Dayong; Chen, Xingyun; Xiong, Renping; Liu, Ping; Yang, Nan; Zhou, Yuanguo
2010-10-01
The traditional techniques for diagnosis of invasive fungal infections in the clinical microbiology laboratory need improvement. These techniques are prone to delay results due to their time-consuming process, or result in misidentification of the fungus due to low sensitivity or low specificity. The aim of this study was to develop a method for the rapid detection and identification of fungal pathogens. The internal transcribed spacer two fragments of fungal ribosomal DNA were amplified using a polymerase chain reaction for all samples. Next, the products were hybridized with the probes immobilized on the surface of a microarray. These species-specific probes were designed to detect nine different clinical pathogenic fungi including Candida albicans, Candida tropocalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida guilliermondii, Candida keyfr, and Cryptococcus neoformans. The hybridizing signals were enhanced with gold nanoparticles and silver deposition, and detected using a flatbed scanner or visually. Fifty-nine strains of fungal pathogens, including standard and clinically isolated strains, were correctly identified by this method. The sensitivity of the assay for Candida albicans was 10 cells/mL. Ten cultures from clinical specimens and 12 clinical samples spiked with fungi were also identified correctly. This technique offers a reliable alternative to conventional methods for the detection and identification of fungal pathogens. It has higher efficiency, specificity and sensitivity compared with other methods commonly used in the clinical laboratory.
Araujo, Glauber de S; Fonseca, Fernanda L; Pontes, Bruno; Torres, Andre; Cordero, Radames J B; Zancopé-Oliveira, Rosely M; Casadevall, Arturo; Viana, Nathan B; Nimrichter, Leonardo; Rodrigues, Marcio L; Garcia, Eloi S; Souza, Wanderley de; Frases, Susana
2012-01-01
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.
Antifungal Susceptibilities of Cryptococcus neoformans
Tuohy, Marion J.; Wilson, Deborah A.; Nwanyanwu, Okey; Kazembe, Peter N.; Tansuphasawadikul, Somsit; Eampokalap, Boonchuay; Chaovavanich, Achara; Reller, L.Barth; Jarvis, William R.; Hall, Gerri S.; Procop, Gary W.
2004-01-01
Susceptibility profiles of medically important fungi in less-developed countries remain uncharacterized. We measured the MICs of amphotericin B, 5-flucytosine, fluconazole, itraconazole, and ketoconazole for Cryptococcus neoformans clinical isolates from Thailand, Malawi, and the United States and found no evidence of resistance or MIC profile differences among the countries. PMID:15078612
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species
Watkins, Rhys A.; Johnston, Simon A.
2017-01-01
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans. PMID:28974017
Travassos, Luiz R.; Taborda, Carlos P.
2017-01-01
Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition. PMID:28344577
Kim, Min Su; Ko, Young-Joon; Maeng, Shinae; Floyd, Anna; Heitman, Joseph; Bahn, Yong-Sun
2010-08-01
Carbon dioxide (CO(2)) sensing and metabolism via carbonic anhydrases (CAs) play pivotal roles in survival and proliferation of pathogenic fungi infecting human hosts from natural environments due to the drastic difference in CO(2) levels. In Cryptococcus neoformans, which causes fatal fungal meningoencephalitis, the Can2 CA plays essential roles during both cellular growth in air and sexual differentiation of the pathogen. However the signaling networks downstream of Can2 are largely unknown. To address this question, the present study employed comparative transcriptome DNA microarray analysis of a C. neoformans strain in which CAN2 expression is artificially controlled by the CTR4 (copper transporter) promoter. The P(CTR4)CAN2 strain showed growth defects in a CO(2)-dependent manner when CAN2 was repressed but resumed normal growth when CAN2 was overexpressed. The Can2-dependent genes identified by the transcriptome analysis include FAS1 (fatty acid synthase 1) and GPB1 (G-protein beta subunit), supporting the roles of Can2 in fatty acid biosynthesis and sexual differentiation. Cas3, a capsular structure designer protein, was also discovered to be Can2-dependent and yet was not involved in CO(2)-mediated capsule induction. Most notably, a majority of Can2-dependent genes were environmental stress-regulated (ESR) genes. Supporting this, the CAN2 overexpression strain was hypersensitive to oxidative and genotoxic stress as well as antifungal drugs, such as polyene and azole drugs, potentially due to defective membrane integrity. Finally, an oxidative stress-responsive Atf1 transcription factor was also found to be Can2-dependent. Atf1 not only plays an important role in diverse stress responses, including thermotolerance and antifungal drug resistance, but also represses melanin and capsule production in C. neoformans. In conclusion, this study provides insights into the comprehensive signaling networks orchestrated by CA/CO(2)-sensing pathways in pathogenic fungi.
2011-06-01
Cryptococcus gattii, a pathogenic environmental fungus believed to have been introduced onto Vancouver Island, British Columbia, Canada in 1999, is...factors‖ others such as Crytococcus gattii, are emerging with altered virulence and geographic ranges. Cryptococcus gattii, a pathogenic environmental
Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S
2012-08-01
Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.
Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid
1998-01-01
Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126
Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi
2013-04-01
The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.
Mycological contamination in dental unit waterlines in Istanbul, Turkey
Kadaifciler, Duygu Göksay; Ökten, Suzan; Sen, Burhan
2013-01-01
Studies on dental units (DUs) are conducted either for the prevention or the reduction of the density of bacterial contamination in dental unit waterlines (DUWLs). However, the existence of fungi in the these systems requires more attention. During dental treatment, direct contact with water contaminated with fungi such as Candida, Aspergillus, or inhalation of aerosols from high-speed drill may cause various respiratory infections, such as asthma, allergies, and wounds on mucose membranes, especially on immunocompromised patients and dentists. The aims of this study are to investigate the number and colonization of fungi in DUWLs in the city of Istanbul, Turkey. Water samples were collected from air-water syringes, high-speed drills, and inlet waters from 41 DUs. The aerobic mesophilic fungi count in high- speed drills was higher than inlet waters and air-water syringes. Non-sporulating fungi were found in 7 DUs. The isolated fungi were identified as Penicillium waksmanii, Cladosporium spp., Penicillium spp., Candida famata, Cryptococcus laurentii, Candida guilliermondii, Penicillium verrucosum, Aspergillus pseudoglaucus, Penicillium decumbens, and Acremonium sp. Some of these fungal genera are known as opportunistic pathogens that led to respiratory diseases such as allergic rhinits. This study shows the importance of regular control of mycological contamination on water at DUs. PMID:24516467
A technique to artificially infest beech bark with beech scale, Cryptococcus fagisuga (Lindinger)
David R. Houston
1982-01-01
Beech bark disease is initiated when bark of beech trees (Fagus spp.) is attacked by the beech scale, Cryptococcus fagisuga Lindinger. The effects of the insect predispose tissues to bark cankering fungi of the genus Nectria. Critical studies of insect-fungus-host interactions had been stymied by the inability to...
Yadav, Vikas; Billmyre, R. Blake; Cuomo, Christina A.; Nowrousian, Minou; Wang, Liuyang; Souciet, Jean-Luc; Boekhout, Teun; Porcel, Betina; Wincker, Patrick; Granek, Joshua A.; Sanyal, Kaustuv; Heitman, Joseph
2017-01-01
Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species. PMID:28800596
Ranjan, R; Jain, D; Singh, L; Iyer, V K; Sharma, M C; Mathur, S R
2015-08-01
The correct identification of fungal organisms is important for the appropriate clinical management of patients. It becomes difficult in necrotic smears when the tissue response is not clearly discernible. It is difficult to distinguish between histoplasma and cryptococcus in severely necrotic cases, where both appear as variably sized clear refractile haloes. Four cases of adrenal necrotic histoplasma infection were studied and the morphology was compared with that of non-necrotic histoplasmosis and cases of cryptococcal infection. Eleven cases were analysed in fine needle aspiration cytology (FNAC) smears. Ziehl-Neelsen (ZN) stain was performed to exclude tuberculosis in necrotic smears. A clinical and serology correlation was performed where available. Necrotic cases of histoplasma infection revealed negative refractile clear haloes similar to those of cryptococcus. Histoplasma showed methylene blue-stained organisms in ZN stains, whereas the cryptococcus cases were negative. Similar methylene blue-stained organisms were seen in non-necrotic histoplasma infection. As a result of morphological overlap between cryptococcus and histoplasma, the distinction between the two fungi can be difficult in many cases. ZN staining appears to have a role in the differentiation of these fungi in severely necrotic cases. This observation needs to be validated on a larger number of cases with complete correlation with clinical, serology and treatment records. © 2014 John Wiley & Sons Ltd.
Gerwien, Franziska; Skrahina, Volha; Kasper, Lydia; Brunke, Sascha
2017-01-01
Abstract Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the ‘nutritional immunity’, in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species—focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species—not the least to exploit this knowledge for new antifungal strategies. PMID:29069482
A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.
Rank, Leslie A; Walsh, Naomi M; Liu, Runhui; Lim, Fang Yun; Bok, Jin Woo; Huang, Mingwei; Keller, Nancy P; Gellman, Samuel H; Hull, Christina M
2017-10-01
Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus , reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus , including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies. Copyright © 2017 American Society for Microbiology.
Sundaram, Challa; Shantveer, G Uppin; Umabala, Pamidi; Lakshmi, Vemu
2014-01-01
Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15), Zygomycetes (4/5), and fungi with both hyphal and yeast morphology (4/4) showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.
Alves, Gleica Soyan Barbosa; Freire, Ana Karla Lima; Bentes, Amaury Dos Santos; Pinheiro, José Felipe de Souza; de Souza, João Vicente Braga; Wanke, Bodo; Matsuura, Takeshi; Jackisch-Matsuura, Ani Beatriz
2016-08-01
Cryptococcus neoformans and Cryptococcus gattii are the main causative agents of cryptococcosis, a systemic fungal disease that affects internal organs and skin, and which is acquired by inhalation of spores or encapsulated yeasts. It is currently known that the C. neoformans/C. gattii species complex has a worldwide distribution, however, some molecular types seem to prevail in certain regions. Few environmental studies of Cryptococcus have been conducted in the Brazilian Amazon. This is the first ecological study of the pathogenic fungi C. neoformans/C. gattii species complex in the urban area of Manaus, Amazonas, Brazil. A total of 506 samples from pigeon droppings (n = 191), captive bird droppings (n = 60) and tree hollows (n = 255) were collected from June 2012 to January 2014 at schools and public buildings, squares, pet shops, households, the zoo and the bus station. Samples were plated on niger seed agar (NSA) medium supplemented with chloramphenicol and incubated at 25°C for 5 days. Dark-brown colonies were isolated and tested for thermotolerance at 37°C, cycloheximide resistance and growth on canavanine-glycine-bromothymol blue agar. Molecular typing was done by PCR-RFLP. Susceptibility to the antifungal drugs amphotericin B, fluconazole, itraconazole and ketoconazole was tested using Etest(®) strips. In total, 13 positive samples were obtained: one tree hollow (C. gattiiVGII), nine pigeon droppings (C. neoformansVNI) and three captive bird droppings (C. neoformansVNI). The environmental cryptococcal isolates found in this study were of the same molecular types as those responsible for infections in Manaus. © 2016 Blackwell Verlag GmbH.
FUNGI ISOLATED FROM THE EXCRETA OF WILD BIRDS IN SCREENING CENTERS IN PELOTAS, RS, BRAZIL
Mendes, Josiara Furtado; Albano, Ana Paula Neuschrank; Coimbra, Marco Antônio A.; de Ferreira, Gracialda Ferreira; Gonçalves, Carolina Lambrecht; Nascente, Patrícia da Silva; de Mello, João Roberto Braga
2014-01-01
The identification of the fungal species belonging to the healthy microflora in animals is a precondition for the recognition of pathological processes causing them. The aim of this study was to investigate the presence of potentially pathogenic fungi in the feces of wild birds collected in Screening Centers. Samples were collected from the feces of 50 cages with different species of birds. The samples were processed according to the modified method STAIB and the plates incubated at 32 °C for up to ten days with daily observation for detection of fungal growth. The isolation of the following species was observed: Malassezia pachydermatis, Candida albicans, C. famata, C. guilliermondii, C. sphaerica, C. globosa, C. catenulata, C. ciferri, C. intermedia, Cryptococcus laurentii, Trichosporon asahii, Geotrichum klebahnii, Aspergillus spp., A. niger and Penicillium spp. Knowing the character of some opportunistic fungi is important in identifying them, facilitating the adoption of preventive measures, such as proper cleaning of cages, since the accumulation of excreta may indicate a risk for both health professionals and centers for screening public health. PMID:25351548
Dadachova, Ekaterina; Bryan, Ruth A; Howell, Robertha C; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo
2008-04-01
Melanized microorganisms are often found in environments with very high background radiation levels such as in nuclear reactor cooling pools and the destroyed reactor in Chernobyl. These findings and the laboratory observations of the resistance of melanized fungi to ionizing radiation suggest a role for this pigment in radioprotection. We hypothesized that the radioprotective properties of melanin in microorganisms result from a combination of physical shielding and quenching of cytotoxic free radicals. We have investigated the radioprotective properties of melanin by subjecting the human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum in their melanized and non-melanized forms to sublethal and lethal doses of radiation of up to 8 kGy. The contribution of chemical composition, free radical presence, spatial arrangement, and Compton scattering to the radioprotective properties of melanin was investigated by high-performance liquid chromatography, electron spin resonance, transmission electron microscopy, and autoradiographic techniques. Melanin protected fungi against ionizing radiation and its radioprotective properties were a function of its chemical composition, free radical quenching, and spherical spatial arrangement.
Blundell, Ross D; Williams, Simon J; Arras, Samantha D M; Chitty, Jessica L; Blake, Kirsten L; Ericsson, Daniel J; Tibrewal, Nidhi; Rohr, Jurgen; Koh, Y Q Andre E; Kappler, Ulrike; Robertson, Avril A B; Butler, Mark S; Cooper, Matthew A; Kobe, Bostjan; Fraser, James A
2016-09-09
Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.
Nyazika, Tinashe K.; Robertson, Valerie J.; Nherera, Brenda; Mapondera, Prichard T.; Meis, Jacques F.; Hagen, Ferry
2015-01-01
Summary Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. Cryptococcus gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with amplified fragment length polymorphism genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. PMID:26661484
McTaggart, Lisa R.; Lei, Eric; Richardson, Susan E.; Hoang, Linda; Fothergill, Annette; Zhang, Sean X.
2011-01-01
Compared to DNA sequence analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability. PMID:21653762
Bacterial and fungal flora of seagull droppings in Jersey
Cragg, John; Clayton, Yvonne M.
1971-01-01
In Jersey 166 fresh and 122 dried seagull droppings were obtained and studied locally and in London for the presence of bacteria and fungi of potentially pathogenic nature. There were no salmonella or shigella bacteria isolated from the two groups but there was a high proportion of Candida albicans obtained from the fresh material (21·7%) and only 1·6% from the dry faeces. Cryptococcus neoformans and Histoplasma capsulatum were not found in either the dry or fresh droppings. The normal bacterial and fungal flora of the seagull was established and it is considered that the C. albicans in fresh gull droppings would not materially increase albicans infections in man. PMID:5104846
Establishing an unusual cell type: How to make a dikaryon
Kruzel, Emilia K.; Hull, Christina M.
2010-01-01
Summary The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development. PMID:21036099
Gerstein, Aleeza C; Nielsen, Kirsten
2017-04-01
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Innate Immune Responses to Cryptococcus.
Heung, Lena J
2017-09-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus , primarily the species C. neoformans , is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Innate Immune Responses to Cryptococcus
Heung, Lena J.
2017-01-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system. PMID:28936464
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-01-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-06-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.
Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.
Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C
2010-09-30
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.
Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2011-09-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.
Cryptococcus gattii: where do we go from here?
Harris, Julie; Lockhart, Shawn; Chiller, Tom
2012-02-01
Infections caused by the emerging pathogen Cryptococcus gattii are increasing in frequency in North America. During the past decade, interest in the pathogen has continued to grow, not only in North America but also in other areas of the world where infections have recently been documented. This review synthesizes existing data and raises issues that remain to be addressed.
USDA-ARS?s Scientific Manuscript database
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoform...
Advances in Cryptococcus genomics: insights into the evolution of pathogenesis.
Cuomo, Christina A; Rhodes, Johanna; Desjardins, Christopher A
2018-01-01
Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.
Cavitary Lung Disease in an HIV-Positive Patient
2009-04-01
Cryptococcus neoformans, and cytomegalovirus. She was treated with anidulafungin for aspergillosis. Discussion Pulmonary cavitation begins with...Histoplasma, Coccidioides, Blastomyces) and opportunistic pathogens (Aspergillus, Cryptococcus , Zygomycetes, Pneumocystis) Parasites: Paragonimus
Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2011-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host. PMID:21784998
Nyazika, Tinashe K; Robertson, Valerie J; Nherera, Brenda; Mapondera, Prichard T; Meis, Jacques F; Hagen, Ferry
2016-03-01
Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. C. gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with AFLP genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. © 2015 Blackwell Verlag GmbH.
Banks, Isaac R.; Specht, Charles A.; Donlin, Maureen J.; Gerik, Kimberly J.; Levitz, Stuart M.; Lodge, Jennifer K.
2005-01-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30°C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37°C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Δ and the csr2Δ mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target. PMID:16278457
Banks, Isaac R; Specht, Charles A; Donlin, Maureen J; Gerik, Kimberly J; Levitz, Stuart M; Lodge, Jennifer K
2005-11-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.
Simwami, Sitali P.; Khayhan, Kantarawee; Henk, Daniel A.; Aanensen, David M.; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E.; Harrison, Thomas S.; Donnelly, Christl A.; Fisher, Matthew C.
2011-01-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen. PMID:21573144
Ngamskulrungroj, Popchai; Himmelreich, Uwe; Breger, Julia A.; Wilson, Christabel; Chayakulkeeree, Methee; Krockenberger, Mark B.; Malik, Richard; Daniel, Heide-Marie; Toffaletti, Dena; Djordjevic, Julianne T.; Mylonakis, Eleftherios; Meyer, Wieland; Perfect, John R.
2009-01-01
The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1Δ, R265tps2Δ, and R265nth1Δ mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1Δ and R265tps2Δ mutants, which could not grow and died, respectively, at 37°C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2Δ is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1Δ mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1Δ mutant was not due solely to its 37°C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species. PMID:19651856
Simwami, Sitali P; Khayhan, Kantarawee; Henk, Daniel A; Aanensen, David M; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E; Harrison, Thomas S; Donnelly, Christl A; Fisher, Matthew C
2011-04-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
USDA-ARS?s Scientific Manuscript database
Cryptococcus flavescens OH 182.9 (NRRL Y-30216) is a biocontrol antagonist which has been shown to be effective in managing Fusarium head blight in wheat. Cryptococcus flavescens works by colonizing the wheat spikelet and competing with potential pathogens for the limited resources available. Know...
Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704
Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.
Rodrigues, Marcio L; Nakayasu, Ernesto S; Almeida, Igor C; Nimrichter, Leonardo
2014-01-31
Several microbial molecules are released to the extracellular space in vesicle-like structures. In pathogenic fungi, these molecules include pigments, polysaccharides, lipids, and proteins, which traverse the cell wall in vesicles that accumulate in the extracellular space. The diverse composition of fungal extracellular vesicles (EV) is indicative of multiple mechanisms of cellular biogenesis, a hypothesis that was supported by EV proteomic studies in a set of Saccharomyces cerevisiae strains with defects in both conventional and unconventional secretory pathways. In the human pathogens Cryptococcus neoformans, Histoplasma capsulatum, and Paracoccidioides brasiliensis, extracellular vesicle proteomics revealed the presence of proteins with both immunological and pathogenic activities. In fact, fungal EV have been demonstrated to interfere with the activity of immune effector cells and to increase fungal pathogenesis. In this review, we discuss the impact of proteomics on the understanding of functions and biogenesis of fungal EV, as well as the potential role of these structures in fungal pathogenesis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.
Isolation and purification of antigenic components of Cryptococcus.
Wozniak, Karen L; Levitz, Stuart M
2009-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.
Sporulation: how to survive on planet Earth (and beyond).
Huang, Mingwei; Hull, Christina M
2017-10-01
Sporulation is a strategy widely utilized by a wide variety of organisms to adapt to changes in their individual environmental niches and survive in time and/or space until they encounter conditions acceptable for vegetative growth. The spores produced by bacteria have been the subjects of extensive studies, and several systems such as Bacillus subtilis have provided ample opportunities to understand the molecular basis of spore biogenesis and germination. In contrast, the spores of other microbes, such as fungi, are relatively poorly understood. Studies of sporulation in model systems such as Saccharomyces cerevisiae and Aspergillus nidulans have established a basis for investigating eukaryotic spores, but very little is known at the molecular level about how spores function. This is especially true among the spores of human fungal pathogens such as the most common cause of fatal fungal disease, Cryptococcus neoformans. Recent proteomic studies are helping to determine the molecular mechanisms by which pathogenic fungal spores are formed, persist and germinate into actively growing agents of human disease.
A Family of Secretory Proteins Is Associated with Different Morphotypes in Cryptococcus neoformans.
Gyawali, Rachana; Upadhyay, Srijana; Way, Joshua; Lin, Xiaorong
2017-03-01
Cryptococcus neoformans , an opportunistic human fungal pathogen, can undergo a yeast-to-hypha transition in response to environmental cues. This morphological transition is associated with changes in the expression of cell surface proteins. The Cryptococcus cell surface and secreted protein Cfl1 was the first identified adhesin in the Basidiomycota. Cfl1 has been shown to regulate morphology, biofilm formation, and intercellular communication. Four additional homologs of CFL1 are harbored by the Cryptococcus genome: DHA1 , DHA2 , CPL1 , and CFL105 The common features of this gene family are the conserved C-terminal SIGC domain and the presence of an N-terminal signal peptide. We found that all these Cfl1 homolog proteins are indeed secreted extracellularly. Interestingly, some of these secretory proteins display cell type-specific expression patterns: Cfl1 is hypha specific, Dha2 is yeast specific, and Dha1 (delayed hypersensitivity antigen 1) is expressed in all cell types but is particularly enriched at basidia. Interestingly, Dha1 is induced by copper limitation and suppressed by excessive copper in the medium. This study further attests to the physiological heterogeneity of the Cryptococcus mating colony, which is composed of cells with heterogeneous morphotypes. The differential expression of these secretory proteins contributes to heterogeneity, which is beneficial for the fungus to adapt to changing environments. IMPORTANCE Heterogeneity in physiology and morphology is an important bet-hedging strategy for nonmobile microbes such as fungi to adapt to unpredictable environmental changes. Cryptococcus neoformans , a ubiquitous basidiomycetous fungus, is known to switch from the yeast form to the hypha form during sexual development. However, in a mating colony, only a subset of yeast cells switch to hyphae, and only a fraction of the hyphal subpopulation will develop into fruiting bodies, where meiosis and sporulation occur. Here, we investigated a basidiomycete-specific secretory protein family. We found that some of these proteins are cell type specific, thus contributing to the heterogeneity of a mating colony. Our study also demonstrates the importance of examining the protein expression pattern at the individual-cell level in addition to population gene expression profiling for the investigation of a heterogeneous community. Copyright © 2017 American Society for Microbiology.
Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.
Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio
2012-06-01
Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.
Sanghvi, Gaurav V.; Baskaran, Praveen; Röseler, Waltraud; Sieriebriennikov, Bogdan; Rödelsperger, Christian; Sommer, Ralf J.
2016-01-01
Nematodes, the earth’s most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50–60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles. PMID:27741297
Sanghvi, Gaurav V; Baskaran, Praveen; Röseler, Waltraud; Sieriebriennikov, Bogdan; Rödelsperger, Christian; Sommer, Ralf J
2016-01-01
Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.
Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta
2015-01-28
Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.
Cutaneous Cryptococcus laurentii infection in an immunocompetent child.
Molina-Leyva, Alejandro; Ruiz-Carrascosa, Jose C; Leyva-Garcia, Ana; Husein-Elahmed, Husein
2013-12-01
Cryptococcus laurentii is an extremely rare human pathogen. We report a case of primary cutaneous cryptococcosis caused by Cryptococcus laurentii in an immunocompetent patient, an 8-year-old child with a solitary lesion on the forearm. It was impossible to determine the source of infection and no predisposing factors were found. Oral treatment with fluconazole was totally successful. A review of the literature showed only three cases of cutaneous infection by Cryptococcus laurentii. All of the cases occurred in immunocompromised patients. To the best of our knowledge, this is the first case of Cryptococcus laurentii in an immunocompetent host. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Cryptococcus Neoformans in Pigeon Feces in San Francisco
Halde, Carlyn; Fraher, Margaret Anne
1966-01-01
Typical Cryptococcus neoformans was isolated from one of 10 specimens of pigeon feces collected in downtown San Francisco. This isolation from a small sample suggests considerable prevalence of this important pathogen and tends to confirm that it is ubiquitous. PMID:5936987
The diversity and distribution of fungi on residential surfaces.
Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D
2013-01-01
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.
Wang, Ping
2018-06-27
Cryptococcus neoformans and related species are encapsulated basidiomycetous fungi that cause meningoencephalitis in individuals with immune deficiency. This pathogen has a tractable genetic system; however, gene disruption via electroporation remains difficult, while biolistic transformation is often limited by lack of multiple genetic markers and the high initial cost of equipment. The approach using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has become the technology of choice for gene editing in many organisms due to its simplicity, efficiency, and versatility. The technique has been successfully demonstrated in C. neoformans and Cryptococcus deneoformans in which two DNA plasmids expressing either the Streptococcus pyogenes CAS9 gene or the guide RNA (gRNA) were employed. However, potential adverse effects due to constitutive expression and the time-consuming process of constructing vectors to express each gRNA remain as a primary barrier for wide adaptation. This report describes the delivery of preassembled CRISPR-Cas9-gRNA ribonucleoproteins (RNPs) via electroporation that is able to generate edited mutant alleles. RNP-mediated CRISPR-Cas9 was used to replace the wild-type GIB2 gene encoding a Gβ-like/RACK1 Gib2 protein with a gib2 :: NAT allele via homologous recombination in both C. neoformans and C. deneoformans In addition, a DNA plasmid (pCnCas9:U6-gRNA) that expresses both Cas9 and gRNA, allowing for convenient yet low-cost DNA-mediated gene editing, is described. pCnCas9:U6-gRNA contains an endogenous U6 promoter for gRNA expression and restriction sites for one-step insertion of a gRNA. These approaches and resources provide new opportunities to accelerate genetic studies of Cryptococcus species. IMPORTANCE For genetic studies of the Cryptococcus genus, generation of mutant strains is often hampered by a limited number of selectable genetic markers, the tedious process of vector construction, side effects, and other limitations, such as the high cost of acquiring a particle delivery system. CRISPR-Cas9 technology has been demonstrated in Cryptococcus for genome editing. However, it remains labor-intensive and time-consuming since it requires the identification of a suitable type III RNA polymerase promoter for gRNA expression. In addition, there may be potential adverse effects caused by constitutive expressions of Cas9 and gRNA. Here, I report the use of a ribonucleoprotein-mediated CRISPR-Cas9 technique for genome editing of C. neoformans and related species. Together with the custom-constructed pCnCas9:U6-gRNA vector that allows low-cost and time-saving DNA-based CRISPR-Cas9, my approach adds to the molecular toolbox for dissecting the molecular mechanism of pathogenesis in this important group of fungal pathogens. Copyright © 2018 Wang.
Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses.
Thompson, George R; Rendon, Adrian; Ribeiro Dos Santos, Rodrigo; Queiroz-Telles, Flavio; Ostrosky-Zeichner, Luis; Azie, Nkechi; Maher, Rochelle; Lee, Misun; Kovanda, Laura; Engelhardt, Marc; Vazquez, Jose A; Cornely, Oliver A; Perfect, John R
2016-08-01
Invasive fungal diseases (IFD) caused by Cryptococcus and dimorphic fungi are associated with significant morbidity and mortality. Isavuconazole (ISAV) is a novel, broad-spectrum, triazole antifungal agent (IV and by mouth [PO]) developed for the treatment of IFD. It displays potent activity in vitro against these pathogens and in this report we examine outcomes of patients with cryptococcosis or dimorphic fungal infections treated with ISAV. The VITAL study was an open-label nonrandomized phase 3 trial conducted to evaluate the efficacy and safety of ISAV treatment in management of rare IFD. Patients received ISAV 200 mg 3 times daily for 2 days followed by 200 mg once-daily (IV or PO). Proven IFD and overall response at end of treatment (EOT) were determined by an independent, data-review committee. Mortality and safety were also assessed. Thirty-eight patients received ISAV for IFD caused by Cryptococcus spp. (n = 9), Paracoccidioides spp. (n = 10), Coccidioides spp. (n = 9), Histoplasma spp. (n = 7) and Blastomyces spp. (n = 3). The median length of therapy was 180 days (range 2-331 days). At EOT 24/38 (63%) patients exhibited a successful overall response. Furthermore, 8 of 38 (21%) had stable IFD at the end of therapy without progression of disease, and 6 (16%) patients had progressive IFD despite this antifungal therapy. Thirty-three (87%) patients experienced adverse events. ISAV was well tolerated and demonstrated clinical activity against these endemic fungi with a safety profile similar to that observed in larger studies, validating its broad-spectrum in vitro activity and suggesting it may be a valuable alternative to currently available agents. NCT00634049. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Hsueh, Yen-Ping; Fraser, James A.; Heitman, Joseph
2008-01-01
Sex is orchestrated by the mating-type locus (MAT) in fungi and by sex chromosomes in plants and animals. In fungi, two patterns of sexuality occur: bipolar with a single, typically biallelic sex determinant that promotes inbreeding, and tetrapolar with two unlinked, often multiallelic sex determinants that restrict inbreeding. Multiallelism in either bipolar or tetrapolar mating systems promotes outcrossing. Cryptococcus neoformans is a pathogenic bipolar yeast with two unusually large MAT alleles (a/α) spanning >100 kb, ∼100-fold larger than many other fungal MAT loci. Based on comparative genomic analysis, this unusual MAT locus is hypothesized to have evolved from an ancestral tetrapolar system. In this model, the unlinked homeodomain (HD) transcription factor and pheromone/receptor tetrapolar loci acquired additional sex-related genes and then fused via chromosomal translocation, forming an intermediate transitional mating system (which we term tripolar), which then underwent recombination and gene conversion to fashion the extant bipolar MAT alleles. To experimentally validate this model, C. neoformans was engineered to have a tetrapolar mating system by relocating the MAT SXI1α and SXI2a HD genes to an unlinked genomic locale. Genetic and molecular analyses revealed that this modified organism could complete a tetrapolar sexual cycle. Analysis of progeny generated from bipolar, tripolar, and tetrapolar crosses provides direct experimental evidence that the tripolar state confers decreased fertility and therefore may represent an unstable evolutionary intermediate. These findings illustrate how transitions between outcrossing and inbreeding preference occur by involving sex determinant linkage and collapse from multiallelic to biallelic sex determination, providing insights into both fungal sex evolution and early steps in sex chromosome evolution. PMID:18723606
Isolation and Purification of Antigenic Components of Cryptococcus
Wozniak, Karen L.; Levitz, Stuart M.
2012-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species. PMID:19089377
Adaptive Immunity to Cryptococcus neoformans Infections
Mukaremera, Liliane; Nielsen, Kirsten
2017-01-01
The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease. PMID:29333430
Morrow, Carl A.; Lee, I. Russel; Chow, Eve W. L.; Ormerod, Kate L.; Goldinger, Anita; Byrnes, Edmond J.; Nielsen, Kirsten; Heitman, Joseph; Schirra, Horst Joachim; Fraser, James A.
2012-01-01
ABSTRACT The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. PMID:22375073
Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.
2011-01-01
Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208
Occurrence of dermatophytes in fresh bat guano.
Kajihiro, E S
1965-09-01
Evidence is presented in support of the hypothesis that fresh bat guano serves as a means of pathogenic fungi dissemination in caves. A total of 371 guano samples were collected from caves in southeastern New Mexico. Each sample was agitated in sterile saline and sand. The supernatant fluid was treated with an antibiotic and streaked on differential media. Cultures were incubated at 25 and 37 C and examined at intervals over a 4-week period. For animal inoculation, highly concentrated inoculum was injected intraperitoneally into white Swiss mice. Animals were sacrificed 4 weeks later, and portions of their lung, liver, and spleen were cultured on selective media, incubated at 25 C, and examined at intervals over a 4-week period. Microsporum gypseum was isolated at all 10 collecting stations with an incidence of 22.4%, Trichophyton mentagrophytes at 7 stations with an incidence of 5%, T. rubrum at 3 stations with an incidence of 3%, and T. terrestre at 1 station with an incidence of 0.5%. From a total of 60 pools of liver-spleen-lung suspensions, 6 pools yielded positive cultures of Histoplasma capsulatum and 1 pool yielded T. mentagrophytes. No significant difference was found among the different selective media with respect to recovery of dermatophytes. Among the human pathogenic fungi isolated were Candida sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans, H. capsulatum, M. gypseum, T. mentagrophytes, T. rubrum, T. terrestre, and Sporotrichum sp.
Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting
2015-12-22
Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.
Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts
Fu, Ci; Sun, Sheng; Billmyre, R. Blake; Roach, Kevin C.; Heitman, Joseph
2014-01-01
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller’s ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen. PMID:25173822
Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide.
Tian, Xiuyun; He, Guang-Jun; Hu, Pengjie; Chen, Lei; Tao, Changyu; Cui, Ying-Lu; Shen, Lan; Ke, Weixin; Xu, Haijiao; Zhao, Youbao; Xu, Qijiang; Bai, Fengyan; Wu, Bian; Yang, Ence; Lin, Xiaorong; Wang, Linqi
2018-06-01
Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.
Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air
NASA Astrophysics Data System (ADS)
O'Gorman, Céline M.; Fuller, Hubert T.
2008-06-01
Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.
Cryptococcus: from environmental saprophyte to global pathogen
May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten
2016-01-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750
Cryptococcus: from environmental saprophyte to global pathogen.
May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten
2016-02-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus
2016-01-01
Background: Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Materials and methods: Leaf extracts of selected South African plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were investigated for activity against selected phytopathogenic fungi (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens (Candida albicans and Cryptococcus neoformans). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. Results: All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum. The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating possible synergism between the separated metabolites. Conclusion: The results showed that acetone was the best extractant. Furthermore, our findings also confirm the traditional use of Breonadia salicina and demonstrate the potential value of developing biopesticides from plants. PMID:28852739
Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus
2016-01-01
Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating possible synergism between the separated metabolites. The results showed that acetone was the best extractant. Furthermore, our findings also confirm the traditional use of Breonadia salicina and demonstrate the potential value of developing biopesticides from plants.
De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans
Morrow, Carl A.; Valkov, Eugene; Stamp, Anna; Chow, Eve W. L.; Lee, I. Russel; Wronski, Ania; Williams, Simon J.; Hill, Justine M.; Djordjevic, Julianne T.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.
2012-01-01
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. PMID:23071437
Jung, Kwang-Woo; Strain, Anna K; Nielsen, Kirsten; Jung, Kwang-Hwan; Bahn, Yong-Sun
2012-01-01
Maintenance of cation homeostasis is essential for survival of all living organisms in their biological niches. It is also important for the survival of human pathogenic fungi in the host, where cation concentrations and pH will vary depending on different anatomical sites. However, the exact role of diverse cation transporters and ion channels in virulence of fungal pathogens remains elusive. In this study we functionally characterized ENA1 and NHA1, encoding a putative Na+/ATPase and Na+/H+ antiporter, respectively, in Cryptococcus neoformans, a basidiomycete fungal pathogen which causes fatal meningoencephalitis. Expression of NHA1 and ENA1 is induced in response to salt and osmotic shock mainly in a Hog1-dependent manner. Phenotypic analysis of the ena1, nha1, and ena1 nha1 mutants revealed that Ena1 controls cellular levels of toxic cations, such as Na+ and Li+ whereas both Ena1 and Nha1 are important for controlling less toxic K+ ions. Under alkaline conditions, Ena1 was highly induced and required for growth in the presence of low levels of Na+ or K+ salt and Nha1 played a role in survival under K+ stress. In contrast, Nha1, but not Ena1, was essential for survival at acidic conditions (pH 4.5) under high K+ stress. In addition, Ena1 and Nha1 were required for maintenance of plasma membrane potential and stability, which appeared to modulate antifungal drug susceptibility. Perturbation of ENA1 and NHA1 enhanced capsule production and melanin synthesis. However, Nha1 was dispensable for virulence of C. neoformans although Ena1 was essential. In conclusion, Ena1 and Nha1 play redundant and discrete roles in cation homeostasis, pH regulation, membrane potential, and virulence in C. neoformans, suggesting that these transporters could be novel antifungal drug targets for treatment of cryptococcosis. PMID:22343280
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L
2017-01-31
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. Copyright © 2017 Santiago-Tirado et al.
Combined antifungal therapy against systemic murine infections by rare Cryptococcus species.
Thomson, Pamela; Mayayo, Emilio; López-Fernández, Loida; Guarro, Josep; Capilla, Javier
2017-02-01
Cryptococcus albidus and Cryptococcus laurentii are uncommon species of this genus that in recent decades have increasingly caused opportunistic infections in humans, mainly in immunocompromised patients; the best therapy for such infection being unknown. Using a murine model of systemic infection by these fungi, we have evaluated the efficacy of amphotericin B (AMB) at 0.8 mg/kg, administered intravenously, fluconazole (FLC) or voriconazole (VRC), both administered orally, at 25 mg/kg and the combination of AMB plus VRC against three C. albidus and two C. laurentii strains. All the treatments significantly reduced the fungal burden in all the organs studied. The combination showed a synergistic effect in the reduction in fungal load, working better than both monotherapies. The histopathological study confirmed the efficacy of the treatments. © 2016 Blackwell Verlag GmbH.
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Li, Wenjun; Floyd-Averette, Anna; Mieczkowski, Piotr; Dietrich, Fred S.; Heitman, Joseph
2013-01-01
Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down's syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments. PMID:24058295
Teodoro, Valter Luis Iost; Gullo, Fernanda Patrícia; Sardi, Janaína de Cássia Orlandi; Torres, Edson Maria; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares
2013-01-01
The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B) independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%), Cryptococcus gattii (5.2%), Cryptococcus ater (3.5%), Cryptococcus laurentti (1.7%), and Cryptococcus luteolus (1.7%). A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.
Gonçalves, Vívian N; Cantrell, Charles L; Wedge, David E; Ferreira, Mariana C; Soares, Marco Aurélio; Jacob, Melissa R; Oliveira, Fabio S; Galante, Douglas; Rodrigues, Fabio; Alves, Tânia M A; Zani, Carlos L; Junior, Policarpo A S; Murta, Silvane; Romanha, Alvaro J; Barbosa, Emerson C; Kroon, Erna G; Oliveira, Jaquelline G; Gomez-Silva, Benito; Galetovic, Alexandra; Rosa, Carlos A; Rosa, Luiz H
2016-01-01
This study assessed the diversity of cultivable rock-associated fungi from Atacama Desert. A total of 81 fungal isolates obtained were identified as 29 Ascomycota taxa by sequencing different regions of DNA. Cladosporium halotolerans, Penicillium chrysogenum and Penicillium cf. citrinum were the most frequent species, which occur at least in four different altitudes. The diversity and similarity indices ranged in the fungal communities across the latitudinal gradient. The Fisher-α index displayed the higher values for the fungal communities obtained from the siltstone and fine matrix of pyroclastic rocks with finer grain size, which are more degraded. A total of 23 fungal extracts displayed activity against the different targets screened. The extract of P. chrysogenum afforded the compounds α-linolenic acid and ergosterol endoperoxide, which were active against Cryptococcus neoformans and methicillin-resistance Staphylococcus aureus respectively. Our study represents the first report of a new habitat of fungi associated with rocks of the Atacama Desert and indicated the presence of interesting fungal community, including species related with saprobes, parasite/pathogen and mycotoxigenic taxa. The geological characteristics of the rocks, associated with the presence of rich resident/resilient fungal communities suggests that the rocks may provide a favourable microenvironment fungal colonization, survival and dispersal in extreme conditions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
David R. Houston
1998-01-01
In forests of North America the beech bark disease (BBD) complex affects American beech, Fagus grandifolia Ehrh. BBD begins when bark tissues, attacked by the exotic beech scale insect, Cryptococcus fagisuga Lind. are rendered susceptible to killing attacks by fungi of the genus Nectria. The principal fungus,...
Extracellular vesicle-mediated export of fungal RNA
Peres da Silva, Roberta; Puccia, Rosana; Rodrigues, Marcio L.; Oliveira, Débora L.; Joffe, Luna S.; César, Gabriele V.; Nimrichter, Leonardo; Goldenberg, Samuel; Alves, Lysangela R.
2015-01-01
Extracellular vesicles (EVs) play an important role in the biology of various organisms, including fungi, in which they are required for the trafficking of molecules across the cell wall. Fungal EVs contain a complex combination of macromolecules, including proteins, lipids and glycans. In this work, we aimed to describe and characterize RNA in EV preparations from the human pathogens Cryptococcus neoformans, Paracoccidiodes brasiliensis and Candida albicans, and from the model yeast Saccharomyces cerevisiae. The EV RNA content consisted mostly of molecules less than 250 nt long and the reads obtained aligned with intergenic and intronic regions or specific positions within the mRNA. We identified 114 ncRNAs, among them, six small nucleolar (snoRNA), two small nuclear (snRNA), two ribosomal (rRNA) and one transfer (tRNA) common to all the species considered, together with 20 sequences with features consistent with miRNAs. We also observed some copurified mRNAs, as suggested by reads covering entire transcripts, including those involved in vesicle-mediated transport and metabolic pathways. We characterized for the first time RNA molecules present in EVs produced by fungi. Our results suggest that RNA-containing vesicles may be determinant for various biological processes, including cell communication and pathogenesis. PMID:25586039
Occurrence of Dermatophytes in Fresh Bat Guano1
Kajihiro, Edwin S.
1965-01-01
Evidence is presented in support of the hypothesis that fresh bat guano serves as a means of pathogenic fungi dissemination in caves. A total of 371 guano samples were collected from caves in southeastern New Mexico. Each sample was agitated in sterile saline and sand. The supernatant fluid was treated with an antibiotic and streaked on differential media. Cultures were incubated at 25 and 37 C and examined at intervals over a 4-week period. For animal inoculation, highly concentrated inoculum was injected intraperitoneally into white Swiss mice. Animals were sacrificed 4 weeks later, and portions of their lung, liver, and spleen were cultured on selective media, incubated at 25 C, and examined at intervals over a 4-week period. Microsporum gypseum was isolated at all 10 collecting stations with an incidence of 22.4%, Trichophyton mentagrophytes at 7 stations with an incidence of 5%, T. rubrum at 3 stations with an incidence of 3%, and T. terrestre at 1 station with an incidence of 0.5%. From a total of 60 pools of liver-spleen-lung suspensions, 6 pools yielded positive cultures of Histoplasma capsulatum and 1 pool yielded T. mentagrophytes. No significant difference was found among the different selective media with respect to recovery of dermatophytes. Among the human pathogenic fungi isolated were Candida sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans, H. capsulatum, M. gypseum, T. mentagrophytes, T. rubrum, T. terrestre, and Sporotrichum sp. Images Fig. 1 PMID:5867652
Ikeda-Dantsuji, Yurika; Ohno, Hideaki; Tanabe, Koichi; Umeyama, Takashi; Ueno, Keigo; Nagi, Minoru; Yamagoe, Satoshi; Kinjo, Yuki; Miyazaki, Yoshitsugu
2015-12-01
Among invasive fungal infections, cryptococcosis caused by inhalation of Cryptococcus neoformans or Cryptococcus gattii is particularly dangerous because it can disseminate to the central nervous system and cause life-threatening meningitis or meningoencephalitis. Previous reports described significant differences in the histopathological features of C. neoformans and C. gattii infection, such as greater pathogen proliferation and a limited macrophage response in mouse lung infected by C. gattii. To elucidate the difference in pathogenicity of these two Cryptococcus species, we investigated the interaction of C. neoformans and C. gattii with murine macrophages, the first line of host defense, by confocal laser microscopy. Only thin-capsulated, and not thick-capsulated C. neoformans and C. gattii were phagocytosed by macrophages. Preactivation with interferon-γ increased the phagocytic rate of thin-capsulated C. neoformans up to two-fold, but did not promote phagocytosis of thin-capsulated C. gattii. Lipopolysaccharide preactivation or Aspergillus fumigatus conidia co-incubation had no effect on internalization of thin-capsulated C. neoformans or C. gattii by macrophages. Phagocytosis of live thin-capsulated C. neoformans, but not that of live thin-capsulated C. gattii, induced interleukin-12 release from macrophages. However, phagocytosis of heat-killed or paraformaldehyde-fixed thin-capsulated C. neoformans did not increase IL-12 release, showing that the internalization of live yeast is important for initiating the immune response during C. neoformans-macrophage interactions. Our data suggest that macrophage response to C. gattii is limited compared with that to C. neoformans and that these results may partially explain the limited immune response and the greater pathogenicity of C. gattii. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans
Shuryak, Igor; Bryan, Ruth A.; Broitman, Jack; Marino, Stephen A.; Morgenstern, Alfred; Apostolidis, Christos; Dadachova, Ekaterina
2015-01-01
Introduction Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. Methods We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by 213Bi-labeled monoclonal antibodies), and sparsely-ionizing 137Cs γ-rays, on Cryptococus neoformans. Results The best-fit linear-quadratic parameters for clonogenic survival were the following: α=0.24×10−2 Gy−1 for γ-rays and 1.07×10−2 Gy−1 for external-beam α-particles, and β=1.44×10−5 Gy−2 for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. Conclusions These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies. PMID:25800676
Lee, Won Jeong; Moon, Jae Sun; Kim, Sung In; Kim, Young Tae; Nash, Oyekanmi; Bahn, Yong-Sun; Kim, Sung Uk
2014-10-01
In order to discover and develop novel signaling inhibitors from plants, a screening system was established targeting the two-component system of Cryptococcus neoformans by using the wild type and a calcineurin mutant of C. neoformans, based on the counter-regulatory action of high-osmolarity glycerol (Hog1) mitogen-activated protein kinase and the calcineurin pathways in C. neoformans. Among 10,000 plant extracts, that from Harrisonia abyssinica Oliv. exhibited the most potent inhibitory activity against C. neoformans var. grubii H99 with fludioxonil. Bioassay-guided fractionation was used to isolate two bioactive compounds from H. abyssinica, and these compounds were identified as chebulagic acid and chebulanin using spectroscopic methods. These compounds specifically inhibited the calcineurin pathway in C. neoformans. Moreover, they exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentrations ranging from 0.25 to over 64 µg/ml.
The Diversity and Distribution of Fungi on Residential Surfaces
Adams, Rachel I.; Miletto, Marzia; Taylor, John W.; Bruns, Thomas D.
2013-01-01
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria. PMID:24223861
David R. Houston; James T. O' Brien
1983-01-01
Beech bark disease causes significant mortality and defect in American beech, Fagus grandifolia (Ehrh.). The disease results when bark, attacked and altered by the beech scale, Cryptococcus fagisuga Lind., is invaded and killed by fungi, primarily Nectria coccinea var. faginata Lohman, Watson, and Ayers, and sometimes N. galligena Bres.
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.
Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio
2016-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.
Olave, M C; Vargas-Zambrano, J C; Celis, A M; Castañeda, E; González, J M
2017-07-01
Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells. © 2017 Blackwell Verlag GmbH.
Antimicrobial properties of the stem bark of Saraca indica (Caesalpiniaceae).
Sainath, R Shilpakala; Prathiba, J; Malathi, R
2009-01-01
Chloroform, methanol, aqueous and ethanolic extracts of the stem bark of Saraca indica were investigated for their antibacterial and antifungal activity against standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhimurium and Streptococcus pneumoniae and the fungi: Candida albicans and Cryptococcus albidus. Methanolic and aqueous extract exhibited antimicrobial activity with MIC ranging from 0.5-2% and 1-3% respectively. Methanolic extract exhibited the strongest activity against both bacteria and fungi.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii.
Chen, Yuan; Farrer, Rhys A; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P; Mitchell, Thomas G; Litvintseva, Anastasia P; Cuomo, Christina A; Perfect, John R
2017-03-07
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease. Copyright © 2017 Chen et al.
Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains.
Singh, Ashutosh; MacKenzie, Andrew; Girnun, Geoffrey; Del Poeta, Maurizio
2017-10-01
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31 P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl- N , N -dimethylethanolamine, phosphatidyl- N -monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Some aspects of the ecology of Nectria on beech
David Lonsdale; Christine Sherriff
1983-01-01
Observations of the mycoflora of beech bark infested with Cryptococcus fagisuga suggested that Nectria coccinea can colonise sites on and in the outer tissues, and that invasion of imer bark could later develop. Although these sites harboured fungi antagonistic to N. coccinea, experiments suggested that it is...
Billmyre, R Blake; Clancey, Shelly Applen; Heitman, Joseph
2017-09-26
Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1 , which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.
FPD: A comprehensive phosphorylation database in fungi.
Bai, Youhuang; Chen, Bin; Li, Mingzhu; Zhou, Yincong; Ren, Silin; Xu, Qin; Chen, Ming; Wang, Shihua
2017-10-01
Protein phosphorylation, one of the most classic post-translational modification, plays a critical role in diverse cellular processes including cell cycle, growth, and signal transduction pathways. However, the available information about phosphorylation in fungi is limited. Here, we provided a Fungi Phosphorylation Database (FPD) that comprises high-confidence in vivo phosphosites identified by MS-based proteomics in various fungal species. This comprehensive phosphorylation database contains 62 272 non-redundant phosphorylation sites in 11 222 proteins across eight organisms, including Aspergillus flavus, Aspergillus nidulans, Fusarium graminearum, Magnaporthe oryzae, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Cryptococcus neoformans. A fungi-specific phosphothreonine motif and several conserved phosphorylation motifs were discovered by comparatively analysing the pattern of phosphorylation sites in plants, animals, and fungi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis
Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio
2016-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428
Immune Recognition of Fungal Polysaccharides.
Snarr, Brendan D; Qureshi, Salman T; Sheppard, Donald C
2017-08-28
The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus , Candida albicans , Cryptococcus neoformans , and Histoplasma capsulatum . Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation.
Ansari, Anam; Ali, Abad; Asif, Mohd; Rauf, Mohd Ahmar; Owais, Mohammad; Shamsuzzaman
2018-06-01
A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents. Copyright © 2018 Elsevier Inc. All rights reserved.
Cogliati, Massimo; Puccianti, Erika; Montagna, Maria T; De Donno, Antonella; Susever, Serdar; Ergin, Cagri; Velegraki, Aristea; Ellabib, Mohamed S; Nardoni, Simona; Macci, Cristina; Trovato, Laura; Dipineto, Ludovico; Rickerts, Volker; Akcaglar, Sevim; Mlinaric-Missoni, Emilija; Bertout, Sebastien; Vencà, Ana C F; Sampaio, Ana C; Criseo, Giuseppe; Ranque, Stéphane; Çerikçioğlu, Nilgün; Marchese, Anna; Vezzulli, Luigi; Ilkit, Macit; Desnos-Ollivier, Marie; Pasquale, Vincenzo; Polacheck, Itzhack; Scopa, Antonio; Meyer, Wieland; Ferreira-Paim, Kennio; Hagen, Ferry; Boekhout, Teun; Dromer, Françoise; Varma, Ashok; Kwon-Chung, Kyung J; Inácio, Joäo; Colom, Maria F
2017-10-01
Fundamental niche prediction of Cryptococcus neoformans and Cryptococcus gattii in Europe is an important tool to understand where these pathogenic yeasts have a high probability to survive in the environment and therefore to identify the areas with high risk of infection. In this study, occurrence data for C. neoformans and C. gattii were compared by MaxEnt software with several bioclimatic conditions as well as with soil characteristics and land use. The results showed that C. gattii distribution can be predicted with high probability along the Mediterranean coast. The analysis of variables showed that its distribution is limited by low temperatures during the coldest season, and by heavy precipitations in the driest season. C. neoformans var. grubii is able to colonize the same areas of C. gattii but is more tolerant to cold winter temperatures and summer precipitations. In contrast, the C. neoformans var. neoformans map was completely different. The best conditions for its survival were displayed in sub-continental areas and not along the Mediterranean coasts. In conclusion, we produced for the first time detailed prediction maps of the species and varieties of the C. neoformans and C. gattii species complex in Europe and Mediterranean area. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins
Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus
2016-01-01
We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023
Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling
2013-01-01
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783
Rhodes, Johanna; Beale, Mathew A; Fisher, Matthew C
2014-01-01
The industry of next-generation sequencing is constantly evolving, with novel library preparation methods and new sequencing machines being released by the major sequencing technology companies annually. The Illumina TruSeq v2 library preparation method was the most widely used kit and the market leader; however, it has now been discontinued, and in 2013 was replaced by the TruSeq Nano and TruSeq PCR-free methods, leaving a gap in knowledge regarding which is the most appropriate library preparation method to use. Here, we used isolates from the pathogenic fungi Cryptococcus neoformans var. grubii and sequenced them using the existing TruSeq DNA v2 kit (Illumina), along with two new kits: the TruSeq Nano DNA kit (Illumina) and the NEBNext Ultra DNA kit (New England Biolabs) to provide a comparison. Compared to the original TruSeq DNA v2 kit, both newer kits gave equivalent or better sequencing data, with increased coverage. When comparing the two newer kits, we found little difference in cost and workflow, with the NEBNext Ultra both slightly cheaper and faster than the TruSeq Nano. However, the quality of data generated using the TruSeq Nano DNA kit was superior due to higher coverage at regions of low GC content, and more SNPs identified. Researchers should therefore evaluate their resources and the type of application (and hence data quality) being considered when ultimately deciding on which library prep method to use.
Rónavári, Andrea; Igaz, Nóra; Gopisetty, Mohana Krishna; Szerencsés, Bettina; Kovács, Dávid; Papp, Csaba; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona
2018-01-01
Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis.
Nakayama, Takako; Yamazaki, Takashi; Yo, Ayaka; Tone, Kazuya; Mahdi Alshahni, Mohamed; Fujisaki, Ryuichi; Makimura, Koichi
2017-01-01
Loop-mediated isothermal amplification (LAMP) is a useful DNA detection method with high specificity and sensitivity. The LAMP reaction is carried out within a short time at a constant temperature without the need for thermal cycling. We developed a LAMP primer set for detecting a wide range of fungi by aligning the sequences of the large subunit ribosomal RNA gene of Candida albicans (Ascomycota), Cryptococcus neoformans (Basidiomycota), and Mucor racemosus (Mucorales). The threshold of C. albicans rDNA as template with our LAMP primer set was in the range of 10-100 copies per a reaction. In this study, we evaluated the correlation between colony forming units (CFU) and LAMP detection rate using the LAMP method for environmental fungi. The LAMP method should be a useful means of detecting fungi in indoor environments, disaster areas, or even in confined manned spacecraft to prevent allergies or infections caused by fungi.
Chongsuvivatwong, Virasakdi; Wu, Xinghua; Bi, Fuyin; Hadler, Stephen C.; Jiraphongsa, Chuleeporn; Sornsrivichai, Vorasith; Lin, Mei; Quan, Yi
2015-01-01
Objectives Acute meningitis and encephalitis (AME) are common diseases with the main pathogens being viruses and bacteria. As specific treatments are different, it is important to develop clinical prediction rules to distinguish aseptic from bacterial or fungal infection. In this study we evaluated the incidence rates, seasonal variety and the main etiologic agents of AME, and identified factors that could be used to predict the etiologic agents. Methods A population-based AME syndrome surveillance system was set up in Guigang City, Guangxi, involving 12 hospitals serving the study communities. All patients meeting the case definition were investigated. Blood and/or cerebrospinal fluid were tested for bacterial pathogens using culture or RT-PCR and serological tests for viruses using enzyme-linked immunosorbent assays. Laboratory testing variables were grouped using factor analysis. Multinomial logistic regression was used to predict the etiology of AME. Results From May 2007 to June 2012, the annual incidence rate of AME syndrome, and disease specifically caused by Japanese encephalitis (JE), other viruses, bacteria and fungi were 12.55, 0.58, 4.57, 0.45 and 0.14 per 100,000 population, respectively. The top three identified viral etiologic agents were enterovirus, mumps virus, and JE virus, and for bacteria/fungi were Streptococcus sp., Cryptococcus neoformans and Staphylococcus sp. The incidence of JE and other viruses affected younger populations and peaked from April to August. Alteration of consciousness and leukocytosis were more likely to be caused by JE, bacteria and fungi whereas CSF inflammation was associated with bacterial/fungal infection. Conclusions With limited predictive validity of symptoms and signs and routine laboratory tests, specific tests for JE virus, mumps virus and enteroviruses are required to evaluate the immunization impact and plan for further intervention. CSF bacterial culture cannot be omitted in guiding clinical decisions regarding patient treatment. PMID:26633824
Cogliati, Massimo
2013-01-01
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge. PMID:24278784
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus
Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment. PMID:28212396
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus.
Springer, Deborah J; Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment.
Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C
2016-01-01
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.
Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph
2016-03-01
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.
Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis
Kwon-Chung, Kyung J.; Fraser, James A.; Doering, Tamara L.; Wang, Zhou; Janbon, Guilhem; Idnurm, Alexander; Bahn, Yong-Sun
2014-01-01
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually. PMID:24985132
Fu, Ci; Heitman, Joseph
2017-01-01
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex. PMID:29176784
Randall S. Morin; Andrew M. Liebhold; Patrick C. Tobin; Kurt W. Gottschalk; Eugene Luzader
2007-01-01
Beech bark disease (BBD) is an insect-fungus complex involving the beech scale insect (Cryptococcus fagisuga Lind.) and one of two canker fungi. Beech scale was introduced to Halifax, Nova Scotia around 1890, presumably with the fungus Neonectria coccinea var. faginata Lohm. The disease has subsequently spread...
Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis.
Kulkarni, Roshan R; Tupe, Santosh G; Gample, Suwarna P; Chandgude, Macchindra G; Sarkar, Dhiman; Deshpande, Mukund V; Joshi, Swati P
2014-01-01
From the red coloured extract (Kamala) prepared through acetone extraction of the fresh whole uncrushed fruits of Mallotus philippinensis, one new dimeric chalcone (1) along with three known compounds 1-(5,7-dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one (2), rottlerin (3) and 4'-hydroxyrottlerin (4) were isolated. The structure of compound 1 was elucidated by 1D and 2D NMR analyses that included HSQC, HMBC, COSY and ROESY experiments along with the literature comparison. Compounds 1-4 were evaluated for antifungal activity against different human pathogenic yeasts and filamentous fungi. The antiproliferative activity of the compounds was evaluated against Thp-1 cell lines. Compounds 1 and 2 both exhibited IC50 of 8, 4 and 16 μg/mL against Cryptococcus neoformans PRL518, C. neoformans ATCC32045 and Aspergillus fumigatus, respectively. Compound 4, at 100 μg/mL, showed 54% growth inhibition of Thp-1 cell lines.
Salah, Karima Bel Hadj; Mahjoub, Mohamed Ali; Ammar, Samia; Michel, Laura; Millet-Clerc, Joelle; Chaumont, Jean Pierre; Mighri, Zine; Aouni, Mahjoub
2006-10-01
This study examines the in vitro antimicrobial and antioxidant activities of the methanolic extracts of three Salvia species from Tunisia: Salvia aegyptiaca L., S. argentea L. and S. verbenaca Ssp. clandestina L. Pugsley. The extracts inhibited the growth of dermatophytes and of bacteria responsible for unpleasant odours to varying degrees; the pathogenic yeasts Candida albicans and Cryptococcus neoformans, the filamentous fungi Aspergillus fumigatus and selected dog otitis bacteria were all resistant to each of the extracts. The extracts were screened for their antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) test systems, and gave positive results in both tests. The extracts of S. aegyptiaca were the most active in both tests, followed by those of S. verbenaca, then S. argentea. These results confirm the antimicrobial and antioxidant activities of the genus Salvia and underline the potential of these plants either as natural preservatives or in pharmaceutical applications.
Morera, Neus; Hagen, Ferry; Juan-Sallés, Carles; Artigas, Carlos; Patricio, Rui; Serra, Juan Ignacio; Colom, Ma Francisca
2014-08-01
Cryptococcus gattii is a pathogenic environmental yeast that is considered to be emerging in different areas of the world including the Mediterranean Basin. Exposure to infection might be more likely in animals than in human beings, given their closer relationship with the natural habitat of the yeast, vegetation and soil. Thus, animals, and especially pets, can act as indicators of the presence of this yeast in a determined area. Domestic ferrets (Mustela putorius furo) have become common pets in the past 10-20 years. Their natural behavior of sniffing around and going inside narrow spaces makes them prone to contact with decaying organic matter and soil, the substrate for Cryptococcus species. This study describes two cases of cryptococcosis in ferrets in the Iberian Peninsula and Balearic Islands and documents a relationship of ferret cryptococcosis with environmental isolates in the same locations. Here, we emphasize the importance of how an adequate identification and environmental search of the yeast leads to a better understanding of the epidemiology of cryptococcosis and suggests ferrets may act as sentinels for this fungal disease.
Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection.
Maldonado, Samuel; Fitzgerald-Bocarsly, Patricia
2017-01-01
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body's most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans , and Pneumocystis jirovecii . Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro , while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis
Gioti, Anastasia; Nystedt, Björn; Li, Wenjun; Xu, Jun; Andersson, Anna; Averette, Anna F.; Münch, Karin; Wang, Xuying; Kappauf, Catharine; Kingsbury, Joanne M.; Kraak, Bart; Walker, Louise A.; Johansson, Henrik J.; Holm, Tina; Lehtiö, Janne; Stajich, Jason E.; Mieczkowski, Piotr; Kahmann, Regine; Kennell, John C.; Cardenas, Maria E.; Lundeberg, Joakim; Saunders, Charles W.; Boekhout, Teun; Dawson, Thomas L.; Munro, Carol A.; de Groot, Piet W. J.; Butler, Geraldine; Heitman, Joseph; Scheynius, Annika
2013-01-01
ABSTRACT Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. PMID:23341551
Biological Control of Aquatic Plants with Pathogenic Fungi
1981-01-01
reverse side II necoosary and Ident•l•y by block number) Aquatic plant control Fungi Aquatic plants Pathogenic fungi Biological control Waterhyacinths...BACTERIA ............. ................. D1 2 1 BIOTIGICAL CONTROL OF AQUATIC PLANTS WITH PATHOGENIC FUNGI PART I: INTRODUCTION 1. Plant pathogens have...first noted in Florida. 13. In December of 1973, Dr. K. E. Ctnway isolated a Cercospora species, along with many other fungi , from declining
Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana
2017-04-01
The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.
Autophagy in plant pathogenic fungi.
Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng
2016-09-01
Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Danesi, Patrizia; Drigo, Ilenia; Iatta, Roberta; Firacative, Carolina; Capelli, Gioia; Cafarchia, Claudia; Meyer, Wieland
2014-08-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Srivastava, A; Singh, V K; Patnaik, S; Tripathi, J; Singh, P; Nath, G; Asthana, R K
2017-04-01
Explorations of freshwater Cyanobacteria as antimicrobial (bacteria, fungi and methicillin-resistant Staphylococcus aureus (MRSA) strains) drug resource using bioassay, NRPS (non-ribosomal polypeptide synthetase) and PKS (polyketide synthase) genes, as well as in silico approach. We have bioassayed the extracts of Phormidium CCC727, Geitlerinema CCC728, Arthrospira CCC729, Leptolyngbya CCC732, Phormidium CCC730, Phormidium CCC731 against six pathogenic bacteria comprising Gram (+ve): S. aureus including seven clinical MRSA and Enterococcus faecalis, Gram (-ve): Escherichia coli, Salmonella Typhimurium, Klebsiella pneumoniae and Shigella boydii along with non-pathogenic Enterobacter aerogenes as well as fungal strains (Cryptococcus neoformans and Candida albicans, C. krusei, C. tropicalis and Aspergillus niger) exhibiting antimicrobial potential. The NRPS and PKS genes of the target strains were also amplified and sequenced. The putative protein structures were predicted using bioinformatics approach. PKS gene expression indicated β keto-acyl synthase as one of the important active domains in the biomolecules related to antitumour and antifungal group. The simultaneous identification of the biomolecule (dihydro-2H-pyran-2-one derivative) was also inferred spectroscopically. Freshwater Cyanobacteria are prolific producers of secondary metabolite(s) that may act as the antimicrobial drug resource in addition to their much explored marine counterpart. © 2016 The Society for Applied Microbiology.
Pathogenic diversity amongst serotype C VGIII and VGIV Cryptococcus gattii isolates
Rodrigues, Jéssica; Fonseca, Fernanda L.; Schneider, Rafael O.; Godinho, Rodrigo M. da C.; Firacative, Carolina; Maszewska, Krystyna; Meyer, Wieland; Schrank, Augusto; Staats, Charley; Kmetzsch, Livia; Vainstein, Marilene H.; Rodrigues, Marcio L.
2015-01-01
Cryptococcus gattii is one of the causative agents of human cryptococcosis. Highly virulent strains of serotype B C. gattii have been studied in detail, but little information is available on the pathogenic properties of serotype C isolates. In this study, we analyzed pathogenic determinants in three serotype C C. gattii isolates (106.97, ATCC 24066 and WM 779). Isolate ATCC 24066 (molecular type VGIII) differed from isolates WM 779 and 106.97 (both VGIV) in capsule dimensions, expression of CAP genes, chitooligomer distribution, and induction of host chitinase activity. Isolate WM 779 was more efficient than the others in producing pigments and all three isolates had distinct patterns of reactivity with antibodies to glucuronoxylomannan. This great phenotypic diversity reflected in differential pathogenicity. VGIV isolates WM 779 and 106.97 were similar in their ability to cause lethality and produced higher pulmonary fungal burden in a murine model of cryptococcosis, while isolate ATCC 24066 (VGIII) was unable to reach the brain and caused reduced lethality in intranasally infected mice. These results demonstrate a high diversity in the pathogenic potential of isolates of C. gattii belonging to the molecular types VGIII and VGIV. PMID:26153364
2012-01-01
Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R2 = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts Candida albicans and Cryptococcus neoformans indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike C. albicans and C. neoformans, the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in A. fumigatus and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the A. fumigatus hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence. PMID:22309491
Ara, Satoshi; Yamazaki, Harutake; Takaku, Hiroaki
2018-04-01
2-Deoxy-scyllo-inosose (DOI) is the first intermediate in the 2-deoxystreptamine-containing aminoglycoside antibiotic biosynthesis pathway and has a six-membered carbocycle structure. DOI is a valuable material because it is easily converted to aromatic compounds and carbasugar derivatives. In this study, we isolated yeast strains capable of assimilating DOI as a carbon source. One of the strains, Cryptococcus podzolicus ND1, mainly converted DOI to scyllo-quercitol and (-)-vibo-quercitol, which is a valuable compound used as an antihypoglycemia agent and as a heat storage material. An NADH-dependent DOI reductase coding gene, DOIR, from C. podzolicus ND1 was cloned and successfully overexpressed in Escherichia coli. The purified protein catalyzed the irreversible reduction of DOI with NADH and converted DOI into (-)-vibo-quercitol. The enzyme had an optimal pH of 8.5 and optimal temperature of 35°C, respectively. The k cat of this enzyme was 9.98 s -1 , and the K m values for DOI and NADH were 4.38 and 0.24 mM, respectively. The enzyme showed a strong preference for NADH and showed no activity with NADPH. Multiple-alignment analysis of DOI reductase revealed that it belongs to the GFO_IDH_MocA protein family and is an inositol dehydrogenase homolog in other fungi, such as Cryptococcus gattii, and bacteria, such as Bacillus subtilis. This is the first identification of a DOI-assimilating yeast and a gene involved in DOI metabolism in fungi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039
Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.
Pathogenic Roles for Fungal Melanins
Jacobson, Eric S.
2000-01-01
Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965
Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii.
Farrer, Rhys A; Desjardins, Christopher A; Sakthikumar, Sharadha; Gujja, Sharvari; Saif, Sakina; Zeng, Qiandong; Chen, Yuan; Voelz, Kerstin; Heitman, Joseph; May, Robin C; Fisher, Matthew C; Cuomo, Christina A
2015-09-01
Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex. Copyright © 2015 Farrer et al.
Pryce, Todd M; Palladino, Silvano; Price, Diane M; Gardam, Dianne J; Campbell, Peter B; Christiansen, Keryn J; Murray, Ronan J
2006-04-01
We report a direct polymerase chain reaction/sequence (d-PCRS)-based method for the rapid identification of clinically significant fungi from 5 different types of commercial broth enrichment media inoculated with clinical specimens. Media including BacT/ALERT FA (BioMérieux, Marcy l'Etoile, France) (n = 87), BACTEC Plus Aerobic/F (Becton Dickinson, Microbiology Systems, Sparks, MD) (n = 16), BACTEC Peds Plus/F (Becton Dickinson) (n = 15), BACTEC Lytic/10 Anaerobic/F (Becton Dickinson) (n = 11) bottles, and BBL MGIT (Becton Dickinson) (n = 11) were inoculated with specimens from 138 patients. A universal DNA extraction method was used combining a novel pretreatment step to remove PCR inhibitors with a column-based DNA extraction kit. Target sequences in the noncoding internal transcribed spacer regions of the rRNA gene were amplified by PCR and sequenced using a rapid (24 h) automated capillary electrophoresis system. Using sequence alignment software, fungi were identified by sequence similarity with sequences derived from isolates identified by upper-level reference laboratories or isolates defined as ex-type strains. We identified Candida albicans (n = 14), Candida parapsilosis (n = 8), Candida glabrata (n = 7), Candida krusei (n = 2), Scedosporium prolificans (n = 4), and 1 each of Candida orthopsilosis, Candida dubliniensis, Candida kefyr, Candida tropicalis, Candida guilliermondii, Saccharomyces cerevisiae, Cryptococcus neoformans, Aspergillus fumigatus, Histoplasma capsulatum, and Malassezia pachydermatis by d-PCRS analysis. All d-PCRS identifications from positive broths were in agreement with the final species identification of the isolates grown from subculture. Earlier identification of fungi using d-PCRS may facilitate prompt and more appropriate antifungal therapy.
Divalent Metal Cations Potentiate the Predatory Capacity of Amoeba for Cryptococcus neoformans.
Fu, Man Shun; Casadevall, Arturo
2018-02-01
Among the best-studied interactions between soil phagocytic predators and a human-pathogenic fungus is that of Acanthamoeba castellanii and Cryptococcus neoformans The experimental conditions used in amoeba-fungus confrontation assays can have major effects on whether the fungus or the protozoan is ascendant in the interaction. In the presence of Mg 2+ and Ca 2+ in phosphate-buffered saline (PBS), C. neoformans was consistently killed when incubated with A. castellanii A. castellanii survived better in the presence of Mg 2+ and Ca 2+ , even when incubated with C. neoformans In the absence of Mg 2+ and Ca 2+ , C. neoformans survived when incubated with A. castellanii , and the percentage of dead amoebae was higher than when incubated without yeast cells. These results show that the presence of Mg 2+ and Ca 2+ can make a decisive contribution toward tilting the outcome of the interaction in favor of the amoeba. Of the two metals, Mg 2+ had a stronger effect than Ca 2+ The cations enhanced A. castellanii activity against C. neoformans via enhanced phagocytosis, which is the major mechanism by which amoebae kill fungal cells. We found no evidence that amoebae use extracellular killing mechanisms in their interactions with C. neoformans In summary, the presence of Mg 2+ and Ca 2+ enhanced the cell adhesion on the surfaces and the motility of the amoeba, thus increasing the chance for contact with C. neoformans and the frequency of phagocytosis. Our findings imply that the divalent cation concentration in soils could be an important variable for whether amoebae can control C. neoformans in the environment. IMPORTANCE The grazing of soil organisms by phagocytic predators such as amoebae is thought to select for traits that enable some of them to acquire the capacity for virulence in animals. Consequently, knowledge about the interactions between amoebae and soil microbes, such as pathogenic fungi, is important for understanding how virulence can emerge. We show that the interaction between an amoeba and the pathogenic fungus C. neoformans is influenced by the presence in the assay of magnesium and calcium, which potentiate amoebae. The results may also have practical applications, since enriching soils with divalent cations may reduce C. neoformans numbers in contaminated soils. Copyright © 2018 American Society for Microbiology.
Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans
Dahal, Gopal; Viola, Ronald E.
2015-01-01
Aspartate semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate-biosynthetic pathway and represents a valid target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. Production of this intermediate represents the first committed step in the biosynthesis of the essential amino acids methionine, isoleucine and threonine in fungi, and also the amino acid lysine in bacteria. The structure of a new fungal form of ASADH from Cryptococcus neoformans has been determined to 2.6 Å resolution. The overall structure of CnASADH is similar to those of its bacterial orthologs, but with some critical differences both in biological assembly and in secondary-structural features that can potentially be exploited for the development of species-selective drugs. PMID:26527262
Titan cells in Cryptococcus neoformans: Cells with a giant impact
Zaragoza, Oscar; Nielsen, Kirsten
2013-01-01
Cryptococcus neoformans is a pathogenic yeast that commonly infects immunocompromised individuals, yet has developed multiple adaptation mechanisms to the host. Several virulence factors (capsule and melanin) have been known for many years. However, this yeast also possesses a morphogenetic program that is still not well characterized. Cryptococcus neoformans has the ability to dramatically enlarge its size during infection to form “titan cells” that can reach up to 100 microns in cell body diameter, in contrast to typical size cells of 5-7 microns. These titan cells pose a problem for the host because they contribute to fungal survival, dissemination to the central nervous system, and possibly even latency. In this review, we will provide an overview of these cells, covering current knowledge about their phenotypic features, mechanism of formation, and their significance during infection. PMID:23588027
Millward, I R; Williams, M C
2005-12-01
A 6-year-old, male, wild-born, free-ranging cheetah (Acinonyx jubatus) was evaluated for acute onset of progressive lameness in the right hind limb. Survey radiographs were unrewarding and myelography indicated an intramedullary compressive mass at the L3-L4 region. A fine needle aspirate of the lesion indicated the presence of Cryptococcus organisms. Necropsy confirmed the presence of granulomas (cryptococcoma) in the lung and the spinal cord (meningomyelitis) caused by Cryptococcus neoformans var. gattii. Cryptococcus neoformans is a yeast-like organism that is a potential pathogen to many species. Initial infection is thought to be of respiratory origin and then it commonly disseminates systemically from the nasal cavity or lungs to the skin, eyes and central nervous system in particular. The cheetah tested negative for both feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV), as have all the previously reported cheetah cases. C. neoformans is a non-contagious, opportunistic organism and is the most common systemic mycoses in domestic cats and the cheetah.
Linares, Carlos; Colom, María Francisca; Torreblanca, Marina; Esteban, Violeta; Romera, Álvaro; Hagen, Ferry
2015-01-01
Cryptococcus gattii is a pathogenic basidiomycetous yeast that is emerging in temperate climate zones worldwide. C. gattii has repetitively been isolated from numerous tree species. Ongoing environmental sampling and molecular characterization is essential to understand the presence of this primary pathogenic microorganism in the Mediterranean environment. To report the first isolation of the rare C. gattii genotype AFLP7/VGIV from the environment in Europe. Samples were collected from woody debris of carob trees (Ceratonia siliqua) and olive trees (Olea europaea) in El Perelló, Tarragona, Spain. Cryptococcus species were further characterized by using URA5-RFLP, MALDI-TOF, AFLP and MLST. The antifungal susceptibility profile to amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, posaconazole and voriconazole was determined using Sensititre Yeast One and E-test. Cultures from one carob tree revealed the presence of ten Cryptococcus-like colonies. One colony was identified as C. gattii, and subsequent molecular characterization showed that it was an α mating-type that belonged to the rare genotype AFLP7/VGIV. Antifungal susceptibility testing showed values within the range of sensitivity described for other isolates of the same genotype and within the epidemiological cutoff values for this species. The isolation of the rare C. gattii genotype AFLP7/VGIV in Spain is the first report in the European environment, implying the possible presence in other regions of the Mediterranean area, and underlines that clinicians must be aware for C. gattii infections in healthy individuals. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.
1998-01-01
Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748
Causative agents of nosocomial mycoses.
Tomsiková, A
2002-01-01
In the last few years mycoses have been caused by fungi formerly considered to be harmless for humans. They cause diseases of plants and insects; some of them are also used in the industry. They are now usually called "emerging fungi". We investigated this flora with respect to their potential to cause infections in hospitals. These fungi are present in the air, on medical objects and instrumentation, in the respiratory tract and on the hands of hospital staff; other sources have been identified in the use of iatrogenic methods. Mycotic diseases, their risk factors, their clinical pictures, and spectra of agents were analyzed in 1990-2000; the results were compared with data in the literature. Transplantations were the most frequent risk factors, fungemia and abscess the most frequent clinical picture and filamentous fungi (genera Absidia, Acremonium, Alternaria, Apophysomyces, Aspergillus, Bipolaris, Cladophialophora, Cunninghamella, Exserohilum, Fusarium, Chaetomium, Chrysosporium, Lecythophora, Ochroconis, Paecilomyces, Pythium, Rhizopus, Scedosporium, Scopulariopsis) were the most frequent agents of nosocomial infections. These filamentous fungi and also some yeasts (genera Candida, Cryptococcus, Trichosporon) bring about different clinical syndromes in both immunocompromised and immunocompetent patients.
In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.
Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G
2016-01-01
Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2015-01-01
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E
2015-05-29
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.
Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J
2016-04-01
This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.
Cryptococcal osteomyelitis: a report of 5 cases and a review of the recent literature.
Medaris, Leigh Ann; Ponce, Brent; Hyde, Zane; Delgado, Dennis; Ennis, David; Lapidus, William; Larrison, Matthew; Pappas, Peter G
2016-06-01
Cryptococcus neoformans is a fungal pathogen associated with advanced HIV disease and other disorders associated with immune dysfunction. The pulmonary and the central nervous system are the most common manifestations of the disease. Localised osteomyelitis as the sole manifestation of extrapulmonary disease is rare. Herein, we present five cases of Cryptococcus osteomyelitis as the only manifestation of extrapulmonary disease. We also identified 84 additional cases of isolated cryptococcal osteomyelitis in the literature. Using these data, we have made some general recommendations regarding an approach to treatment of this uncommon clinical entity. © 2016 Blackwell Verlag GmbH.
Cryptococcus gattii dispersal mechanisms, British Columbia, Canada.
Kidd, Sarah E; Bach, Paxton J; Hingston, Adrian O; Mak, Sunny; Chow, Yat; MacDougall, Laura; Kronstad, James W; Bartlett, Karen H
2007-01-01
Recent Cryptococcus gattii infections in humans and animals without travel history to Vancouver Island, as well as environmental isolations of the organism in other areas of the Pacific Northwest, led to an investigation of potential dispersal mechanisms. Longitudinal analysis of C. gattii presence in trees and soil showed patterns of permanent, intermittent, and transient colonization, reflecting C. gattii population dynamics once the pathogen is introduced to a new site. Systematic sampling showed C. gattii was associated with high-traffic locations. In addition, C. gattii was isolated from the wheel wells of vehicles on Vancouver Island and the mainland and on footwear, consistent with anthropogenic dispersal of the organism. Increased levels of airborne C. gattii were detected during forestry and municipal activities such as wood chipping, the byproducts of which are frequently used in park landscaping. C. gattii dispersal by these mechanisms may be a useful model for other emerging pathogens.
Development of non-natural flavanones as antimicrobial agents.
Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G
2011-01-01
With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.
Development of Non-Natural Flavanones as Antimicrobial Agents
Fowler, Zachary L.; Shah, Karan; Panepinto, John C.; Jacobs, Amy; Koffas, Mattheos A. G.
2011-01-01
With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells. PMID:22039419
Xu, Jianping; Yan, Zhun; Guo, Hong
2009-06-01
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.
Esculin-based medium for isolation and identification of Cryptococcus neoformans.
Edberg, S C; Chaskes, S J; Alture-Werber, E; Singer, J M
1980-01-01
A simple medium was developed, using esculin as the substrate, for the isolation and identification of Cryptococcus neoformans. C. neoformans produced a brown-black pigment on the medium; all other yeasts produced no pigment or were light yellow. Esculin is beta-glucose-6,7-dihydroxycoumarin. C. neoformans produced pigment because the 6,7-dihydroxycoumarin component of the esculin molecule was converted to a melanin-like pigment. We think the reaction was similar to the conversion of diphenols, aminophenols, and diaminobenzenes to melanin. Laboratory studies with isolates of C. neoformans, C. albidus, C. luteolus, and C. terreus and representatives of the genera Candida, Torulopsis, Geotrichum, and Rhodotorula, plus environmental field studies, demonstrated that over 95% of C. neoformans isolates were correctly identified, whereas all other fungi were excluded. Esculin agar was a sensitive, specific medium for the isolation and identification of C. neoformans. It was inexpensive and had a long storage life. Images PMID:7012169
Glushakova, A M; Kachalkin, A V; Chernov, I Yu
2015-01-01
Yeast abundance and diversity in a mixed forest sod-podzol soil under Impatiens parviflora DC plants was studied in comparison with unimpaired aboriginal herbaceous plants typical of the Mid-Russian secondary, after-forest meadow. The study was carried out throughout the vegetation period. Standard microbiological plating techniques revealed 36 yeast species. Typical pedobiotic (Cryptococcus podzolicus, Wickerhamomyces anomalus) and eurybiotic yeast species (Rhodotorula mucilaginosa) predominated in both biotopes. The relative abundance of the autochthonous soil yeast species Cryptococcus podzolicus was higher in the soil under aboriginal herbs than under Impatiens parviflora. Sites with aboriginal vegetation were also characterized by high abundance of the pedogamous species Schwanniomyces castelli and Torulaspora delbrueckii. The share of yeastlike Trichosporon fungi with high hydrolytic activity was considerably higher under adventitious plants Impatiens parviflora, as well as in the previously studied soil under Heracleum sosnowskyi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, R.A.; Shaw, C.G.; Cohen, A.L.
The scanning electron microscope was used to 1) examine the associations among microorganisms during wood decay and 2) observe the effect of these organisms on degradation of cell wall components. Bacteria (Enterobacter) and yeasts (Cryptococcus Pichia, and Saccharomyces) were found to have a mutualistic association with a white-rot fungus during decay of coniferous wood. Coriolus (Polyporus versicolar) degraded cell wall components in a typical ''erosion trough'' manner (i.e., by lysing zones around fungal hyphae). Bacteria and yeasts were seen only in these lysed zones. Typical gross decay patterns caused by the white-rot fungus were unaltered by bacteria and yeasts. Themore » SEM study suggests that the decay process is enhanced when these organisms are associated. In contrast, the same bacteria and yeasts were inhibitory when combined with a brown-rot fungus.« less
The lncRNA RZE1 Controls Cryptococcal Morphological Transition
Yang, Ence; Wang, Linqi; Cai, James J.; Lin, Xiaorong
2015-01-01
In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1’s function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2’s prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these “simple” eukaryotes. PMID:26588844
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Miltefosine has post-antifungal effect and induces apoptosis in Cryptococcus yeasts.
Spadari, Cristina de Castro; Vila, Taissa; Rozental, Sonia; Ishida, Kelly
2018-05-29
Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles), to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activity against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had post-antifungal effect on Cryptococcus , with a proliferation delay of up to 8.15 h after short exposure to fungicidal doses. MFS at fungicidal concentrations increased plasma membrane permeability, likely due to direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased ROS production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry in light microscopy), plasma membrane irregularities, mitochondrial swelling and a less conspicuous cell wall. Our results suggest that MFS increases plasma membrane permeability in Cryptococcus via interaction with ergosterol, and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii, and warrants further studies to establish clinical protocols for MFS use against cryptococcosis. Copyright © 2018 American Society for Microbiology.
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
USDA-ARS?s Scientific Manuscript database
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) mycelium showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of th...
Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard
2013-01-01
Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542
Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi.
Palma-Guerrero, J; Jansson, H-B; Salinas, J; Lopez-Llorca, L V
2008-02-01
To investigate the toxic effect of chitosan on important root pathogenic and biocontrol fungi (nematophagous, entomopathogenic and mycoparasitic). We have used standard bioassays to investigate the effect of chitosan on colony growth and developed bioassays to test spore germination. The results showed that the root pathogenic and mycoparasitic fungi tested were more sensitive to chitosan than nematophagous and entomopathogenic fungi. Chitosanases (and perhaps related enzymes) are involved in the resistance to chitosan. Two fungi, one sensitive to chitosan, Fusarium oxysporum f. sp. radicis-lycopersici, and one less sensitive, Pochonia chlamydosporia, were selected for ultrastructural investigations. Transmission electron microscopy revealed differences in the ultrastructural alterations caused by chitosan in the spores of the plant pathogenic fungus and in those of the nematophagous fungus. Confocal laser microscopy showed that Rhodamine-labelled chitosan enters rapidly into conidia of both fungi, in an energy-dependent process. Nematophagous and entomopathogenic fungi are rather resistant to the toxic effect of chitosan. Resistance of nematophagous and entomopathogenic fungi to chitosan could be associated with their high extracellular chitosanolytic activity. Furthermore, ultrastructural damage is much more severe in the chitosan sensitive fungus. The results of this paper suggest that biocontrol fungi tested could be combined with chitosan for biological control of plant pathogens and pests.
Isolation of Cryptococcus gattii from Oregon soil and tree bark, 2010-2011.
DeBess, Emilio; Lockhart, Shawn R; Iqbal, Naureen; Cieslak, Paul R
2014-12-21
In Oregon, human and animal infections by C. gattii were first identified in 2004. Cryptococcus gattii is considered to be an emerging non-zoonotic infection affecting animals and humans in Oregon. We report a longitudinal environmental isolation of C. gattii after an Oregon dog was diagnosed with the disease in 2009. Cryptococcus gattii was isolated twice from the same location with a span of one year between isolation dates. Cryptococcus gattii molecular types VGIIa and VGI were isolated in 2010 from soil and tree bark near the home of a 9-month-old dog which three months previously had an infection caused by C. gattii genotype VGIIa. The environment featured heavy growth of Douglas Fir trees. In 2011, a second set of soil and tree bark samples was collected in the same area and C. gattii VGIIa was again identified from the environment, along with genotypes VGIIb and VGIIc. The use of animal surveillance data to identify environmental niches of C. gattii should be considered to expand the understanding of this emerging pathogen. Understanding the ecology and how the environment and other factors might modify the existing niches is important for assessing risk and for designing measures to protect human and animal health.
Abegg, Maxwel Adriano; Cella, Fabiana Lucila; Faganello, Josiane; Valente, Patrícia; Schrank, Augusto; Vainstein, Marilene Henning
2006-02-01
Cryptococcus neoformans, a major pathogen in immunocompromised patients, is a ubiquitous free-living fungus that can be isolated from soils, avian excreta and plant material. To further study potential saprophytic sources of this yeast in the Southern Brazilian State Rio Grande do Sul, we analyzed fecal samples from 59 species of captive birds kept in cages at a local Zoological Garden, belonging to 12 different orders. Thirty-eight environmental isolates of C. neoformans were obtained only from Psittaciformes (Psittacidae, Cacatuidae and Psittacula). Their variety and serotype were determined, and the genetic structure of the isolates was analyzed by use of the simple repetitive microsatellite specific primer M13 and the minisatellite specific primer (GACA)(4) as single primers in the PCR. The varieties were confirmed by pulsed-field gel electrophoresis (PFGE). Thirty-three isolates (87%) were from the var. grubii, serotype A, molecular type VNI and five (13%) were Cryptococcus gattii, serotype B, molecular type VGI. All the isolates were mating type alpha. Isolates were screened for some potential virulence factors. Quantitative urease production by the environmental isolates belonging to the C. gattii was similar to the values usually obtained for clinical ones.
Nishanth Kumar, S; Nath, Vishnu Sukumari; Pratap Chandran, R; Nambisan, Bala
2014-02-01
The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(L-Pro-L-Trp), cyclo(L-Leu-L-Val), cyclo(D-Pro-D-Met), and cyclo(D-Pro-D-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(L-Leu-L-Val). Cyclo(L-Leu-L-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(L-Pro-L-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(L-Pro-L-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete's foot, jock itch, and ringworm. The activity of cyclo(L-Pro-L-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial secondary metabolites, which may receive greater benefit as potential sources of new drugs in the pharmaceutical industry.
Lectins in human pathogenic fungi.
Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro
2014-01-01
Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
The Intracellular Life of Cryptococcus neoformans
Coelho, Carolina; Bocca, Anamelia L.; Casadevall, Arturo
2016-01-01
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells. PMID:24050625
Lahiri Mukhopadhyay, Shayanki; Bahubali, Veenakumari H; Manjunath, Netravathi; Swaminathan, Aarthi; Maji, Sayani; Palaniappan, Marimuthu; Parthasarathy, Satishchandra; Chandrashekar, Nagarathna
2017-11-01
Cryptococcus gattii species complex has evolved as a pathogen in the last two decades causing infection among both immunocompetent and immunocompromised hosts. We aimed to analyse the clinical features of CNS infection caused by C. gattii sensu lato, molecular and antifungal susceptibility profile of this pathogen. Cases diagnosed to have CNS cryptococcosis were included in the study. Cryptococcus recovered from patient's specimen was identified by standard protocol. Species confirmation, mating type and molecular type determination were performed by PCR based methods. Antifungal susceptibility was tested in VITEK2C to amphotericin B, 5-flucytosine, fluconazole and voriconazole. Among 199 cases, 20 (10%) were due to C. gattii, comprising of 75% cryptococcal meningitis and 25% cryptococcoma cases. Young adult males were commonly affected. Headache and vomiting were prominent symptoms and 50% were immunocompromised. Among the isolates, 75%, 20% and 5% were C. tetragattii, C. gattii sensu stricto and C. bacillisporus respectively and all had mating type α. Four (20%) isolates of C. tetragattii and the only isolate of C. bacillisporus were resistant to fluconazole. The most common species isolated from south India is C. tetragattii. The study contributes to the epidemiology of C. gattii and reiterates the need for genotyping and antifungal susceptibility testing. © 2017 Blackwell Verlag GmbH.
Anti-Immune Strategies of Pathogenic Fungi
Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2016-01-01
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220
Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee
2008-01-01
Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type α and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible α-α unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for α-α unions is evidence that α-α unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules. PMID:18552280
Kidd, Sarah E.; Chow, Yat; Mak, Sunny; Bach, Paxton J.; Chen, Huiming; Hingston, Adrian O.; Kronstad, James W.; Bartlett, Karen H.
2007-01-01
Cryptococcus gattii has recently emerged as a primary pathogen of humans and wild and domesticated animals in British Columbia, particularly on Vancouver Island. C. gattii infections are typically infections of the pulmonary and/or the central nervous system, and the incidence of infection in British Columbia is currently the highest reported globally. Prior to this emergence, the environmental distribution of and the extent of colonization by C. gattii in British Columbia were unknown. We characterized the environmental sources and potential determinants of colonization in British Columbia. C. gattii was isolated from tree surfaces, soil, air, freshwater, and seawater, and no seasonal prevalence was observed. The C. gattii concentrations in air samples were significantly higher during the warm, dry summer months, although potentially infectious propagules (<3.3 μm in diameter) were present throughout the year. Positive samples were obtained from many different areas of British Columbia, and some locations were colonization “hot spots.” C. gattii was generally isolated from acidic soil, and geographic differences in soil pH may influence the extent of colonization. C. gattii soil colonization also was associated with low moisture and low organic carbon contents. Most of the C. gattii isolates recovered belonged to the VGIIa genetic subtype; however, sympatric colonization by the VGIIb strain was observed at most locations. At one sampling site, VGIIa, VGIIb, VGI, and the Cryptococcus neoformans serotype AD hybrid all were coisolated. Our findings indicate extensive colonization by C. gattii within British Columbia and highlight an expansion of the ecological niche of this pathogen. PMID:17194837
Lee, Soo Chan; Phadke, Sujal; Sun, Sheng; Heitman, Joseph
2012-11-01
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.
Albuquerque, Priscila C; Rodrigues, Marcio L
2012-03-01
Recent data demonstrates that cryptococcosis caused by Cryptococcus neoformans or Cryptococcus gattii kills approximately 600,000 people per year in the world. In Brazil, cryptococcosis has recently been identified as the most fatal mycosis in AIDS patients. In this study, we aimed to map research into C. neoformans and C. gattii in the world, with a focus on the Brazilian contribution to this area. The parameters used for this analysis were based on publication records, including number of articles published, citation indices, journal impact factor and distribution of authorship in the last two decades. Our global analysis of publications demonstrated that, in the last 20 years, the USA was the country that produced the highest number of scientific articles in the Cryptococcus field, while Brazil occupied the third position. Brazilian productivity, however, showed a steady tendency to increase, in contrast to the USA and other countries. The average impact factor of journals at which articles authored by Brazilians were published was 2.58, which represented approximately half the value found for papers of American authorship. Studies authored by Brazilian scientists showed relatively low averages of citations per article, in comparison to papers published by researchers from the USA, France, Australia, The Netherlands and Germany, among others. This study demonstrates that the contribution of Brazilian scientists to the Cryptococcus field is continually growing, although papers produced in Brazil apparently have poor repercussion in comparison to those generated in developed countries.
Garcia-Santamarina, Sarela; Uzarska, Marta A; Festa, Richard A; Lill, Roland; Thiele, Dennis J
2017-10-31
Copper (Cu) ions serve as catalytic cofactors to drive key biochemical processes, and yet Cu levels that exceed cellular homeostatic control capacity are toxic. The underlying mechanisms for Cu toxicity are poorly understood. During pulmonary infection by the fungal pathogen Cryptococcus neoformans , host alveolar macrophages compartmentalize Cu to the phagosome, and the ability to detoxify Cu is critical for its survival and virulence. Here, we report that iron-sulfur (Fe-S) clusters are critical targets of Cu toxicity in both Saccharomyces cerevisiae and C. neoformans in a manner that depends on the accessibility of Cu to the Fe-S cofactor. To respond to this Cu-dependent Fe-S stress, C. neoformans induces the transcription of mitochondrial ABC transporter Atm1, which functions in cytosolic-nuclear Fe-S protein biogenesis in response to Cu and in a manner dependent on the Cu metalloregulatory transcription factor Cuf1. As Atm1 functions in exporting an Fe-S precursor from the mitochondrial matrix to the cytosol, C. neoformans cells depleted for Atm1 are sensitive to Cu even while the Cu-detoxifying metallothionein proteins are highly expressed. We provide evidence for a previously unrecognized microbial defense mechanism to deal with Cu toxicity, and we highlight the importance for C. neoformans of having several distinct mechanisms for coping with Cu toxicity which together could contribute to the success of this microbe as an opportunistic human fungal pathogen. IMPORTANCE C. neoformans is an opportunistic pathogen that causes lethal meningitis in over 650,000 people annually. The severity of C. neoformans infections is further compounded by the use of toxic or poorly effective systemic antifungal agents as well as by the difficulty of diagnosis. Cu is a natural potent antimicrobial agent that is compartmentalized within the macrophage phagosome and used by innate immune cells to neutralize microbial pathogens. While the Cu detoxification machinery of C. neoformans is essential for virulence, little is known about the mechanisms by which Cu kills fungi. Here we report that Fe-S cluster-containing proteins, including members of the Fe-S protein biogenesis machinery itself, are critical targets of Cu toxicity and therefore that this biosynthetic process provides an important layer of defense against high Cu levels. Given the role of Cu ionophores as antimicrobials, understanding how Cu is toxic to microorganisms could lead to the development of effective, broad-spectrum antimicrobials. Moreover, understanding Cu toxicity could provide additional insights into the pathophysiology of human diseases of Cu overload such as Wilson's disease. Copyright © 2017 Garcia-Santamarina et al.
2017-01-01
ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618
A review of the role of fungi in wood decay of forest ecosystems
Bruce G. Marcot
2017-01-01
Fungi are key players in the health, diversity, and productivity of forest ecosystems in Pacific Northwest forests, as mycorrhizal associations, pathogens, decomposers, nontimber resources, and food resources for wildlife. A number of invertebrate species are associated with wood decay fungi, serve as vectors for fungal pathogens, or are fungivorous (consume fungi) and...
Hagen, Ferry; Lumbsch, H Thorsten; Arsic Arsenijevic, Valentina; Badali, Hamid; Bertout, Sebastien; Billmyre, R Blake; Bragulat, M Rosa; Cabañes, F Javier; Carbia, Mauricio; Chakrabarti, Arunaloke; Chaturvedi, Sudha; Chaturvedi, Vishnu; Chen, Min; Chowdhary, Anuradha; Colom, Maria-Francisca; Cornely, Oliver A; Crous, Pedro W; Cuétara, Maria S; Diaz, Mara R; Espinel-Ingroff, Ana; Fakhim, Hamed; Falk, Rama; Fang, Wenjie; Herkert, Patricia F; Ferrer Rodríguez, Consuelo; Fraser, James A; Gené, Josepa; Guarro, Josep; Idnurm, Alexander; Illnait-Zaragozi, María-Teresa; Khan, Ziauddin; Khayhan, Kantarawee; Kolecka, Anna; Kurtzman, Cletus P; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Meis, Jacques F; Nielsen, Kirsten; Nyazika, Tinashe K; Pan, Weihua; Pekmezovic, Marina; Polacheck, Itzhack; Posteraro, Brunella; de Queiroz Telles, Flavio; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sanguinetti, Maurizio; Sriburee, Pojana; Sugita, Takashi; Taj-Aldeen, Saad J; Takashima, Masako; Taylor, John W; Theelen, Bart; Tomazin, Rok; Verweij, Paul E; Wahyuningsih, Retno; Wang, Ping; Boekhout, Teun
2017-01-01
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii . In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature " C. neoformans species complex" and " C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
2011-02-11
for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further...defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis...mechanisms,3 the stilbenoids (Figure 1) were evaluated first for their antifungal effects against plant pathogenic fungi . The fungal species tested are
The interaction of fungi with the environment orchestrated by RNAi.
Villalobos-Escobedo, José Manuel; Herrera-Estrella, Alfredo; Carreras-Villaseñor, Nohemí
2016-01-01
The fungal kingdom has been key in the investigation of the biogenesis and function of small RNAs (sRNAs). The discovery of phenomena such as quelling in Neurospora crassa represents pioneering work in the identification of the main elements of the RNA interference (RNAi) machinery. Recent discoveries in the regulatory mechanisms in some yeast and filamentous fungi are helping us reach a deeper understanding of the transcriptional and post-transcriptional gene-silencing mechanisms involved in genome protection against viral infections, DNA damage and transposon activity. Although most of these mechanisms are reasonably well understood, their role in the physiology, response to the environment and interaction of fungi with other organisms had remained elusive. Nevertheless, studies in fungi such as Mucor circinelloides, Magnaporthe oryzae, Cryptococcus neoformans, Trichoderma atroviride, Botrytis cinerea and others have started to shed light on the relevance of the RNAi pathway. In these fungi gene regulation by RNAi is important for growth, reproduction, control of viral infections and transposon activity, as well as in the development of antibiotic resistance and interactions with their hosts. Moreover, the increasing number of reports of the discovery of microRNA-like RNAs in fungi under different conditions highlights the importance of fungi as models for understanding adaptation to the environment using regulation by sRNAs. The goal of this review is to provide the reader with an up-to-date overview of the importance of RNAi in the interaction of fungi with their environment. © 2016 by The Mycological Society of America.
Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis.
Lee, Jeong-Ho; Yang, Hye-Young; Lee, Hong-Sub; Hong, Soon-Kwang
2008-03-01
The essential oil from the cones of Pinus koraiensis was prepared after removing the seeds, and its chemical composition analyzed using gas chromatography-mass spectrometry (GC-MS). Hydrodistillation of the P. koraiensis cones yielded 1.07% (v/w) of essential oil, which was almost three times the amount of essential oil extracted from the needles of the same plant. Moreover, the antimicrobial activities of the oil against the growth of Gram-positive bacteria, Gram-negative bacteria, and fungi were evaluated using the agar disc diffusion method and broth microdilution method. Eighty-seven components, comprising about 96.8% of the total oil, were identified. The most abundant oil components were limonene (27.90%), alpha-pinene (23.89%), beta-pinene (12.02%), 3-carene (4.95%), beta-myrcene (4.53%), isolongifolene (3.35%), (-)-bornyl acetate (2.02%), caryophyllene (1.71%), and camphene (1.54%). The essential oil was confirmed to have significant antimicrobial activities, especially against pathogenic fungal strains such as Candida glabrata YFCC 062 and Cryptococcus neoformans B 42419. Therefore, the present results indicate that the essential oil from the cones of Pinus koraiensis can be used in various ways as a nontoxic and environmentally friendly disinfectant.
High prevalence of fastidious bacteria in 1520 cases of uveitis of unknown etiology.
Drancourt, Michel; Berger, Pierre; Terrada, Céline; Bodaghi, Bahram; Conrath, John; Raoult, Didier; LeHoang, Phuc
2008-05-01
The etiologic evaluation of uveitis is frequently unsuccessful when noninvasive methods are used. We conducted a prospective study to evaluate systematic screening for pathogens of uveitis. All patients with uveitis referred to the participating tertiary ophthalmology departments from January 2001 to September 2007 underwent intraocular and serum specimen collection. The standardized protocol for laboratory investigations included universal polymerase chain reaction (PCR)-based detection of any bacteria and mycoses, specific PCR-based detection of fastidious (difficult-to-grow) bacteria and herpes viruses, and culture of vitreous fluid. Sera were tested for fastidious bacteria. Among the 1321 included patients (1520 specimens), infection was diagnosed in 147 (11.1%) patients: 78 (53%) were caused by fastidious bacteria that included spirochetes, Bartonella species, intracellular bacteria (Chlamydia species, Rickettsia species, Coxiella burnetii), and Tropheryma whipplei; 18 by herpes viruses; and 9 by fungi. Bartonella quintana, Coxiella burnetii, Paracoccus yeei, Aspergillus oryzae, and Cryptococcus albidus were found to be associated with uveitis for the first time, to our knowledge. We recommend applying a 1-step diagnostic procedure that incorporates intraocular, specific microbial PCR with serum analyses in tertiary centers to determine the etiology of uveitis.
Immunosuppression Related to Collagen-Vascular Disease or Its Treatment
Hamilton, Carol Dukes
2005-01-01
Collagen-vascular diseases are associated with immune dysregulation and inflammation, leading to tissue destruction or compromise. Immunosuppression is more commonly associated with the drugs used to treat these disorders than with the diseases themselves. The newest agents being used to treat collagen-vascular diseases are the tumor necrosis factor (TNF)-α inhibitors. U.S. Food and Drug Administration–approved TNF-α inhibitors have differing effects on the immune system, reflecting their potency and mechanisms of action. They are particularly effective in breaking down granulomatous inflammation, which makes them effective treatment for sarcoidosis and Wegener's granulomatosis. This same property makes them likely to break down the host defense mechanism that normally contains pathogens such as mycobacteria and fungi in a dormant state, namely the physical and immunologic barrier formed by granulomas in the lung and elsewhere. The most common infection reported with the TNF-α inhibitors has been tuberculosis, which may manifest as pulmonary and/or extrapulmonary disease, with the latter being more common and severe than usual. Histoplasma capsulatum, Aspergillus, Cryptococcus neoformans, and Listeria monocytogenes have also been described in a number of cases, and their frequency is discussed. PMID:16322600
Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680.
Vartak, A; Mutalik, V; Parab, R R; Shanbhag, P; Bhave, S; Mishra, P D; Mahajan, G B
2014-06-01
A new polyene macrolide antibiotic PN00053 was isolated from the fermentation broth of Streptomyces sp. wild-type strain MTCC-5680. The producer strain was isolated from fertile mountain soil of Naldehra region, Himachal Pradesh, India. The compound PN00053 was purified through various steps of chromatographic techniques and bio-activity guided fractionation followed by its characterization using physiochemical properties, spectral data ((1) H-NMR, (13) C-NMR, HMBC, HSQC, and COSY) and MS analysis. PN00053 exhibited broad spectrum in vitro antifungal activity against strains of Aspergillus fumigatus (HMR), A. fumigatus ATCC 16424, Candida albicans (I.V.), C. albicans ATCC 14503, C. krusei GO6, C. glabrata HO4, Cryptococcus neoformans, Trichophyton sp. as well as fluconazole resistant strains C. krusei GO3 and C. glabrata HO5. It did not inhibit growth of gram positive and gram-negative bacteria, displaying its specificity against fungi. PN00053 is a novel polyene macrolide isolated from a wild strain of Streptomyces sp. PM0727240 (MTCC5680), an isolate from the mountainous rocky regions of Himachal Pradesh, India. The compound is a new derivative of the antibiotic Roflamycoin [32, 33-didehydroroflamycoin (DDHR)]. It displayed broad spectrum antifungal activity against yeast and filamentous fungi. However, it did not show any antibacterial activity. The in vitro study revealed that PN00053 has better potency as compared to clinical gold standard fluconazole. The development of pathogenic resistance against the polyenes has been seldom reported. Hence, we envisage PN00053 could be a potential antifungal lead. © 2014 The Society for Applied Microbiology.
Lee, Pamela P.; Lau, Yu-Lung
2017-01-01
The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions. PMID:28702025
Fischer, Gregory J; Keller, Nancy P
2016-03-01
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.
Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su
2012-03-01
This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.
Al-Dhabi, Naif Abdullah; Esmail, Galal Ali; Duraipandiyan, Veeramuthu; Valan Arasu, Mariadhas; Salem-Bekhit, Mounir M
2016-01-01
The strain Streptomyces sp. Al-Dhabi-1 was isolated from soil sediments collected from Tharban hot spring in the southern west of Saudi Arabia using actinomycetes isolation agar and starch casein agar at 55 °C. Identification of the isolate was done according to morphological, physiological and biochemical characteristics and 16S rRNA sequence similarity as well. 16S rRNA sequence and blast analyses confirmed that the isolate belonging to the genus Streptomyces. The sequence was submitted to GenBank with accession number (KF815080). Ethyl acetate extract of Streptomyces sp. Al-Dhabi-1 showed good antimicrobial activities against tested pathogenic microbes. Minimum inhibitory concentration results showed that the best values were observed against S. agalactiae (<0.039 mg/ml) and Klebsiella pneumonia (0.125 mg/ml). Minimum inhibitory concentration of Al-Dhabi-1 against fungi; Cryptococcus neoformans (0.078 mg/ml), C. albicans (0.156 mg/ml), A. niger (0.625 mg/ml), and T. mentagrophytes (0.156 mg/ml). GC-MS analysis was used for the chemical profile of ethyl acetate extract. Benzeneacetic acid (16.02 %) and acetic acid 2-phenylethyl ester (10.35 %) were the major compounds among 31 substances found the ethyl acetate extract. According to the results of antimicrobial activity against pathogenic microbes, it is clear that the actinomycetes from hot springs with extreme environments are promising source for antimicrobial compounds.
Santiago, Iara F; Soares, Marco Aurélio; Rosa, Carlos A; Rosa, Luiz H
2015-11-01
We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica.
Nyazika, Tinashe K; Hagen, Ferry; Meis, Jacques F; Robertson, Valerie J
2016-06-01
HIV-associated cryptococcal meningitis is commonly caused by Cryptococcus neoformans, whilst infections with Cryptococcus gattii sensu lato are historically rare. Despite available studies, little is known about the occurrence of C. gattii sensu lato infections among HIV-infected individuals in Zimbabwe. In a prospective cohort, we investigated the prevalence of C. gattii sensu lato meningitis among HIV-infected patients (n = 74) in Harare, Zimbabwe. Of the 66/74 isolates confirmed by molecular characterization, 16.7% (11/66) were found to be C. gattii sensu lato and 83.3% (55/66) C. neoformans sensu stricto. From one patient two phenotypically different C. gattii sensu lato colonies were cultured. The majority (n = 9/12; 75%) of the C. gattii sensu lato isolates were Cryptococcus tetragattii (AFLP7/VGIV), which has been an infrequently reported pathogen. In-hospital mortality associated with C. gattii sensu lato was 36.4%. Our data suggests that C. tetragattii (AFLP7/VGIV) is a more common cause of disease than C. gattii sensu stricto (genotype AFLP4/VGI) among patients with HIV-associated cryptococcal meningitis in Harare, Zimbabwe and possibly underreported in sub-Saharan Africa. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Gauthier, Gregory M; Keller, Nancy P
2013-12-01
The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.
Vargas-Muñiz, José M; Renshaw, Hilary; Richards, Amber D; Lamoth, Frédéric; Soderblom, Erik J; Moseley, M Arthur; Juvvadi, Praveen R; Steinbach, William J
2015-08-01
Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model. Copyright © 2015 Elsevier Inc. All rights reserved.
Costa, A L; Valenti, A; Costa, G; Calogero, F
1976-01-01
The authors have analyzed the 5 Fluoro Cytosine (5FC) activity on strains of Candida albicans and Criptococcus neoformans, both in vitro and in vivo. In vitro the minimal inhibitory concentration (MIC) was determined; in vivo tests of pathogenicity on rabbit and mouse have been executed. The various findings obtained have shown a strong activity of the 5FC on strains of Candida and Criptococcus.
Fischer, Gregory J.; Keller, Nancy P.
2016-01-01
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived non-enzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions. PMID:26920885
The capsule of the fungal pathogen Cryptococcus neoformans
Zaragoza, Oscar; Rodrigues, Marcio L.; De Jesus, Magdia; Frases, Susana; Dadachova, Ekaterina; Casadevall, Arturo
2009-01-01
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades, and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MP). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual Mw might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in Cryptococcus neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis, and particularly, its role as a virulence factor. PMID:19426855
USDA-ARS?s Scientific Manuscript database
Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
H. M. T.Bandara Herath; Melissa Jacob; A. Alpus Wilson; Hamed K. Abbas; N.P. Dhammika Nanayakkara Nanayakkara
2012-01-01
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of these extracts led to the isolation and identification of four new compounds,...
Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan
2015-05-27
Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.
Yeast diversity associated to sediments and water from two Colombian artificial lakes
Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.
2014-01-01
In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924
Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.
Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A
2016-10-01
Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Antibiosis of vineyard ecosystem fungi against food-borne microorganisms.
Cueva, Carolina; Moreno-Arribas, M Victoria; Bartolomé, Begoña; Salazar, Óscar; Vicente, M Francisca; Bills, Gerald F
2011-12-01
Fermentation extracts from fungi isolated from vineyard ecosystems were tested for antimicrobial activities against a set of test microorganisms, including five food-borne pathogens (Staphylococcus aureus EP167, Acinetobacter baumannii (clinically isolated), Pseudomonas aeruginosa PAO1, Escherichia coli O157:H7 (CECT 5947) and Candida albicans MY1055) and two probiotic bacteria (Lactobacillus plantarum LCH17 and Lactobacillus brevis LCH23). A total of 182 fungi was grown in eight different media, and the fermentation extracts were screened for antimicrobial activity. A total of 71 fungi produced extracts active against at least one pathogenic microorganism, but not against any probiotic bacteria. The Gram-positive bacterium S. aureus EP167 was more susceptible to antimicrobial fungi broth extracts than Gram-negative bacteria and pathogenic fungi. Identification of active fungi based on internal transcribed spacer rRNA sequence analysis revealed that species in the orders Pleosporales, Hypocreales and Xylariales dominated. Differences in antimicrobial selectivity were observed among isolates from the same species. Some compounds present in the active extracts were tentatively identified by liquid chromatography-mass spectrometry. Antimicrobial metabolites produced by vineyard ecosystem fungi may potentially limit colonization and spoilage of food products by food-borne pathogens, with minimal effect on probiotic bacteria. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Global Warming Will Bring New Fungal Diseases for Mammals
Garcia-Solache, Monica A.; Casadevall, Arturo
2010-01-01
ABSTRACT Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy. Mammals maintain high body temperatures relative to environmental temperatures, creating a thermally restrictive ambient for the majority of fungi. According to this view, protection given by endothermy requires a temperature gradient between those of mammals and the environment. We hypothesize that global warming will increase the prevalence of fungal diseases in mammals by two mechanisms: (i) increasing the geographic range of currently pathogenic species and (ii) selecting for adaptive thermotolerance for species with significant pathogenic potential but currently not pathogenic by virtue of being restricted by mammalian temperatures. PMID:20689745
Sun, Sheng; Billmyre, R. Blake; Mieczkowski, Piotr A.; Heitman, Joseph
2014-01-01
In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results provide definitive evidence that α-α unisexual reproduction is a meiotic process similar to a-α bisexual reproduction. PMID:25503976
Sun, Sheng; Billmyre, R Blake; Mieczkowski, Piotr A; Heitman, Joseph
2014-12-01
In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results provide definitive evidence that α-α unisexual reproduction is a meiotic process similar to a-α bisexual reproduction.
Tools of the crook – infection strategies of fungal plant pathogens
USDA-ARS?s Scientific Manuscript database
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of d...
Dumesic, Phillip A.; Rosenblad, Magnus A.; Samuelsson, Tore; Nguyen, Tiffany; Moresco, James J.; Yates, John R.; Madhani, Hiten D.
2015-01-01
Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features—SRP RNA helix 8 and Srp54—in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development. PMID:26275773
Peeling the onion: the outer layers of Cryptococcus neoformans.
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.
The first reported case of canine subcutaneous Cryptococcus flavescens infection.
Kano, Rui; Ishida, Rinei; Nakane, Shinsuke; Sekiguchi, Maiko; Hasegawa, Atsuhiko; Kamata, Hiroshi
2012-03-01
This report describes the first documented case of subcutaneous infection due to Cryptococcus flavescens in a dog. The chief symptoms of the patient dog were abscessed lesions on the dorsal muzzle, right eyelid, and lower jaw. Biopsy specimens from the lesions on the dorsal muzzle and lower jaw showed pyogranulomatous inflammation with numerous yeast cells. The patient dog was diagnosed with a subcutaneous fungal infection and orally received 5 mg/kg itraconazole once a day for 2 months, the abscesses disappeared. After 1 month at the end of treatment, the skin lesions did not redevelop. Isolates from the biopsy specimens were identified as C. flavescens by molecular analysis as well as morphologic and biochemical examination, indicating that C. flavescens is a potential canine pathogen.
Peeling the onion: the outer layers of Cryptococcus neoformans
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health. PMID:29742198
Nnadi, N E; Enweani, I B; Cogliati, M; Ayanbimpe, G M; Okolo, M O; Kim, E; Sabitu, M Z; Criseo, G; Romeo, O; Scordino, F
2016-12-01
Cryptococcus neoformans and Cryptococcus gattii are encapsulated yeasts able to cause fatal neurological infections in both human and other mammals. Cryptococcosis is the most common fungal infection of the central nervous system and has a huge burden in sub-Saharan Africa and South East Asia. Bird excreta are considered an environmental reservoir for C. neoformans in urban areas, therefore a study aimed at isolating and characterizing this yeast is important in disease management. In this study, one hundred samples of pigeon droppings were collected in Jos, Plateau State, Nigeria. C. neoformans was isolated from three samples and initially identified using standard phenotypic and biochemical tests. Molecular analysis revealed that all three isolates belonged to C. neoformans genotype VNII, mating type α and were assigned to the sequence type ST43 by multilocus sequence typing analysis. This study reports, for the first time, the molecular characterization of C. neoformans in Nigeria, where little is still known about the environmental distribution of the genotypes, serotypes and mating types of this important human pathogen. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lumbsch, H. Thorsten; Bertout, Sebastien; Cabañes, F. Javier; Carbia, Mauricio; Chen, Min; Cuétara, Maria S.; Espinel-Ingroff, Ana; Falk, Rama; Ferrer Rodríguez, Consuelo; Fraser, James A.; Khan, Ziauddin; Kurtzman, Cletus P.; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Nielsen, Kirsten; Pan, Weihua; Pekmezovic, Marina; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sriburee, Pojana; Sugita, Takashi; Takashima, Masako; Taylor, John W.; Theelen, Bart; Tomazin, Rok; Verweij, Paul E.; Wahyuningsih, Retno
2017-01-01
ABSTRACT Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature “C. neoformans species complex” and “C. gattii species complex.” Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances. PMID:28875175
Seedborne Pathogenic Fungi in Common Bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua.
Marcenaro, Delfia; Valkonen, Jari P T
2016-01-01
Common bean (Phaseolus vulgaris L.) is an important legume with high nutritional value. In Nicaragua, certified healthy seeds of local bean varieties are not available, and seedborne fungi have gained little attention. Here, were surveyed seedborne pathogenic fungi in an important local bean cultivar, 'INTA Rojo'. Beans grown in the four main production areas in Nicaragua (Boaco, Carazo, Estelí, Matagalpa) for future use as seed stock were sampled from four seed storehouses and six seed lots. A total of 133 fungal strains were isolated from surface-sterilized beans and inoculated to healthy lima beans (Phaseolus lunatus) under controlled conditions. Eighty-seven isolates caused symptoms of varying severity in the seedlings, including discoloration, necrotic lesions, cankers, rot, and lethal necrosis. Pathogenic isolates were divided into eight phenotypically distinguishable groups based on morphology and growth characteristics on artificial growth medium, and further identified by analysis of the internal transcribed spacer sequences (ITS1 and ITS2) of the ribosomal RNA genes. The pathogenic isolates belonged to eight genera. Fusarium spp. (F. chlamydosporum, F. equiseti, F. incarnatum), Lasiodiplodia theobromae, Macrophomina phaseolina, and Penicillium citrinum were the most damaging and common fungi found in the seed lots. Furthermore, Corynespora cassiicola, Colletotrichum capsisi, Colletotrichum gloeosporioides, Aspergillus flavus, and Diaporthe sp. (Phomopsis) were seedborne in cultivar 'INTA Rojo' and found to be pathogenic to bean seedlings. This study reveals, for the first time, many seedborne pathogenic fungi in beans in Nicaragua; furthermore, prior to this study, little information was available concerning F. equiseti, F. incarnatum, L. theobromae, C. cassiicola, and Diaporthe spp. as seedborne pathogens of common bean. Our results lay the basis for developing diagnostic tools for seed health inspection and for further study of the epidemiology, ecology, and control of the pathogenic fungi of common beans in the field.
USDA-ARS?s Scientific Manuscript database
Many yeast pathogens of humans have become resistant to currently available drugs. Certain types of compounds can increase efficacy of antimycotic drugs through a process termed chemosensitization. Chemosensitizing efficacy was determined in Candida albicans, C. krusei, C. tropicalis and Cryptococcu...
Banerjee, Dithi; Bloom, Amanda L M; Panepinto, John C
2016-10-01
The pathogenic fungus Cryptococcus neoformans must adapt to glucose-limited conditions in the lung and glucose replete conditions upon dissemination to the brain. We report that glucose controls ribosome biogenesis and translation by modulating mRNA decay through a balance of PKA and Hog1 signalling. Glucose signalling through PKA stabilized ribosomal protein (RP) mRNAs whereas glucose starvation destabilized RP transcripts through Hog1. Glucose starvation-induced oxidative stress response genes, and treatment of glucose-fed cells with reactive oxygen species (ROS) generating compounds repressed RP transcripts, both of which were dependent on Hog1. Stabilization of RP transcripts led to retention of polysomes in a hog1Δ mutant, whereas stabilization of RP transcripts by cyclic AMP did not affect translation repression, suggesting that Hog1 alone signals translation repression. In sum, this work describes a novel antagonism between PKA and Hog1 controlling ribosome biogenesis via mRNA stability in response to glucose availability in this important human pathogen. © 2016 John Wiley & Sons Ltd.
Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells
Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik
2015-01-01
Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792
Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun
2017-01-01
ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical level. Induction of phosphate acquisition genes leads to the uptake of free phosphate via transporters. By blocking the PHO pathway using a Pho4 transcription factor mutant (pho4Δ mutant), we demonstrate the importance of the pathway for cryptococcal dissemination and the establishment of brain infection in murine models. Specifically, we show that reduced dissemination of the pho4Δ mutant to the brain is due to an alkaline pH tolerance defect, as alkaline pH mimics the conditions of phosphate deprivation. The end result is inhibited proliferation in host tissues, particularly in blood. Podcast: A podcast concerning this article is available. PMID:28144629
Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity.
Mommer, Liesje; Cotton, T E Anne; Raaijmakers, Jos M; Termorshuizen, Aad J; van Ruijven, Jasper; Hendriks, Marloes; van Rijssel, Sophia Q; van de Mortel, Judith E; van der Paauw, Jan Willem; Schijlen, Elio G W M; Smit-Tiekstra, Annemiek E; Berendse, Frank; de Kroon, Hans; Dumbrell, Alex J
2018-04-01
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil
Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam
2013-01-01
Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966
Phylogenetic congruence between subtropical trees and their associated fungi.
Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao
2016-12-01
Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.
Favalessa, Olivia Cometti; de Paula, Daphine Ariadne Jesus; Dutra, Valeria; Nakazato, Luciano; Tadano, Tomoko; Lazera, Marcia dos Santos; Wanke, Bodo; Trilles, Luciana; Walderez Szeszs, Maria; Silva, Dayane; Hahn, Rosane Christine
2014-08-13
Cryptococcosis is a systemic fungal infection that affects humans and animals, mainly due to Cryptococcus neoformans and Cryptococcus gattii. Following the epidemic of acquired immunodeficiency syndrome (AIDS), fungal infections by C. neoformans have become more common among immunocompromised patients. Cryptococcus gattii has primarily been isolated as a primary pathogen in healthy hosts and occurs endemically in northern and northeastern Brazil. We to perform genotypic characterization and determine the in vitro susceptibility profile to antifungal drugs of the Cryptococcus species complex isolated from HIV-positive and HIV-negative patients attended at university hospitals in Cuiabá, MT, in the Midwestern region of Brazil. Micromorphological features, chemotyping with canavanine-glycine-bromothymol blue (CGB) agar and genotyping by URA5-RFLP were used to identify the species. The antifungal drugs tested were amphotericin B, fluconazole, flucytosine, itraconazole and voriconazole. Minimum inhibitory concentrations (MICs) were determined according to the CLSI methodology M27-A3. Analysis of samples yelded C. neoformans AFLP1/VNI (17/27, 63.0%) and C. gattii AFLP6/VGII (10/27, 37.0%). The MICs ranges for the antifungal drugs were: amphotericin B (0.5-1 mg/L), fluconazole (1-16 mg/L), flucytosine (1-16 mg/L), itraconazole (0.25-0.12 mg/L) and voriconazole (0.06-0.5 mg/L). Isolates of C. neoformans AFLP1/VNI were predominant in patients with HIV/AIDS, and C. gattii VGII in HIV-negative patients. The genotypes identified were susceptible to the antifungal drugs tested. It is worth emphasizing that AFLP6/VGII is a predominant genotype affecting HIV-negative individuals in Cuiabá. These findings serve as a guide concerning the molecular epidemiology of C. neoformans and C. gattii in the State of Mato Grosso.
A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure
Reuwsaat, Julia Catarina Vieira; Motta, Heryk; Garcia, Ane Wichine Acosta; Vasconcelos, Carolina Bettker; Marques, Bárbara Machado; Oliveira, Natália Kronbauer; Rodrigues, Jéssica; Ferrareze, Patrícia Aline Gröhns; Frases, Susana; Barcellos, Vanessa Abreu; Squizani, Eamim Daidrê; Horta, Jorge André; Schrank, Augusto; Staats, Charley Christian; Vainstein, Marilene Henning
2018-01-01
ABSTRACT The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivo. IMPORTANCE Cryptococcus gattii has the ability to escape from the host’s immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall. PMID:29897877
Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.
2010-01-01
Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328
Silva-Hughes, Alice F; Wedge, David E; Cantrell, Charles L; Carvalho, Camila R; Pan, Zhiqiang; Moraes, Rita M; Madoxx, Victor L; Rosa, Luiz H
2015-06-01
The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A hundred-eight endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the genera Alternaria, Aureobasidium, Biscogniauxia, Cladosporium, Cryptococcus, Curvularia, Diaporthe, Epicoccum, Paraconiothyrium, Pestalotiopsis and Phoma. The most frequent species associated with O. humifusa were Alternaria sp. 3, Aureobasidium pullulans and Diaporthe sp. The fungal community of O. humifusa had a high richness and diversity; additionally, the species richness obtained indicates that the sample effort was enough to recover the diversity pattern obtained. Six extracts of endophytes showed antifungal properties and (1)H NMR analyses of the extracts of Alternaria sp. 5 Ohu 8B2, Alternaria sp. 3 Ohu 30A, Cladosporium funiculosum Ohu 17C1 and Paraconiothyrium sp. Ohu 17A indicated the presence of functional groups associated with unsaturated fatty-acid olefinic protons and fatty acid methylene and methyl protons. GC-FID analysis of these extracts confirmed the presence of a mixture of different fatty acids. The (1)H NMR analyses of Biscogniauxia mediterranea Ohu 19B extracts showed the presence of aromatic compounds. From the extract of B. mediterranea we isolated the compound 5-methylmellein that displayed moderate antifungal activity against the phytopathogenic fungi Phomopsis obscurans. Our results suggest that native medicinal cacti of the United States can live symbiotically with rich and diverse endophytic communities and may be a source of bioactive molecules, including those able to inhibit or control plant disease pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.
Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.
Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia
2011-05-01
In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.
Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.
Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases thatmore » includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in their active sites that help explain the variations in their respective substrate specificities.« less
Advances in the diagnosis and treatment of fungal infections of the CNS.
Schwartz, Stefan; Kontoyiannis, Dimitrios P; Harrison, Thomas; Ruhnke, Markus
2018-04-01
Fungal infections of the CNS are challenging to treat and their optimal management requires knowledge of their epidemiology, host characteristics, diagnostic criteria, and therapeutic options. Aspergillus and Cryptococcus species predominate among fungal infections of the CNS. Most of these fungi are ubiquitous, but some have restricted geographical distribution. Fungal infections of the CNS usually originate from primary sites outside the CNS (eg, fungal pneumonia) or occur after inoculation (eg, invasive procedures). Most patients with these infections have immunodeficiencies, but immunocompetent individuals can also be infected through heavy exposure. The infecting fungi can be grouped into moulds, yeasts, and dimorphic fungi. Substantial progress has been made with new diagnostic approaches and the introduction of novel antifungal drugs, but fungal infections of the CNS are frequently lethal because of diagnostic delays, impaired drug penetration, resistance to antifungal treatments, and inadequate restoration of immune function. To improve outcomes, future research should advance diagnostic methods (eg, molecular detection and fungus identification), develop antifungal compounds with enhanced CNS-directed efficacy, and further investigate crucial host defence mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of selective staining of fungi in paraffin sections by light microscopy, SEM and BEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, E.L.; Laudate, A.; Carter, H.W.
Paraffin-embedded sections from human tissues with fungi or organisms classified with fungi were studied by light microscopy (LM), scanning electron microscopy (SEM), and the backscatter electron imaging (BEI) mode of the SEM. The fungal organisms selected for study were those familiar to the pathologist on the basis of their appearance in paraffin-embedded material stained with the Gomori-Grocott Chromic Acid Methenamine Silver Stain (GMS). The organisms were Actinomyces, Rhizopus, Cryptococcus, Histoplasma capsulatum, and Coccidia imitis. Sections were stained with the GMS Stain and/or the Becker modification of the GMS Stain (BGMS) and examined in the secondary electron imaging mode (SEI) andmore » BEI mode with an annular backscatter electron detector. This silver staining technique accentuated the wall of fungal organisms, in the backscatter mode. Depending on the fungal organism and type of silver stain employed, the GMS seemed the preferable stain. The advantages of SEM over LM were greater depth of focus and potential range of magnifications. BEI may also be used in conjunction with LM stain for microorganisms to establish their presence.« less
Fungi in the cystic fibrosis lung: bystanders or pathogens?
Chotirmall, Sanjay H; McElvaney, Noel G
2014-07-01
Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions. Copyright © 2014. Published by Elsevier Ltd.
Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan
2015-01-01
Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555
Khajo, Abdelahad; Bryan, Ruth A.; Friedman, Matthew; Burger, Richard M.; Levitsky, Yan; Casadevall, Arturo; Magliozzo, Richard S.; Dadachova, Ekaterina
2011-01-01
Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown. PMID:21966422
Xing, Ke; Shen, Xiaoqiang; Zhu, Xiao; Ju, Xiuyun; Miao, Xiangmin; Tian, Jun; Feng, Zhaozhong; Peng, Xue; Jiang, Jihong; Qin, Sheng
2016-01-01
An antifungal dispersion system was prepared by oleoyl-chitosan (O-chitosan) nanoparticles, and the antifungal activity against several plant pathogenic fungi was investigated. Under scanning electron microscopy, the nanoparticles formulation appeared to be uniform with almost spherical shape. The particle size of nanoparticles was around 296.962 nm. Transmission electron microscopy observation showed that nanoparticles could be well distributed in potato dextrose agar medium. Mycelium growth experiment demonstrated that Nigrospora sphaerica, Botryosphaeria dothidea, Nigrospora oryzae and Alternaria tenuissima were chitosan-sensitive, while Gibberella zeae and Fusarium culmorum were chitosan-resistant. The antifungal index was increased as the concentration of nanoparticles increased for chitosan-sensitive fungi. Fatty acid analyses revealed that plasma membranes of chitosan-sensitive fungi were shown to have lower levels of unsaturated fatty acid than chitosan-resistant fungi. Phylogenetic analysis based on ITS gene sequences indicated that two chitosan-resistant fungi had a near phylogenetic relationship. Results showed that O-chitosan nanoparticles could be a useful alternative for controlling pathogenic fungi in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...
Advances in Genomics of Entomopathogenic Fungi.
Wang, J B; St Leger, R J; Wang, C
2016-01-01
Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.
Parrent, Jeri Lynn; James, Timothy Y; Vasaitis, Rimvydas; Taylor, Andrew FS
2009-01-01
Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi exhibit a wide range of ability to access plant-synthesized sucrose. Endophytic fungi are more similar to plant pathogens in their possession of GH32 genes, whereas most genomes of mycorrhizal taxa lack GH32 genes. Reliance on plant GH32 enzyme activity for C acquisition in these symbionts supports earlier predictions of possible plant control over C allocation in the mycorrhizal symbiosis. PMID:19566942
Sexual reproduction and the evolution of microbial pathogens.
Heitman, Joseph
2006-09-05
Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.
High diversity of fungi in air particulate matter.
Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich
2009-08-04
Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.
Antagonism of rice phylloplane fungi against Cercospora oryzae
NASA Astrophysics Data System (ADS)
Mardani, A.; Hadiwiyono
2018-03-01
Narrow brown leaf spot (NBLS) caused by Cercospora oryzae Miyake is one of the important obstacle in rice cultivation that can decrease the productivity up to 40%. It has been known well that some phylloplane fungi are antagonistic to some leaf diseases. Phylloplane fungi of rice however haven’t been studied much and poorly understood as biological control agent of rice pathogen such C. oryzae. The research aimed to study the antagonism of some phylloplane fungi of rice against C. oryzae. At least 14 isolates of phylloplane fungi were collected which consisted of six pathogenic and eight nonpathogenic variants. All of nonpathogenic isolates were antagonistic against C. oryzae both in vitro and only one isolate could not inhibit the infection of the pathogen in vivo. Some isolates were identified as Aspergillus, Mucor, Penicillium, Fusarium, and Trichoderma. The isolate of Mucor and Fusarium could inhibit the highest growth of pathogen on potato dextrose medium that were at 36.0% and 35.5% respectively. Whereas on artificial inoculation on rice, some isolates such Penicillium and Fusarium could inhibit most effectively and were significantly different to Mencozeb application with dosage 5g L-1.
Adaptation to the Host Environment by Plant-Pathogenic Fungi.
van der Does, H Charlotte; Rep, Martijn
2017-08-04
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Host pathogen relations: exploring animal models for fungal pathogens.
Harwood, Catherine G; Rao, Reeta P
2014-06-30
Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.
Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind.
Singh, Meenakshi; Govindarajan, Raghavan; Nath, Virendra; Rawat, Ajay Kumar Singh; Mehrotra, Shanta
2006-08-11
Plagiochasma appendiculatum (Aytoniaceae) of the order Marchantiales is widely used in the form of paste ethnomedicinally by Gaddi tribe in Kangra valley for treating skin diseases. In this context, antimicrobical potential of Plagiochasma appendiculatum against a wide range of microorganisms was studied. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied, besides antioxidant activity to understand the mechanism of wound healing activity. The plant (alchoholic and aqueous extract) showed significant antibacterial and antifungal activity against almost all the organisms: Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhimurium, and eight fungi Candida albicans and Cryptococcus albidus-dimorphic fungi, Trichophyton rubrum-dermatophyte fungi, Aspergillus niger, Aspergillus flavus, Aspergillus spinulosus, Aspergillus terreus and Aspergillus nidulans-systemic fungi, with especially good activity against the dermatophyte (Trichophyton rubrum) and some infectious bacteria (Escherichia coli, Proteus mirabilis and Salmonella typhimurium) with an MIC of 2.5 microg/disc. The results show that Plagiochasma appendiculatum extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. The results also indicated that Plagiochasma appendiculatum extract possesses potent antioxidant activity by inhibiting lipid peroxidation and increase in the superoxide dismutase (SOD) and Catalase activity.
Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii
Chen, Ying-Lien; Lehman, Virginia N.; Lewit, Yonathan; Averette, Anna F.; Heitman, Joseph
2013-01-01
The pathogenic yeast Cryptococcus gattii, which is causing an outbreak in the Pacific Northwest region of North America, causes life-threatening pulmonary infections and meningoencephalitis in healthy individuals, unlike Cryptococcus neoformans, which commonly infects immunocompromised patients. In addition to a greater predilection for C. gattii to infect healthy hosts, the C. gattii genome sequence project revealed extensive chromosomal rearrangements compared with C. neoformans, showing genomic differences between the two Cryptococcus species. We investigated the roles of C. gattii calcineurin in three molecular types: VGIIa (R265), VGIIb (R272), and VGI (WM276). We found that calcineurin exhibits a differential requirement for growth on solid medium at 37°, as calcineurin mutants generated from R265 were more thermotolerant than mutants from R272 and WM276. We demonstrated that tolerance to calcineurin inhibitors (FK506, CsA) at 37° is linked with the VGIIa molecular type. The calcineurin mutants from the R272 background showed the most extensive growth and morphological defects (multivesicle and larger ring-like cells), as well as increased fluconazole susceptibility. Our cellular architecture examination showed that C. gattii and C. neoformans calcineurin mutants exhibit plasma membrane disruptions. Calcineurin in the C. gattii VGII molecular type plays a greater role in controlling cation homeostasis compared with that in C. gattii VGI and C. neoformans H99. Importantly, we demonstrate that C. gattii calcineurin is essential for virulence in a murine inhalation model, supporting C. gattii calcineurin as an attractive antifungal drug target. PMID:23450261
Nielsen, Kirsten; De Obaldia, Anna L; Heitman, Joseph
2007-06-01
The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe.
Nielsen, Kirsten; De Obaldia, Anna L.; Heitman, Joseph
2007-01-01
The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe. PMID:17449657
Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species.
Chitty, Jessica L; Butler, Mark S; Suboh, Azzah; Edwards, David J; Cooper, Matthew A; Fraser, James A; Robertson, Avril A B
2018-02-01
Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. Copyright © 2018 Chitty et al.
Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species
Chitty, Jessica L.; Butler, Mark S.; Suboh, Azzah; Edwards, David J.; Cooper, Matthew A.; Fraser, James A.
2017-01-01
ABSTRACT Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. PMID:29158283
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less
Raj, Shriya; Nazemidashtarjandi, Saeed; Kim, Jihyun; Joffe, Luna; Zhang, Xiaoxue; Singh, Ashutosh; Mor, Visesato; Desmarini, Desmarini; Djordjevic, Julianne; Raleigh, Daniel P; Rodrigues, Marcio L; London, Erwin; Del Poeta, Maurizio; Farnoud, Amir M
2017-11-01
Fungal glucosylceramide (GlcCer) is a plasma membrane sphingolipid in which the sphingosine backbone is unsaturated in carbon position 8 (C8) and methylated in carbon position 9 (C9). Studies in the fungal pathogen, Cryptococcus neoformans, have shown that loss of GlcCer synthase activity results in complete loss of virulence in the mouse model. However, whether the loss of virulence is due to the lack of the enzyme or to the loss of the sphingolipid is not known. In this study, we used genetic engineering to alter the chemical structure of fungal GlcCer and studied its effect on fungal growth and pathogenicity. Here we show that unsaturation in C8 and methylation in C9 is required for virulence in the mouse model without affecting fungal growth in vitro or common virulence factors. However, changes in GlcCer structure led to a dramatic susceptibility to membrane stressors resulting in increased cell membrane permeability and rendering the fungal mutant unable to grow within host macrophages. Biophysical studies using synthetic vesicles containing GlcCer revealed that the saturated and unmethylated sphingolipid formed vesicles with higher lipid order that were more likely to phase separate into ordered domains. Taken together, these studies show for the first time that a specific structure of GlcCer is a major regulator of membrane permeability required for fungal pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of the laser to the study of pathogenic fungi.
Thibaut, M
1979-05-15
Laser microanalysis has been applied to the study of pathogenic fungi. Such a method allows chemical information to be obtained and permits the detection of 74 elements in the periodic system of Mendeleev from lithium (3) to uranium (92).
Entomopathogenic fungi for mosquito control: A review
Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem
2004-01-01
Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235
Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.
Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio
2018-01-01
Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rodriguez, R.J.; Redman, R.S.
1997-01-01
This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.
A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.
Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta
2017-01-01
Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.
Making a protein extract from plant pathogenic fungi for gel- and LC-based proteomics.
Fernández, Raquel González; Redondo, Inmaculada; Jorrin-Novo, Jesus V
2014-01-01
Proteomic technologies have become a successful tool to provide relevant information on fungal biology. In the case of plant pathogenic fungi, this approach would allow a deeper knowledge of the interaction and the biological cycle of the pathogen, as well as the identification of pathogenicity and virulence factors. These two elements open up new possibilities for crop disease diagnosis and environment-friendly crop protection. Phytopathogenic fungi, due to its particular cellular characteristics, can be considered as a recalcitrant biological material, which makes it difficult to obtain quality protein samples for proteomic analysis. This chapter focuses on protein extraction for gel- and LC-based proteomics with specific protocols of our current research with Botrytis cinerea.
Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.
Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi
2013-03-01
Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M
2015-12-22
A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.
Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin
2011-01-01
Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256
Yang, Jinkui; Wang, Lei; Ji, Xinglai; Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin
2011-09-01
Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.
Classification of yeast cells from image features to evaluate pathogen conditions
NASA Astrophysics Data System (ADS)
van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.
2007-01-01
Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.
Duplications and losses in gene families of rust pathogens highlight putative effectors
Amanda L. Pendleton; Katherine E. Smith; Nicolas Feau; Francis M. Martin; Igor V. Grigoriev; Richard Hamelin; C.Dana Nelson; J.Gordon Burleigh; John M. Davis
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the worldâs most destructive diseases of trees and crops . A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen...
[Opportunistic pathogenic and toxic micro-fungi among synthetic polymer destructors].
Kurakov, A V; Novikova, N D; Ozerskaia, S M; Deshevaia, E A; Gevorkian, S A; Gogiian, V B
2007-01-01
Analysis of species diversity of the micro-fungi typically detected at the sites of biodamage of synthetic polymers on space vehicles exhibited the presence of a broad variety of opportunistic pathogens and toxic species. Thus, 78 species of micromycetes of 300 polymer destructing fungi are associated with biological risk levels BSL-1 and BSL-2 (low and moderate levels, respectively). As many as 56 species are able to produce toxic compounds.
Nosanchuk, Joshua D; Mednick, Aron; Shi, Li; Casadevall, Arturo
2003-07-01
Cryptococcus neoformans is a fungal pathogen that survives in diverse environments. To determine whether cages of mice infected with C. neoformans posed an infection risk to animal caregivers, we investigated whether the fungus could be isolated from the bedding or stool of mice infected by intratracheal (i.t.), intravenous (i.v.), or intraperitoneal (i.p.) routes. The bedding of mice infected i.t. was contaminated with C. neoformans. In contrast, no contamination of bedding with C. neoformans was detected in cages of mice infected i.v. or i.p. C. neoformans was not isolated from murine feces. The C. neoformans strain recovered from bedding material was indistinguishable from the infecting strain by biochemical and molecular techniques. This result suggests that precautions may be warranted when disposing bedding from cages that housed mice with pulmonary C. neoformans infection.
Duncan, Colleen; Stephen, Craig; Campbell, John
2006-01-01
Since 1999, Cryptococcus gattii has emerged as an important pathogen of humans and animals in southwestern British Columbia. Historically thought to be restricted to the tropics and subtropics, C. gattii has posed new diagnostic and treatment challenges to veterinary practitioners working within the recently identified endemic region. Clinical reports of canine and feline cryptococcosis caused by C. gattii diagnosed between January 1999 and December 2003 were included in this case series. The most common manifestations of disease were respiratory and central nervous system signs. Multivariate survival analysis revealed that the only significant predictor of mortality was the presence of central nervous system signs upon presentation or during therapy. Case fatality rates in both species were high. Further investigation into effective treatment regimes is warranted. PMID:17078248
Vélez, Norida; Escandón, Patricia
2017-10-01
Knowledge of the environmental distribution of C. neoformans/C. gattii is important in the epidemiology and ecology of the etiological agent, which causes cryptococcosis, a deadly disease worldwide. The aim of this report is to describe the presence of C. neoformans/C. gattii in new environmental niches in Colombia. A total of 837 environmental samples were collected from six different species of trees across four cities; molecular type was determined by PCR fingerprinting and RFLP. Molecular type VNI and VGIII were isolated from different species of trees, resulting in two novel niches for this pathogen: Tabebuia guayacan and Roystonea regia. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Avis, Tyler J.; Michaud, Mélanie; Tweddell, Russell J.
2007-01-01
Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539
Interaction of entomopathogenic fungi with the host immune system.
Qu, Shuang; Wang, Sibao
2018-06-01
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.
The role of effectors and host immunity in plant-necrotrophic fungal interactions.
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.
Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience.
Fones, Helen N; Fisher, Matthew C; Gurr, Sarah J
2017-03-01
While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.
Manfrino, Romina G; González, Alda; Barneche, Jorge; Tornesello Galván, Julieta; Hywell-Jones, Nigel; López Lastra, Claudia C
The aim of this study was to identify entomopathogenic fungi infecting spiders (Araneae) in a protected area of Buenos Aires province, Argentina. The Araneae species identified was Stenoterommata platensis. The pathogens identified were Lecanicillium aphanocladii Zare & W. Gams, Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, Hywel Jones & Samson and Ophiocordyceps caloceroides (Berk & M.A. Curtis). This study constitutes the southernmost records in the world and contributes to expanding the knowledge of the biodiversity of pathogenic fungi of spiders in Argentina. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
Background To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. Methods and Findings First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. Conclusions The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions. PMID:22479577
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions.
The role of effectors of biotrophic and hemibiotrophic fungi in infection.
Koeck, Markus; Hardham, Adrienne R; Dodds, Peter N
2011-12-01
Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesize and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host's response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant's immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection. © 2011 Blackwell Publishing Ltd.
Plant hormones: a fungal point of view.
Chanclud, Emilie; Morel, Jean-Benoit
2016-10-01
Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Younis, Ahmed M; Wu, Fang-Sheng; El Shikh, Hussien H
2015-01-01
Pleurotus ostreatus is an edible mushroom that also has high medicinal values. In this study, P. ostreatus was tested for its ability to inhibit the growth of fungi and bacteria. The freeze-dried fruiting body, broth from submerged culture, and mycelial biomass of P. ostreatus were extracted using alcohols and water as solvents. The extracts were then tested for their antimicrobial activity against the growth of fungi and bacteria. It was observed that the water extract from fruiting bodies had the strongest effect in inhibiting the growth of most fungi. The most sensitive test microfungi to the inhibition were Candida albicans, Cryptococcus humicola, and Trichosporon cutaneum, and the most sensitive test bacteria were Staphylococcus aureus followed by Escherichia coli. Water extracts from culture broth or mycelial biomass were moderately inhibitive to the growth of fungi and bacteria. The alcohol-based solvents from all samples had much less antimicrobial activity against most test microorganisms. An antimicrobial compound was purified from the water extracts of fruiting bodies with Sephadex G 100 column chromatography and characterized by infrared absorption spectrum (IR), nuclear magnetic resonance (NMR), and mass spectroscopic analysis. We have identified this compound to be 3-(2-aminopheny1thio)-3-hydroxypropanoic acid. This purified compound had a minimum inhibitory concentration of 30 µg/mL and 20 µg/mL against the growth of fungi and bacteria, respectively.
Palaniappan, Karuppuchamy; Manickavasagam Pillai, Kalyanasundaram; Subbarayalu, Mohankumar; Madhaiyan, Ravi
2013-01-01
Biological control using entomopathogenic fungi could be a promising alternative to chemical control. Entomopathogenic fungi, Beauveria bassiana (Balsamo) Vuillemin, Metarhizium anisopliae (Metschnikoff) Sorokin, Lecanicillium lecanii (Zimmerm.) Zare and Gams, and Paecilomyces fumosoroseus (Wize) Brown and Smith, were tested for their pathogenicity, ovicidal effect, and median lethal concentrations (LC50) against exotic spiralling whitefly, Aleurodicus dispersus Russell. The applications were made at the rate of 2 × 109 conidia mL−1 for evaluating the pathogenicity and ovicidal effect of entomopathogenic fungi against A. dispersus. The results of pathogenicity test showed that P. fumosoroseus (P1 strain) was highly pathogenic to A. dispersus recording 100% mortality at 15 days after treatment (DAT). M. anisopliae (M2 strain) had more ovicidal effect causing 37.3% egg mortality at 8 DAT. However, L. lecanii (L1 strain) caused minimum egg hatchability (23.2%) at 10 DAT as compared to control (92.6%). The lowest LC50 produced by P. fumosoroseus (P1 strain) as 8.189 × 107 conidia mL−1 indicated higher virulence against A. dispersus. Hence, there is potential for use of entomopathogenic fungi in the field conditions as an alternate control method in combating the insect pests and other arthropod pests since they are considered natural mortality agents and are environmentally safe. PMID:24455279
Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S
2005-01-15
In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.
The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases
de Sain, Mara; Rep, Martijn
2015-01-01
A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835
Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J
2017-09-01
A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Lv, Ya-li; Zhang, Fu-sheng; Chen, Juan; Cui, Jin-long; Xing, Yong-mei; Li, Xiang-dong; Guo, Shun-xing
2010-01-01
Endophytic fungi are rich in species diversity and may play an important role in the fitness of their host plants. This study investigated the diversity and antimicrobial potential of endophytic fungi obtained from Saussurea involucrata KAR. et KIR. A total of 49 endophytic fungi were isolated from S. involucrata and identified using morphological and molecular techniques. Extracts of fermentation broth from the 49 fungi were tested for antimicrobial activity against pathogenic microorganisms using the agar diffusion method. Forty-eight out of the 49 endophytic fungi were identified and grouped into 14 taxa. Cylindrocarpon sp. was the dominant species isolated from S. involucrata, followed by Phoma sp. and Fusarium sp. Among the 49 endophytic fungi, 9 root isolates having darkly pigmented, septate hyphae were identified as dark septate endophytic (DSE) fungus, and 12 fungi inhibited at least one test microorganism. Moreover, 5 strains showed a broader spectrum of antimicrobial activity and 4 strains displayed strong inhibition (+++) against pathogenic fungi. The results indicate that endophytic fungi isolated from S. involucrata are diverse in species and a potential source of antimicrobial agents.
[Antagonism in vitro among phytopathogenic and saprobic fungi from horticultural soils].
Alippi, H E; Monaco, C
1990-01-01
Two methods were tested in order to determine the existence of in vitro antagonism among saprobic and pathogenic fungi. These microorganisms were the most common isolates from horticultural soils of La Plata (Buenos Aires). Trichoderma harzianum; T. koningii and Penicillium sp. were antagonistic to all the pathogenic fungi tested, Fusarium solani; F. oxysporum; Alternaria solani; Colletotrichum sp. and Sclerotium rolfsii Spicaria sp., Paecilomyces sp. and Chaetomiun sp. were antagonistic only to Colletotrichum sp. and Fusarium solani.
Novak, Sebastian; Cremer, Sylvia
2015-05-07
Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Duplications and losses in gene families of rust pathogens highlight putative effectors.
Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.
Meng, Xiang; Hu, Junjie; Ouyang, Gecheng
2017-01-01
Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa . They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2 nd and 5 th instar nymphs of T. papillosa . B. bassiana was highly virulent on 2 nd instar nymphs of T. papillosa , with values for cadaver rate, LC 50 and LT 50 of 88.89%, 1.92 × 10 7 conidia/mL and 4.34 days respectively. This study provides two valuable entomopathogenic fungi from T. papillosa . This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; ...
2015-11-18
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.« less
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire
2015-01-01
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses. PMID:26635749
Randhawa, H S; Kowshik, T; Chowdhary, Anuradha; Preeti Sinha, K; Khan, Z U; Sun, Sheng; Xu, Jianping
2008-12-01
This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 species representing 12 families of trees and from soil near the base of various host trees from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 trees from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans species complex. The number of trees positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans species complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast species and the species of host trees. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host trees indicated that soil is another important ecologic niche for these two Cryptococcus species in India. Among our sampled tree species, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host tree species over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra trees by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host tree species for C. gattii and C. neoformans and indicate that decayed woods of many tree species are potentially suitable ecological niches for both pathogens.
Ferreira, Maria do Perpetuo Socorro Borges Carriço; Cardoso, Mariana Filomena do Carmo; da Silva, Fernando de Carvalho; Ferreira, Vitor Francisco; Lima, Emerson Silva; Souza, João Vicente Braga
2014-07-06
This study evaluated the antifungal activities of synthetic naphthoquinones against opportunistic and dermatophytic fungi and their preliminary mechanisms of action. The minimum inhibitory concentrations (MICs) of four synthetic naphthoquinones for 89 microorganisms, including opportunistic yeast agents, dermatophytes and opportunistic filamentous fungi, were determined. The compound that exhibited the best activity was assessed for its action against the cell wall (sorbitol test), for interference associated with ergosterol interaction, for osmotic balance (K+ efflux) and for membrane leakage of substances that absorb at the wavelength of 260 nm. All tested naphthoquinones exhibited antifungal activity, and compound IVS320 (3a,10b-dihydro-1H-cyclopenta [b] naphtho [2,3-d] furan-5,10-dione)-dione) demonstrated the lowest MICs across the tested species. The MIC of IVS320 was particularly low for dermatophytes (values ranging from 5-28 μg/mL) and Cryptococcus spp. (3-5 μg/mL). In preliminary mechanism-of-action tests, IVS320 did not alter the fungal cell wall but did cause problems in terms of cell membrane permeability (efflux of K+ and leakage of substances that absorb at 260 nm). This last effect was unrelated to ergosterol interactions with the membrane.
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia
2016-01-01
ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405
[Water fungi occurence in the River Supraśl-bath Jurowce near Białystok].
Kiziewicz, Bozena; Kozłowska, Mariola; Godlewska, Anna; Muszyńvska, Elzbieta; Mazalska, Bozenna
2004-01-01
Studies on the occurrence of aquatic fungi in the bathing sites of the Supraśl River in Jurowce village were collected in years 2000-2003. Hydrochemical analysis was performed using standard methods. Bait method was used to isolate the fungi. In the Supraśl River at Jurowce village 36 fungi species were identified, among them fish pathogens Achlya orion, Aphanomyces laevis, Dictyuchus monosporus, Saprolegnia ferax, Saprolegnia monoica, S. parasitica, human pathogens Aspergillus flavus, Candida albicans, Lagenidium humanum, Penicillium mycetomagenum, Rhizophydium keratinophilum and Trichosporon cutaneum, phytopathogens Achlya racemosa, Phytophthora gonapodoides, Pythium butleri, P. myriotylum and P. debaryanum. Physicochemical parameters of waters in Supraśl River-bathing sites had no important effect on the occurrence of fungi.
Yeasts and moulds contaminants of food ice cubes and their survival in different drinks.
Francesca, N; Gaglio, R; Stucchi, C; De Martino, S; Moschetti, G; Settanni, L
2018-01-01
To evaluate the levels of unicellular and filamentous fungi in ice cubes produced at different levels and to determine their survival in alcoholic beverages and soft drinks. Sixty samples of ice cubes collected from home level (HL) productions, bars and pubs (BP) and industrial manufacturing plants (MP) were investigated for the presence and cell density of yeasts and moulds. Moulds were detected in almost all samples, while yeasts developed from the majority of HL and MP samples. Representative colonies of microfungi were subjected to phenotypic and genotypic characterization. The identification was carried out by restriction fragment length polymorphism (RFLP) analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5·8S rRNA gene. The process of yeast identification was concluded by sequencing the D1/D2 region of the 26S rRNA gene. The fungal biodiversity associated with food ice was represented by nine yeast and nine mould species. Strains belonging to Candida parapsilosis and Cryptococcus curvatus, both opportunistic human pathogens, and Penicillium glabrum, an ubiquitous mould in the ice samples analysed, were selected to evaluate the effectiveness of the ice cubes to transfer pathogenic microfungi to consumers, after addition to alcoholic beverages and soft drinks. All strains retained their viability. The survival test indicated that the most common mode of consumption of ice cubes, through its direct addition to drinks and beverages, did not reduce the viability of microfungi. This study evidenced the presence of microfungi in food ice and ascertained their survival in soft drinks and alcoholic beverages. © 2017 The Society for Applied Microbiology.
Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.
Panwar, Vinay; Bakkeren, Guus
2017-01-01
Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard
2016-10-18
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.
The role of effectors and host immunity in plant–necrotrophic fungal interactions
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi. PMID:25513773
The role of wild animals in the ecology of dermatophytes and related fungi.
Mantovani, A; Morganti, L; Battelli, G; Mantovani, A; Poglayen, G; Tampieri, M P; Vecchi, G
1982-01-01
The problems associated with infections by dermatophytes and related fungi are discussed. Published and unpublished surveys of 1 481 wild animals of the orders Carnivora, Ungulata, Lagomorpha, Rodentia, Insectivora and Chiroptera and of 29 birds proved to be positive for fungi which were classified as potentially pathogenic zoophilic, potentially pathogenic geophilic and normally non-pathogenic geophilic. Trichophyton mentagrophytes var. mentagrophytes was isolated from 11% of rodents; the fungus was also isolated from Insectivora, the hare and the ibex. T. mentagrophytes var. erinacei was reported in the hedgehog. Microsporum canis was reported in rodents from anthropogenic areas. M. gypseum was reported in Ungulata, Lagomorpha and Rodentia; other geophilic fungi were found in all the orders investigated, with the exception of Chiroptera which proved to be constantly negative. The relationship between the presence of animals and the "animalization" of the environment, and the consequent presence of geophilic fungi is discussed. It is concluded that wild animals may play a role as carriers of dermatophytes and related fungi, may create environmental conditions favourable to their growth and may help to monitor the presence of a fungus in a given area.
Influence of long-term low levels of ozone on the leaf surface mycoflora of pinto bean plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, W.J.; Papia, P.M.
Pinto bean plants (Phaseols vulgaris strain 111) were grown for 4, 7, 14, 21, or 28 days in greenhouses containing ambient air charcoal-filtered air or ozone at 6 pphm for 8 hr/day. Ozone was produced with a Welbach generator and monitored with Mast meters. The upper and lower surfaces of the first set of simple true leaves were used to make leaf prints on acidified potato-dextrose agar plates (PDA) at each sampling period. Discs cut from these leaves were washed 10 times in sterile water and plated on PDA. Results with leaf prints showed that species of 25 genera ofmore » fungi were present in recognizable successions on all leaves. The number of fungi per cm/sup 2/ leaf tissue increased with leaf age for all leaves, with the greatest number occurring on 28-day-old leaves with accumulated ozone flecks. Differences between leaves by sources was more quantitative than qualitative, with the exception of Aspergillus niger, which was common only on the leaves of plants grown in ambient air. Botrytis cincrea was commonly found on plates printed with leaves that had ozone fleck. Isolates of Candida, Cryptococcus, and Penicillium were the most abundant fungi on all leaves. Similar results were obtained with plated washed leaf discs except that the number of fungi genera present was reduced from 25 to 11.« less
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Hester, Maureen M; Liu, Jianhua; Luckie, Bridget A; Torres Santana, Melanie A; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T; Lodge, Jennifer K; Akalin, Ali; Homan, Jane; Ostroff, Gary R; Levitz, Stuart M
2017-11-28
Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus -derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli , purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis. Copyright © 2017 Specht et al.
Approaches to control diseases vectored by ambrosia beetles in avocado and other American Lauraceae
USDA-ARS?s Scientific Manuscript database
Invasive ambrosia beetles and the plant pathogenic fungi they vector represent a significant challenge to North American agriculture, native and landscape trees. Ambrosia beetles encompass a range of insect species and they vector a diverse set of plant pathogenic fungi. Our lab has taken several bi...
Endophyte mediated plant-herbivore interactions or cross resistance to fungi and insect herbivores
Kari Saikkonen; Marjo Helander
2012-01-01
Endophytic fungi are generally considered to be plant mutualists that protect the host plant from pathogens and herbivores. Defensive mutualism appears to hold true particularly for seed-transmitted, alkaloid producing, grass endophytes. However, we propose that the mutualistic nature of plant-endophyte interactions via enhanced plant resistance to pathogens and...
USDA-ARS?s Scientific Manuscript database
The characterization of genes determining compatibility or incompatibility between plant pathogenic fungi and their hosts is important for the management of crop disease. The major focus of these interactions has typically been the identification and characterization of host genes, but it is equally...
USDA-ARS?s Scientific Manuscript database
Rust fungi are obligate biotrophic pathogens causing considerable damage on crop plants. P. graminis f. sp. tritici, the causal agent of wheat stem rust, and M. larici-populina, the poplar rust pathogen, have strong deleterious impact on wheat and poplar wood production, respectively. The recently r...
Improving ITS sequence data for identification of plant pathogenic fungi
R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov
2014-01-01
Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Arylamine N-acetyltransferases in mycotoxigenic and related fungi of agricultural significance
USDA-ARS?s Scientific Manuscript database
Mycotoxigenic fungi are of worldwide concern, as they contaminate crops and compromise food safety. Many of these fungi are also aggressive plant pathogens with devastating effects on maize, and wheat. The host plants possess a variety of defensive mechanisms against those fungi, including the produ...
KB425796-A, a novel antifungal antibiotic produced by Paenibacillus sp. 530603.
Kai, Hirohito; Yamashita, Midori; Takase, Shigehiro; Hashimoto, Michizane; Muramatsu, Hideyuki; Nakamura, Ikuko; Yoshikawa, Koji; Ezaki, Masami; Nitta, Kumiko; Watanabe, Masato; Inamura, Noriaki; Fujie, Akihiko
2013-08-01
The novel antifungal macrocyclic lipopeptidolactone, KB425796-A (1), was isolated from the fermentation broth of bacterial strain 530603, which was identified as a new Paenibacillus species based on morphological and physiological characteristics, and 16S rRNA sequences. KB425796-A (1) was isolated as white powder by solvent extraction, HP-20 and ODS-B column chromatography, and lyophilization, and was determined to have the molecular formula C79H115N19O18. KB425796-A (1) showed antifungal activities against Aspergillus fumigatus and the micafungin-resistant infectious fungi Trichosporon asahii, Rhizopus oryzae, Pseudallescheria boydii and Cryptococcus neoformans.
Esquenazi, Daniele; Wigg, Marcia D; Miranda, Mônica M F S; Rodrigues, Hugo M; Tostes, João B F; Rozental, Sonia; da Silva, Antonio J R; Alviano, Celuta S
2002-12-01
The decoction of Cocos nucifera L. husk fiber has been used in northeastern Brazil traditional medicine for treatment of diarrhea and arthritis. Water extract obtained from coconut husk fiber and fractions from adsorption chromatography revealed antimicrobial activity against Staphylococcus aureus. The crude extract and one of the fractions rich in catechin also showed inhibitory activity against acyclovir-resistant herpes simplex virus type 1 (HSV-1-ACVr). All fractions were inactive against the fungi Candida albicans, Fonsecaea pedrosoi and Cryptococcus neoformans. Catechin and epicatechin together with condensed tannins (B-type procyanidins) were demonstrated to be the components of the water extract.
[Preservation of high risk fungal cultures of Histoplasma and Cryptococcus].
Fernández Andreu, C Carlos Manuel; Díaz Suárez, Luis Alberto; Ilnait Zaragozi, María Teresa; Aragonés López, Carlos; Martínez Machín, Gerardo; Perurena Lancha, Mayda R
2012-01-01
culture collections are responsible for providing the microbial resources for development of biological sciences. Storage in distilled water is one of the easiest and least expensive method for long-term fungal preservation. to evaluate the usefulness of this preservation method in fungal culture of Histoplasma and Cryptococcus. the preservation condition of the highest biological risk species from Histoplasma y Cryptococcus genera, included in the fungal culture collection of "Pedro Kouri" Institute of Tropical Medicine in Havana, was evaluated in this study. One hundred and two strains stored in distilled water, 92% of which had been preserved for more than 10 years, were analyzed. the percentages of recovered strains from H. capsulatum, C. neoformans and C. gattii were 64.3%; 79.1% and 100% respectively. This method of preservation proved to be satisfactory for fungal culture in labs with limited financial resources. A web-based database with interesting information about the collection was made. The importance of strict compliance with the biosafety measures in these collections, particularly with high risk pathogens. preservation of fungal cultures in distilled water is a very useful method for laboratories with limited resources. Culture collections should be assumed as an essential activity in order to solve increasing challenges in the development of biomedical sciences.
Velázquez, Encarna; del Villar, María; Grondona, Isabel; Monte, Enrique; González-Villa, Tomás
2006-09-01
Cryptococcus adeliensis was initially described as a psycrophilic species containing a single strain CBS 8351(T) isolated from decayed algae in Terre Adelie (Antartida). Later, a second strain of this species was isolated from an immunosuppressed patient affected by leukaemia in Germany and recently several strains from this species have been found in human patients and pigeon droppings of the same country. In this study, we isolated from sheep droppings in Spain a xylanolytic strain named LEVX01 that was phenotypically related to the strain CBS 8351(T) and showed a 100% similarity in the D1/D2 domain and 5.8S-ITS region sequences with respect to the remaining described strains of C. adeliensis. These findings suggest that this species has a wide geographical distribution and that the animal faeces are a common habitat for C. adeliensis. The chemotaxonomic analyses showed the absence of detectable amounts of xylose in the cell walls of the strains LEVX01 and CBS8351(T) in contrast to other Cryptococcus species. Interestingly, the ultrastructural study showed the presence of fimbriae in these two strains that could be involved in the attachment to the host cells and, as occurs in Candida albicans, they could also be a pathogenicity factor for the man.
Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.
El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A
2014-12-01
In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Stojkovic, Dejan; Kostic, Marina; Smiljkovic, Marija; Aleksic, Milena; Vasiljevic, Perica; Nikolic, Milos; Sokovic, Marina
2018-03-08
The following review is oriented towards microbes linked to Alzheimer's disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high risk factors for AD occurrence. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
One-step synthesis of carbohydrate esters as antibacterial and antifungal agents.
AlFindee, Madher N; Zhang, Qian; Subedi, Yagya Prasad; Shrestha, Jaya P; Kawasaki, Yukie; Grilley, Michelle; Takemoto, Jon Y; Chang, Cheng-Wei Tom
2018-02-01
Carbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Candida albicans, Cryptococcus neoformans, Aspergillus flavus and Fusarium graminearum. Unlike prior studies on carbohydrate esters that focus only on antibacterial applications, our compounds are found to be active against both bacteria and fungi. Furthermore, the synthetic methodology is suitable to scale-up production for a variety of acylated carbohydrates. The identified lead compound, MAN014, can be used as an antimicrobial in applications such as food processing and preservation and for treatment of bacterial and fungal diseases in animals and plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C
2016-09-01
The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.
Independent Subtilases Expansions in Fungi Associated with Animals
Muszewska, Anna; Taylor, John W.; Szczesny, Pawel; Grynberg, Marcin
2011-01-01
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive. PMID:21727238
Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi
2013-01-01
Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:23617724
[Inhibition effect of Ag-antibiotic 702 on plant pathogenic fungi and related mechanisms].
Wei, Sai-Jin; Du, Ya-Nan; Ni, Guo-Rong; Zhang, Hui-Wen; Tu, Guo-Quan; Pan, Xiao-Hua
2012-12-01
To explore the practical application value and action mechanisms of Ag-antibiotic 702 against pathogenic fungi, the inhibition spectrum of Ag-antibiotic 702 was studied by measuring the mycelium growth rate of pathogenic fungi, and the effects of Ag-antibiotic 702 on the membrane permeability of Rhizoctonia solani, a typical pathogenic fungus, were investigated, with the variations of mycelium electrolyte leakage and protein, nucleic acid, and Mg2+ and K+ contents under the action of Ag-antibiotic 702 determined, and the effects of Ag-antibiotic 702 on the cell membrane ergosterol biosynthesis and ultramicrostructure observed. The results showed that the active products of Ag-antibiotic 702 had stronger inhibition effect on 13 test pathogens, among which, Sclerotinia sclerotiorum was most sensitive, with the EC50 being 0.23 microg x mL(-1). As compared with the control, the relative electric conductivity of R. solani treated with Ag-antibiotic 702 was increased by 72.2%, the contents of protein, nucleic acid, and Mg2+ and K+ leaked from the R. solani cells were all increased, while the ergosterol content was decreased by 92.0%. The cell membrane outline was not clear, organelles were badly damaged, and vacuole appeared. It was suggested that the inhibition of ergosterol biosynthesis and the increase of membrane permeability could be the main action mechanisms of Ag-antibiotic 702 against pathogenic fungi.
Friends or foes? Emerging insights from fungal interactions with plants.
Zeilinger, Susanne; Gupta, Vijai K; Dahms, Tanya E S; Silva, Roberto N; Singh, Harikesh B; Upadhyay, Ram S; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra
2016-03-01
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions. © FEMS 2015.
Friends or foes? Emerging insights from fungal interactions with plants
Zeilinger, Susanne; Gupta, Vijai K.; Dahms, Tanya E. S.; Silva, Roberto N.; Singh, Harikesh B.; Upadhyay, Ram S.; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra
2015-01-01
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant–fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant–fungal interactions. PMID:26591004
The APSES family proteins in fungi: Characterizations, evolution and functions.
Zhao, Yong; Su, Hao; Zhou, Jing; Feng, Huihua; Zhang, Ke-Qin; Yang, Jinkui
2015-08-01
The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-11-18
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
The impact of the postharvest environment on the viability and virulence of decay fungi.
Liu, Jia; Sui, Yuan; Wisniewski, Michael; Xie, Zhigang; Liu, Yiqing; You, Yuming; Zhang, Xiaojing; Sun, Zhiqiang; Li, Wenhua; Li, Yan; Wang, Qi
2018-07-03
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resistance and pathogen virulence. Both of these processes, however, are significantly impacted by environmental factors, such as temperature, UV, oxidative stress, and water activity. In the present review, the impact of various physical postharvest treatments (e.g., heat and UV) on the viability and virulence of postharvest pathogens is reviewed and discussed. Oxidative injury, protein impairment, and cell wall degradation have all been proposed as the mechanisms by which these abiotic stresses reduce fungal viability and pathogenicity. The response of decay fungi to pH and the ability of pathogens to modulate the pH of the host environment also affect pathogenicity. The effects of the manipulation of the postharvest environment by ethylene, natural edible coatings, and controlled atmosphere storage on fungal viability are also discussed. Lastly, avenues of future research are proposed.
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections
Okagaki, Laura H.
2012-01-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904
Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
Okagaki, Laura H; Nielsen, Kirsten
2012-06-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.
Maldonado-Morales, Génesis; Bayman, Paul
2017-01-01
Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354
Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu
2017-01-01
Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718
Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap
2016-03-01
Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.
Proteomics of Plant Pathogenic Fungi
González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.
2010-01-01
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070
Proteomics of plant pathogenic fungi.
González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V
2010-01-01
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.
Are seed and cone pathogens causing significant losses in Pacific Northwest seed orchards?
E.E. Nelson; W.G. Thies; C.Y. Li
1986-01-01
Cones systematically collected in 1983 from eight Douglas-fir seed orchards in western Washington and Oregon yielded large numbers of common molds. Fungi isolated from apparently healthy, developing cones were similar to those from necrotic cones. Necrosis in cones aborted in early stages of development was apparently not associated with pathogenic fungi or bacteria....
Parallels in amphibian and bat declines from pathogenic fungi.
Eskew, Evan A; Todd, Brian D
2013-03-01
Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.
Souto, Ana C P; Bonfietti, Lucas X; Ferreira-Paim, Kennio; Trilles, Luciana; Martins, Marilena; Ribeiro-Alves, Marcelo; Pham, Cau D; Martins, Liline; Dos Santos, Wallace; Chang, Marilene; Brito-Santos, Fabio; Santos, Dayane C S; Fortes, Silvana; Lockhart, Shawn R; Wanke, Bodo; Melhem, Márcia S C; Lazéra, Márcia S; Meyer, Wieland
2016-08-01
Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence.
Wilson, Dennis
1995-08-01
Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.
Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi.
Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag
2013-11-01
Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes.
Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi
Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag
2013-01-01
Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes. PMID:24244185
Xu, Chao; Zhang, Rong; Sun, Guangyu; Gleason, Mark L
2017-11-01
Sooty blotch and flyspeck (SBFS) fungi are a distinctive group of plant pathogens which, although phylogenetically diverse, occupy an exclusively surface-dwelling niche. They cause economic losses by superficially blemishing the fruit of several tree crops, principally apple, in moist temperate regions worldwide. In this study, we performed genome-wide comparative analyses separately within three pairs of species of ascomycete pathogens; each pair contained an SBFS species as well as a closely related but plant-penetrating parasite (PPP) species. Our results showed that all three of the SBFS pathogens had significantly smaller genome sizes, gene numbers and repeat ratios than their counterpart PPPs. The pathogenicity-related genes encoding MFS transporters, secreted proteins (mainly effectors and peptidases), plant cell wall degrading enzymes, and secondary metabolism enzymes were also drastically reduced in the SBFS fungi compared with their PPP relatives. We hypothesize that the above differences in genome composition are due largely to different levels of acquisition, loss, expansion, and contraction of gene families and emergence of orphan genes. Furthermore, results suggested that horizontal gene transfer may have played a role, although limited, in the divergent evolutionary paths of SBFS pathogens and PPPs; repeat-induced point mutation could have inhibited the propagation of transposable elements and expansion of gene families in the SBFS group, given that this mechanism is stronger in the SBFS fungi than in their PPP relatives. These results substantially broaden understanding of evolutionary mechanisms of adaptation of fungi to the epicuticular niche of plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Integrated inference and evaluation of host–fungi interaction networks
Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.
2015-01-01
Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851
Seed bank survival of an invasive species, but not of two native species, declines with invasion.
Orrock, John L; Christopher, Cory C; Dutra, Humberto P
2012-04-01
Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.
van der Kooij, Dick
2013-01-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134
van der Wielen, Paul W J J; van der Kooij, Dick
2013-02-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.
Zida, Pawindé Elisabeth; Sérémé, Paco; Leth, Vibeke; Sankara, Philippe; Somda, Irénée; Néya, Adama
2008-02-01
Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95 to 100% of the seed samples of both sorghum and pearl millet. Sphacelotheca sorghi and Tolyposporium ehrenbergii were encountered in respectively, 75 and 33% of seed samples of sorghum. T. penicillariae, Sclerospora graminicola and Claviceps fusiformis were present in 88, 41 and 32% of seed samples of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85 to 100% and reduced significantly sorghum and pearl millet seed infection rates of Phoma sp., Fusarium sp., Curvularia sp., Colletotrichum graminicola and Exserohilum sp. Presence of many pathogenic fungi in considerable number of seed samples indicates the need of field surveys for these and other pathogens. Development of plant extracts for the control of seed-borne pathogens and public awareness on seed-borne diseases management measures for maintaining quality seed should be increased.
Molecular genetics of secondary chemistry in Metarhizium fungi
USDA-ARS?s Scientific Manuscript database
As with many microbes, entomopathogenic fungi from the genus Metarhizium produce a plethora of small molecule metabolites, often referred to as secondary metabolites. Although these intriguing compounds are a conspicuous feature of the biology of the producing fungi, their roles in pathogenicity and...
Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E
2016-06-01
Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.
The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings.
Ofek, Tal; Gal, Shira; Inbar, Moshe; Lebiush-Mordechai, Sara; Tsror, Leah; Palevsky, Eric
2014-04-01
In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.
Evolutionary biology: microsporidia sex--a missing link to fungi.
Dyer, Paul S
2008-11-11
The evolutionary origins of the microsporidia, a group of intracellular eukaryotic pathogens, have been unclear. Genome analysis of a sex locus and other gene clusters has now revealed conserved synteny with zygomycete fungi, indicating that microsporidia are true fungi descended from a zygomycete ancestor.
Hijacked: Co-option of host behavior by entomophthoralean fungi
USDA-ARS?s Scientific Manuscript database
Over 700 species of fungi are known to infect and cause disease in insects and other arthropods. The majority of insect pathogenic fungi are classified in the phyla Entomophthoromycotina and Ascomycotina, and many are ecologically important in regulating insect populations. To summarize fungal-inse...
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-01-01
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579
Lovett, Brian; St Leger, Raymond J
2017-03-01
Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.
Cryptococcus laurentii fungemia.
Banerjee, P; Haider, M; Trehan, V; Mishra, B; Thakur, A; Dogra, V; Loomba, P
2013-01-01
In the last few years there has been an increasing incidence of infection due to non-neoformans Cryptococcus spp. especially in immunocompromised host. Cryptococcus laurentii is a non-neoformans Cryptococcus which has rarely been known to cause bacteremia and pulmonary infection in humans. Here we report a case of fungemia due to Cryptococcus laurentii.
NASA Astrophysics Data System (ADS)
Gummadi, Sathyanarayana N.; Kumar, D. Sunil; Dash, Swati S.; Sahu, Santosh Kumar
Polysaccharide degrading enzymes are hydrolytic enzymes, which have a lot of industrial potential and also play a crucial role in carbon recycling. Pectinases, chitinases and glucanases are the three major polysaccharide degrading enzymes found abundantly in nature and these enzymes are mainly produced by fungal strains. Production of these enzymes by yeasts is advantageous over fungi, because the former are easily amenable to genetic manipulations and time required for growth and production is less than that of the latter. Several yeasts belonging to Saccharomyces, Pichia, Rhodotorula and Cryptococcus produce extracellular pectinases, glucanases and chitinases. This chapter emphasizes on the biological significance of these enzymes, their production and their industrial applications.
Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro
2014-03-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.
Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.
Wang, Zixuan; Wilson, Amanda; Xu, Jianping
2015-02-01
The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii
Farrer, Rhys A.; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L.; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P.; Mitchell, Thomas G.; Litvintseva, Anastasia P.
2017-01-01
ABSTRACT The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. PMID:28270580
Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José
2013-09-01
Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.
Nutrition acquisition strategies during fungal infection of plants.
Divon, Hege H; Fluhr, Robert
2007-01-01
In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.
Influenza A Virus as a Predisposing Factor for Cryptococcosis
Oliveira, Lorena V. N.; Costa, Marliete C.; Magalhães, Thaís F. F.; Bastos, Rafael W.; Santos, Patrícia C.; Carneiro, Hellem C. S.; Ribeiro, Noelly Q.; Ferreira, Gabriella F.; Ribeiro, Lucas S.; Gonçalves, Ana P. F.; Fagundes, Caio T.; Pascoal-Xavier, Marcelo A.; Djordjevic, Julianne T.; Sorrell, Tania C.; Souza, Daniele G.; Machado, Alexandre M. V.; Santos, Daniel A.
2017-01-01
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii. PMID:29018774
Fisetin as a promising antifungal agent against Cryptocococcus neoformans species complex.
Reis, M P C; Carvalho, C R C; Andrade, F A; Fernandes, O F L; Arruda, W; Silva, M R R
2016-08-01
The aim of this study was to investigate the mechanisms of action of fisetin, a flavonol with antifungal activity previously evaluated against the Cryptococcus neoformans species complex. Ergosterol content and flow cytometry analysis were determined for the C. neoformans species complex in the presence of fisetin and ultrastructural analysis of morphology was performed on Cryptococcus gattii and C. neoformans. Decrease in the total cellular ergosterol content after exposure to fisetin ranged from 25·4% after exposure to 128 μg ml(-1) to 21·6% after exposure to 64 μg ml(-1) of fisetin compared with the control (without fisetin). The fisetin effects obtained with flow cytometry showed metabolic impairment, and alterations in its normal morphology caused by fisetin in C. neoformans cells were verified using scanning electron microscopy. Fisetin is a compound that acts in the biosynthesis of ergosterol. Flow cytometry showed that fisetin reduced viability of the metabolically active cells of C. gattii, while morphological changes explain the action of fisetin in inhibiting growth of these fungi. This study supports the idea that fisetin may represent a good starting point for the development of future therapeutic substances for cryptococcosis. © 2016 The Society for Applied Microbiology.
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest
Roe, Chandler C.; Bowers, Jolene; Oltean, Hanna; DeBess, Emilio; Dufresne, Philippe J.; McBurney, Scott; Overy, David P.; Wanke, Bodo; Lysen, Colleen; Chiller, Tom; Meyer, Wieland; Thompson, George R.; Lockhart, Shawn R.; Hepp, Crystal M.
2018-01-01
ABSTRACT The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10−8, 1.59 × 10−8, and 2.70 × 10−8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10−9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species’ slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events. PMID:29359190
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest.
Roe, Chandler C; Bowers, Jolene; Oltean, Hanna; DeBess, Emilio; Dufresne, Philippe J; McBurney, Scott; Overy, David P; Wanke, Bodo; Lysen, Colleen; Chiller, Tom; Meyer, Wieland; Thompson, George R; Lockhart, Shawn R; Hepp, Crystal M; Engelthaler, David M
2018-01-01
The emergence of Cryptococcus gattii , previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10 -8 , 1.59 × 10 -8 , and 2.70 × 10 -8 , respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10 -9 ), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species' slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events.
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest
Hagen, Ferry; Ceresini, Paulo C.; Polacheck, Itzhack; Ma, Hansong; van Nieuwerburgh, Filip; Gabaldón, Toni; Kagan, Sarah; Pursall, E. Rhiannon; Hoogveld, Hans L.; van Iersel, Leo J. J.; Klau, Gunnar W.; Kelk, Steven M.; Stougie, Leen; Bartlett, Karen H.; Voelz, Kerstin; Pryszcz, Leszek P.; Castañeda, Elizabeth; Lazera, Marcia; Meyer, Wieland; Deforce, Dieter; Meis, Jacques F.; May, Robin C.; Klaassen, Corné H. W.; Boekhout, Teun
2013-01-01
Over the past two decades, several fungal outbreaks have occurred, including the high-profile ‘Vancouver Island’ and ‘Pacific Northwest’ outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals. PMID:23940707
Spread of Cryptococcus gattii into Pacific Northwest Region of the United States
Datta, Kausik; Bartlett, Karen H.; Baer, Rebecca; Byrnes, Edmond; Galanis, Eleni; Heitman, Joseph; Hoang, Linda; Leslie, Mira J.; MacDougall, Laura; Magill, Shelley S.; Morshed, Muhammad G.
2009-01-01
Cryptococcus gattii has emerged as a human and animal pathogen in the Pacific Northwest. First recognized on Vancouver Island, British Columbia, Canada, it now involves mainland British Columbia, and Washington and Oregon in the United States. In Canada, the incidence of disease has been one of the highest worldwide. In the United States, lack of cryptococcal species identification and case surveillance limit our knowledge of C. gattii epidemiology. Infections in the Pacific Northwest are caused by multiple genotypes, but the major strain is genetically novel and may have emerged recently in association with unique mating or environmental changes. C. gattii disease affects immunocompromised and immunocompetent persons, causing substantial illness and death. Successful management requires an aggressive medical and surgical approach and consideration of potentially variable antifungal drug susceptibilities. We summarize the study results of a group of investigators and review current knowledge with the goal of increasing awareness and highlighting areas where further knowledge is required. PMID:19757550
Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans
Staudt, Mark W.; Kruzel, Emilia K.; Shimizu, Kiminori; Hull, Christina M.
2010-01-01
During sexual development the human fungal pathogen Cryptococcus neoformans undergoes a developmental transition from yeast-form growth to filamentous growth. This transition requires cellular restructuring to form a filamentous dikaryon. Dikaryotic growth also requires tightly controlled nuclear migration to ensure faithful replication and dissemination of genetic material to spore progeny. Although the gross morphological changes that take place during dikaryotic growth are largely known, the molecular underpinnings that control this process are uncharacterized. Here we identify and characterize a C. neoformans homolog of the Saccharomyces cerevisiae BIM1 gene, and establish the importance of BIM1 for proper filamentous growth of C. neoformans. Deletion of BIM1 leads to truncated sexual development filaments, a severe defect in diploid formation, and a block in monokaryotic fruiting. Our findings lead to a model consistent with a critical role for BIM1 in both filament integrity and nuclear congression that is mediated through the microtubule cytoskeleton. PMID:20044015
Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest.
Hagen, Ferry; Ceresini, Paulo C; Polacheck, Itzhack; Ma, Hansong; van Nieuwerburgh, Filip; Gabaldón, Toni; Kagan, Sarah; Pursall, E Rhiannon; Hoogveld, Hans L; van Iersel, Leo J J; Klau, Gunnar W; Kelk, Steven M; Stougie, Leen; Bartlett, Karen H; Voelz, Kerstin; Pryszcz, Leszek P; Castañeda, Elizabeth; Lazera, Marcia; Meyer, Wieland; Deforce, Dieter; Meis, Jacques F; May, Robin C; Klaassen, Corné H W; Boekhout, Teun
2013-01-01
Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.
The Cryptococcus neoformans Capsule: a Sword and a Shield
O'Meara, Teresa R.
2012-01-01
Summary: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell. PMID:22763631
M.T. Banik; D.L. Lindner; J. Juzwik; J.A. Glaeser
2013-01-01
An inexpensive kit was developed to collect wood samples for molecular detection of pathogenic, saprotrophic and stain fungi in declining Pinus resinosa in the Upper Midwest. The kit contained materials for "clean" collection of sapwood drill shavings, which were then subjected to PCR of the rDNA ITS region with fungal-specific primers,...
Cryptococcus gattii as an important fungal pathogen of western North America
Marr, Kieren A
2012-01-01
Cryptococcus gattii, a pathogenic fungus historically appreciated to be endemic to tropical regions, was recognized to emerge in a more temperate zone of North America in the 1990s. Early reports focused on an outbreak that was first apparent on Vancouver Island (BC, Canada), involving both the veterinary and human population. More recently, it has been recognized that this organism is endemic to a wider geography in western North America, with recognized disease caused by unique molecular subtypes in both healthy and immunosuppressed human hosts and a variety of domestic and wild animals. A number of cases of disease caused by C. gattii isolates that are unrelated to the Vancouver Island–Pacific Northwest outbreak strains have also been recognized in different parts of the USA. As microbiology laboratories have historically not identified these organisms to the species level, our current understanding of the scope of this infection is probably an underestimate. Ongoing public health epidemiologic efforts will be facilitated by increased attention towards culture-confirmed diagnosis and species identification in clinical microbiology laboratories. Early experience presents a strong rationale for increasing diagnostic attention, with multiple clinical features that are unique to this infection, including variability in antifungal susceptibilities and a heightened need for aggressive management of inflammatory responses. Larger prospective studies to evaluate and optimize clinical management are needed. PMID:22734955
Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.
2006-01-01
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans. PMID:23132495
Meyers, Gena Lee; Jung, Kwang-Woo; Bang, Soohyun; Kim, Jungyeon; Kim, Sooah; Hong, Joohyeon; Cheong, Eunji; Kim, Kyoung Heon; Bahn, Yong-Sun
2017-06-01
In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor; Kronstad, James
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.
Wang, Jing-Mei; Zhou, Qiang; Cai, Hou-Rong; Zhuang, Yi; Zhang, Yi-Fen; Xin, Xiao-Yan; Meng, Fan-Qing; Wang, Ya-Ping
2014-01-01
In addition to the typical size, Cryptococcus neoformans can enlarge its size to form titan cells during infection, and its diameter can reach up to 100 μm. Clinical reports about cryptococcal titan cells are rare. Most studies focus on aspects of animal models of infection with titan cells. Herein, we report the clinical and imaging characteristics and histopathologic features of 3 patients with titan cells and 27 patients with pathogens of typical size, and describe the morphological characteristics of titan cells in details. Histologically, 3 patients with titan cells show necrosis, fibrosis and macrophage accumulation. The titan cells appear in necrotic tissue and between macrophages, and have thick wall with unstained halo around them and diameters range from 20 to 80 μm with characteristic of narrow-necked single budding. There are also organisms with typical size. All 27 patients with normal pathogens show epithelioid granulomatous lesions. There is no significantly difference in clinical and imaging feature between the two groups. Cryptococcus neoformans exhibits a striking morphological change for the formation of titan cells during pulmonary infection, which will result in misdiagnosis and under diagnosis. The histopathological changes may be new manifestation, which need to be further confirmed by the study with animal models of infection and the observation of more clinical cases. Careful observation of the tissue sections is necessary.
Lerm, Barbra; Kenyon, Chris; Schwartz, Ilan S; Kroukamp, Heinrich; de Witt, Riaan; Govender, Nelesh P; de Hoog, G Sybren; Botha, Alfred
2017-11-01
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era
El Hadrami, Abdelbasset; El-Bebany, Ahmed F.; Yao, Zhen; Adam, Lorne R.; El Hadrami, Ismailx; Daayf, Fouad
2012-01-01
Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year. PMID:22837691
Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes.
Spatafora, J W; Sung, G-H; Sung, J-M; Hywel-Jones, N L; White, J F
2007-04-01
Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.
A reassessment of the risk of rust fungi developing resistance to fungicides.
Oliver, Richard P
2014-11-01
Rust fungi are major pathogens of many annual and perennial crops. Crop protection is largely based on genetic and chemical control. Fungicide resistance is a significant issue that has affected many crop pathogens. Some pathogens have rapidly developed resistance and hence are regarded as high-risk species. Rust fungi have been classified as being low risk, in spite of sharing many relevant features with high-risk pathogens. An examination of the evidence suggests that rust fungi may be wrongly classified as low risk. Of the nine classes of fungicide to which resistance has developed, six are inactive against rusts. The three remaining classes are quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs). QoIs have been protected by a recently discovered intron that renders resistant mutants unviable. Low levels of resistance have developed to DMIs, but with limited field significance. Older SDHI fungicides were inactive against rusts. Some of the SDHIs introduced since 2003 are active against rusts, so it may be that insufficient time has elapsed for resistance to develop, especially as SDHIs are generally sold in mixtures with other actives. It would therefore seem prudent to increase the level of vigilance for possible cases of resistance to established and new fungicides in rusts. © 2014 Society of Chemical Industry.
Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era.
El Hadrami, Abdelbasset; El-Bebany, Ahmed F; Yao, Zhen; Adam, Lorne R; El Hadrami, Ismailx; Daayf, Fouad
2012-01-01
Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.
Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.
Egan, Martin J; Talbot, Nicholas J
2008-08-01
This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.
Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis
Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc
2018-01-01
ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946
Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis.
Wang, Yan; Stata, Matt; Wang, Wei; Stajich, Jason E; White, Merlin M; Moncalvo, Jean-Marc
2018-05-15
Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. IMPORTANCE Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects. © Crown copyright 2018.
Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.
Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E
2018-01-01
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia ) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN.
de Garcia, Virginia; Zalar, Polona; Brizzio, Silvia; Gunde-Cimerman, Nina; van Broock, María
2012-11-01
Cryptococcus species (Basidiomycota) were isolated as the predominant yeast from glacial biomes of both Patagonia (Argentina) and the Svalbard archipelago (Norway). For a selected group of Cryptococcus belonging to Tremellales, assimilative profile, production of extracellular hydrolytic enzymes and ribosomal DNA internal transcribed spacer and large subunit (D1/D2) sequences were analysed. Cryptococcus victoriae, which was originally described from Antarctica, was the most frequently found species at both locations. High variability within the species was observed and described at the genotypic and phenotypic levels, two newly described species were found in both Patagonia and Svalbard: Cryptococcus fonsecae and Cryptococcus psychrotolerans. Two other new species were found only in Patagonia: Cryptococcus frias and Cryptococcus tronadorensis. Three additional new taxa were found, but they are not named as they were only represented by single isolates. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
False-positive cerebrospinal fluid cryptococcus antigen in Libman-Sacks endocarditis.
Isseh, Iyad N; Bourgi, Kassem; Nakhle, Asaad; Ali, Mahmoud; Zervos, Marcus J
2016-12-01
Cryptococcus meningoencephalitis is a serious opportunistic infection associated with high morbidity and mortality in immunocompromised hosts, particularly patients with advanced AIDS disease. The diagnosis is established through cerebrospinal fluid (CSF) cryptococcus antigen detection and cultures. Cryptococcus antigen testing is usually the initial test of choice due its high sensitivity and specificity along with the quick availability of the results. We hereby report a case of a false-positive CSF cryptococcus antigen assay in a patient with systemic lupus erythematosus presenting with acute confusion. While initial CSF evaluation revealed a positive cryptococcus antigen assay, the patient's symptoms were inconsistent with cryptococcus meningoencephalitis. A repeat CSF evaluation, done 3 days later, revealed a negative CSF cryptococcus antigen assay. Given the patient's active lupus disease and the elevated antinuclear antibody titers, we believe that the initial positive result was a false positive caused by interference from autoantibodies.
Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long
2014-04-01
To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.
Forest Health in the Southeastern United States: Assessment of the State of the Science
2008-06-01
pathogens, including imbalances in populations of in- sect pests and root-infesting fungi (e.g., Leptographium species), that may degrade tree physiological...reintroduction exacerbates stress levels and contributes to further root colonization by fungi such as Leptographium sp. Root disease caused by the...Coleoptera: Scolytidae), are likely vectors for the Leptographium/Ophiostomatoid fungi (Eckhardt et al. 2004). Spores of these fungi are not suited to
Antifungal activity of phenolic-rich Lavandula multifida L. essential oil.
Zuzarte, M; Vale-Silva, L; Gonçalves, M J; Cavaleiro, C; Vaz, S; Canhoto, J; Pinto, E; Salgueiro, L
2012-07-01
This study evaluates the antifungal activity and mechanism of action of a new chemotype of Lavandula multifida from Portugal. The essential oil was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), and the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of the oil and its major compounds were determined against several pathogenic fungi responsible for candidosis, meningitis, dermatophytosis, and aspergillosis. The influence of the oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide (PI) and FUN-1 staining of C. albicans cells by flow cytometry. The essential oil was characterized by high contents of monoterpenes, with carvacrol and cis-β-ocimene being the main constituents. The oil was more effective against dermatophytes and Cryptococcus neoformans, with MIC and MLC values of 0.16 μL/mL and 0.32 μL/mL, respectively. The oil was further shown to completely inhibit filamentation in C. albicans at concentrations below the respective MIC (0.08 μL/mL), with cis-β-ocimene being the main compound responsible for this inhibition (0.02 μL/mL). The flow cytometry results suggest a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. L. multifida essential oil may be useful in complementary therapy to treat disseminated candidosis, since the inhibition of filamentation alone appears to be sufficient to treat this type of infection.
Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt
Hassan, Naglaa; Shimizu, Masafumi
2014-01-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737
Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities
2018-01-01
ABSTRACT Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most microorganisms. However, our research shows that persisting polyextremotolerant groups of microorganisms in household appliances are well established under these unfavorable conditions and supported by the biofilm mode of growth. The significance of our research is in identifying the microbial composition of biofilms formed on dishwasher rubber seals, how diverse abiotic conditions affect microbiota, and which key microbial members were represented in early colonization and contamination of dishwashers, as these appliances can present a source of domestic cross-contamination that leads to broader medical impacts. PMID:29330184
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.
Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten
2015-10-13
Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.
Mannitol metabolism during pathogenic fungal–host interactions under stressed conditions
Meena, Mukesh; Prasad, Vishal; Zehra, Andleeb; Gupta, Vijai K.; Upadhyay, Ram S.
2015-01-01
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host–pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection. PMID:26441941
Wang, Ya-Nan; Shao, Chang-Lun; Zheng, Cai-Juan; Chen, Yi-Yan; Wang, Chang-Yun
2011-01-01
The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium), Pleosporales (Alternaria), Capnodiales (Cladosporium), Trichosphaeriales (Nigrospora) and Hypocreales (Hypocrea and Nectria). Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.
Phylogeny and comparative genome analysis of a Basidiomycete fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor
2011-03-14
Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein familiesmore » that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.« less
Inhibitors of amino acids biosynthesis as antifungal agents.
Jastrzębowska, Kamila; Gabriel, Iwona
2015-02-01
Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.
Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.
Daub, Margaret E; Herrero, Sonia; Chung, Kuang-Ren
2013-09-20
Reactive oxygen species (ROS) play multiple roles in interactions between plants and microbes, both as host defense mechanisms and as mediators of pathogenic and symbiotic associations. One source of ROS in these interactions are photoactivated, ROS-generating perylenequinone pigments produced via polyketide metabolic pathways in plant-associated fungi. These natural products, including cercosporin, elsinochromes, hypocrellins, and calphostin C, are being utilized as medicinal agents, enzyme inhibitors, and in tumor therapy, but in nature, they play a role in the establishment of pathogenic associations between fungi and their plant hosts. Photoactivated perylenequinones are photosensitizers that use light energy to form singlet oxygen (¹O₂) and free radical oxygen species which damage cellular components based on localization of the perylenequinone molecule. Production of perylenequinones during infection commonly results in lipid peroxidation and membrane damage, leading to leakage of nutrients from cells into the intercellular spaces colonized by the pathogen. Perylenequinones show almost universal toxicity against organisms, including plants, mice, bacteria, and most fungi. The producing fungi are resistant, however, and serve as models for understanding resistance mechanisms. Studies of resistance mechanisms by perylenequinone-producing fungi such as Cercospora species are leading to an understanding of cellular resistance to ¹O₂ and oxidative stress. Recent studies show commonalities between resistance mechanisms in these fungi with extensive studies of ¹O₂ and oxidative stress responses in photosynthetic organisms. Such studies hold promise both for improved medical use and for engineering crop plants for disease resistance.
Lee, Seungeun; Xu, Siyu; Bivila, Chemmeri Padasseri; Lee, Hyeyoung; Park, Myung Soo; Lim, Young Woon; Yamamoto, Naomichi
2015-01-01
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.
Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf
2015-12-14
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-12-01
Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.
Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu
2011-01-01
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties. PMID:21253567
Uncommon opportunistic fungal infections of oral cavity: A review
Deepa, AG; Nair, Bindu J; Sivakumar, TT; Joseph, Anna P
2014-01-01
The majority of opportunistic oral mucosal fungal infections are due to Candida albicans and Aspergillus fumigatus species. Mucor and Cryptococcus also have a major role in causing oral infections, whereas Geotrichum, Fusarium, Rhodotorula, Saccharomyces and Penicillium marneffei are uncommon pathogens in the oral cavity. The broad spectrum of clinical presentation includes pseudo-membranes, abscesses, ulcers, pustules and extensive tissue necrosis involving bone. This review discusses various uncommon opportunistic fungal infections affecting the oral cavity including their morphology, clinical features and diagnostic methods. PMID:25328305
Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.
Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P
2018-05-22
Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments. Copyright © 2018 Spraker et al.
Essential oil composition and antimicrobial activity of Santiria trimera bark.
Martins, A P; Salgueiro, L R; Gonçalves, M J; Proença da Cunha, A; Vila, R; Cañigueral, S
2003-01-01
The composition and the antimicrobial activity of the bark oil of Santiria trimera (Oliv.) Aubrév., a plant widely used by the traditional healers in S. Tomé and Príncipe, especially for wound healing, are reported for the first time. The analysis of the essential oil was carried out by GC and GC-MS. The oil contains a high content of monoterpenes, alpha-pinene (66.6 %) being the major constituent, followed by beta-pinene (20.0 %). The essential oil was active against both bacteria and fungi strains, except Staphylococcus epidermidis and Aspergillus niger. It exhibited significant antimicrobial activity against Proteus vulgaris and Cryptococcus neoformans with MICs values of 1.11 microl/ml and lower than 0.71 microl/ml, respectively.
In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections
USDA-ARS?s Scientific Manuscript database
Rust fungi infect a wide range of plant species making them of particular interest to plant pathologists. In order to study the interactions between these important pathogenic fungi and their host plants it is useful to be able to differentiate fungal tissue from plant tissue. This can be accomplish...
An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Wallen, R. M.; Perlin, Michael H.
2018-01-01
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I.; Hermosilla, Germán; Olate, Verónica R.; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V.
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8–15.6) and 19.5/(15.6–31.2) μg/mL, respectively, for human melanin; 273.4/(125–>500) and 367.2/(125.5–>500) μg/mL for C. neoformans melanin and 125/(62.5–250) and 156.2/(62–250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity. PMID:28744276
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity.
Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R
2012-08-01
The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quiroga, Jairo; Villarreal, Yazmín; Gálvez, Jaime; Ortíz, Alejandro; Insuasty, Braulio; Abonia, Rodrigo; Raimondi, Marcela; Zacchino, Susana
2017-02-01
A series of pyrazolo[3,4-b]pyridines were prepared by a microwave-assisted aza-Diels-Alder reaction between pyrazolylformimidamides 1 and β-nitrostyrenes 2 in toluene as the solvent. This procedure provides a simple one-step and environmentally friendly methodology with good yields for the synthesis of these compounds. All compounds were tested for antifungal activity against two clinically important fungi Candida albicans and Cryptococcus neoformans. Within the compounds of the series bearing a -CH 3 group on the carbon C-3 of the azole ring (3a-e), the compound without a substituent on the p'-phenyl ring (3a), showed the best activity against both fungi, followed by the p'-Br-phenyl (3c). Within the compounds of the series bearing a tert-butyl group in the carbon C-3 of the azole ring (3f-j), the non-substituted p'-compound (3f) was the most active one, followed by (3h) (p'-Br substituted) that showed the best activity against both fungi. The remaining compounds of this sub-series (3g, i, j) showed similar moderate activities. The antifungal activity of the compounds of the series was found to be correlated with a higher log P and a lower dipole moment in the more active compounds.
Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.
Stursová, Martina; Zifčáková, Lucia; Leigh, Mary Beth; Burgess, Robert; Baldrian, Petr
2012-06-01
Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Discovering Potential Pathogens among Fungi Identified as Nonsporulating Molds▿
Pounder, June I.; Simmon, Keith E.; Barton, Claudia A.; Hohmann, Sheri L.; Brandt, Mary E.; Petti, Cathy A.
2007-01-01
Fungal infections are increasing, particularly among immunocompromised hosts, and a rapid diagnosis is essential to initiate antifungal therapy. Often fungi cannot be identified by conventional methods and are classified as nonsporulating molds (NSM).We sequenced internal transcribed spacer regions from 50 cultures of NSM and found 16 potential pathogens that can be associated with clinical disease. In selected clinical settings, identification of NSM could prove valuable and have an immediate impact on patient management. PMID:17135442
Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E
2018-01-01
The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.
Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel
2011-01-01
Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438
The Interface between Fungal Biofilms and Innate Immunity.
Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E
2017-01-01
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Implications of climate change (global warming) for the healthcare system.
Raffa, R B; Eltoukhy, N S; Raffa, K F
2012-10-01
Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.
Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc
2013-12-23
Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.
Moreira, Wilfried; Lim, Jia Jie; Yeo, Si Ying; Ramanujulu, Pondy M; Dymock, Brian W; Dick, Thomas
2016-01-01
Reactive multi-target 'fragment drugs' represent critical components of current tuberculosis regimens. These compounds, such as pyrazinamide, are old synthetic antimycobacterials that are activated inside Mycobacterium tuberculosis bacilli and are smaller than the usual drug-like, single-target molecules. Based on the success of small 'dirty' drugs in the chemotherapy of tuberculosis, we suggested previously that fragment-based whole cell screens should be introduced in our current antimycobacterial drug discovery efforts. Here, we carried out such a screen and characterized bactericidal activity, selectivity and spectrum of hits we obtained. A library of 1725 fragments was tested at a single concentration for growth inhibitory activity against M. bovis BCG as screening strain and 38 of 116 primary hits were confirmed in dose response analyses to be active against virulent M. tuberculosis. Bacterial kill experiments showed that most hits displayed bactericidal activity at their minimal inhibitory concentration. Cytotoxicity assays established that a large proportion of hits displayed a favorable selectivity index for mammalian cells. Importantly, one third of M. tuberculosis active fragments were also active against M. abscessus and M. avium, two emerging non-tuberculous mycobacterial (NTM) pathogens, opening the opportunity to develop broad spectrum antimycobacterials. Activity determination against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa) bacteria, as well as fungi (Candida albicans, Cryptococcus neoformans) showed only a small overlap indicating a generally narrow spectrum of these novel antimicrobial hits for mycobacteria. In conclusion, we carried out the first fragment-based whole cell screen against bacteria and identified a substantial number of hits with excellent physicochemical properties and dual activity against M. tuberculosis and NTM pathogens. These hits will now be evaluated in animal models of mycobacterial infection to determine whether any of them can be moved forward as a new antimycobacterial fragment drug candidate.
Masoko, Peter; Makgapeetja, David M
2015-11-17
Olea africana leaves are used by Bapedi people to treat different ailments. The use of these leaves is not validated, therefore the aim of this study is to validate antimicrobial properties of this plant. The ground leaves were extracted using solvents of varying polarity (hexane, chloroform, dichloromethane (DCM), ethyl acetate, acetone, ethanol, methanol, butanol and water). Thin layer chromatography (TLC) was used to analyse the chemical constituents of the extracts. The TLC plates were developed in three different solvent systems, namely, benzene/ethanol/ammonium solution (BEA), chloroform/ethyl acetate/formic acid (CEF) and ethyl acetate/methanol/water (EMW). The micro-dilution assay and bioautography method were used to evaluate the antibacterial activity of the extracts against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus and the antifungal activity against Candida albicans and Cryptococcus neoformans. Methanol was the best extractant, yielding a larger amount of plant material whereas hexane yielded the least amount. In phytochemical analyses, more compounds were observed in BEA, followed by EMW and CEF. Qualitative 2, 2- diphenylpacryl-1-hydrazyl (DPPH) assay displayed that all the extracts had antioxidant activity. Antioxidant compounds could not be separated using BEA solvent system while with CEF and EMW enabled antioxidant compounds separation. The minimum inhibitory concentrations (MIC) values against test bacteria ranged between 0.16 and 2.50 mg/mL whereas against fungi, MIC ranged from 0.16 to 0.63 mg/mL. Bioautography results demonstrated that more than one compound was responsible for antimicrobial activity in the microdilution assay as the compounds were located at different Rf values. The results indicate that leaf extracts of Olea africana contain compounds with antioxidant, antibacterial and antifungal activities. Therefore, further studies are required to isolate the active compounds and perform other tests such as cytotoxicity. Olea africana may be a potential source of antimicrobial compounds.
Root-feeding insects and their interactions with organisms in the rhizosphere.
Johnson, Scott N; Rasmann, Sergio
2015-01-07
Root-feeding insects are an increasingly studied group of herbivores whose impacts on plant productivity and ecosystem processes are widely recognized. Their belowground habitat has hitherto hindered our understanding of how they interact with other organisms that share the rhizosphere. A surge in research in this area has now shed light on these interactions. We review key interactions between root-feeding insects and other rhizospheric organisms, including beneficial plant microbes (mycorrhizal fungi, nitrogen-fixing bacteria), antagonists/pathogens of root herbivores (arthropod predators, entomopathogenic nematodes/fungi, and bacterial pathogens), competitors, symbiotic microbes, and detritivores. Patterns for these interactions are emerging. The negative impacts of mycorrhizal fungi on root herbivores, for instance, raise the intriguing prospect that these fungi could be used for pest management. Moreover, a better understanding of symbiotic microbes in root herbivores, especially those underpinning digestion, could prove useful in industries such as biofuel production.
Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi.
Lee, Nancy; D'Souza, Cletus A; Kronstad, James W
2003-01-01
cAMP regulates morphogenesis and virulence in a wide variety of fungi including the plant pathogens. In saprophytic yeasts such as Saccharomyces cerevisiae, cAMP signaling plays an important role in nutrient sensing. In filamentous saprophytes, the cAMP pathway appears to play an integral role in vegetative growth and sporulation, with possible connections to mating. Infection-related morphogenesis includes sporulation (conidia and teliospores), formation of appressoria, infection hyphae, and sclerotia. Here, we review studies of cAMP signaling in a variety of plant fungal pathogens. The primary fungi to be considered include Ustilago maydis, Magnaporthe grisea, Cryphonectria parasitica, Colletotrichum and Fusarium species, and Erisyphe graminis. We also include related information on Trichoderma species that act as mycoparasites and biocontrol agents of phytopathogenic fungi. We point out similarities in infection mechanisms, conservation of signaling components, as well as instances of cross-talk with other signaling pathways.
Fungal Production and Manipulation of Plant Hormones.
Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea
2018-01-01
Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi
USDA-ARS?s Scientific Manuscript database
Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glo...
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-01
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml−1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies. PMID:28079180
NASA Astrophysics Data System (ADS)
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-01
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf
2008-05-15
The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M.more » nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.« less
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-12
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml -1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.
Evolution of entomopathogenicity in fungi.
Humber, Richard A
2008-07-01
The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.
Twenty-second Fungal Genetics Conference - Asilomar, 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan D. Walton
The purpose of the Twenty Second Fungal Genetics Conference is to bring together scientists and students who are interested in genetic approaches to studying the biology of filamentous fungi. It is intended to stimulate thinking and discussion in an atmosphere that supports interactions between scientists at different levels and in different disciplines. Topics range from the basic to the applied. Filamentous fungi impact human affairs in many ways. In the environment they are the most important agents of decay and nutrient turnover. They are used extensively in the food industry for the production of food enzymes such as pectinase andmore » food additives such as citric acid. They are used in the production of fermented foods such as alcoholic drinks, bread, cheese, and soy sauce. More than a dozen species of mushrooms are used as foods directly. Many of our most important antibiotics, such as penicillin, cyclosporin, and lovastatin, come from fungi. Fungi also have many negative impacts on human health and economics. Fungi are serious pathogens in immuno-compromised patients. Fungi are the single largest group of plant pathogens and thus a serious limit on crop productivity throughout the world. Many fungi are allergenic, and mold contamination of residences and commercial buildings is now recognized as a serious public health threat. As decomposers, fungi cause extensive damage to just about all natural and synthetic materials.« less
Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M
2015-04-01
The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.
2008-09-01
Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best.
Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi
2010-04-01
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
NASA Astrophysics Data System (ADS)
Örtücü, Serkan; Algur, Ömer Faruk
2017-04-01
This study was conducted to isolation entomopathogenic fungi for possible use in biocontrol of two-spotted spider mite Tetranychus urticae Koch. and to determine their pathogenicity. For this purpose, plant leaves infected with T. urticae were collected from Erzurum, Kars and Ardahan. At laboratory, the internal and external mycoflora of T.urticae individuals on plant leaves were determined. As a result of isolation, twenty-five different fungi species belonging to the genera Acremonium, Alternaria, Aspergillus, Beauveria, Cladosporium, Gliocladium, Humicola, Penicillium, Trichoderma, Isaria, Ulocladium and Verticillium were obtained. Pathogenicity of this forty-five isolate belonging to twenty-five species were evaluated. As a test organism, T. urticae was used and suspensions (1 × 108conidia ml-1) were prepared in Tween 80. 2ml suspension of a single dose was sprayed onto down side of bean leaf discs using hand sprayer. Mortality was recorded daily for 7 days. A total of twelve isolates belonging to three species were determined to be pathogen against T.urticae. According to scale used: AT020 Isaria farinosa and AT025 Cladosporium cladosporioides were determined as least pathogen, AT037 and AT101 Beauveria bassiana, and AT019 and AT026 C. cladosporioides, and AT035 and AT036 I. farinosa as moderate pathogen, AT007, AT021, AT034 and AT076 B. bassiana as highly pathogen. The other thirty-three isolates found that not pathogenic against T.urticae.
Wang, Lulu; Wang, Liya; Han, Lei; Yin, Weijing
2015-01-01
To identify the causative fungi of fungal keratitis, test their susceptibility to antifungal agents with the disk diffusion method and study the relationship between the organisms, the inhibition zones and the clinical outcomes. 535 patients with fungal keratitis in one eye were included in this study. Pathogenic fungi were isolated by corneal scraping, identified by fungal cultivation and subjected to drug sensitivity tests conducted with the disk diffusion method. The patients were treated initially with voriconazole, terbinafine and natamycin eye drops for one week. Further treatment continued using the most effective drug according to the drug sensitivity results. The patients were followed up every week until three months after cured. The inhibition zones of fungi cultured with voriconazole, terbinafine and natamycin were compared. The relationship between inhibition zones and organism, organism and treatment results measure, and each treatment results measure and inhibition zones were evaluated. Of 535 patients, 53.84%, 19.25% and 26.91% were infected with Aspergillus, Fusarium and other fungi, respectively. Keratitis patients infected with Aspergillus keratitis had the worst outcome. The size of the inhibition zones of Aspergillus spp., Fusarium spp. and other fungal genera differed significantly in response to voriconazole, terbinafine and natamycin. The inhibition zone associated with natamycin correlated significantly with the clinical outcome of fungal keratitis (OR = 0.925), but no other such correlations were found for the other drugs tested. Aspergillus and Fusarium were the predominant pathogenic genera causing fungal keratitis in our patients. Among the causative fungi, infections due to Aspergillus spp. were associated with the worst outcomes. The inhibition zones of fungal isolates in response to natamycin significantly correlated with the treatment outcomes of keratitis. Specifically, the smaller the natamycin inhibition zone, the lower the probability that the fungal keratitis had been eliminated.
USDA-ARS?s Scientific Manuscript database
Modern agriculture practices disrupt the natural symbiotic relationship that arbuscular mycorrhizal (AM) fungi have with most vegetable plants, which may affect translocation of human pathogens into the plant and/or survival in the soil. AM-fungi are frequently utilized in organic farming to improv...
Chen, Zehua; Martinez, Diego A.; Gujja, Sharvari; Sykes, Sean M.; Zeng, Qiandong; Szaniszlo, Paul J.; Wang, Zheng; Cuomo, Christina A.
2014-01-01
Black or dark brown (phaeoid) fungi cause cutaneous, subcutaneous, and systemic infections in humans. Black fungi thrive in stressful conditions such as intense light, high radiation, and very low pH. Wangiella (Exophiala) dermatitidis is arguably the most studied phaeoid fungal pathogen of humans. Here, we report our comparative analysis of the genome of W. dermatitidis and the transcriptional response to low pH stress. This revealed that W. dermatitidis has lost the ability to synthesize alpha-glucan, a cell wall compound many pathogenic fungi use to evade the host immune system. In contrast, W. dermatitidis contains a similar profile of chitin synthase genes as related fungi and strongly induces genes involved in cell wall synthesis in response to pH stress. The large portfolio of transporters may provide W. dermatitidis with an enhanced ability to remove harmful products as well as to survive on diverse nutrient sources. The genome encodes three independent pathways for producing melanin, an ability linked to pathogenesis; these are active during pH stress, potentially to produce a barrier to accumulated oxidative damage that might occur under stress conditions. In addition, a full set of fungal light-sensing genes is present, including as part of a carotenoid biosynthesis gene cluster. Finally, we identify a two-gene cluster involved in nucleotide sugar metabolism conserved with a subset of fungi and characterize a horizontal transfer event of this cluster between fungi and algal viruses. This work reveals how W. dermatitidis has adapted to stress and survives in diverse environments, including during human infections. PMID:24496724
McCormick, Susan P.; Lee, Theresa; Vaughan, Martha M.; Alexander, Nancy J.; Busman, Mark
2018-01-01
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. PMID:29649280
Proctor, Robert H; McCormick, Susan P; Kim, Hye-Seon; Cardoza, Rosa E; Stanley, April M; Lindo, Laura; Kelly, Amy; Brown, Daren W; Lee, Theresa; Vaughan, Martha M; Alexander, Nancy J; Busman, Mark; Gutiérrez, Santiago
2018-04-01
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.
Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.
Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa
2015-11-01
In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.
Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation
Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E.
2018-01-01
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN. PMID:29615984
Chapter 21: Microsporidia in insects
USDA-ARS?s Scientific Manuscript database
The science of microsporidiology encompasses a diverse assemblage of pathogens from a large and varied group of hosts. Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect po...
DETECTION OF ZOONOTIC PATHOGENS IN WILD BIRDS IN THE CROSS-BORDER REGION AUSTRIA - CZECH REPUBLIC.
Konicek, Cornelia; Vodrážka, Pavel; Barták, Pavel; Knotek, Zdenek; Hess, Claudia; Račka, Karol; Hess, Michael; Troxler, Salome
2016-10-01
To assess the importance of wild birds as a reservoir of zoonotic pathogens in Austria and the Czech Republic, we sampled 1,325 wild birds representing 13 orders, 32 families, and 81 species. The majority belonged to orders Columbiformes (43%), Passeriformes (25%), and to birds of prey: Accipitriformes, Strigiformes, and Falconiformes (15%). We collected cloacal swabs from 1,191 birds for bacterial culture and 1,214 triple swabs (conjunctiva, choana, cloaca) for DNA and RNA isolation. The cloacal swabs were processed by classical bacteriologic methods for isolation of Escherichia coli , Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), and thermophilic Campylobacter spp. Nucleic acids isolated from triple swabs were investigated by PCR for West Nile virus, avian influenza viruses, and Chlamydia spp. We also tested tissue samples from 110 fresh carcasses for Mycobacterium spp. by PCR and we cultured fresh droppings from 114 birds for Cryptococcus spp. The most-frequently detected zoonotic bacteria were thermophilic Campylobacter spp. (12.5%) and Chlamydia spp. (10.3%). From 79.2% of the sampled birds we isolated E. coli , while 8.7% and 0.2% of E. coli isolates possessed the virulence genes for intimin (eaeA) and Shiga toxins (stx 1 and stx 2 ), respectively. Salmonella spp. were rarely found in the sampled birds (2.2%), similar to findings of MRSA (0.3%). None of the samples were positive for Cryptococcus neoformans , Mycobacterium spp., avian influenza viruses, or West Nile virus.
Springer, Deborah J.; Ren, Ping; Raina, Ramesh; Dong, Yimin; Behr, Melissa J.; McEwen, Bruce F.; Bowser, Samuel S.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu
2010-01-01
Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40–100 nm diameter ×500–3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12α mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN– mediated killing. PMID:20539754
Baker, Lorina G; Specht, Charles A; Donlin, Maureen J; Lodge, Jennifer K
2007-05-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.