2011-06-01
Cryptococcus gattii, a pathogenic environmental fungus believed to have been introduced onto Vancouver Island, British Columbia, Canada in 1999, is...factors‖ others such as Crytococcus gattii, are emerging with altered virulence and geographic ranges. Cryptococcus gattii, a pathogenic environmental
Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.
Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo
2010-08-01
A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
USDA-ARS?s Scientific Manuscript database
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) mycelium showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of th...
Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia
2013-01-01
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966
Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia
2014-04-01
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus.
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
H. M. T.Bandara Herath; Melissa Jacob; A. Alpus Wilson; Hamed K. Abbas; N.P. Dhammika Nanayakkara Nanayakkara
2012-01-01
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of these extracts led to the isolation and identification of four new compounds,...
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.
Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio
2016-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.
Cogliati, Massimo
2013-01-01
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge. PMID:24278784
Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander
2012-01-01
The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925
Literature-Based Gene Curation and Proposed Genetic Nomenclature for Cryptococcus
Inglis, Diane O.; Skrzypek, Marek S.; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin
2014-01-01
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. PMID:24813190
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis
Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio
2016-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428
Litvintseva, Anastasia P.; Carbone, Ignazio; Rossouw, Jenny; Thakur, Rameshwari; Govender, Nelesh P.; Mitchell, Thomas G.
2011-01-01
Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis – an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm. PMID:21589919
Literature-based gene curation and proposed genetic nomenclature for cryptococcus.
Inglis, Diane O; Skrzypek, Marek S; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin; Stajich, Jason E
2014-07-01
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Xu, Jianping; Yan, Zhun; Guo, Hong
2009-06-01
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus
Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment. PMID:28212396
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus.
Springer, Deborah J; Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment.
Lerm, Barbra; Kenyon, Chris; Schwartz, Ilan S; Kroukamp, Heinrich; de Witt, Riaan; Govender, Nelesh P; de Hoog, G Sybren; Botha, Alfred
2017-11-01
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abegg, Maxwel Adriano; Cella, Fabiana Lucila; Faganello, Josiane; Valente, Patrícia; Schrank, Augusto; Vainstein, Marilene Henning
2006-02-01
Cryptococcus neoformans, a major pathogen in immunocompromised patients, is a ubiquitous free-living fungus that can be isolated from soils, avian excreta and plant material. To further study potential saprophytic sources of this yeast in the Southern Brazilian State Rio Grande do Sul, we analyzed fecal samples from 59 species of captive birds kept in cages at a local Zoological Garden, belonging to 12 different orders. Thirty-eight environmental isolates of C. neoformans were obtained only from Psittaciformes (Psittacidae, Cacatuidae and Psittacula). Their variety and serotype were determined, and the genetic structure of the isolates was analyzed by use of the simple repetitive microsatellite specific primer M13 and the minisatellite specific primer (GACA)(4) as single primers in the PCR. The varieties were confirmed by pulsed-field gel electrophoresis (PFGE). Thirty-three isolates (87%) were from the var. grubii, serotype A, molecular type VNI and five (13%) were Cryptococcus gattii, serotype B, molecular type VGI. All the isolates were mating type alpha. Isolates were screened for some potential virulence factors. Quantitative urease production by the environmental isolates belonging to the C. gattii was similar to the values usually obtained for clinical ones.
Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J Andrew
2018-05-16
Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans , these pH changes are primarily sensed by the fungal-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, likely promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly-related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes such as alterations in pH. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Nosanchuk, Joshua D; Mednick, Aron; Shi, Li; Casadevall, Arturo
2003-07-01
Cryptococcus neoformans is a fungal pathogen that survives in diverse environments. To determine whether cages of mice infected with C. neoformans posed an infection risk to animal caregivers, we investigated whether the fungus could be isolated from the bedding or stool of mice infected by intratracheal (i.t.), intravenous (i.v.), or intraperitoneal (i.p.) routes. The bedding of mice infected i.t. was contaminated with C. neoformans. In contrast, no contamination of bedding with C. neoformans was detected in cages of mice infected i.v. or i.p. C. neoformans was not isolated from murine feces. The C. neoformans strain recovered from bedding material was indistinguishable from the infecting strain by biochemical and molecular techniques. This result suggests that precautions may be warranted when disposing bedding from cages that housed mice with pulmonary C. neoformans infection.
Banerjee, Dithi; Bloom, Amanda L M; Panepinto, John C
2016-10-01
The pathogenic fungus Cryptococcus neoformans must adapt to glucose-limited conditions in the lung and glucose replete conditions upon dissemination to the brain. We report that glucose controls ribosome biogenesis and translation by modulating mRNA decay through a balance of PKA and Hog1 signalling. Glucose signalling through PKA stabilized ribosomal protein (RP) mRNAs whereas glucose starvation destabilized RP transcripts through Hog1. Glucose starvation-induced oxidative stress response genes, and treatment of glucose-fed cells with reactive oxygen species (ROS) generating compounds repressed RP transcripts, both of which were dependent on Hog1. Stabilization of RP transcripts led to retention of polysomes in a hog1Δ mutant, whereas stabilization of RP transcripts by cyclic AMP did not affect translation repression, suggesting that Hog1 alone signals translation repression. In sum, this work describes a novel antagonism between PKA and Hog1 controlling ribosome biogenesis via mRNA stability in response to glucose availability in this important human pathogen. © 2016 John Wiley & Sons Ltd.
Divalent Metal Cations Potentiate the Predatory Capacity of Amoeba for Cryptococcus neoformans.
Fu, Man Shun; Casadevall, Arturo
2018-02-01
Among the best-studied interactions between soil phagocytic predators and a human-pathogenic fungus is that of Acanthamoeba castellanii and Cryptococcus neoformans The experimental conditions used in amoeba-fungus confrontation assays can have major effects on whether the fungus or the protozoan is ascendant in the interaction. In the presence of Mg 2+ and Ca 2+ in phosphate-buffered saline (PBS), C. neoformans was consistently killed when incubated with A. castellanii A. castellanii survived better in the presence of Mg 2+ and Ca 2+ , even when incubated with C. neoformans In the absence of Mg 2+ and Ca 2+ , C. neoformans survived when incubated with A. castellanii , and the percentage of dead amoebae was higher than when incubated without yeast cells. These results show that the presence of Mg 2+ and Ca 2+ can make a decisive contribution toward tilting the outcome of the interaction in favor of the amoeba. Of the two metals, Mg 2+ had a stronger effect than Ca 2+ The cations enhanced A. castellanii activity against C. neoformans via enhanced phagocytosis, which is the major mechanism by which amoebae kill fungal cells. We found no evidence that amoebae use extracellular killing mechanisms in their interactions with C. neoformans In summary, the presence of Mg 2+ and Ca 2+ enhanced the cell adhesion on the surfaces and the motility of the amoeba, thus increasing the chance for contact with C. neoformans and the frequency of phagocytosis. Our findings imply that the divalent cation concentration in soils could be an important variable for whether amoebae can control C. neoformans in the environment. IMPORTANCE The grazing of soil organisms by phagocytic predators such as amoebae is thought to select for traits that enable some of them to acquire the capacity for virulence in animals. Consequently, knowledge about the interactions between amoebae and soil microbes, such as pathogenic fungi, is important for understanding how virulence can emerge. We show that the interaction between an amoeba and the pathogenic fungus C. neoformans is influenced by the presence in the assay of magnesium and calcium, which potentiate amoebae. The results may also have practical applications, since enriching soils with divalent cations may reduce C. neoformans numbers in contaminated soils. Copyright © 2018 American Society for Microbiology.
Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.
Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L
2015-05-01
Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.
A Family of Secretory Proteins Is Associated with Different Morphotypes in Cryptococcus neoformans.
Gyawali, Rachana; Upadhyay, Srijana; Way, Joshua; Lin, Xiaorong
2017-03-01
Cryptococcus neoformans , an opportunistic human fungal pathogen, can undergo a yeast-to-hypha transition in response to environmental cues. This morphological transition is associated with changes in the expression of cell surface proteins. The Cryptococcus cell surface and secreted protein Cfl1 was the first identified adhesin in the Basidiomycota. Cfl1 has been shown to regulate morphology, biofilm formation, and intercellular communication. Four additional homologs of CFL1 are harbored by the Cryptococcus genome: DHA1 , DHA2 , CPL1 , and CFL105 The common features of this gene family are the conserved C-terminal SIGC domain and the presence of an N-terminal signal peptide. We found that all these Cfl1 homolog proteins are indeed secreted extracellularly. Interestingly, some of these secretory proteins display cell type-specific expression patterns: Cfl1 is hypha specific, Dha2 is yeast specific, and Dha1 (delayed hypersensitivity antigen 1) is expressed in all cell types but is particularly enriched at basidia. Interestingly, Dha1 is induced by copper limitation and suppressed by excessive copper in the medium. This study further attests to the physiological heterogeneity of the Cryptococcus mating colony, which is composed of cells with heterogeneous morphotypes. The differential expression of these secretory proteins contributes to heterogeneity, which is beneficial for the fungus to adapt to changing environments. IMPORTANCE Heterogeneity in physiology and morphology is an important bet-hedging strategy for nonmobile microbes such as fungi to adapt to unpredictable environmental changes. Cryptococcus neoformans , a ubiquitous basidiomycetous fungus, is known to switch from the yeast form to the hypha form during sexual development. However, in a mating colony, only a subset of yeast cells switch to hyphae, and only a fraction of the hyphal subpopulation will develop into fruiting bodies, where meiosis and sporulation occur. Here, we investigated a basidiomycete-specific secretory protein family. We found that some of these proteins are cell type specific, thus contributing to the heterogeneity of a mating colony. Our study also demonstrates the importance of examining the protein expression pattern at the individual-cell level in addition to population gene expression profiling for the investigation of a heterogeneous community. Copyright © 2017 American Society for Microbiology.
The ZIP family zinc transporters support the virulence of Cryptococcus neoformans
Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W.; Jung, Won Hee
2016-01-01
Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans. Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma–atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans. We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799
Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee
2018-01-01
Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.
Fungal associations in the build-up and decline of Cryptococcus fagisuga populations
David Lonsdale
1983-01-01
The fungal flora of Cryptococcus fagisuga colonies on Fagus sylvatica bark included the entomogenous species Verticillium lecanii wherever infestation was or had been very heavy. This fungus seemed to accelerate insect mortality in vitro. Cladosporium cladosporioides was present at all stages...
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest
Roe, Chandler C.; Bowers, Jolene; Oltean, Hanna; DeBess, Emilio; Dufresne, Philippe J.; McBurney, Scott; Overy, David P.; Wanke, Bodo; Lysen, Colleen; Chiller, Tom; Meyer, Wieland; Thompson, George R.; Lockhart, Shawn R.; Hepp, Crystal M.
2018-01-01
ABSTRACT The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10−8, 1.59 × 10−8, and 2.70 × 10−8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10−9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species’ slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events. PMID:29359190
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest.
Roe, Chandler C; Bowers, Jolene; Oltean, Hanna; DeBess, Emilio; Dufresne, Philippe J; McBurney, Scott; Overy, David P; Wanke, Bodo; Lysen, Colleen; Chiller, Tom; Meyer, Wieland; Thompson, George R; Lockhart, Shawn R; Hepp, Crystal M; Engelthaler, David M
2018-01-01
The emergence of Cryptococcus gattii , previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10 -8 , 1.59 × 10 -8 , and 2.70 × 10 -8 , respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10 -9 ), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species' slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events.
Amoeba provide insight into the origin of virulence in pathogenic fungi.
Casadevall, Arturo
2012-01-01
Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.
A technique to artificially infest beech bark with beech scale, Cryptococcus fagisuga (Lindinger)
David R. Houston
1982-01-01
Beech bark disease is initiated when bark of beech trees (Fagus spp.) is attacked by the beech scale, Cryptococcus fagisuga Lindinger. The effects of the insect predispose tissues to bark cankering fungi of the genus Nectria. Critical studies of insect-fungus-host interactions had been stymied by the inability to...
USDA-ARS?s Scientific Manuscript database
Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain inhibi...
Johnston, Simon A; May, Robin C
2013-03-01
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.
Jennifer L. Koch; David W. Carey
2014-01-01
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus....
Cryptococcus albidus infection in a California sea lion (Zalophus californianus).
Mcleland, Shannon; Duncan, Colleen; Spraker, Terry; Wheeler, Elizabeth; Lockhart, Shawn R; Gulland, Frances
2012-10-01
Sporadic cases of cryptococcosis have been reported in marine mammals, typically due to Cryptococcus neoformans and, more recently, to Cryptococcus gattii in cetaceans. Cryptococcus albidus, a ubiquitous fungal species not typically considered to be pathogenic, was recovered from a juvenile California sea lion (Zalophus californianus) rescued near San Francisco Bay, California. Yeast morphologically consistent with a Cryptococcus sp. was identified histologically in a lymph node and C. albidus was identified by an rDNA sequence from the lung. Infection with C. albidus was thought to have contributed to mortality in this sea lion, along with concurrent bacterial pneumonia. Cryptococcus albidus should be considered as a potential pathogen with a role in marine mammal morbidity and mortality.
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
2007-03-01
Saccharomyces cerevisiae and model fungus Cryptococcus neoformans as models to understand how the GAP activity of the yeast neurofibromin homologs, Ira1...another genetically tractable fungal model system, Cryptococcus neoformans, and identified two kelch repeat homologs that are involved in mating (Kem1 and...Kem2). To find kelch-repeat proteins involved in G protein signaling, Cryptococcus homologues of Gpb1/2, which interacts with and negatively
Stress signaling pathways for the pathogenicity of Cryptococcus.
Bahn, Yong-Sun; Jung, Kwang-Woo
2013-12-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.
Stress Signaling Pathways for the Pathogenicity of Cryptococcus
Jung, Kwang-Woo
2013-01-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas. PMID:24078305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, R.A.; Shaw, C.G.; Cohen, A.L.
The scanning electron microscope was used to 1) examine the associations among microorganisms during wood decay and 2) observe the effect of these organisms on degradation of cell wall components. Bacteria (Enterobacter) and yeasts (Cryptococcus Pichia, and Saccharomyces) were found to have a mutualistic association with a white-rot fungus during decay of coniferous wood. Coriolus (Polyporus versicolar) degraded cell wall components in a typical ''erosion trough'' manner (i.e., by lysing zones around fungal hyphae). Bacteria and yeasts were seen only in these lysed zones. Typical gross decay patterns caused by the white-rot fungus were unaltered by bacteria and yeasts. Themore » SEM study suggests that the decay process is enhanced when these organisms are associated. In contrast, the same bacteria and yeasts were inhibitory when combined with a brown-rot fungus.« less
THE ROLE OF PREDISPOSING FACTORS IN EXPERIMENTAL FUNGUS INFECTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, W.H.; Bauer, H.
Among other factors, the influence of ionizing radiations on susceptibility to fungus diseases is reviewed. X irradiation singly or in combination with cortisone administration has been employed in the study of experimental fungus diseases, and it has been shown that total-body radiation enhaaced infection with Candida albicans, Blastomyces dermatididis, and Cryptococcus neoformans in mice. Enhanced susceptibility to fungus infections following radiation therapy has also been reported, the mechanism resulting in lowered host resistance being presumably the same as in other infections. (BBB)
Araujo, Glauber de S; Fonseca, Fernanda L; Pontes, Bruno; Torres, Andre; Cordero, Radames J B; Zancopé-Oliveira, Rosely M; Casadevall, Arturo; Viana, Nathan B; Nimrichter, Leonardo; Rodrigues, Marcio L; Garcia, Eloi S; Souza, Wanderley de; Frases, Susana
2012-01-01
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species
Watkins, Rhys A.; Johnston, Simon A.
2017-01-01
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans. PMID:28974017
Nenoff, P; Reinel, D; Krüger, C; Grob, H; Mugisha, P; Süß, A; Mayser, P
2015-07-01
Besides dermatophytoses, a broad range of cutaneous infections due to yeasts and moulds may occur in subtropical and tropical countries where they can affect travellers. Not to be forgotten are endemic occurring dimorphic or biphasic fungi in countries with hot climate, which cause systemic and secondary cutaneous infections in immunosuppressed and immunocompetent people. In the tropics, the prevalence of pityriasis versicolor, caused by the lipophilic yeast Malassezia spp., is about 30-40 %, in distinct areas even 50 %. Increased hyperhidrosis under tropical conditions and simultaneously humidity congestion have to be considered as significant disposing factors for pityriasis versicolor. In tropical countries, therefore, an exacerbation of a preexisting pityriasis versicolor in travellers is not rare. Today, mostly genital yeast infections due to the new species Candida africana can be found worldwide. Due to migration from Africa this yeast pathogen has reached Germany and Europe. Eumycetomas due to mould fungi are rarely diagnosed in Europe. These deep cutaneous mould infections are only found in immigrants from African countries. The therapy of eumycetoma is protracted and often not successful. Cutaneous cryptococcoses due to the yeast species Cryptococcus neoformans and Cryptococcus gattii occur worldwide; however, they are found more frequently in the tropics. Immunosuppressed patients, especially those with HIV/AIDS, are affected by cryptococcoses. Furthermore, Cryptococcus gattii also causes infections in immunocompetent hosts in Central Africa, Australia, California, and Central America.Rarely found are infections due to dimorphic fungi after travel to countries where these fungal pathogens are endemic. In individual cases, cutaneous or lymphogenic transferred sporotrichosis due to Sporothrix schenkii can occur. Furthermore, scarcely known is secondary cutaneous coccidioidomycosis due to Coccidioides immitis after travelling to desert-like endemic regions in southwestern states of the United States and in Latin America, where primary respiratory infection due to this biphasic fungus can be acquired. The antifungal agent itraconazole is the treatment of choice for sporotrichosis and coccidioidomycosis. Talaromyces marneffei-until recently known as Penicillium marneffei-is only found in Southeastern Asia. Mycosis due to this dimorphic fungus has to be considered as an AIDS-defining opportunistic infection. After hematogeneous spread, Talaromyces marneffei affects the skin and mucous membranes of the mouth. Amphotericin B and itraconazole can be used for therapy.
Innate Immune Responses to Cryptococcus.
Heung, Lena J
2017-09-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus , primarily the species C. neoformans , is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Innate Immune Responses to Cryptococcus
Heung, Lena J.
2017-01-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system. PMID:28936464
Identification of O-mannosylated Virulence Factors in Ustilago maydis
Fernández-Álvarez, Alfonso; Marín-Menguiano, Miriam; Lanver, Daniel; Jiménez-Martín, Alberto; Elías-Villalobos, Alberto; Pérez-Pulido, Antonio J.; Kahmann, Regine; Ibeas, José I.
2012-01-01
The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis. PMID:22416226
Cryptococcus gattii as an important fungal pathogen of western North America
Marr, Kieren A
2012-01-01
Cryptococcus gattii, a pathogenic fungus historically appreciated to be endemic to tropical regions, was recognized to emerge in a more temperate zone of North America in the 1990s. Early reports focused on an outbreak that was first apparent on Vancouver Island (BC, Canada), involving both the veterinary and human population. More recently, it has been recognized that this organism is endemic to a wider geography in western North America, with recognized disease caused by unique molecular subtypes in both healthy and immunosuppressed human hosts and a variety of domestic and wild animals. A number of cases of disease caused by C. gattii isolates that are unrelated to the Vancouver Island–Pacific Northwest outbreak strains have also been recognized in different parts of the USA. As microbiology laboratories have historically not identified these organisms to the species level, our current understanding of the scope of this infection is probably an underestimate. Ongoing public health epidemiologic efforts will be facilitated by increased attention towards culture-confirmed diagnosis and species identification in clinical microbiology laboratories. Early experience presents a strong rationale for increasing diagnostic attention, with multiple clinical features that are unique to this infection, including variability in antifungal susceptibilities and a heightened need for aggressive management of inflammatory responses. Larger prospective studies to evaluate and optimize clinical management are needed. PMID:22734955
Nitrogen Source-Dependent Capsule Induction in Human-Pathogenic Cryptococcus Species
Frazzitta, Aubrey E.; Vora, Haily; Price, Michael S.; Tenor, Jennifer L.; Betancourt-Quiroz, Marisol; Toffaletti, Dena L.; Cheng, Nan
2013-01-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO2 (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host. PMID:23975889
Nitrogen source-dependent capsule induction in human-pathogenic cryptococcus species.
Frazzitta, Aubrey E; Vora, Haily; Price, Michael S; Tenor, Jennifer L; Betancourt-Quiroz, Marisol; Toffaletti, Dena L; Cheng, Nan; Perfect, John R
2013-11-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.
Yadav, Vikas; Billmyre, R. Blake; Cuomo, Christina A.; Nowrousian, Minou; Wang, Liuyang; Souciet, Jean-Luc; Boekhout, Teun; Porcel, Betina; Wincker, Patrick; Granek, Joshua A.; Sanyal, Kaustuv; Heitman, Joseph
2017-01-01
Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species. PMID:28800596
Randall S. Morin; Andrew M. Liebhold; Patrick C. Tobin; Kurt W. Gottschalk; Eugene Luzader
2007-01-01
Beech bark disease (BBD) is an insect-fungus complex involving the beech scale insect (Cryptococcus fagisuga Lind.) and one of two canker fungi. Beech scale was introduced to Halifax, Nova Scotia around 1890, presumably with the fungus Neonectria coccinea var. faginata Lohm. The disease has subsequently spread...
Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto
2015-01-09
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain.
Patel, Dhavan; Desai, Gunjan M; Frases, Susana; Cordero, Radames J B; DeLeon-Rodriguez, Carlos M; Eugenin, Eliseo A; Nosanchuk, Joshua D; Martinez, Luis R
2013-07-30
Methamphetamine (METH) is a major addictive drug of abuse in the United States and worldwide, and its use is linked to HIV acquisition. The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis in patients with AIDS. In addition to functioning as a central nervous system stimulant, METH has diverse effects on host immunity. Using a systemic mouse model of infection and in vitro assays in order to critically assess the impact of METH on C. neoformans pathogenesis, we demonstrate that METH stimulates fungal adhesion, glucuronoxylomannan (GXM) release, and biofilm formation in the lungs. Interestingly, structural analysis of the capsular polysaccharide of METH-exposed cryptococci revealed that METH alters the carbohydrate composition of this virulence factor, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Additionally, we show that METH promotes C. neoformans dissemination from the respiratory tract into the brain parenchyma. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms. Methamphetamine (METH) is a major health threat to our society, as it adversely changes people's behavior, as well as increases the risk for the acquisition of diverse infectious diseases, particularly those that enter through the respiratory tract or skin. This report investigates the effects of METH use on pulmonary infection by the AIDS-related fungus Cryptococcus neoformans. This drug of abuse stimulates colonization and biofilm formation in the lungs, followed by dissemination of the fungus to the central nervous system. Notably, C. neoformans modifies its capsular polysaccharide after METH exposure, highlighting the fungus's ability to adapt to environmental stimuli, a possible explanation for its pathogenesis. The findings may translate into new knowledge and development of therapeutic and public health strategies to deal with the devastating complications of METH abuse.
Nyazika, Tinashe K.; Robertson, Valerie J.; Nherera, Brenda; Mapondera, Prichard T.; Meis, Jacques F.; Hagen, Ferry
2015-01-01
Summary Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. Cryptococcus gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with amplified fragment length polymorphism genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. PMID:26661484
McTaggart, Lisa R.; Lei, Eric; Richardson, Susan E.; Hoang, Linda; Fothergill, Annette; Zhang, Sean X.
2011-01-01
Compared to DNA sequence analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability. PMID:21653762
Profiling a killer, the development of Cryptococcus neoformans
Kozubowski, Lukasz; Heitman, Joseph
2012-01-01
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085
Gerstein, Aleeza C; Nielsen, Kirsten
2017-04-01
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection
Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo
2003-01-01
There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy. PMID:12930899
Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection
NASA Astrophysics Data System (ADS)
Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo
2003-09-01
There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy.
Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.
Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2011-09-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.
Cryptococcus gattii: where do we go from here?
Harris, Julie; Lockhart, Shawn; Chiller, Tom
2012-02-01
Infections caused by the emerging pathogen Cryptococcus gattii are increasing in frequency in North America. During the past decade, interest in the pathogen has continued to grow, not only in North America but also in other areas of the world where infections have recently been documented. This review synthesizes existing data and raises issues that remain to be addressed.
Gomes, Felipe E E S; Arantes, Thales D; Fernandes, José A L; Ferreira, Leonardo C; Romero, Héctor; Bosco, Sandra M G; Oliveira, Maria T B; Del Negro, Gilda M B; Theodoro, Raquel C
2018-01-01
Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of Cryptococcus neoformans and Cryptococcus gattii , which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i) they are polymorphic sequences; (ii) their self-splicing is inhibited by some drugs; and (iii) their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial LSU rRNA gene in 77 Cryptococcus isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the LSU rRNA gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic ( p < 0.001). Further virulence assays are needed to confirm this finding. In addition, in vitro antifungal tests indicated that the presence of LSU rRNA introns may influence the minimum inhibitory concentration (MIC) of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of Cryptococcus as potential molecular markers for antifungal resistance, as well as therapeutic targets.
USDA-ARS?s Scientific Manuscript database
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoform...
Advances in Cryptococcus genomics: insights into the evolution of pathogenesis.
Cuomo, Christina A; Rhodes, Johanna; Desjardins, Christopher A
2018-01-01
Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.
Cavitary Lung Disease in an HIV-Positive Patient
2009-04-01
Cryptococcus neoformans, and cytomegalovirus. She was treated with anidulafungin for aspergillosis. Discussion Pulmonary cavitation begins with...Histoplasma, Coccidioides, Blastomyces) and opportunistic pathogens (Aspergillus, Cryptococcus , Zygomycetes, Pneumocystis) Parasites: Paragonimus
Genome sequence of a microbial lipid producing fungus Cryptococcus albidus NT2002.
Yong, Xiaoyu; Yan, Zhiying; Xu, Lin; Zhou, Jun; Wu, Xiayuan; Wu, Yuandong; Li, Yang; Chen, Zugeng; Zhou, Hua; Wei, Ping; Jia, Honghua
2016-04-10
Cryptococcus albidus NT2002, isolated from the soil in Xinjiang, China, appeared to have the ability to accumulate microbial lipid by utilizing various carbon sources. The predominant properties make it as a potential bio-platform for biodiesel production. Here, we report the complete genome sequence of C. albidus NT2002, which might provide a basis for further elucidation of the genetic background of this promising strain for developing metabolic engineering strategies to produce biodiesel in a green and sustainable manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2011-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host. PMID:21784998
Cattana, Maria Emilia; Sosa, María de Los Ángeles; Fernández, Mariana; Rojas, Florencia; Mangiaterra, Magdalena; Giusiano, Gustavo
2014-01-01
In Argentina, information about epidemiology and environmental distribution of Cryptococcus is scarce. The city of Resistencia borders with Brazil and Paraguay where this fungus is endemic. All these supported the need to investigate the ecology of the genus and the epidemiology of cryptococcosis in this area. The aim was to investigate the presence of species of Cryptococcus neoformans-Cryptococcus gattii complex and their genotypes in trees of the city of Resistencia. One hundred and five trees were sampled by swabbing technique. The isolates were identified using conventional and commercial methods and genotyped by PCR-RFLP (Restriction Fragment Length Polymorphism). Cryptococcus was found in 7 out of the total trees. 6 out of 7 Cryptococcus isolates were identified as C. neoformans and one as C. gattii. C. gattii was isolated from Grevillea robusta. C. neoformans strains were isolated from Tabebuia avellanedae and Peltophorum dubium. Genotyping showed that all C. neoformans belonged to the VNI type and C. gattii belonged to the VGI type. This represents the first study on the ecology of Cryptococcus spp. associated to trees from northeastern Argentina, and the first report describing Grevillea robusta as a host of members of this fungal genus. Another finding is the isolation of C. neoformans from Tabebuia avellanedae and Peltophorum dubium, both tree species native to northeastern Argentina. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Nyazika, Tinashe K; Robertson, Valerie J; Nherera, Brenda; Mapondera, Prichard T; Meis, Jacques F; Hagen, Ferry
2016-03-01
Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. C. gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with AFLP genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. © 2015 Blackwell Verlag GmbH.
Chatterjee, Subhasish; Prados-Rosales, Rafael; Frases, Susana; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2012-01-01
Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using 13C and 1H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions. PMID:22765382
USDA-ARS?s Scientific Manuscript database
Cryptococcus flavescens OH 182.9 (NRRL Y-30216) is a biocontrol antagonist which has been shown to be effective in managing Fusarium head blight in wheat. Cryptococcus flavescens works by colonizing the wheat spikelet and competing with potential pathogens for the limited resources available. Know...
Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1981-09-01
Preliminary results provide strong evidence to show that the fungi, Candida and Cryptococcus , can be raoidly differentiated by a lectin test. SFor Oro...SUMMATION LECTIN-YEAST INTERACTIONS Objective: To find a lectin that selectively agglutinates Cryptococcus neoformans (the etiologic agent of...peanut), Conavalia ensiformis (Con A) and mango extract may potentially be utilized to differentiate Cryptococcus from the other yeasts most commonly
David R. Houston
1998-01-01
In forests of North America the beech bark disease (BBD) complex affects American beech, Fagus grandifolia Ehrh. BBD begins when bark tissues, attacked by the exotic beech scale insect, Cryptococcus fagisuga Lind. are rendered susceptible to killing attacks by fungi of the genus Nectria. The principal fungus,...
Isolation and purification of antigenic components of Cryptococcus.
Wozniak, Karen L; Levitz, Stuart M
2009-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.
Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing
2011-04-01
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.
Lu, Weiping; Gu, Dayong; Chen, Xingyun; Xiong, Renping; Liu, Ping; Yang, Nan; Zhou, Yuanguo
2010-10-01
The traditional techniques for diagnosis of invasive fungal infections in the clinical microbiology laboratory need improvement. These techniques are prone to delay results due to their time-consuming process, or result in misidentification of the fungus due to low sensitivity or low specificity. The aim of this study was to develop a method for the rapid detection and identification of fungal pathogens. The internal transcribed spacer two fragments of fungal ribosomal DNA were amplified using a polymerase chain reaction for all samples. Next, the products were hybridized with the probes immobilized on the surface of a microarray. These species-specific probes were designed to detect nine different clinical pathogenic fungi including Candida albicans, Candida tropocalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida guilliermondii, Candida keyfr, and Cryptococcus neoformans. The hybridizing signals were enhanced with gold nanoparticles and silver deposition, and detected using a flatbed scanner or visually. Fifty-nine strains of fungal pathogens, including standard and clinically isolated strains, were correctly identified by this method. The sensitivity of the assay for Candida albicans was 10 cells/mL. Ten cultures from clinical specimens and 12 clinical samples spiked with fungi were also identified correctly. This technique offers a reliable alternative to conventional methods for the detection and identification of fungal pathogens. It has higher efficiency, specificity and sensitivity compared with other methods commonly used in the clinical laboratory.
Fungal cell gigantism during mammalian infection.
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-06-17
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.
Cutaneous Cryptococcus laurentii infection in an immunocompetent child.
Molina-Leyva, Alejandro; Ruiz-Carrascosa, Jose C; Leyva-Garcia, Ana; Husein-Elahmed, Husein
2013-12-01
Cryptococcus laurentii is an extremely rare human pathogen. We report a case of primary cutaneous cryptococcosis caused by Cryptococcus laurentii in an immunocompetent patient, an 8-year-old child with a solitary lesion on the forearm. It was impossible to determine the source of infection and no predisposing factors were found. Oral treatment with fluconazole was totally successful. A review of the literature showed only three cases of cutaneous infection by Cryptococcus laurentii. All of the cases occurred in immunocompromised patients. To the best of our knowledge, this is the first case of Cryptococcus laurentii in an immunocompetent host. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Cryptococcus Neoformans in Pigeon Feces in San Francisco
Halde, Carlyn; Fraher, Margaret Anne
1966-01-01
Typical Cryptococcus neoformans was isolated from one of 10 specimens of pigeon feces collected in downtown San Francisco. This isolation from a small sample suggests considerable prevalence of this important pathogen and tends to confirm that it is ubiquitous. PMID:5936987
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L
2017-01-31
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. Copyright © 2017 Santiago-Tirado et al.
Isolation and Purification of Antigenic Components of Cryptococcus
Wozniak, Karen L.; Levitz, Stuart M.
2012-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species. PMID:19089377
Adaptive Immunity to Cryptococcus neoformans Infections
Mukaremera, Liliane; Nielsen, Kirsten
2017-01-01
The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease. PMID:29333430
Sabiiti, Wilber; May, Robin C
2012-01-01
Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB.
Sabiiti, Wilber; May, Robin C.
2012-01-01
Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following ‘trapping’ within capillary beds of the BBB. PMID:22530025
Morrow, Carl A.; Lee, I. Russel; Chow, Eve W. L.; Ormerod, Kate L.; Goldinger, Anita; Byrnes, Edmond J.; Nielsen, Kirsten; Heitman, Joseph; Schirra, Horst Joachim; Fraser, James A.
2012-01-01
ABSTRACT The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. PMID:22375073
Rivera, Vanessa; Gaviria, Marcela; Muñoz-Cadavid, Cesar; Cano, Luz; Naranjo, Tonny
2015-01-01
The diagnosis of cryptococcosis is usually performed based on cultures of tissue or body fluids and isolation of the fungus, but this method may require several days. Direct microscopic examination, although rapid, is relatively insensitive. Biochemical and immunodiagnostic rapid tests are also used. However, all of these methods have limitations that may hinder final diagnosis. The increasing incidence of fungal infections has focused attention on tools for rapid and accurate diagnosis using molecular biological techniques. Currently, PCR-based methods, particularly nested, multiplex and real-time PCR, provide both high sensitivity and specificity. In the present study, we evaluated a nested PCR targeting the gene encoding the ITS-1 and ITS-2 regions of rDNA in samples from a cohort of patients diagnosed with cryptococcosis. The results showed that in our hands, this Cryptococcus nested PCR assay has 100% specificity and 100% sensitivity and was able to detect until 2 femtograms of Cryptococcus DNA. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Armillaria mellea and mortality of beech affected by beech bark disease
Philip M. Wargo
1983-01-01
The role of Armillaria mellea in the mortality of beech trees affected by beech bark disease was determined by excavating root systems of beech trees infested by beech scale, Cryptococcus fagisuga, or also infected by the bark fungus, Nectria coccinea var. faginata. Only trees infected by
Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts
Fu, Ci; Sun, Sheng; Billmyre, R. Blake; Roach, Kevin C.; Heitman, Joseph
2014-01-01
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller’s ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen. PMID:25173822
Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans
Shuryak, Igor; Bryan, Ruth A.; Broitman, Jack; Marino, Stephen A.; Morgenstern, Alfred; Apostolidis, Christos; Dadachova, Ekaterina
2015-01-01
Introduction Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. Methods We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by 213Bi-labeled monoclonal antibodies), and sparsely-ionizing 137Cs γ-rays, on Cryptococus neoformans. Results The best-fit linear-quadratic parameters for clonogenic survival were the following: α=0.24×10−2 Gy−1 for γ-rays and 1.07×10−2 Gy−1 for external-beam α-particles, and β=1.44×10−5 Gy−2 for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. Conclusions These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies. PMID:25800676
Olave, M C; Vargas-Zambrano, J C; Celis, A M; Castañeda, E; González, J M
2017-07-01
Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells. © 2017 Blackwell Verlag GmbH.
Cryptococcus: from environmental saprophyte to global pathogen
May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten
2016-01-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750
Cryptococcus: from environmental saprophyte to global pathogen.
May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten
2016-02-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R
2017-06-01
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz
2014-01-01
Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.
De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans
Morrow, Carl A.; Valkov, Eugene; Stamp, Anna; Chow, Eve W. L.; Lee, I. Russel; Wronski, Ania; Williams, Simon J.; Hill, Justine M.; Djordjevic, Julianne T.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.
2012-01-01
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. PMID:23071437
Okagaki, Laura H; Wang, Yina; Ballou, Elizabeth R; O'Meara, Teresa R; Bahn, Yong-Sun; Alspaugh, J Andrew; Xue, Chaoyang; Nielsen, Kirsten
2011-10-01
The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.
Okagaki, Laura H.; Wang, Yina; Ballou, Elizabeth R.; O'Meara, Teresa R.; Bahn, Yong-Sun; Alspaugh, J. Andrew; Xue, Chaoyang; Nielsen, Kirsten
2011-01-01
The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens. PMID:21821718
Teodoro, Valter Luis Iost; Gullo, Fernanda Patrícia; Sardi, Janaína de Cássia Orlandi; Torres, Edson Maria; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares
2013-01-01
The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B) independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%), Cryptococcus gattii (5.2%), Cryptococcus ater (3.5%), Cryptococcus laurentti (1.7%), and Cryptococcus luteolus (1.7%). A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.
Janbon, Guilhem
2018-01-01
In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.
[Cyptococcus gattii isolated from a cheetah (Acinonyx jubatus) in the National Zoo of Cuba].
Polo Leal, Jorge Luis; Fernández Andreu, Carlos Manuel; Martínez Machín, Gerardo; Illnait Zaragozi, María Teresa; Perurena Lancha, Mayda Rosa
2010-01-01
Cryptoccosis--systemic mycosis caused by Cryptococcus species--has considerably raised its incidence in the last years, mainly associated with the human immunodeficiency virus infection. It has also been described in animals, but rare cases. a case of a female cheetah (Acinonyx jubatus) kept in the Nacional Zoo of Havana was presented. The animal came from South Africa. She began losing weight, and suffering asthenia, anorexia and breathing problems with abundant nasal secretion. mycological testing of these secretions disclosed the presence of serotype B Cryptococcus gattii. Because of the origin and captive condition of the animal, it was believed that the infection had been latent for 16 months at least. up to the present, in Cuba, all clinical Cryptococcus isolates were C. neoformans var. grubii, so it is considered that the infection was caught in the country of origin of the female cheetah. This is the first C. gattii isolate in Cuba from an animal coming from South Africa where this fungus is endemic.
Systemic fungal infections in patients with human inmunodeficiency virus.
Rodríguez-Cerdeira, C; Arenas, R; Moreno-Coutiño, G; Vásquez, E; Fernández, R; Chang, P
2014-01-01
Histoplasmosis is a systemic infection caused by the dimorphic fungus Histoplasma capsulatum. In immunocompromised patients, primary pulmonary infection can spread to the skin and meninges. Clinical manifestations appear in patients with a CD4(+) lymphocyte count of less than 150 cells/μL. Coccidioidomycosis is a systemic mycosis caused by Coccidioides immitis and Coccidioides posadasii. It can present as diffuse pulmonary disease or as a disseminated form primarily affecting the central nervous system, the bones, and the skin. Cryptococcosis is caused by Cryptococcus neoformans (var. neoformans and var. grubii) and Cryptococcus gattii, which are members of the Cryptococcus species complex and have 5 serotypes: A, B, C, D, and AD. It is a common opportunistic infection in patients with human immunodeficiency virus (HIV)/AIDS, even those receiving antiretroviral therapy. Histopathologic examination and culture of samples from any suspicious lesions are essential for the correct diagnosis of systemic fungal infections in patients with HIV/AIDS. Copyright © 2011 Elsevier España, S.L. and AEDV. All rights reserved.
Ikeda-Dantsuji, Yurika; Ohno, Hideaki; Tanabe, Koichi; Umeyama, Takashi; Ueno, Keigo; Nagi, Minoru; Yamagoe, Satoshi; Kinjo, Yuki; Miyazaki, Yoshitsugu
2015-12-01
Among invasive fungal infections, cryptococcosis caused by inhalation of Cryptococcus neoformans or Cryptococcus gattii is particularly dangerous because it can disseminate to the central nervous system and cause life-threatening meningitis or meningoencephalitis. Previous reports described significant differences in the histopathological features of C. neoformans and C. gattii infection, such as greater pathogen proliferation and a limited macrophage response in mouse lung infected by C. gattii. To elucidate the difference in pathogenicity of these two Cryptococcus species, we investigated the interaction of C. neoformans and C. gattii with murine macrophages, the first line of host defense, by confocal laser microscopy. Only thin-capsulated, and not thick-capsulated C. neoformans and C. gattii were phagocytosed by macrophages. Preactivation with interferon-γ increased the phagocytic rate of thin-capsulated C. neoformans up to two-fold, but did not promote phagocytosis of thin-capsulated C. gattii. Lipopolysaccharide preactivation or Aspergillus fumigatus conidia co-incubation had no effect on internalization of thin-capsulated C. neoformans or C. gattii by macrophages. Phagocytosis of live thin-capsulated C. neoformans, but not that of live thin-capsulated C. gattii, induced interleukin-12 release from macrophages. However, phagocytosis of heat-killed or paraformaldehyde-fixed thin-capsulated C. neoformans did not increase IL-12 release, showing that the internalization of live yeast is important for initiating the immune response during C. neoformans-macrophage interactions. Our data suggest that macrophage response to C. gattii is limited compared with that to C. neoformans and that these results may partially explain the limited immune response and the greater pathogenicity of C. gattii. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling
2013-01-01
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783
Patel, Kunal D; Scarano, Frank J; Kondo, Miwako; Hurta, Robert A R; Neto, Catherine C
2011-12-28
Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 μg/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.
Rising to the challenge of multiple Cryptococcus species and the diseases they cause.
Idnurm, Alexander; Lin, Xiaorong
2015-05-01
Cryptococcus neoformans and Cryptococcus gattii are well-studied basidiomyceteous yeasts that are capable of causing disease in healthy and immunocompromised people. The Conference on Cryptococcus and Cryptococcosis (ICCC) is held every three years: the accompanying Special Issue stems from the 9th ICCC and covers a subset of the topics related to these fungi in detail. This conference started with a revised and reduced estimate of disease burden globally, in part due to improved treatment for HIV(+) people. However, mortality from cryptococcosis remains consistently high for those unfortunate to have limited access to therapies or without underlying immunodeficiencies. As such, there are yet still great distances to be covered to address antifungal drug availability, the need for new antifungal agents and the timing and doses of these agents in conjunction with antiviral therapy, underscoring the importance of continued research. A notable point from the 9th ICCC was the research addressing the variation in the pathogen and host populations. Analysis of cryptococcal strain variability, particularly at the molecular level, has resolved distinct lineages with the consequence of a taxonomic revision that divides C. neoformans and C. gattii into seven Cryptococcus species. Similarly, analysis of host factors in so called "immune-competent" individuals revealed previously unrecognized risk factors. Research on these species has established them as important model organisms to understand gene evolution and function in other fungi and eukaryotes. The stage is set for the refinement of research directions, leading ultimately to better treatment of this monophyletic clade of pathogens in the genus Cryptococcus. Copyright © 2015 Elsevier Inc. All rights reserved.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii.
Chen, Yuan; Farrer, Rhys A; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P; Mitchell, Thomas G; Litvintseva, Anastasia P; Cuomo, Christina A; Perfect, John R
2017-03-07
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease. Copyright © 2017 Chen et al.
Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains.
Singh, Ashutosh; MacKenzie, Andrew; Girnun, Geoffrey; Del Poeta, Maurizio
2017-10-01
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31 P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl- N , N -dimethylethanolamine, phosphatidyl- N -monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.
Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C
2010-09-30
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Fungal Cell Gigantism during Mammalian Infection
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D.; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-01-01
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens. PMID:20585557
Pectinase activity of Nectria coccinea (Pers ex Fries) fries in relation to beech bark disease
R. Perrin
1983-01-01
The pectinase activity of Nectria coccinea was studied in vitro and in vivo in relation to the pectinases of Cryptococcus fagisuga and the nature of the bark. Any pectinases necessary for degradation of pectic material were secreted by the fungus in vitro. Some pectinases produced by the insect are of great significance in the...
Innate Immunity against Cryptococcus, from Recognition to Elimination
Wormley, Floyd L.
2018-01-01
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906
Billmyre, R Blake; Clancey, Shelly Applen; Heitman, Joseph
2017-09-26
Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1 , which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.
Biofilm Formation by Cryptococcus neoformans.
Martinez, Luis R; Casadevall, Arturo
2015-06-01
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology.
Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome
Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.
2016-01-01
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984
Cogliati, Massimo; Puccianti, Erika; Montagna, Maria T; De Donno, Antonella; Susever, Serdar; Ergin, Cagri; Velegraki, Aristea; Ellabib, Mohamed S; Nardoni, Simona; Macci, Cristina; Trovato, Laura; Dipineto, Ludovico; Rickerts, Volker; Akcaglar, Sevim; Mlinaric-Missoni, Emilija; Bertout, Sebastien; Vencà, Ana C F; Sampaio, Ana C; Criseo, Giuseppe; Ranque, Stéphane; Çerikçioğlu, Nilgün; Marchese, Anna; Vezzulli, Luigi; Ilkit, Macit; Desnos-Ollivier, Marie; Pasquale, Vincenzo; Polacheck, Itzhack; Scopa, Antonio; Meyer, Wieland; Ferreira-Paim, Kennio; Hagen, Ferry; Boekhout, Teun; Dromer, Françoise; Varma, Ashok; Kwon-Chung, Kyung J; Inácio, Joäo; Colom, Maria F
2017-10-01
Fundamental niche prediction of Cryptococcus neoformans and Cryptococcus gattii in Europe is an important tool to understand where these pathogenic yeasts have a high probability to survive in the environment and therefore to identify the areas with high risk of infection. In this study, occurrence data for C. neoformans and C. gattii were compared by MaxEnt software with several bioclimatic conditions as well as with soil characteristics and land use. The results showed that C. gattii distribution can be predicted with high probability along the Mediterranean coast. The analysis of variables showed that its distribution is limited by low temperatures during the coldest season, and by heavy precipitations in the driest season. C. neoformans var. grubii is able to colonize the same areas of C. gattii but is more tolerant to cold winter temperatures and summer precipitations. In contrast, the C. neoformans var. neoformans map was completely different. The best conditions for its survival were displayed in sub-continental areas and not along the Mediterranean coasts. In conclusion, we produced for the first time detailed prediction maps of the species and varieties of the C. neoformans and C. gattii species complex in Europe and Mediterranean area. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R.; Brennan, Richard G.
2017-01-01
SUMMARY Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. PMID:28298477
Fontes, Alide Caroline Lima; Bretas Oliveira, Danilo; Santos, Juliana Ribeiro Alves; Carneiro, Hellem Cristina Silva; Ribeiro, Noelly de Queiroz; Oliveira, Lorena Vívien Neves de; Barcellos, Vanessa Abreu; Paixão, Tatiane Alves; Abrahão, Jonatas Santos; Resende-Stoianoff, Maria Aparecida; Vainstein, Marilene Henning; Santos, Daniel Assis
2017-02-01
Cryptococcosis is an invasive infection caused by yeast-like fungus of the genera Cryptococcus spp. The antifungal therapy for this disease provides some toxicity and the incidence of infections caused by resistant strains increased. Thus, we aimed to assess the consequences of fluconazole subdoses during the treatment of cryptococcosis in the murine inflammatory response and in the virulence factors of Cryptococcus gattii. Mice infected with Cryptococcus gattii were treated with subdoses of fluconazole. We determined the behavior of mice and type 1 interferon expression during the treatment; we also studied the virulence factors and susceptibility to fluconazole for the colonies recovered from the animals. A subdose of fluconazole prolonged the survival of mice, but the morbidity of cryptococcosis was higher in treated animals. These data were linked to the increase in: (i) fluconazole minimum inhibitory concentration, (ii) capsule size and (iii) melanization of C. gattii, which probably led to the increased expression of type I interferons in the brains of mice but not in the lungs. In conclusion, a subdose of fluconazole altered fungal virulence factors and susceptibility to this azole, leading to an altered inflammatory host response and increased morbidity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph
2016-03-01
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.
Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis
Kwon-Chung, Kyung J.; Fraser, James A.; Doering, Tamara L.; Wang, Zhou; Janbon, Guilhem; Idnurm, Alexander; Bahn, Yong-Sun
2014-01-01
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually. PMID:24985132
Molecular detection of fungi of public health importance in wild animals from Southern Brazil.
Losnak, Debora O; Rocha, Francielle R; Almeida, Barbara S; Batista, Keila Z S; Althoff, Sérgio L; Haupt, Josiane; Ruiz, Luciana S; Anversa, Laís; Lucheis, Simone B; Paiz, Laís M; Donalisio, Maria Rita; Richini Pereira, Virginia B
2018-07-01
Some animals have an important relationship with fungal infections, and searching for pathogens in animal samples may be an opportunity for eco-epidemiological research. Since studies involving wildlife are generally restricted, using samples from road kills is an alternative. The aim of this study was to verify whether pathogenic fungi of public health importance occur in wildlife road kills from Santa Catarina State, Brazil. Organ samples (n = 1063) from 297 animals were analysed according to Polymerase Chain Reaction (PCR) using universal primers to detect fungi in general and, subsequently, using primers specific to Paracoccidioides brasiliensis, Histoplasma capsulatum and Cryptococcus spp. There were 102 samples positive for fungal species. Eight samples were positive for P. brasiliensis, three samples were positive for Cryptococcus spp. and one sample had coinfection by these two fungi. No sample was positive for Histoplasma spp. according to the molecular detection. Genetic sequencing allowed the identification of Fungal sp. in 89 samples, Cryptococcus neoformans in two samples and Aspergillus penicillioides in three samples. This study shows the importance of wild animals in the epidemiology of fungal infections and assists in the mapping of pathogen occurrence in a region that was not previously evaluated. © 2018 Blackwell Verlag GmbH.
Fu, Ci; Heitman, Joseph
2017-01-01
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex. PMID:29176784
USDA-ARS?s Scientific Manuscript database
The culture filtrate of a plant pathogenic fungus that infects English ivy (Hegera helix) was investigated for mosquitocidal constituents by bioassay guided isolation. The fungus responsible for pathogenic effects on the plant Hegera helix has been identified as Diaporthe eres by molecular technique...
Findley, Keisha; Sun, Sheng; Fraser, James A; Hsueh, Yen-Ping; Averette, Anna Floyd; Li, Wenjun; Dietrich, Fred S; Heitman, Joseph
2012-01-01
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.
Morera, Neus; Hagen, Ferry; Juan-Sallés, Carles; Artigas, Carlos; Patricio, Rui; Serra, Juan Ignacio; Colom, Ma Francisca
2014-08-01
Cryptococcus gattii is a pathogenic environmental yeast that is considered to be emerging in different areas of the world including the Mediterranean Basin. Exposure to infection might be more likely in animals than in human beings, given their closer relationship with the natural habitat of the yeast, vegetation and soil. Thus, animals, and especially pets, can act as indicators of the presence of this yeast in a determined area. Domestic ferrets (Mustela putorius furo) have become common pets in the past 10-20 years. Their natural behavior of sniffing around and going inside narrow spaces makes them prone to contact with decaying organic matter and soil, the substrate for Cryptococcus species. This study describes two cases of cryptococcosis in ferrets in the Iberian Peninsula and Balearic Islands and documents a relationship of ferret cryptococcosis with environmental isolates in the same locations. Here, we emphasize the importance of how an adequate identification and environmental search of the yeast leads to a better understanding of the epidemiology of cryptococcosis and suggests ferrets may act as sentinels for this fungal disease.
Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana
2017-04-01
The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.
Cryptococcal nasopharyngeal polypoid mass in a cat
Javard, Romain; Alexander, Kate; Girard, Christiane; Dunn, Marilyn
2015-01-01
Case summary An indoor 9-year-old castrated male domestic cat was referred with a 4 month history of increased upper airway noise. Computed tomography revealed a nasopharyngeal polypoid mass, which was removed endoscopically with basket forceps. Histopathology was compatible with a polypoid granulomatous pharyngitis with Cryptococcus-like organisms. This was supported by a positive serum latex cryptococcal antigen agglutination test (LCAT). Minimal inflammation of the nasal tissue was noted on histopathology, with no evidence of fungus. Following endoscopic removal of the mass, the patient was treated with systemic antifungal medication (itraconazole). One year after diagnosis, the LCAT titer was negative and the cat remained free of clinical signs. Relevance and novel information This case report emphasizes the importance of considering Cryptococcus species as a potential etiology in cats presented with signs of nasopharyngeal obstruction with an isolated nasopharyngeal polypoid mass, even if kept indoors. PMID:28491377
Cryptococcus gattii Infection Presenting as an Aggressive Lung Mass.
Zheng, Shuwei; Tan, Thuan Tong; Chien, Jaime Mei Fong
2018-06-01
Cryptococcus gattii is an endemic fungus predominantly isolated in the tropical and subtropical regions, causing predominantly pulmonary disease with a predilection for the central nervous system. Herein, we report a case of rapidly progressing C. gattii pneumonia in an immune-deficient but virologically suppressed host with underlying human immunodeficiency viral (HIV) infection, exhibiting various fungal morphologies from bronchoalveolar lavage (BAL) cytological specimens. A 51-year-old Chinese male with known HIV disease was admitted to the Singapore General Hospital for evaluation of functional decline, febrile episodes, and a left hilar mass on chest radiograph. Computed tomography (CT) showed consolidation in the apical segment of the left lower lobe. He underwent bronchoscopy and BAL. Positron emission tomography-computed tomography done 10 days after the initial CT showed approximate doubling of the pulmonary lesion. Cytological examination of the fluid revealed yeasts of varying sizes. Subsequent fungal culture from BAL fluid grew C. gattii 10 days later.
Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo
Guimarães, Allan Jefferson; Frases, Susana; Cordero, Radamés J. B.; Nimrichter, Leonardo; Casadevall, Arturo; Nosanchuk, Joshua D.
2010-01-01
The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared to cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5mM produced more exopolysaccharide than cells grown in mannitol. The fiber lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis. PMID:20070311
Fu, Jianmin; Morris, Ian R; Wickes, Brian L
2013-01-01
Cryptococcus neoformans is a heterothallic fungal pathogen of humans and animals. Although the fungus grows primarily as a yeast, hyphae are produced during the sexual phase and during a process called monokaryotic fruiting, which is also believed to involve sexual reproduction, but between cells of the same mating type. Here we report a novel monokaryotic fruiting mechanism that is dependent on the cell cycle and occurs in haploid cells in the absence of sexual reproduction. Cells grown at 37°C were found to rapidly produce hyphae (∼4 hrs) and at high frequency (∼40% of the population) after inoculation onto hyphae-inducing agar. Microscopic examination of the 37°C seed culture revealed a mixture of normal-sized and enlarged cells. Micromanipulation of single cells demonstrated that only enlarged cells were able to produce hyphae and genetic analysis confirmed that hyphae did not arise from α-α mating or endoduplication. Cell cycle analysis revealed that cells grown at 37°C had an increased population of cells in G2 arrest, with the proportion correlated with the frequency of monokaryotic fruiting. Cell sorting experiments demonstrated that enlarged cells were only found in the G2-arrested population and only this population contained cells able to produce hyphae. Treatment of cells at low temperature with the G2 cell cycle arrest agent, nocodazole, induced hyphal growth, confirming the role of the cell cycle in this process. Taken together, these results reveal a mating-independent mechanism for monokaryotic fruiting, which is dependent on the cell cycle for induction of hyphal competency.
Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping
2014-05-02
Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.
Pathogenic nature of Syncephalastrum in Atta sexdens rubropilosa fungus gardens.
Barcoto, Mariana O; Pedrosa, Felipe; Bueno, Odair C; Rodrigues, Andre
2017-05-01
Leaf-cutter ants are considered to be a major herbivore and agricultural pest in the Neotropics. They are often controlled by environmentally persistent insecticides. Biological control using pathogenic fungi is regarded as an alternative for the management of these insects. Here, we assess whether the filamentous fungus Syncephalastrum sp. is a pathogenic microorganism responsible for a characteristic disease in fungus gardens. We also characterise the damage caused by this fungus by evaluating physiological and behavioural responses of Atta sexdens rubropilosa subcolonies infected with Syncephalastrum sp. Syncephalastrum sp. fulfils Koch's postulates characterising it as a pathogenic microorganism. Ant workers recognise the infection and remove contaminated fragments from the fungus garden. Syncephalastrum sp. infection causes an interruption of foraging activity, an increase in ant mortality, subcolony deterioration and an increase in the amount of waste generated, all resulting in subcolony death. Syncephalastrum sp. also inhibits the ant fungal cultivar in vitro. The pathogenic effect of Syncephalastrum sp. does not depend on host morbidity or stress (e.g. worker mortality caused by an entomopathogenic fungus). Syncephalastrum sp. treatment resulted in progressive damage in subcolonies. The interactions among Syncephalastrum sp., fungus garden and ants offer new opportunities in integrated pest management of leaf-cutter ants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting
2015-12-22
Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R; Brennan, Richard G; Cramer, Robert A
2017-06-01
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans , Cryptococcus neoformans , and Aspergillus fumigatus . While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. Copyright © 2017 American Society for Microbiology.
Freij, Joudeh B.; Hann-Soden, Christopher; Taylor, John
2017-01-01
ABSTRACT Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages. PMID:28435888
Casadevall, Arturo; Freij, Joudeh B; Hann-Soden, Christopher; Taylor, John
2017-01-01
Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages.
3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.
Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław
2013-05-03
We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. Copyright © 2013 Elsevier Inc. All rights reserved.
Schein, Jacqueline E.; Tangen, Kristin L.; Chiu, Readman; Shin, Heesun; Lengeler, Klaus B.; MacDonald, William Kim; Bosdet, Ian; Heitman, Joseph; Jones, Steven J.M.; Marra, Marco A.; Kronstad, James W.
2002-01-01
The basidiomycete fungus Cryptococcus neoformans is an important opportunistic pathogen of humans that poses a significant threat to immunocompromised individuals. Isolates of C. neoformans are classified into serotypes (A, B, C, D, and AD) based on antigenic differences in the polysaccharide capsule that surrounds the fungal cells. Genomic and EST sequencing projects are underway for the serotype D strain JEC21 and the serotype A strain H99. As part of a genomics program for C. neoformans, we have constructed fingerprinted bacterial artificial chromosome (BAC) clone physical maps for strains H99 and JEC21 to support the genomic sequencing efforts and to provide an initial comparison of the two genomes. The BAC clones represented an estimated 10-fold redundant coverage of the genomes of each serotype and allowed the assembly of 20 contigs each for H99 and JEC21. We found that the genomes of the two strains are sufficiently distinct to prevent coassembly of the two maps when combined fingerprint data are used to construct contigs. Hybridization experiments placed 82 markers on the JEC21 map and 102 markers on the H99 map, enabling contigs to be linked with specific chromosomes identified by electrophoretic karyotyping. These markers revealed both extensive similarity in gene order (conservation of synteny) between JEC21 and H99 as well as examples of chromosomal rearrangements including inversions and translocations. Sequencing reads were generated from the ends of the BAC clones to allow correlation of genomic shotgun sequence data with physical map contigs. The BAC maps therefore represent a valuable resource for the generation, assembly, and finishing of the genomic sequence of both JEC21 and H99. The physical maps also serve as a link between map-based and sequence-based data, providing a powerful resource for continued genomic studies. [This paper is dedicated to the memory of Michael Smith, Founding Director of the Biotechnology Laboratory and the BC Cancer Agency Genome Sciences Centre. Supplemental material is available online at http://www.genome.org.] PMID:12213782
Pathogenic diversity amongst serotype C VGIII and VGIV Cryptococcus gattii isolates
Rodrigues, Jéssica; Fonseca, Fernanda L.; Schneider, Rafael O.; Godinho, Rodrigo M. da C.; Firacative, Carolina; Maszewska, Krystyna; Meyer, Wieland; Schrank, Augusto; Staats, Charley; Kmetzsch, Livia; Vainstein, Marilene H.; Rodrigues, Marcio L.
2015-01-01
Cryptococcus gattii is one of the causative agents of human cryptococcosis. Highly virulent strains of serotype B C. gattii have been studied in detail, but little information is available on the pathogenic properties of serotype C isolates. In this study, we analyzed pathogenic determinants in three serotype C C. gattii isolates (106.97, ATCC 24066 and WM 779). Isolate ATCC 24066 (molecular type VGIII) differed from isolates WM 779 and 106.97 (both VGIV) in capsule dimensions, expression of CAP genes, chitooligomer distribution, and induction of host chitinase activity. Isolate WM 779 was more efficient than the others in producing pigments and all three isolates had distinct patterns of reactivity with antibodies to glucuronoxylomannan. This great phenotypic diversity reflected in differential pathogenicity. VGIV isolates WM 779 and 106.97 were similar in their ability to cause lethality and produced higher pulmonary fungal burden in a murine model of cryptococcosis, while isolate ATCC 24066 (VGIII) was unable to reach the brain and caused reduced lethality in intranasally infected mice. These results demonstrate a high diversity in the pathogenic potential of isolates of C. gattii belonging to the molecular types VGIII and VGIV. PMID:26153364
Mating and Progeny Isolation in The Corn Smut Fungus Ustilago maydis
USDA-ARS?s Scientific Manuscript database
The corn smut pathogen, Ustilago maydis (U. maydis) (DC.) Corda, is a semi-obligate plant pathogenic fungus in the phylum Basidiomycota (Alexopoulos, Mims and Blackwell, 1996). The fungus can be easily cultured in its haploid yeast phase on common laboratory media. However, to complete its sexual cy...
Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039
Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio
2015-01-01
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.
Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii.
Farrer, Rhys A; Desjardins, Christopher A; Sakthikumar, Sharadha; Gujja, Sharvari; Saif, Sakina; Zeng, Qiandong; Chen, Yuan; Voelz, Kerstin; Heitman, Joseph; May, Robin C; Fisher, Matthew C; Cuomo, Christina A
2015-09-01
Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex. Copyright © 2015 Farrer et al.
2013-01-01
Background Araucariaceae are important forest trees of the southern hemisphere. Life expectancy of their seedlings can largely be reduced by fungal infections. In this study we have isolated and characterized such a fungus and investigated the potential of Streptomyces Actinobacteria from the respective rhizosphere to act as antagonists. Results The pathogenic fungus from Araucaria angustifolia seeds was identified by morphological markers (pore-associated Woronin-bodies) as belonging to the Pezizomycotina. Molecular data identified the fungus as Neofusicoccum parvum (Botryosphaeriaceae). Co-cultures on agar of this fungus with certain streptomycete isolates from the rhizosphere, and from the surface of Araucaria roots significantly reduced the growth of the fungus. HPLC analysis of the agar yielded streptomycete-specific exudate compounds which were partly identified. There were differences in compounds between single (bacteria, fungus) and dual cultures (bacteria + fungus). Conclusion Streptomycetes from the rhizosphere of Araucariaceae produce exudates which can suppress the development of pathogenic fungi in their seeds. PMID:23866024
Cryptococcus spp isolated from dust microhabitat in Brazilian libraries.
Leite, Diniz P; Amadio, Janaina V R S; Martins, Evelin R; Simões, Sara A A; Yamamoto, Ana Caroline A; Leal-Santos, Fábio A; Takahara, Doracilde T; Hahn, Rosane C
2012-06-08
The Cryptococcus spp is currently composed of encapsulated yeasts of cosmopolitan distribution, including the etiological agents of cryptococcosis. The fungus are found mainly in substrates of animal and plant origin. Human infection occurs through inhalation of spores present in the environment. Eighty-four swab collections were performed on dust found on books in three libraries in the city of Cuiabá, state of Mato Grosso, Brazil. The material was seeded in Sabouraud agar and then observed for characteristics compatible with colonies with a creamy to mucous aspect; the material was then isolated in birdseed (Niger) agar and cultivated at a temperature of 37°C for 5 to 7 days. Identification of isolated colonies was performed by microscopic observation in fresh preparations dyed with India ink, additional tests performed on CGB (L-canavanine glycine bromothymol blue), urea broth, and carbohydrate assimilation tests (auxanogram). Of the 84 samples collected from book dust, 18 (21.4%) were positive for Cryptococcus spp totalizing 41 UFC's. The most frequently isolated species was C. gattii 15 (36.6%); followed by C. terreus, 12 (29.3%); C. luteolus 4 (9.8%); C. neoformans, and C. uniguttulatus 3 (7.3%), and C. albidus and C. humiculus with 2 (4.6%) of the isolates. The high biodiversity of the yeasts of the Cryptococcus genus, isolated from different environmental sources in urban areas of Brazil suggests the possibility of individuals whose immune systems have been compromised or even healthy individuals coming into sources of fungal propagules on a daily bases throughout their lives. This study demonstrates the acquisition possible of cryptococcosis infection from dust in libraries.
Fun Microbiology: Using a Plant Pathogenic Fungus To Demonstrate Koch's Postulates.
ERIC Educational Resources Information Center
Mitchell, James K.; Orsted, Kathy M.; Warnes, Carl E.
1997-01-01
Describes an experiment using a plant pathogenic fungus in which students learn to follow aseptic techniques, grow and produce spores of a fungus, use a hemacytometer for enumerating spores, prepare serial dilutions, grow and inoculate plants, isolate a pure culture using agar streak plates, and demonstrate the four steps of Koch's postulates.…
Titan cells in Cryptococcus neoformans: Cells with a giant impact
Zaragoza, Oscar; Nielsen, Kirsten
2013-01-01
Cryptococcus neoformans is a pathogenic yeast that commonly infects immunocompromised individuals, yet has developed multiple adaptation mechanisms to the host. Several virulence factors (capsule and melanin) have been known for many years. However, this yeast also possesses a morphogenetic program that is still not well characterized. Cryptococcus neoformans has the ability to dramatically enlarge its size during infection to form “titan cells” that can reach up to 100 microns in cell body diameter, in contrast to typical size cells of 5-7 microns. These titan cells pose a problem for the host because they contribute to fungal survival, dissemination to the central nervous system, and possibly even latency. In this review, we will provide an overview of these cells, covering current knowledge about their phenotypic features, mechanism of formation, and their significance during infection. PMID:23588027
Millward, I R; Williams, M C
2005-12-01
A 6-year-old, male, wild-born, free-ranging cheetah (Acinonyx jubatus) was evaluated for acute onset of progressive lameness in the right hind limb. Survey radiographs were unrewarding and myelography indicated an intramedullary compressive mass at the L3-L4 region. A fine needle aspirate of the lesion indicated the presence of Cryptococcus organisms. Necropsy confirmed the presence of granulomas (cryptococcoma) in the lung and the spinal cord (meningomyelitis) caused by Cryptococcus neoformans var. gattii. Cryptococcus neoformans is a yeast-like organism that is a potential pathogen to many species. Initial infection is thought to be of respiratory origin and then it commonly disseminates systemically from the nasal cavity or lungs to the skin, eyes and central nervous system in particular. The cheetah tested negative for both feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV), as have all the previously reported cheetah cases. C. neoformans is a non-contagious, opportunistic organism and is the most common systemic mycoses in domestic cats and the cheetah.
Linares, Carlos; Colom, María Francisca; Torreblanca, Marina; Esteban, Violeta; Romera, Álvaro; Hagen, Ferry
2015-01-01
Cryptococcus gattii is a pathogenic basidiomycetous yeast that is emerging in temperate climate zones worldwide. C. gattii has repetitively been isolated from numerous tree species. Ongoing environmental sampling and molecular characterization is essential to understand the presence of this primary pathogenic microorganism in the Mediterranean environment. To report the first isolation of the rare C. gattii genotype AFLP7/VGIV from the environment in Europe. Samples were collected from woody debris of carob trees (Ceratonia siliqua) and olive trees (Olea europaea) in El Perelló, Tarragona, Spain. Cryptococcus species were further characterized by using URA5-RFLP, MALDI-TOF, AFLP and MLST. The antifungal susceptibility profile to amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, posaconazole and voriconazole was determined using Sensititre Yeast One and E-test. Cultures from one carob tree revealed the presence of ten Cryptococcus-like colonies. One colony was identified as C. gattii, and subsequent molecular characterization showed that it was an α mating-type that belonged to the rare genotype AFLP7/VGIV. Antifungal susceptibility testing showed values within the range of sensitivity described for other isolates of the same genotype and within the epidemiological cutoff values for this species. The isolation of the rare C. gattii genotype AFLP7/VGIV in Spain is the first report in the European environment, implying the possible presence in other regions of the Mediterranean area, and underlines that clinicians must be aware for C. gattii infections in healthy individuals. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici
2014-01-01
Background Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits. PMID:24767544
Koch, Jennifer L.; Carey, David W.
2014-01-01
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation. PMID:24894494
Cryptococcal osteomyelitis: a report of 5 cases and a review of the recent literature.
Medaris, Leigh Ann; Ponce, Brent; Hyde, Zane; Delgado, Dennis; Ennis, David; Lapidus, William; Larrison, Matthew; Pappas, Peter G
2016-06-01
Cryptococcus neoformans is a fungal pathogen associated with advanced HIV disease and other disorders associated with immune dysfunction. The pulmonary and the central nervous system are the most common manifestations of the disease. Localised osteomyelitis as the sole manifestation of extrapulmonary disease is rare. Herein, we present five cases of Cryptococcus osteomyelitis as the only manifestation of extrapulmonary disease. We also identified 84 additional cases of isolated cryptococcal osteomyelitis in the literature. Using these data, we have made some general recommendations regarding an approach to treatment of this uncommon clinical entity. © 2016 Blackwell Verlag GmbH.
Cryptococcus gattii dispersal mechanisms, British Columbia, Canada.
Kidd, Sarah E; Bach, Paxton J; Hingston, Adrian O; Mak, Sunny; Chow, Yat; MacDougall, Laura; Kronstad, James W; Bartlett, Karen H
2007-01-01
Recent Cryptococcus gattii infections in humans and animals without travel history to Vancouver Island, as well as environmental isolations of the organism in other areas of the Pacific Northwest, led to an investigation of potential dispersal mechanisms. Longitudinal analysis of C. gattii presence in trees and soil showed patterns of permanent, intermittent, and transient colonization, reflecting C. gattii population dynamics once the pathogen is introduced to a new site. Systematic sampling showed C. gattii was associated with high-traffic locations. In addition, C. gattii was isolated from the wheel wells of vehicles on Vancouver Island and the mainland and on footwear, consistent with anthropogenic dispersal of the organism. Increased levels of airborne C. gattii were detected during forestry and municipal activities such as wood chipping, the byproducts of which are frequently used in park landscaping. C. gattii dispersal by these mechanisms may be a useful model for other emerging pathogens.
D.A. Varley; G.K. Podila; S.T. Hiremath
1992-01-01
Plant-pathogenic fungi produce cutinase, an enzyme required to degrade plant cuticles and facilitate penetration into the host. The absence of cutinase or a decrease in its production has been associated with a decrease in pathogenicity of the fungus. A set of isogenic strains of Cryphonectria parasitica, the chestnut blight fungus, was tested for...
USDA-ARS?s Scientific Manuscript database
Pyrenophora tritici-repentis is a necrotrophic fungal pathogen and causal agent of tan spot disease of wheat, which has increased significantly over the last few decades. Pathogenicity by this fungus is due to host-selective toxins. These toxins are recognized by their host plant in a genotype-speci...
Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha
2014-01-01
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoformans. High CO2 conditions induced robust development of monokaryotic hyphae and spores in C. gattii. Conversely, high CO2 completely repressed hyphae development in sexual mating. Both CAN1 and CAN2 were dispensable for CO2 induced morphogenetic transitions. However, C. gattii CAN2 was essential for growth in ambient air similar to its reported role in C. neoformans. Both can1 and can2 mutants retained full pathogenic potential in vitro and in vivo. These results provide insight into C. gattii adaptation for arboreal growth and production of infectious propagules by β-CA independent mechanism(s).
Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha
2014-01-01
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoformans. High CO2 conditions induced robust development of monokaryotic hyphae and spores in C. gattii. Conversely, high CO2 completely repressed hyphae development in sexual mating. Both CAN1 and CAN2 were dispensable for CO2 induced morphogenetic transitions. However, C. gattii CAN2 was essential for growth in ambient air similar to its reported role in C. neoformans. Both can1 and can2 mutants retained full pathogenic potential in vitro and in vivo. These results provide insight into C. gattii adaptation for arboreal growth and production of infectious propagules by β-CA independent mechanism(s). PMID:25478697
Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William; Retheesh, S T
2013-04-01
To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.
Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William
2013-01-01
Objective To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. Methods The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Results Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Conclusions Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites. PMID:23620853
The lncRNA RZE1 Controls Cryptococcal Morphological Transition
Yang, Ence; Wang, Linqi; Cai, James J.; Lin, Xiaorong
2015-01-01
In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1’s function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2’s prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these “simple” eukaryotes. PMID:26588844
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Miltefosine has post-antifungal effect and induces apoptosis in Cryptococcus yeasts.
Spadari, Cristina de Castro; Vila, Taissa; Rozental, Sonia; Ishida, Kelly
2018-05-29
Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles), to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activity against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had post-antifungal effect on Cryptococcus , with a proliferation delay of up to 8.15 h after short exposure to fungicidal doses. MFS at fungicidal concentrations increased plasma membrane permeability, likely due to direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased ROS production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry in light microscopy), plasma membrane irregularities, mitochondrial swelling and a less conspicuous cell wall. Our results suggest that MFS increases plasma membrane permeability in Cryptococcus via interaction with ergosterol, and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii, and warrants further studies to establish clinical protocols for MFS use against cryptococcosis. Copyright © 2018 American Society for Microbiology.
Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard
2013-01-01
Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542
Vanhove, Mathieu; Beale, Mathew A; Rhodes, Johanna; Chanda, Duncan; Lakhi, Shabir; Kwenda, Geoffrey; Molloy, Sile; Karunaharan, Natasha; Stone, Neil; Harrison, Thomas S; Bicanic, Tihana; Fisher, Matthew C
2017-04-01
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis.
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Dong, Kailin; Wang, Xingbo; Zhong, Jialiang; Mu, Yu; Liu, Yonghong; Huang, Xueshi
2017-10-01
Twelve previously undescribed polyketide derivatives, heterocornols A-L, and seven known analogues were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge. Their structures were elucidated by a comprehensive spectroscopic data analysis and CD Cotton effects. These compounds were evaluated for cytotoxic and antibacterial activities in vitro. Among them, heterocornols A-C, F-H, methyl-(2-formyl-3-hydroxyphenyl)propanoate, agropyrenol, and vaccinol G exhibited cytotoxicities against four human cancer cell lines with IC 50 values 15-100 μM, and they also showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL. Moreover, compounds heterocornol C, heterocornol G, agropyrenol, and vaccinol G showed weak antifungal activities against Candida parapsilosis and Cryptococcus neoformans with MIC values 100 μg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Isolation of Cryptococcus gattii from Oregon soil and tree bark, 2010-2011.
DeBess, Emilio; Lockhart, Shawn R; Iqbal, Naureen; Cieslak, Paul R
2014-12-21
In Oregon, human and animal infections by C. gattii were first identified in 2004. Cryptococcus gattii is considered to be an emerging non-zoonotic infection affecting animals and humans in Oregon. We report a longitudinal environmental isolation of C. gattii after an Oregon dog was diagnosed with the disease in 2009. Cryptococcus gattii was isolated twice from the same location with a span of one year between isolation dates. Cryptococcus gattii molecular types VGIIa and VGI were isolated in 2010 from soil and tree bark near the home of a 9-month-old dog which three months previously had an infection caused by C. gattii genotype VGIIa. The environment featured heavy growth of Douglas Fir trees. In 2011, a second set of soil and tree bark samples was collected in the same area and C. gattii VGIIa was again identified from the environment, along with genotypes VGIIb and VGIIc. The use of animal surveillance data to identify environmental niches of C. gattii should be considered to expand the understanding of this emerging pathogen. Understanding the ecology and how the environment and other factors might modify the existing niches is important for assessing risk and for designing measures to protect human and animal health.
The Intracellular Life of Cryptococcus neoformans
Coelho, Carolina; Bocca, Anamelia L.; Casadevall, Arturo
2016-01-01
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells. PMID:24050625
Singh, Arpita; Rella, Antonella; Schwacke, John; Vacchi-Suzzi, Caterina; Luberto, Chiara; Del Poeta, Maurizio
2015-11-16
The sphingolipid glucosylceramide (GlcCer) and factors involved in the fungal GlcCer pathways were shown earlier to be an integral part of fungal virulence, especially in fungal replication at 37 °C, in neutral/alkaline pH and 5 % CO2 environments (e.g. alveolar spaces). Two mutants, ∆gcs 1 lacking glucosylceramide synthase 1 gene (GCS1) which catalyzes the formation of sphingolipid GlcCer from the C9-methyl ceramide and ∆smt1 lacking sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position nine of the sphingosine backbone of ceramide, of this pathway were attenuated in virulence and have a growth defect at the above-mentioned conditions. These mutants with either no or structurally modified GlcCer located on the cell-membrane have reduced membrane rigidity, which may have altered not only the physical location of membrane proteins but also their expression, as the pathogen's mode of adaptation to changing need. Importantly, pathogens are known to adapt themselves to the changing host environments by altering their patterns of gene expression. By transcriptional analysis of gene expression, we identified six genes whose expression was changed from their wild-type counterpart grown in the same conditions, i.e. they became either down regulated or up regulated in these two mutants. The microarray data was validated by real-time PCR, which confirmed their fold change in gene expression. All the six genes we identified, viz siderochrome-iron transporter (CNAG_02083), monosaccharide transporter (CNAG_05340), glucose transporter (CNAG_03772), membrane protein (CNAG_03912), membrane transport protein (CNAG_00539), and sugar transporter (CNAG_06963), are membrane-localized and have significantly altered gene expression levels. Therefore, we hypothesize that these genes function either independently or in tandem with a structurally modified cell wall/plasma membrane resulting from the modifications of the GlcCer pathway and thus possibly disrupt transmembrane signaling complex, which in turn contributes to cryptococcal osmotic, pH, ion homeostasis and its pathobiology. Six genes identified from gene expression microarrays by gene set enrichment analysis and validated by RT-PCR, are membrane located and associated with the growth defect at neutral-alkaline pH due to the absence and or presence of a structurally modified GlcCer. They may be involved in the transmembrane signaling network in Cryptococcus neoformans, and therefore the pathobiology of the fungus in these conditions.
Tavassoli, M; Ownag, A; Pourseyed, S H; Mardani, K
2008-06-01
The pathogenicity of three strains of the entomopathogenic fungus Metarhizium anisopliae on different life stages of Dermanyssus gallinae was evaluated in the laboratory. All the strains tested were virulent to D. gallinae but pathogenicity varied among the strains. Strain V245 induced a higher mortality rate using different concentrations than other two strains. The estimated median lethal concentration of different strains of M. anisopliae against D. gallinae varied depending on the exposure time of D. gallinae to M. anisopliae. It was concluded that the pathogenicity of the entomopathogenic fungus M. anisopliae on different life stages of D. gallinae was concentration and time dependent.
Lahiri Mukhopadhyay, Shayanki; Bahubali, Veenakumari H; Manjunath, Netravathi; Swaminathan, Aarthi; Maji, Sayani; Palaniappan, Marimuthu; Parthasarathy, Satishchandra; Chandrashekar, Nagarathna
2017-11-01
Cryptococcus gattii species complex has evolved as a pathogen in the last two decades causing infection among both immunocompetent and immunocompromised hosts. We aimed to analyse the clinical features of CNS infection caused by C. gattii sensu lato, molecular and antifungal susceptibility profile of this pathogen. Cases diagnosed to have CNS cryptococcosis were included in the study. Cryptococcus recovered from patient's specimen was identified by standard protocol. Species confirmation, mating type and molecular type determination were performed by PCR based methods. Antifungal susceptibility was tested in VITEK2C to amphotericin B, 5-flucytosine, fluconazole and voriconazole. Among 199 cases, 20 (10%) were due to C. gattii, comprising of 75% cryptococcal meningitis and 25% cryptococcoma cases. Young adult males were commonly affected. Headache and vomiting were prominent symptoms and 50% were immunocompromised. Among the isolates, 75%, 20% and 5% were C. tetragattii, C. gattii sensu stricto and C. bacillisporus respectively and all had mating type α. Four (20%) isolates of C. tetragattii and the only isolate of C. bacillisporus were resistant to fluconazole. The most common species isolated from south India is C. tetragattii. The study contributes to the epidemiology of C. gattii and reiterates the need for genotyping and antifungal susceptibility testing. © 2017 Blackwell Verlag GmbH.
An in vivo transcriptome for entomopathogenic fungus Metarhizium robertsii ARSEF 2575
USDA-ARS?s Scientific Manuscript database
Molecular mechanisms underlying the pathogenic process of the insect pathogen Metarhizium robertsii ARSEF 2575 in its host are only partially understood. To probe the transcriptional responses of the fungus during the interaction with insects, we have developed a method to specifically recover patho...
Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee
2008-01-01
Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type α and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible α-α unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for α-α unions is evidence that α-α unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules. PMID:18552280
Kidd, Sarah E.; Chow, Yat; Mak, Sunny; Bach, Paxton J.; Chen, Huiming; Hingston, Adrian O.; Kronstad, James W.; Bartlett, Karen H.
2007-01-01
Cryptococcus gattii has recently emerged as a primary pathogen of humans and wild and domesticated animals in British Columbia, particularly on Vancouver Island. C. gattii infections are typically infections of the pulmonary and/or the central nervous system, and the incidence of infection in British Columbia is currently the highest reported globally. Prior to this emergence, the environmental distribution of and the extent of colonization by C. gattii in British Columbia were unknown. We characterized the environmental sources and potential determinants of colonization in British Columbia. C. gattii was isolated from tree surfaces, soil, air, freshwater, and seawater, and no seasonal prevalence was observed. The C. gattii concentrations in air samples were significantly higher during the warm, dry summer months, although potentially infectious propagules (<3.3 μm in diameter) were present throughout the year. Positive samples were obtained from many different areas of British Columbia, and some locations were colonization “hot spots.” C. gattii was generally isolated from acidic soil, and geographic differences in soil pH may influence the extent of colonization. C. gattii soil colonization also was associated with low moisture and low organic carbon contents. Most of the C. gattii isolates recovered belonged to the VGIIa genetic subtype; however, sympatric colonization by the VGIIb strain was observed at most locations. At one sampling site, VGIIa, VGIIb, VGI, and the Cryptococcus neoformans serotype AD hybrid all were coisolated. Our findings indicate extensive colonization by C. gattii within British Columbia and highlight an expansion of the ecological niche of this pathogen. PMID:17194837
Lee, Soo Chan; Phadke, Sujal; Sun, Sheng; Heitman, Joseph
2012-11-01
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.
Albuquerque, Priscila C; Rodrigues, Marcio L
2012-03-01
Recent data demonstrates that cryptococcosis caused by Cryptococcus neoformans or Cryptococcus gattii kills approximately 600,000 people per year in the world. In Brazil, cryptococcosis has recently been identified as the most fatal mycosis in AIDS patients. In this study, we aimed to map research into C. neoformans and C. gattii in the world, with a focus on the Brazilian contribution to this area. The parameters used for this analysis were based on publication records, including number of articles published, citation indices, journal impact factor and distribution of authorship in the last two decades. Our global analysis of publications demonstrated that, in the last 20 years, the USA was the country that produced the highest number of scientific articles in the Cryptococcus field, while Brazil occupied the third position. Brazilian productivity, however, showed a steady tendency to increase, in contrast to the USA and other countries. The average impact factor of journals at which articles authored by Brazilians were published was 2.58, which represented approximately half the value found for papers of American authorship. Studies authored by Brazilian scientists showed relatively low averages of citations per article, in comparison to papers published by researchers from the USA, France, Australia, The Netherlands and Germany, among others. This study demonstrates that the contribution of Brazilian scientists to the Cryptococcus field is continually growing, although papers produced in Brazil apparently have poor repercussion in comparison to those generated in developed countries.
USDA-ARS?s Scientific Manuscript database
Trunk pathogens are fungi that infect grapevine wood through pruning wounds and destroy fruiting positions, thereby impacting grape production. Neofusicoccum parvum (causal fungus of Botryosphaeria dieback) and Eutypa lata (causal fungus of Eutypa dieback) cause chronic infections (cankers) of the t...
Diseases of pines caused by the pitch canker fungus
L. David Dwinell; Stephen W. Fraedrich; D. Adams
2001-01-01
Fusarium subglutinans f. sp. pini, the pitch canker fungus, causes a number of serious diseases of Pinus species. The pathogen infects a variety of vegetative and reproductive pine structures at different stages of maturity and produces a diversity of symptoms. When the pathogen infects the woody vegetative...
2017-01-01
ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618
Hagen, Ferry; Lumbsch, H Thorsten; Arsic Arsenijevic, Valentina; Badali, Hamid; Bertout, Sebastien; Billmyre, R Blake; Bragulat, M Rosa; Cabañes, F Javier; Carbia, Mauricio; Chakrabarti, Arunaloke; Chaturvedi, Sudha; Chaturvedi, Vishnu; Chen, Min; Chowdhary, Anuradha; Colom, Maria-Francisca; Cornely, Oliver A; Crous, Pedro W; Cuétara, Maria S; Diaz, Mara R; Espinel-Ingroff, Ana; Fakhim, Hamed; Falk, Rama; Fang, Wenjie; Herkert, Patricia F; Ferrer Rodríguez, Consuelo; Fraser, James A; Gené, Josepa; Guarro, Josep; Idnurm, Alexander; Illnait-Zaragozi, María-Teresa; Khan, Ziauddin; Khayhan, Kantarawee; Kolecka, Anna; Kurtzman, Cletus P; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Meis, Jacques F; Nielsen, Kirsten; Nyazika, Tinashe K; Pan, Weihua; Pekmezovic, Marina; Polacheck, Itzhack; Posteraro, Brunella; de Queiroz Telles, Flavio; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sanguinetti, Maurizio; Sriburee, Pojana; Sugita, Takashi; Taj-Aldeen, Saad J; Takashima, Masako; Taylor, John W; Theelen, Bart; Tomazin, Rok; Verweij, Paul E; Wahyuningsih, Retno; Wang, Ping; Boekhout, Teun
2017-01-01
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii . In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature " C. neoformans species complex" and " C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Moraes, E M P; Prímola, N S; Hamdan, Júnia Soares
2003-06-01
A total of 64 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates var. neoformans and var. gattii, were tested for susceptibility to amphotericin B, 5-flucytosine, fluconazole and itraconazole. The tests were performed according to the recommendations of National Committee of Clinical Laboratory Standards and the method of macrodilution in liquid medium of Shadomy et al. [Manual de Microbiologia Clínica, 4th ed. Buenos Aires: Editorial Medica Panamericana, 1987: 1229-38]. For most drugs there was a significant difference between the readings taken at 24 and 48 h with both methods. When the minimum inhibitory concentrations obtained by the two techniques were compared, significant differences were observed for amphotericin B and fluconazole. Overall, differences in drug susceptibility with respect to the origin of the isolates or the variety of the fungus were not observed. As an exception, the gattii variety exhibited a high resistance rate to amphotericin B when the technique of Shadomy et al. was applied, a fact possibly related to the greater difficulty for treatment of the disease caused by this fungal variety.
Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis▿†
Chen, Ying-Lien; Brand, Alexandra; Morrison, Emma L.; Silao, Fitz Gerald S.; Bigol, Ursela G.; Malbas, Fedelino F.; Nett, Jeniel E.; Andes, David R.; Solis, Norma V.; Filler, Scott G.; Averette, Anna; Heitman, Joseph
2011-01-01
Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections. PMID:21531874
The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.
Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien
2017-06-01
The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Nyazika, Tinashe K; Hagen, Ferry; Meis, Jacques F; Robertson, Valerie J
2016-06-01
HIV-associated cryptococcal meningitis is commonly caused by Cryptococcus neoformans, whilst infections with Cryptococcus gattii sensu lato are historically rare. Despite available studies, little is known about the occurrence of C. gattii sensu lato infections among HIV-infected individuals in Zimbabwe. In a prospective cohort, we investigated the prevalence of C. gattii sensu lato meningitis among HIV-infected patients (n = 74) in Harare, Zimbabwe. Of the 66/74 isolates confirmed by molecular characterization, 16.7% (11/66) were found to be C. gattii sensu lato and 83.3% (55/66) C. neoformans sensu stricto. From one patient two phenotypically different C. gattii sensu lato colonies were cultured. The majority (n = 9/12; 75%) of the C. gattii sensu lato isolates were Cryptococcus tetragattii (AFLP7/VGIV), which has been an infrequently reported pathogen. In-hospital mortality associated with C. gattii sensu lato was 36.4%. Our data suggests that C. tetragattii (AFLP7/VGIV) is a more common cause of disease than C. gattii sensu stricto (genotype AFLP4/VGI) among patients with HIV-associated cryptococcal meningitis in Harare, Zimbabwe and possibly underreported in sub-Saharan Africa. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Characterization of molecular identity and pathogenicity of the rice blast fungus benefits the deployment of effective blast resistance (R) genes. In order to identify blast resistance genes in rice producing areas where most of the hybrid rice is grown in Hunan province, 182 M. oryzae strains were ...
The origin of Ceratocystis fagacearum, the oak wilt fungus
Jennifer Juzwik; Thomas C. Harrington; William L. MacDonald; David N. Appel
2008-01-01
The oak wilt pathogen, Ceratocystis fagacearum, may be another example of a damaging, exotic species in forest ecosystems in the United States. Though C. fagacearum has received much research attention, the origin of the fungus is unknown. The pathogen may have been endemic at a low incidence until increased disturbances, changes...
Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.
McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R
2014-07-10
Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.
Costa, A L; Valenti, A; Costa, G; Calogero, F
1976-01-01
The authors have analyzed the 5 Fluoro Cytosine (5FC) activity on strains of Candida albicans and Criptococcus neoformans, both in vitro and in vivo. In vitro the minimal inhibitory concentration (MIC) was determined; in vivo tests of pathogenicity on rabbit and mouse have been executed. The various findings obtained have shown a strong activity of the 5FC on strains of Candida and Criptococcus.
The capsule of the fungal pathogen Cryptococcus neoformans
Zaragoza, Oscar; Rodrigues, Marcio L.; De Jesus, Magdia; Frases, Susana; Dadachova, Ekaterina; Casadevall, Arturo
2009-01-01
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades, and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MP). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual Mw might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in Cryptococcus neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis, and particularly, its role as a virulence factor. PMID:19426855
USDA-ARS?s Scientific Manuscript database
Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...
Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong
2016-01-01
ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501
Chaves, Edilânia Gomes Araújo; Weber, Simone Schneider; Báo, Sonia Nair; Pereira, Luiz Augusto; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida
2015-02-27
Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.
Cryptococcosis Serotypes Impact Outcome and Provide Evidence of Cryptococcus neoformans Speciation.
Desnos-Ollivier, Marie; Patel, Sweta; Raoux-Barbot, Dorothée; Heitman, Joseph; Dromer, Françoise
2015-06-09
Cryptococcus neoformans is a human opportunistic fungal pathogen causing severe disseminated meningoencephalitis, mostly in patients with cellular immune defects. This species is divided into three serotypes: A, D, and the AD hybrid. Our objectives were to compare population structures of serotype A and D clinical isolates and to assess whether infections with AD hybrids differ from infections with the other serotypes. For this purpose, we analyzed 483 isolates and the corresponding clinical data from 234 patients enrolled during the CryptoA/D study or the nationwide survey on cryptococcosis in France. Isolates were characterized in terms of ploidy, serotype, mating type, and genotype, utilizing flow cytometry, serotype- and mating type-specific PCR amplifications, and multilocus sequence typing (MLST) methods. Our results suggest that C. neoformans serotypes A and D have different routes of multiplication (primarily clonal expansion versus recombination events for serotype A and serotype D, respectively) and important genomic differences. Cryptococcosis includes a high proportion of proven or probable infections (21.5%) due to a mixture of genotypes, serotypes, and/or ploidies. Multivariate analysis showed that parameters independently associated with failure to achieve cerebrospinal fluid (CSF) sterilization by week 2 were a high serum antigen titer, the lack of flucytosine during induction therapy, and the occurrence of mixed infection, while infections caused by AD hybrids were more likely to be associated with CSF sterilization. Our study provides additional evidence for the possible speciation of C. neoformans var. neoformans and grubii and highlights the importance of careful characterization of causative isolates. Cryptococcus neoformans is an environmental fungus causing severe disease, estimated to be responsible for 600,000 deaths per year worldwide. This species is divided into serotypes A and D and an AD hybrid, and these could be considered two different species and an interspecies hybrid. The objectives of our study were to compare population structures of serotype A and serotype D and to assess whether infections with AD hybrids differ from infections with serotype A or D isolates in terms of clinical presentation and outcome. For this purpose, we used clinical data and strains from patients diagnosed with cryptococcosis in France. Our results suggest that, according to the serotype, isolates have different routes of multiplication and high genomic differences, confirming the possible speciation of serotypes A and D. Furthermore, we observed a better prognosis for infections caused by AD hybrid than those caused by serotype A or D, at least for those diagnosed in France. Copyright © 2015 Desnos-Ollivier et al.
Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.
Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A
2016-10-01
Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C
2016-09-01
The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.
Effects of Some Pesticides on the Growth of ARF18 and Its Pathogenicity to Heterodera glycines
Kim, D. G.; Riggs, R. D.
1998-01-01
The effects of 22 pesticides on the mycelial growth and pathogenicity of the biocontrol fungus ARFI8 to Heterodera glycines were tested in vitro. The chemicals were added to agar at 10, 100, and 1,000 ppm a.i.; a block of agar containing the fungus was added to each test concentration; and fungal growth was measured. Subsequently, a block of the fungus on the pesticide-containing agar was used to determine the ability of the fungus to parasitize eggs of H. glycines. Aldicarb, bentazone, and chlorothalonil had little or no effect on fungal growth, whereas benomyl and thiophanate methyl completely inhibited growth of the fungus at 10 ppm. The relative insensitivity of ARF18 to certain pesticides would permit selected use of those pesticides with ARF18 in an integrated control program if the effects on the fungus in the field are similar to results from petri dish studies. PMID:19274211
Torii, Masato; Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-Ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro
2014-06-01
In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven.
Dumesic, Phillip A.; Rosenblad, Magnus A.; Samuelsson, Tore; Nguyen, Tiffany; Moresco, James J.; Yates, John R.; Madhani, Hiten D.
2015-01-01
Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features—SRP RNA helix 8 and Srp54—in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development. PMID:26275773
Peeling the onion: the outer layers of Cryptococcus neoformans.
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.
The first reported case of canine subcutaneous Cryptococcus flavescens infection.
Kano, Rui; Ishida, Rinei; Nakane, Shinsuke; Sekiguchi, Maiko; Hasegawa, Atsuhiko; Kamata, Hiroshi
2012-03-01
This report describes the first documented case of subcutaneous infection due to Cryptococcus flavescens in a dog. The chief symptoms of the patient dog were abscessed lesions on the dorsal muzzle, right eyelid, and lower jaw. Biopsy specimens from the lesions on the dorsal muzzle and lower jaw showed pyogranulomatous inflammation with numerous yeast cells. The patient dog was diagnosed with a subcutaneous fungal infection and orally received 5 mg/kg itraconazole once a day for 2 months, the abscesses disappeared. After 1 month at the end of treatment, the skin lesions did not redevelop. Isolates from the biopsy specimens were identified as C. flavescens by molecular analysis as well as morphologic and biochemical examination, indicating that C. flavescens is a potential canine pathogen.
Peeling the onion: the outer layers of Cryptococcus neoformans
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health. PMID:29742198
Nnadi, N E; Enweani, I B; Cogliati, M; Ayanbimpe, G M; Okolo, M O; Kim, E; Sabitu, M Z; Criseo, G; Romeo, O; Scordino, F
2016-12-01
Cryptococcus neoformans and Cryptococcus gattii are encapsulated yeasts able to cause fatal neurological infections in both human and other mammals. Cryptococcosis is the most common fungal infection of the central nervous system and has a huge burden in sub-Saharan Africa and South East Asia. Bird excreta are considered an environmental reservoir for C. neoformans in urban areas, therefore a study aimed at isolating and characterizing this yeast is important in disease management. In this study, one hundred samples of pigeon droppings were collected in Jos, Plateau State, Nigeria. C. neoformans was isolated from three samples and initially identified using standard phenotypic and biochemical tests. Molecular analysis revealed that all three isolates belonged to C. neoformans genotype VNII, mating type α and were assigned to the sequence type ST43 by multilocus sequence typing analysis. This study reports, for the first time, the molecular characterization of C. neoformans in Nigeria, where little is still known about the environmental distribution of the genotypes, serotypes and mating types of this important human pathogen. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lumbsch, H. Thorsten; Bertout, Sebastien; Cabañes, F. Javier; Carbia, Mauricio; Chen, Min; Cuétara, Maria S.; Espinel-Ingroff, Ana; Falk, Rama; Ferrer Rodríguez, Consuelo; Fraser, James A.; Khan, Ziauddin; Kurtzman, Cletus P.; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Nielsen, Kirsten; Pan, Weihua; Pekmezovic, Marina; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sriburee, Pojana; Sugita, Takashi; Takashima, Masako; Taylor, John W.; Theelen, Bart; Tomazin, Rok; Verweij, Paul E.; Wahyuningsih, Retno
2017-01-01
ABSTRACT Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature “C. neoformans species complex” and “C. gattii species complex.” Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances. PMID:28875175
USDA-ARS?s Scientific Manuscript database
Many yeast pathogens of humans have become resistant to currently available drugs. Certain types of compounds can increase efficacy of antimycotic drugs through a process termed chemosensitization. Chemosensitizing efficacy was determined in Candida albicans, C. krusei, C. tropicalis and Cryptococcu...
Favalessa, Olivia Cometti; de Paula, Daphine Ariadne Jesus; Dutra, Valeria; Nakazato, Luciano; Tadano, Tomoko; Lazera, Marcia dos Santos; Wanke, Bodo; Trilles, Luciana; Walderez Szeszs, Maria; Silva, Dayane; Hahn, Rosane Christine
2014-08-13
Cryptococcosis is a systemic fungal infection that affects humans and animals, mainly due to Cryptococcus neoformans and Cryptococcus gattii. Following the epidemic of acquired immunodeficiency syndrome (AIDS), fungal infections by C. neoformans have become more common among immunocompromised patients. Cryptococcus gattii has primarily been isolated as a primary pathogen in healthy hosts and occurs endemically in northern and northeastern Brazil. We to perform genotypic characterization and determine the in vitro susceptibility profile to antifungal drugs of the Cryptococcus species complex isolated from HIV-positive and HIV-negative patients attended at university hospitals in Cuiabá, MT, in the Midwestern region of Brazil. Micromorphological features, chemotyping with canavanine-glycine-bromothymol blue (CGB) agar and genotyping by URA5-RFLP were used to identify the species. The antifungal drugs tested were amphotericin B, fluconazole, flucytosine, itraconazole and voriconazole. Minimum inhibitory concentrations (MICs) were determined according to the CLSI methodology M27-A3. Analysis of samples yelded C. neoformans AFLP1/VNI (17/27, 63.0%) and C. gattii AFLP6/VGII (10/27, 37.0%). The MICs ranges for the antifungal drugs were: amphotericin B (0.5-1 mg/L), fluconazole (1-16 mg/L), flucytosine (1-16 mg/L), itraconazole (0.25-0.12 mg/L) and voriconazole (0.06-0.5 mg/L). Isolates of C. neoformans AFLP1/VNI were predominant in patients with HIV/AIDS, and C. gattii VGII in HIV-negative patients. The genotypes identified were susceptible to the antifungal drugs tested. It is worth emphasizing that AFLP6/VGII is a predominant genotype affecting HIV-negative individuals in Cuiabá. These findings serve as a guide concerning the molecular epidemiology of C. neoformans and C. gattii in the State of Mato Grosso.
A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure
Reuwsaat, Julia Catarina Vieira; Motta, Heryk; Garcia, Ane Wichine Acosta; Vasconcelos, Carolina Bettker; Marques, Bárbara Machado; Oliveira, Natália Kronbauer; Rodrigues, Jéssica; Ferrareze, Patrícia Aline Gröhns; Frases, Susana; Barcellos, Vanessa Abreu; Squizani, Eamim Daidrê; Horta, Jorge André; Schrank, Augusto; Staats, Charley Christian; Vainstein, Marilene Henning
2018-01-01
ABSTRACT The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivo. IMPORTANCE Cryptococcus gattii has the ability to escape from the host’s immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall. PMID:29897877
Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.
2010-01-01
Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328
White-Nose Syndrome Fungus in a 1918 Bat Specimen from France.
Campana, Michael G; Kurata, Naoko P; Foster, Jeffrey T; Helgen, Lauren E; Reeder, DeeAnn M; Fleischer, Robert C; Helgen, Kristofer M
2017-09-01
White-nose syndrome, first diagnosed in North America in 2006, causes mass deaths among bats in North America. We found the causative fungus, Pseudogymnoascus destructans, in a 1918 sample collected in Europe, where bats have now adapted to the fungus. These results are consistent with a Eurasian origin of the pathogen.
Gould, J; Northcote, D H
1986-01-01
The adsorption of radioactive mucilage by pathogenic fungi was shown to be dependent upon time, the composition of mucilage, the type of fungal surface (conidia, hyphae, hyphal apices), fungal species, pH and bivalent cations. All fungal adhesins were inactivated by either proteinase or polysaccharase treatments. Adsorption was not inhibited by the numberous mono-, di- and oligo-saccharides that were tested individually, but it was inhibited absolutely by several polysaccharides. This suggested that adsorption of mucilage by pathogens involved conformational and ionic interactions between plant and fungal polymers but not fungal lectins bound to sugar residues of mucilage. Several fractionation schemes showed that pathogens bound only the most acidic of the variety of polymers that comprise mucilage. There was not any absolute distinction between ability to bind radioactive mucilage and type of pathogen or non-pathogen. However, there were notable differences in characteristics of adsorption between two types of pathogen. Differences were revealed by comparison of the adsorption capacities of conidia and germinant conidia and chromatography of radioactive mucilage on germinant conidia. An ectotrophic root-infecting fungus (a highly specialized pathogen) bound a greater proportion of mucilage than did a vascular-wilt fungus (of catholic host and tissue range) with more than one class of site for adsorption. In contrast with the vascular-wilt fungus, sites for adsorption on the specialized pathogen were present solely on surfaces formed by germination. PMID:3954742
Escobar, Luis E; Lira-Noriega, Andrés; Medina-Vogel, Gonzalo; Townsend Peterson, A
2014-11-01
Emerging infectious diseases can present serious threats to wildlife, even to the point of causing extinction. Whitenose fungus (Pseudogymnoascus destructans) is causing an epizootic in bats that is expanding rapidly, both geographically and taxonomically. Little is known of the ecology and distributional potential of this intercontinental pathogen. We address this gap via ecological niche models that characterise coarse resolution niche differences between fungus populations on different continents, identifying areas potentially vulnerable to infection in South America. Here we explore a novel approach to identifying areas of potential distribution across novel geographic regions that avoids perilious extrapolation into novel environments. European and North American fungus populations show differential use of environmental space, but rather than niche differentiation, we find that changes are best attributed to climatic differences between the two continents. Suitable areas for spread of the pathogen were identified across southern South America; however caution should be taken to avoid underestimating the potential for spread of this pathogen in South America.
FLUORESCENT-SERIOLOGICAL INVESTIGATIONS OF A PATHOGENIC FUNGUS (SPOROTRICHUM SCHENCKII),
coloration of numerous other species of fungus no cross reactions with Sporotrichum schenkii were found. The use of this fluorescent coloring method for the diagnosis of Sporotrichosis is suggested. (Author)
Abramyan, John; Stajich, Jason E
2012-01-01
Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.
USDA-ARS?s Scientific Manuscript database
Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...
Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro
2014-01-01
In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven. PMID:25071395
Elleuche, Skander; Pöggeler, Stefanie
2009-01-01
Carbon dioxide (CO(2)) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO(3) (-)) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into alpha-, beta-, gamma-, delta- and zeta-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of beta-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding beta-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Deltacas1, Deltacas2, and Deltacas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Deltacas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Deltacas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO(2) levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions.
Sexual reproduction and the evolution of microbial pathogens.
Heitman, Joseph
2006-09-05
Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.
Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi
de Paula e Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Gullo, Fernanda Patrícia; Sangalli-Leite, Fernanda; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Rossi, Suélen Andrea; Benaducci, Tatiane; Wolf, Vanessa Gonçalves; Regasini, Luis Octávio; Petrônio, Maicon Segalla; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José Soares
2014-01-01
This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14) compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI) documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action. PMID:25505923
Coelho, Carolina; Sturny-Leclère, Aude; Fraser, James A.; Nielsen, Kirsten
2018-01-01
The pathogenic fungus Cryptococcus neoformans exhibits morphological changes in cell size during lung infection, producing both typical size 5 to 7 μm cells and large titan cells (> 10 μm and up to 100 μm). We found and optimized in vitro conditions that produce titan cells in order to identify the ancestry of titan cells, the environmental determinants, and the key gene regulators of titan cell formation. Titan cells generated in vitro harbor the main characteristics of titan cells produced in vivo including their large cell size (>10 μm), polyploidy with a single nucleus, large vacuole, dense capsule, and thick cell wall. Here we show titan cells derived from the enlargement of progenitor cells in the population independent of yeast growth rate. Change in the incubation medium, hypoxia, nutrient starvation and low pH were the main factors that trigger titan cell formation, while quorum sensing factors like the initial inoculum concentration, pantothenic acid, and the quorum sensing peptide Qsp1p also impacted titan cell formation. Inhibition of ergosterol, protein and nucleic acid biosynthesis altered titan cell formation, as did serum, phospholipids and anti-capsular antibodies in our settings. We explored genetic factors important for titan cell formation using three approaches. Using H99-derivative strains with natural genetic differences, we showed that titan cell formation was dependent on LMP1 and SGF29 genes. By screening a gene deletion collection, we also confirmed that GPR4/5-RIM101, and CAC1 genes were required to generate titan cells and that the PKR1, TSP2, USV101 genes negatively regulated titan cell formation. Furthermore, analysis of spontaneous Pkr1 loss-of-function clinical isolates confirmed the important role of the Pkr1 protein as a negative regulator of titan cell formation. Through development of a standardized and robust in vitro assay, our results provide new insights into titan cell biogenesis with the identification of multiple important factors/pathways. PMID:29775480
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.
Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo
2017-11-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture
Camacho, Emma; Chrissian, Christine; Cordero, Radames J. B.; Liporagi-Lopes, Livia; Stark, Ruth E.; Casadevall, Arturo
2017-01-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies. PMID:29043954
Ebadollahi, Asgar; Davari, Mahdi; Razmjou, Jabrael; Naseri, Bahram
2017-06-01
In the present study, the toxicity of essential oils of Mentha piperata L. and Mentha pulegium L. and pathogenicity of Lecanicillium muscarium (Zare & Gams) were studied in the melon aphid, Aphis gossypii Glover. Analyses of the essential oils by GC-MS indicated limonene (27.28%), menthol (24.71%), menthone (14.01%), and carvol (8.46%) in the M. piperata essential oil and pulegone (73.44%), piperitenone (5.49%), decane (4.99%), and limonene (3.07%) in the essential oil of M. pulegium as the main components. Both essential oils and the pathogenic fungus had useful toxicity against A. gossypii. Probit analysis indicated LC50 values (lethal concentrations to kill 50% of population; 95% confidence limits in parentheses) of M. piperata and M. pulegium essential oils as 15.25 (12.25-19.56) and 23.13 (19.27-28.42) µl/liter air, respectively. Susceptibility to the pathogenic fungus increased with exposure time. Aphid mortality also increased when the essential oils were combined with L. muscarium, although the phenomena was additive rather than synergistic. Mycelial growth inhibition of L. muscarium exposed to the essential oils was also very low. Based on our results, M. piperata and M. pulegium essential oils and the pathogenic fungus L. muscarium have some potential for management of A. gossypii. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii
Chen, Ying-Lien; Lehman, Virginia N.; Lewit, Yonathan; Averette, Anna F.; Heitman, Joseph
2013-01-01
The pathogenic yeast Cryptococcus gattii, which is causing an outbreak in the Pacific Northwest region of North America, causes life-threatening pulmonary infections and meningoencephalitis in healthy individuals, unlike Cryptococcus neoformans, which commonly infects immunocompromised patients. In addition to a greater predilection for C. gattii to infect healthy hosts, the C. gattii genome sequence project revealed extensive chromosomal rearrangements compared with C. neoformans, showing genomic differences between the two Cryptococcus species. We investigated the roles of C. gattii calcineurin in three molecular types: VGIIa (R265), VGIIb (R272), and VGI (WM276). We found that calcineurin exhibits a differential requirement for growth on solid medium at 37°, as calcineurin mutants generated from R265 were more thermotolerant than mutants from R272 and WM276. We demonstrated that tolerance to calcineurin inhibitors (FK506, CsA) at 37° is linked with the VGIIa molecular type. The calcineurin mutants from the R272 background showed the most extensive growth and morphological defects (multivesicle and larger ring-like cells), as well as increased fluconazole susceptibility. Our cellular architecture examination showed that C. gattii and C. neoformans calcineurin mutants exhibit plasma membrane disruptions. Calcineurin in the C. gattii VGII molecular type plays a greater role in controlling cation homeostasis compared with that in C. gattii VGI and C. neoformans H99. Importantly, we demonstrate that C. gattii calcineurin is essential for virulence in a murine inhalation model, supporting C. gattii calcineurin as an attractive antifungal drug target. PMID:23450261
Nielsen, Kirsten; De Obaldia, Anna L; Heitman, Joseph
2007-06-01
The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe.
Nielsen, Kirsten; De Obaldia, Anna L.; Heitman, Joseph
2007-01-01
The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe. PMID:17449657
Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.
1997-01-01
The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.
Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.
König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian
2013-05-27
Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Lin; Yang, Jinkui; Niu, Qiuhong; Zhao, Xuna; Ye, Fengping; Liang, Lianming; Zhang, Ke-Qin
2008-04-01
The fungus Clonostachys rosea (syn. Gliocladium roseum) is a potential biocontrol agent. It can suppress the sporulation of the plant pathogenic fungus Botrytis cinerea and kill pathogenic nematodes, but the process of nematode pathogenesis is poorly understood. To help understand the underlying mechanism, we constructed recombinant strains containing a plasmid with both the enhanced green fluorescent protein gene egfp and the hygromycin resistance gene hph. Expression of the green fluorescent protein (GFP) was monitored using fluorescence microscopy. Our observations reveal that the pathogenesis started from the adherence of conidia to nematode cuticle for germination, followed by the penetration of germ tubes into the nematode body and subsequent death and degradation of the nematodes. These are the first findings on the infection process of the fungal pathogen marked with GFP, and the developed method can become an important tool for studying the molecular mechanisms of nematode infection by C. rosea.
Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species.
Chitty, Jessica L; Butler, Mark S; Suboh, Azzah; Edwards, David J; Cooper, Matthew A; Fraser, James A; Robertson, Avril A B
2018-02-01
Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. Copyright © 2018 Chitty et al.
Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species
Chitty, Jessica L.; Butler, Mark S.; Suboh, Azzah; Edwards, David J.; Cooper, Matthew A.; Fraser, James A.
2017-01-01
ABSTRACT Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. PMID:29158283
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less
Raj, Shriya; Nazemidashtarjandi, Saeed; Kim, Jihyun; Joffe, Luna; Zhang, Xiaoxue; Singh, Ashutosh; Mor, Visesato; Desmarini, Desmarini; Djordjevic, Julianne; Raleigh, Daniel P; Rodrigues, Marcio L; London, Erwin; Del Poeta, Maurizio; Farnoud, Amir M
2017-11-01
Fungal glucosylceramide (GlcCer) is a plasma membrane sphingolipid in which the sphingosine backbone is unsaturated in carbon position 8 (C8) and methylated in carbon position 9 (C9). Studies in the fungal pathogen, Cryptococcus neoformans, have shown that loss of GlcCer synthase activity results in complete loss of virulence in the mouse model. However, whether the loss of virulence is due to the lack of the enzyme or to the loss of the sphingolipid is not known. In this study, we used genetic engineering to alter the chemical structure of fungal GlcCer and studied its effect on fungal growth and pathogenicity. Here we show that unsaturation in C8 and methylation in C9 is required for virulence in the mouse model without affecting fungal growth in vitro or common virulence factors. However, changes in GlcCer structure led to a dramatic susceptibility to membrane stressors resulting in increased cell membrane permeability and rendering the fungal mutant unable to grow within host macrophages. Biophysical studies using synthetic vesicles containing GlcCer revealed that the saturated and unmethylated sphingolipid formed vesicles with higher lipid order that were more likely to phase separate into ordered domains. Taken together, these studies show for the first time that a specific structure of GlcCer is a major regulator of membrane permeability required for fungal pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.
[Simultaneous meningitis caused by Candida and tuberculosis as manifestation of AIDS].
Arias Gómez, M; Requena Caballero, I; Lema Devesa, C; Suárez Dono, J; Llovo Martínez, J; Martino, V
2001-09-01
Opportunistic germs meningoencephalitis plays an important role within neurologic pathology in aids. Treponema pallidum and Mycobacterium tuberculosis among bacteries, Cryptococcus neoformans in fungus group, Toxoplasma gondii in protozoos group and Papovavirus JC in virus one are the most frequently implicated germs. Sometimes infections are mixed. We present a simultaneous meningitis case produced by Candida albicans and Mycobacterium tuberculosis that coursed with neutrophilic pleocytosis in CSF and normal glucose CSF levels, consisting the clinical debut of aids. Repeated CSF examinations are the diagnostic clue owing, as in our case, instauration of early treatment. Present case of simultaneous tuberculous and candidiasic meningitis is the first one described in a HIV positive patient.
Tavernier, Virginie; Cadiou, Sandrine; Pageau, Karine; Laugé, Richard; Reisdorf-Cren, Michèle; Langin, Thierry; Masclaux-Daubresse, Céline
2007-01-01
Nitrogen plays an essential role in the nutrient relationship between plants and pathogens. Some studies report that the nitrogen-mobilizing plant metabolism that occurs during abiotic and biotic stress could be a 'slash-and-burn' defence strategy. In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the Colletotrichum lindemuthianum/Phaseolus vulgaris interaction was used as a model. C. lindemuthianum is a hemibiotroph that causes anthracnose disease on P. vulgaris. Non-pathogenic mutants and the pathogenic wild-type strain were used to compare their effects on plant metabolism. The deleterious effects of infection were monitored by measuring changes in chlorophyll, protein, and amino acid concentrations. It was shown that amino acid composition changed depending on the plant-fungus interaction and that glutamine accumulated mainly in the leaves infected by the pathogenic strain. Glutamine accumulation correlated with the accumulation of cytosolic glutamine synthetase (GS1 alpha) mRNA. The most striking result was that the GS1 alpha gene was induced in all the fungus-infected leaves, independent of the strain used for inoculation, and that GS1 alpha expression paralleled the PAL3 and CHS defence gene expression. It is concluded that a role of GS1 alpha in plant defence has to be considered.
The fungus Ustilago maydis, from the aztec cuisine to the research laboratory.
Ruiz-Herrera, J; Martínez-Espinoza, A D
1998-06-01
Ustilago maydis is a plant pathogen fungus responsible for corn smut. It has a complex life cycle. In its saprophitic stage, it grows as haploid yeast cells, while in the invasive stage it grows as a mycelium formed by diploid cells. Thus, a correlation exists between genetic ploidy, pathogenicity and morphogenesis. Dimorphism can be modulated in vitro by changing environmental parameters such as pH. Studies with auxotrophic mutants have shown that polyamines play a central role in regulating dimorphism. Molecular biology approaches are being employed for the analysis of fundamental aspects of the biology of this fungus, such as mating type regulation, dimorphism or cell wall biogenesis.
Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.
2013-01-01
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes. PMID:23316438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham
2012-08-16
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11more » chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.« less
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M
2015-12-22
A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.
Classification of yeast cells from image features to evaluate pathogen conditions
NASA Astrophysics Data System (ADS)
van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.
2007-01-01
Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.
Fungal Production and Manipulation of Plant Hormones.
Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea
2018-01-01
Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Molecular Genetics of Beauveria bassiana Infection of Insects.
Ortiz-Urquiza, A; Keyhani, N O
2016-01-01
Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.
Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning
2015-04-01
Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s). © 2015 FEBS.
Bell, R G
1976-04-01
Petriellidium boydii (Allescheria boydii) dominated the mycoflora of manure samples form three beef cattle feedlots after incubation at room temperature for 4 months. The possible dangers associated with this pathogenic fungus, which causes mycotic abortion in livestock, pulmonary allescheriasis in man, and mycetomas in both man and animals, are discussed. This fungus could create a health hazard in feedlots where in situ manure decompostion is encouraged.
Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan
2013-01-01
Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949
Wang, Ping
2018-06-27
Cryptococcus neoformans and related species are encapsulated basidiomycetous fungi that cause meningoencephalitis in individuals with immune deficiency. This pathogen has a tractable genetic system; however, gene disruption via electroporation remains difficult, while biolistic transformation is often limited by lack of multiple genetic markers and the high initial cost of equipment. The approach using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has become the technology of choice for gene editing in many organisms due to its simplicity, efficiency, and versatility. The technique has been successfully demonstrated in C. neoformans and Cryptococcus deneoformans in which two DNA plasmids expressing either the Streptococcus pyogenes CAS9 gene or the guide RNA (gRNA) were employed. However, potential adverse effects due to constitutive expression and the time-consuming process of constructing vectors to express each gRNA remain as a primary barrier for wide adaptation. This report describes the delivery of preassembled CRISPR-Cas9-gRNA ribonucleoproteins (RNPs) via electroporation that is able to generate edited mutant alleles. RNP-mediated CRISPR-Cas9 was used to replace the wild-type GIB2 gene encoding a Gβ-like/RACK1 Gib2 protein with a gib2 :: NAT allele via homologous recombination in both C. neoformans and C. deneoformans In addition, a DNA plasmid (pCnCas9:U6-gRNA) that expresses both Cas9 and gRNA, allowing for convenient yet low-cost DNA-mediated gene editing, is described. pCnCas9:U6-gRNA contains an endogenous U6 promoter for gRNA expression and restriction sites for one-step insertion of a gRNA. These approaches and resources provide new opportunities to accelerate genetic studies of Cryptococcus species. IMPORTANCE For genetic studies of the Cryptococcus genus, generation of mutant strains is often hampered by a limited number of selectable genetic markers, the tedious process of vector construction, side effects, and other limitations, such as the high cost of acquiring a particle delivery system. CRISPR-Cas9 technology has been demonstrated in Cryptococcus for genome editing. However, it remains labor-intensive and time-consuming since it requires the identification of a suitable type III RNA polymerase promoter for gRNA expression. In addition, there may be potential adverse effects caused by constitutive expressions of Cas9 and gRNA. Here, I report the use of a ribonucleoprotein-mediated CRISPR-Cas9 technique for genome editing of C. neoformans and related species. Together with the custom-constructed pCnCas9:U6-gRNA vector that allows low-cost and time-saving DNA-based CRISPR-Cas9, my approach adds to the molecular toolbox for dissecting the molecular mechanism of pathogenesis in this important group of fungal pathogens. Copyright © 2018 Wang.
Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan
2009-01-01
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants. PMID:18987215
Duncan, Colleen; Stephen, Craig; Campbell, John
2006-01-01
Since 1999, Cryptococcus gattii has emerged as an important pathogen of humans and animals in southwestern British Columbia. Historically thought to be restricted to the tropics and subtropics, C. gattii has posed new diagnostic and treatment challenges to veterinary practitioners working within the recently identified endemic region. Clinical reports of canine and feline cryptococcosis caused by C. gattii diagnosed between January 1999 and December 2003 were included in this case series. The most common manifestations of disease were respiratory and central nervous system signs. Multivariate survival analysis revealed that the only significant predictor of mortality was the presence of central nervous system signs upon presentation or during therapy. Case fatality rates in both species were high. Further investigation into effective treatment regimes is warranted. PMID:17078248
Vélez, Norida; Escandón, Patricia
2017-10-01
Knowledge of the environmental distribution of C. neoformans/C. gattii is important in the epidemiology and ecology of the etiological agent, which causes cryptococcosis, a deadly disease worldwide. The aim of this report is to describe the presence of C. neoformans/C. gattii in new environmental niches in Colombia. A total of 837 environmental samples were collected from six different species of trees across four cities; molecular type was determined by PCR fingerprinting and RFLP. Molecular type VNI and VGIII were isolated from different species of trees, resulting in two novel niches for this pathogen: Tabebuia guayacan and Roystonea regia. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi
Fortwendel, Jarrod R.
2013-01-01
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence. PMID:24855584
Franco, Flávia P.; Santiago, Adelita C.; Henrique-Silva, Flávio; de Castro, Patrícia Alves; Goldman, Gustavo H.; Moura, Daniel S.; Silva-Filho, Marcio C.
2014-01-01
Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens. PMID:24608349
Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.
DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J
2018-04-01
Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.
Influenza A Virus as a Predisposing Factor for Cryptococcosis
Oliveira, Lorena V. N.; Costa, Marliete C.; Magalhães, Thaís F. F.; Bastos, Rafael W.; Santos, Patrícia C.; Carneiro, Hellem C. S.; Ribeiro, Noelly Q.; Ferreira, Gabriella F.; Ribeiro, Lucas S.; Gonçalves, Ana P. F.; Fagundes, Caio T.; Pascoal-Xavier, Marcelo A.; Djordjevic, Julianne T.; Sorrell, Tania C.; Souza, Daniele G.; Machado, Alexandre M. V.; Santos, Daniel A.
2017-01-01
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii. PMID:29018774
Randhawa, H S; Kowshik, T; Chowdhary, Anuradha; Preeti Sinha, K; Khan, Z U; Sun, Sheng; Xu, Jianping
2008-12-01
This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 species representing 12 families of trees and from soil near the base of various host trees from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 trees from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans species complex. The number of trees positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans species complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast species and the species of host trees. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host trees indicated that soil is another important ecologic niche for these two Cryptococcus species in India. Among our sampled tree species, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host tree species over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra trees by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host tree species for C. gattii and C. neoformans and indicate that decayed woods of many tree species are potentially suitable ecological niches for both pathogens.
Idnurm, Alexander; Howlett, Barbara J.
2002-01-01
A pathogenicity gene has been identified in Leptosphaeria maculans, the ascomycetous fungus that causes blackleg disease of canola (Brassica napus). This gene encodes isocitrate lyase, a component of the glyoxylate cycle, and is essential for the successful colonization of B. napus. It was identified by a reverse genetics approach whereby a plasmid conferring hygromycin resistance was inserted randomly into the L. maculans genome. Twelve of 516 transformants tested had reduced pathogenicity on cotyledons of B. juncea and B. napus, and 1 of these 12 had a deletion of the isocitrate lyase gene, as well as an insertion of the hygromycin resistance gene. This mutant was unable to grow on fatty acids, including monolaurate, and the isocitrate lyase transcript was not detected. When the wild-type gene was reintroduced into the mutant, growth on monolaurate was restored and pathogenicity was partially restored. L. maculans isocitrate lyase is produced during infection of B. napus cotyledons, while the plant homologue is not. When 2.5% glucose was added to the inoculum of the isocitrate lyase mutant, lesions of sizes similar to those caused by wild-type isolate M1 developed on B. napus cotyledons. These findings suggest that the glyoxylate pathway is essential for disease development by this plant-pathogenic fungus, as has been shown recently for a fungal and bacterial pathogen of animals and a bacterial pathogen of plants. Involvement of the glyoxylate pathway in pathogenesis in animals and plants presents potential drug targets for control of diseases. PMID:12455691
Alves, Gleica Soyan Barbosa; Freire, Ana Karla Lima; Bentes, Amaury Dos Santos; Pinheiro, José Felipe de Souza; de Souza, João Vicente Braga; Wanke, Bodo; Matsuura, Takeshi; Jackisch-Matsuura, Ani Beatriz
2016-08-01
Cryptococcus neoformans and Cryptococcus gattii are the main causative agents of cryptococcosis, a systemic fungal disease that affects internal organs and skin, and which is acquired by inhalation of spores or encapsulated yeasts. It is currently known that the C. neoformans/C. gattii species complex has a worldwide distribution, however, some molecular types seem to prevail in certain regions. Few environmental studies of Cryptococcus have been conducted in the Brazilian Amazon. This is the first ecological study of the pathogenic fungi C. neoformans/C. gattii species complex in the urban area of Manaus, Amazonas, Brazil. A total of 506 samples from pigeon droppings (n = 191), captive bird droppings (n = 60) and tree hollows (n = 255) were collected from June 2012 to January 2014 at schools and public buildings, squares, pet shops, households, the zoo and the bus station. Samples were plated on niger seed agar (NSA) medium supplemented with chloramphenicol and incubated at 25°C for 5 days. Dark-brown colonies were isolated and tested for thermotolerance at 37°C, cycloheximide resistance and growth on canavanine-glycine-bromothymol blue agar. Molecular typing was done by PCR-RFLP. Susceptibility to the antifungal drugs amphotericin B, fluconazole, itraconazole and ketoconazole was tested using Etest(®) strips. In total, 13 positive samples were obtained: one tree hollow (C. gattiiVGII), nine pigeon droppings (C. neoformansVNI) and three captive bird droppings (C. neoformansVNI). The environmental cryptococcal isolates found in this study were of the same molecular types as those responsible for infections in Manaus. © 2016 Blackwell Verlag GmbH.
Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi.
Palma-Guerrero, J; Jansson, H-B; Salinas, J; Lopez-Llorca, L V
2008-02-01
To investigate the toxic effect of chitosan on important root pathogenic and biocontrol fungi (nematophagous, entomopathogenic and mycoparasitic). We have used standard bioassays to investigate the effect of chitosan on colony growth and developed bioassays to test spore germination. The results showed that the root pathogenic and mycoparasitic fungi tested were more sensitive to chitosan than nematophagous and entomopathogenic fungi. Chitosanases (and perhaps related enzymes) are involved in the resistance to chitosan. Two fungi, one sensitive to chitosan, Fusarium oxysporum f. sp. radicis-lycopersici, and one less sensitive, Pochonia chlamydosporia, were selected for ultrastructural investigations. Transmission electron microscopy revealed differences in the ultrastructural alterations caused by chitosan in the spores of the plant pathogenic fungus and in those of the nematophagous fungus. Confocal laser microscopy showed that Rhodamine-labelled chitosan enters rapidly into conidia of both fungi, in an energy-dependent process. Nematophagous and entomopathogenic fungi are rather resistant to the toxic effect of chitosan. Resistance of nematophagous and entomopathogenic fungi to chitosan could be associated with their high extracellular chitosanolytic activity. Furthermore, ultrastructural damage is much more severe in the chitosan sensitive fungus. The results of this paper suggest that biocontrol fungi tested could be combined with chitosan for biological control of plant pathogens and pests.
Iquebal, M A; Tomar, Rukam S; Parakhia, M V; Singla, Deepak; Jaiswal, Sarika; Rathod, V M; Padhiyar, S M; Kumar, Neeraj; Rai, Anil; Kumar, Dinesh
2017-07-13
Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.
Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae
Fernandez, Jessie; Yang, Kuan Ting; Cornwell, Kathryn M.; Wright, Janet D.; Wilson, Richard A.
2013-01-01
Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens. PMID:23928947
Giraldo, Martha C.; Dagdas, Yasin F.; Gupta, Yogesh K.; Mentlak, Thomas A.; Yi, Mihwa; Martinez-Rocha, Ana Lilia; Saitoh, Hiromasa; Terauchi, Ryohei; Talbot, Nicholas J.; Valent, Barbara
2013-01-01
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion. PMID:23774898
Background / Question / Methods The fungal pathogen, Batrachochytrium dendrobatidis (BD), has been associated with amphibian population declines and even extinctions worldwide. Transmission of the fungus between amphibian hosts occurs via motile zoospores, which are produced on...
Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents
USDA-ARS?s Scientific Manuscript database
The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...
Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.
Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot; Paulitz, Timothy
2017-01-01
In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.
Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae
Bidzinski, Przemyslaw; Ballini, Elsa; Ducasse, Aurélie; Michel, Corinne; Zuluaga, Paola; Genga, Annamaria; Chiozzotto, Remo; Morel, Jean-Benoit
2016-01-01
Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection. PMID:27833621
The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea.
Giesbert, Sabine; Schürg, Timo; Scheele, Sandra; Tudzynski, Paul
2008-05-01
The role of reactive oxygen species (ROS) in interactions between phytopathogenic fungi and their hosts is well established. An oxidative burst mainly caused by superoxide formation by membrane-associated NADPH oxidases is an essential element of plant defence reactions. Apart from primary effects, ROS play a major role as a second messenger in host response. Recently, NADPH oxidase (nox)-encoding genes have been identified in filamentous fungi. Functional analyses have shown that these fungal enzymes are involved in sexual differentiation, and there is growing evidence that they also affect developmental programmes involved in fungus-plant interactions. Here we show that in the biotrophic plant pathogen Claviceps purpurea deletion of the cpnox1 gene, probably encoding an NADPH oxidase, has impact on germination of conidia and pathogenicity: Deltacpnox1 mutants can penetrate the host epidermis, but they are impaired in colonization of the plant ovarian tissue. In the few cases where macroscopic signs of infection (honeydew) appear, they are extremely delayed and fully developed sclerotia have never been observed. C. purpurea Nox1 is important for the interaction with its host, probably by directly affecting pathogenic differentiation of the fungus.
Cossel, John; Lindquist, Erik; Craig, Heather; Luthman, Kyle
2014-11-13
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines worldwide but has not been well-studied among Critically Endangered amphibian species in Bolivia. We sampled free-living marbled water frogs Telmatobius marmoratus (Anura: Leptodactylidae) from Isla del Sol, Bolivia, for Bd using skin swabs and quantitative polymerase chain reactions. We detected Bd on 44% of T. marmoratus sampled. This is the first record of Bd in amphibians from waters associated with Lake Titicaca, Bolivia. These results further confirm the presence of Bd in Bolivia and substantiate the potential threat of this pathogen to the Critically Endangered, sympatric Titicaca water frog T. culeus and other Andean amphibians.
Galidevara, Sandhya; Reineke, Annette; Koduru, Uma Devi
2016-05-01
The entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin is commercially available as a bio insecticide. The expression of three genes previously identified to have a role in pathogenicity in in vitro studies was validated in vivo in three lepidopteran insects infected with B. bassiana. Expression of all three genes was observed in all the tested insects starting from 48 or 72h to 10d post infection corroborating their role in pathogenicity. We suggest that it is essential to test the expression of putative pathogenicity genes both in vitro and in vivo to understand their role in different insect species. Copyright © 2016 Elsevier Inc. All rights reserved.
[Groups and sources of yeasts in house dust].
Glushakova, A M; Zheltikova, T M; Chernov, I Iu
2004-01-01
House dust contains bacteria, mycelial fungi, microarthropods, and yeasts. The house dust samples collected in 25 apartments in Moscow and the Moscow region were found to contain yeasts belonging to the genera Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, and Trichosporon. The most frequently encountered microorganisms were typical epiphytic yeasts, such as Cryptococcus diffluens and Rhodotorula mucilaginosa, which are capable of long-term preservation in an inactive state. The direct source of epiphytic yeasts occurring in the house dust might be the indoor plants, which were contaminated with these yeasts, albeit to a lesser degree than outdoor plants. Along with the typical epiphytic yeasts, the house dust contained the opportunistic yeast pathogens Candida catenulata, C. guillermondii, C. haemulonii, C. rugosa, and C. tropicalis, which are known as the causal agents of candidiasis. We failed to reveal any correlation between the abundance of particular yeast species in the house dust, residential characteristics, and the atopic dermatitis of the inhabitants.
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
[Preservation of high risk fungal cultures of Histoplasma and Cryptococcus].
Fernández Andreu, C Carlos Manuel; Díaz Suárez, Luis Alberto; Ilnait Zaragozi, María Teresa; Aragonés López, Carlos; Martínez Machín, Gerardo; Perurena Lancha, Mayda R
2012-01-01
culture collections are responsible for providing the microbial resources for development of biological sciences. Storage in distilled water is one of the easiest and least expensive method for long-term fungal preservation. to evaluate the usefulness of this preservation method in fungal culture of Histoplasma and Cryptococcus. the preservation condition of the highest biological risk species from Histoplasma y Cryptococcus genera, included in the fungal culture collection of "Pedro Kouri" Institute of Tropical Medicine in Havana, was evaluated in this study. One hundred and two strains stored in distilled water, 92% of which had been preserved for more than 10 years, were analyzed. the percentages of recovered strains from H. capsulatum, C. neoformans and C. gattii were 64.3%; 79.1% and 100% respectively. This method of preservation proved to be satisfactory for fungal culture in labs with limited financial resources. A web-based database with interesting information about the collection was made. The importance of strict compliance with the biosafety measures in these collections, particularly with high risk pathogens. preservation of fungal cultures in distilled water is a very useful method for laboratories with limited resources. Culture collections should be assumed as an essential activity in order to solve increasing challenges in the development of biomedical sciences.
Velázquez, Encarna; del Villar, María; Grondona, Isabel; Monte, Enrique; González-Villa, Tomás
2006-09-01
Cryptococcus adeliensis was initially described as a psycrophilic species containing a single strain CBS 8351(T) isolated from decayed algae in Terre Adelie (Antartida). Later, a second strain of this species was isolated from an immunosuppressed patient affected by leukaemia in Germany and recently several strains from this species have been found in human patients and pigeon droppings of the same country. In this study, we isolated from sheep droppings in Spain a xylanolytic strain named LEVX01 that was phenotypically related to the strain CBS 8351(T) and showed a 100% similarity in the D1/D2 domain and 5.8S-ITS region sequences with respect to the remaining described strains of C. adeliensis. These findings suggest that this species has a wide geographical distribution and that the animal faeces are a common habitat for C. adeliensis. The chemotaxonomic analyses showed the absence of detectable amounts of xylose in the cell walls of the strains LEVX01 and CBS8351(T) in contrast to other Cryptococcus species. Interestingly, the ultrastructural study showed the presence of fimbriae in these two strains that could be involved in the attachment to the host cells and, as occurs in Candida albicans, they could also be a pathogenicity factor for the man.
Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.
El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A
2014-12-01
In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Gerik, Kimberly J; Bhimireddy, Sujit R; Ryerse, Jan S; Specht, Charles A; Lodge, Jennifer K
2008-10-01
Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a "top-down" approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Delta strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism.
Gerik, Kimberly J.; Bhimireddy, Sujit R.; Ryerse, Jan S.; Specht, Charles A.; Lodge, Jennifer K.
2008-01-01
Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a “top-down” approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Δ strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism. PMID:18689526
Efficient Transmission of an Introduced Pathogen Via an Ancient Insect-Fungus Association
NASA Astrophysics Data System (ADS)
Battisti, A.; Roques, A.; Colombari, F.; Frigimelica, G.; Guido, M.
In Cupressus sempervirens the association between seed insects and tree pathogens has resulted in optimal exploitation of the cones. A fungus-infected cone can be inhabited by the nymphs of a true seed bug (Orsillus maculatus), the adults of which may carry a heavy spore load at emergence. Cones are infected when eggs are laid within the cone, most frequently via the emergence holes of a seed wasp (Megastigmus wachtli). This symbiotic association evolved with the nonaggressive fungus Pestalotiopsis funerea within the natural range of the cypress. When the aggressive cypress canker disease (Seiridium cardinale) was introduced into Europe, it was transmitted by O. maculatus to cones usually colonized by Pestalotiopsis funerea, with disastrous consequences for the regeneration and survival of C. sempervirens in the entire Mediterranean area.
In vitro pathogenicity assay for the ergot fungus Claviceps purpurea.
Scheffer, Jan; Tudzynski, Paul
2006-04-01
The pathogenic development of the biotrophic ergot fungus Claviceps purpurea is strictly limited to the ovary of grasses. Early colonization stages occur within a defined spatio-temporal course of events, including the directed growth to the vascular tissue for nutrient supply. To characterize mutant strains with putative defects in pathogenicity, the close observation of the infection pathway is therefore indispensable. Here, we describe the establishment of a new pathogenicity assay, based on the in vitro cultivation of isolated rye ovaries. The pathogenic development of a wild-type strain of C. purpurea was compared with the infection of mature rye flowers on whole plants. Up to the sixth day post inoculation, the route of infection within the isolated ovaries was maintained and temporally equal to that seen in mature flowers. Therefore, the in vitro pathogenicity assay is an effective alternative to the whole-plant infection tests, and suitable for detailed infection studies and screening high numbers of mutants for defects in early pathogenesis.
Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela
2013-01-01
An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.
Vödisch, Martin; Albrecht, Daniela; Lessing, Franziska; Schmidt, André D; Winkler, Robert; Guthke, Reinhard; Brakhage, Axel A; Kniemeyer, Olaf
2009-03-01
The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. We established a 2-D reference map for A. fumigatus. Using MALDI-TOF-MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.
USDA-ARS?s Scientific Manuscript database
The fungus Colletotrichum cereale incites anthracnose disease on Poa annua (annual bluegrass) turfgrass. Anthracnose disease is geographically widespread highly destructive, with infections by C. cereale resulting in extensive turfgrass loss. Comprehensive research aimed at controlling turfgrass a...
Protection against common bean rust conferred by a gene silencing method
USDA-ARS?s Scientific Manuscript database
Rust disease of the dry bean plant, Phaseolus vulgaris, is caused by the fungus Uromyces appendiculatus. The fungus acquires its nutrients and energy from bean leaves using a specialized cell structure, the haustorium, through which it secretes effector proteins that contribute to pathogenicity by ...
USDA-ARS?s Scientific Manuscript database
A study on the compatibility of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) with neem was conducted against sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on eggplant. Initially, three concentrations of B. bassiana (106, 1...
Scorsetti, Ana C; Elíades, Lorena A; Stenglein, Sebastián A; Cabello, Marta N; Pelizza, Sebastián A; Saparrat, Mario C N
2012-06-01
Tolypocladium cylindrosporum is an entomopathogenic fungi that has been studied as a biological control agent against insects of several orders. The fungus has been isolated from the soil as well as from insects of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera. In this study, we analyzed the ability of a strain of T cylindrosporum, isolated from soil samples taken in Tierra del Fuego, Argentina, to produce hydrolytic enzymes, and to study the relationship of those activities to the fungus pathogenicity against pest aphids. We have made the traditional and molecular characterization of this strain of T cylindrosporum. The expression of hydrolase activity in the fungal strain was estimated at three incubation temperatures (4 degreeC, 12 degreeC and 24 degreeC), on different agar media supplemented with the following specific substrates: chitin azure, Tween 20, casein, and urea for chitinase, lipase, protease, and urease activity, respectively. The hydrolytic-enzyme activity was estimated qualitatively according to the presence of a halo of clarification through hydrolase action, besides was expressed semi-quantitatively as the ratio between the hydrolytic-halo and colony diameters. The pathogenicity of the fungus was tested on adults of the aphid Rhopalosiphum padi at three temperatures of incubation (4 degree C, 12 degree C and 24 degree C). The suspension was adjusted to a concentration of 1x10(7) conidia/ml. In pathogenicity assays at seven days post-inoculation, the fungus caused the mortality of adults of Ropalosiphum padi at different temperatures also showed a broad ability to grow on several agar-culture media, supplemented with different carbon sources at the three incubation temperatures tested. Although, the growth was greater with higher incubation temperatures (with maximum levels at 24 degreeC), the fungus reached similar colony diameters after 15 days of incubation on the medium supplemented with Tween 20 at the lower two incubation temperatures of 4 degreeC or 12 degreeC. In accordance with the results on colony diameters, the fungus revealed an ability to degrade casein, chitin derivatives, Tween 20, and urea as evidenced by the appearance of a halo around the fungal colony. Because of its origin and temperature tolerance, this Argentine strain has great potential for use as a biocontrol agent for insect pest control in cold and temperate environments.
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections
Okagaki, Laura H.
2012-01-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904
Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
Okagaki, Laura H; Nielsen, Kirsten
2012-06-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.
Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus
USDA-ARS?s Scientific Manuscript database
We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...
USDA-ARS?s Scientific Manuscript database
WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...
USDA-ARS?s Scientific Manuscript database
The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate pathogen capable of causing explosive disease epidemics that drastically reduce the yield of soybean (Glycine max). Currently, the molecular mechanisms by which P. pachyrhizi and other rust fungi cause disease are poorly understood...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl, Verena
2011-04-29
Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.
Souto, Ana C P; Bonfietti, Lucas X; Ferreira-Paim, Kennio; Trilles, Luciana; Martins, Marilena; Ribeiro-Alves, Marcelo; Pham, Cau D; Martins, Liline; Dos Santos, Wallace; Chang, Marilene; Brito-Santos, Fabio; Santos, Dayane C S; Fortes, Silvana; Lockhart, Shawn R; Wanke, Bodo; Melhem, Márcia S C; Lazéra, Márcia S; Meyer, Wieland
2016-08-01
Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence.
Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii
Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dugé de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe
2017-01-01
ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species. PMID:28912311
Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi
USDA-ARS?s Scientific Manuscript database
The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated geno...
Global genetic structure of the fungal grapevine pathogen Eutypa lata
USDA-ARS?s Scientific Manuscript database
The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...
Yun, Yeo Hong; Ahn, Geum Ran; Yoon, Seong Kwon; Kim, Hoo Hyun; Son, Seung Yeol; Kim, Seong Hwan
2016-12-01
During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis , based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis . Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis , a previously unrecorded rust pathogen in Korea.
Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2012-01-01
Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.
Levitz, S M; Nong , S; Mansour, M K; Huang, C; Specht, C A
2001-08-28
The fungus Cryptococcus neoformans is a major cause of morbidity and mortality in patients with impaired CD4(+) T cell function, particularly those with AIDS. To identify cryptococcal antigens that could serve as vaccine candidates by stimulating T cell responses, C. neoformans-reactive CD4(+) T cell hybridomas were generated by immunization of C57BL/6 mice and fusion of splenocytes with thymoma cells. The antigen that stimulated one of the hybridomas, designated P1D6, to produce IL-2 was purified to homogeneity by sequential anion exchange chromatography, hydrophobic interaction chromatography, and SDS/PAGE. Based on its apparent molecular mass of 98 kDa and mannosylation, the antigen of interest was named MP98. MP98 was N terminal-sequenced, and the gene encoding the protein was cloned and sequenced. Recombinant MP98, expressed in Saccharomyces cerevisiae, stimulated P1D6 to produce IL-2. Analysis of the derived 458-aa sequence of MP98 reveals an N-terminal cleavable signal sequence, a polysaccharide deacetylase domain found in fungal chitin deacetylases, and a serine/threonine-rich C-terminal region. Overall, there were 103 serine/threonine residues serving as potential O-linked glycosylation sites as well as 12 possible N-linked glycosylation sites. Thus, a C. neoformans mannoprotein has been characterized that stimulates T cell responses and has molecular properties of a chitin deacetylase.
Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach
NASA Astrophysics Data System (ADS)
Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar
2013-12-01
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Terbinafine inhibits Cryptococcus neoformans growth and modulates fungal morphology.
Guerra, Caroline Rezende; Ishida, Kelly; Nucci, Marcio; Rozental, Sonia
2012-08-01
Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.
Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems
Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot
2017-01-01
In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists. PMID:28898288
Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun
2016-11-29
The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.
Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino
2011-01-01
Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Simwami, Sitali P.; Khayhan, Kantarawee; Henk, Daniel A.; Aanensen, David M.; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E.; Harrison, Thomas S.; Donnelly, Christl A.; Fisher, Matthew C.
2011-01-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen. PMID:21573144
Ngamskulrungroj, Popchai; Himmelreich, Uwe; Breger, Julia A.; Wilson, Christabel; Chayakulkeeree, Methee; Krockenberger, Mark B.; Malik, Richard; Daniel, Heide-Marie; Toffaletti, Dena; Djordjevic, Julianne T.; Mylonakis, Eleftherios; Meyer, Wieland; Perfect, John R.
2009-01-01
The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1Δ, R265tps2Δ, and R265nth1Δ mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1Δ and R265tps2Δ mutants, which could not grow and died, respectively, at 37°C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2Δ is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1Δ mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1Δ mutant was not due solely to its 37°C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species. PMID:19651856
Simwami, Sitali P; Khayhan, Kantarawee; Henk, Daniel A; Aanensen, David M; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E; Harrison, Thomas S; Donnelly, Christl A; Fisher, Matthew C
2011-04-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
USDA-ARS?s Scientific Manuscript database
ToxA, the first discovered fungal proteinaceous host-selective toxin, was originally identified from the tan spot fungus Pyrenophora tritici-repentis (Ptr). Homologues of the PtrToxA gene have not been identified from any other ascomycetes except the leaf/glume blotch fungus Stagonospora nodorum, w...
Bryce A. Richardson; Mee-Sook Kim; Ned B. Klopfenstein; Yuko Ota; Kwan Soo Woo; Richard C. Hamelin
2009-01-01
Presently, little is known about the worldwide genetic structure, diversity, or evolutionary relationships of the white-pineblister-rust fungus, Cronartium ribicola. A collaborative international effort is underway to determine the phylogeographic relationships among Asian, European, and North American sources of C. ribicola and...
Sudden oak death: disease trends in Marin county plots after one year
Brice A. McPherson; David L. Wood; Andrew J. Storer; Nina Maggi Kelly; Richard B. Standiford
2002-01-01
Sudden oak death has emerged as a major threat to the oak forests of California. In oaks and tanoak, this disease complex consists of a previously unreported fungus-like pathogen, Phytophthora ramorum, insects (bark and ambrosia beetles), and a secondary fungus, Hypoxylon thouarsianum. Species monitored in this study were coast...
First Report of Botrytis cinerea as a Postharvest Pathogen of Blueberry in Korea
Cheon, Mi-Geon; Choi, Okhee; Kim, Jinwoo
2011-01-01
Gray mold of blueberry caused by Botrytis sp. is reported for the first time in Korea. A detailed description of the fungus is given, along with its rDNA internal transcribed spacer sequence. The fungus was identified as Botrytis cinerea based on mycological characteristics and molecular data. PMID:22783073
USDA-ARS?s Scientific Manuscript database
Bioassays were conducted to examine the pathogenicity of the fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strain NI8 against Lygus lineolaris (Palisot de Beauvois) and its impact on natural enemies including Apis mellifera L., Crysoperla rufrilabris Burmeister, Orius insid...
Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves.
Meepagala, Kumudini M; Johnson, Robert D; Techen, Natascha; Wedge, David E; Duke, Stephen O
2015-07-01
Zinnia elegans Jacq. plants are infected by a fungus that causes dark red spots with necrosis on leaves, particularly in late spring to the middle of summer in the Mid-South of the United States. This fungal disease causes the leaves to wilt and eventually kills the plant. The fungus was isolated, cultured in potato dextrose broth, and identified as Nigrospora sphaerica by molecular techniques. Two major lactone metabolites (phomalactone and catenioblin A) were isolated from liquid culture of N. sphaerica isolated from Z. elegans. When injected into leaves of Z. elegans, phomalactone caused lesions similar to those of the fungus. The lesion sizes were proportional to the concentration of the phomalactone. Phomalactone, but not catenioblin A, was phytotoxic to Z. elegans and other plant species by inhibition of seedling growth and by causing electrolyte leakage from photosynthetic tissues of both Z. elegans leaves and cucumber cotyledons. This latter effect may be related to the wilting caused by the fungus in mature Z. elegans plants. Phomalactone was moderately fungicidal to Coletotrichum fragariae and two Phomopsis species, indicating that the compound may keep certain other fungi from encroaching into plant tissue that N. sphaerica has infected. Production of large amounts of phomalactone by N. sphaerica contributes to the pathogenic behavior of this fungus, and may have other ecological functions in the interaction of N. sphaerica with other fungi. This is the first report of isolation of catenioblin A from a plant pathogenic fungus. The function of catenioblin A is unclear, as it was neither significantly phyto- nor fungitoxic.
Sexual Reproduction of Human Fungal Pathogens
Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.
2014-01-01
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958
Elleuche, Skander; Pöggeler, Stefanie
2009-01-01
Carbon dioxide (CO2) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO3 −) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into α-, β-, γ-, δ- and ζ-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of β-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding β-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Δcas1, Δcas2, and Δcas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Δcas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Δcas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO2 levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions. PMID:19365544
Cryptococcus laurentii fungemia.
Banerjee, P; Haider, M; Trehan, V; Mishra, B; Thakur, A; Dogra, V; Loomba, P
2013-01-01
In the last few years there has been an increasing incidence of infection due to non-neoformans Cryptococcus spp. especially in immunocompromised host. Cryptococcus laurentii is a non-neoformans Cryptococcus which has rarely been known to cause bacteremia and pulmonary infection in humans. Here we report a case of fungemia due to Cryptococcus laurentii.
Effects Sprayed Solution of Salicylic Acid to Prevent of Wilt Disease Caused by Fussarium oxysporium
NASA Astrophysics Data System (ADS)
Yousif, Dina. Y. M.
2018-05-01
The current search aimed to detective the effect of sprayed solution of salicylic acid on plant and leaves of sweet green pepper (Capsicum annuum) for control the pathogen Fussarium oxysporium compering with control plant and leaves. Results indicated that, the spray of salicylic acid at concentration 0.5 g/L is effecting the fungal infection through prevent transport fungus F. oxysporum to the neighboring green pepper plant. The number of dead green pepper plant after sprayed with solution of salicylic acid and only water they were (4, 6, and 3) (8, 9, and 10) respectively. While the experimental infection of green pepper leaves after inoculated the fungus as local spot by scorching small spots of these leaves with the aid of hot nail. These spots were then exposed to the 0.5 g/L aqueous solution salicylic acid before and after the inoculation of the fungus. The spray of salicylic acid before 24 and 48 hour prevent the development of disease and make a good protection of the mention leaves from infection with this fungus, the diameter of leaves lesion (1,1.5 cm) respectively. while the ability of fungus to grow after 24 and 48 hour from salicylic acid treatment was markedly reduce as compared with control, such treatment show slow growth of pathogen infect.
Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.
Wang, Zixuan; Wilson, Amanda; Xu, Jianping
2015-02-01
The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii
Farrer, Rhys A.; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L.; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P.; Mitchell, Thomas G.; Litvintseva, Anastasia P.
2017-01-01
ABSTRACT The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. PMID:28270580
Recent introduction of a chytrid fungus endangers Western Palearctic salamanders
Martel, A.; Beukema, W.; Fisher, M. C.; Farrer, R. A.; Schmidt, B. R.; Tobler, U.; Goka, K.; Lips, K. R.; Muletz, C.; Zamudio, K. R.; Bosch, J.; Lötters, S.; Wombwell, E.; Garner, T.W. J.; Cunningham, A. A.; Spitzen-van der Sluijs, A.; Salvidio, S.; Ducatelle, R.; Nishikawa, K.; Nguyen, T. T.; Kolby, J. E.; Van Bocxlaer, I.; Bossuyt, F.; Pasmans, F.
2018-01-01
Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss. PMID:25359973
Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.
Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F
2013-12-15
Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu
2014-01-01
Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.
USDA-ARS?s Scientific Manuscript database
In greenhouse and field experiments, an invert emulsion (MSG 8.25) was tested with dried, formulated spores of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene, a highly virulent pathogen of the leguminous weed Aeschynomene virginica (northern jointvetch), but considered “...
Stephen F. Hale; Philip C. Rosen; James L. Jarchow; Gregory A. Bradley
2005-01-01
We conducted histological analyses on museum specimens collected 1975-1999 from 10 sites in Arizona and Sonora to test for the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) in ranid frogs, focusing on the Tarahumara frog (Rana tarahumarae). During 1981-2000, frogs displaying disease signs were found in the field, and...
Tara Chestnut; Chauncey Anderson; Radu Popa; Andrew R. Blaustein; Mary Voytek; Deanna H. Olson; Julie Kirshtein
2014-01-01
Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines...
Daniel Saenz; Taylor L. Hall; Matthew A. Kwiatkowski
2015-01-01
Batrachochytrium dendrobatidis (Bd) is a widespread pathogenic fungus that is known to cause the disease, chytridiomycosis, which can be lethal to many amphibians. We compared occurrence rates on spring peepers (Pseudacris crucifer) in urban and forested breeding sites in eastern Texas, USA. All study sites were at...
USDA-ARS?s Scientific Manuscript database
The gumbo limbo or rugose spiraling whitefly is a new invasive pest of palms, woody ornamentals, and fruits in Florida. The pathogenicity of a naturally occurring entomopathogenic fungus, Isaria fumosorosea (PFR 97) is well known for its activity against commonly found whiteflies species in the regi...
USDA-ARS?s Scientific Manuscript database
Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, produ...
USDA-ARS?s Scientific Manuscript database
Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny f...
USDA-ARS?s Scientific Manuscript database
The fungus Fusarium fujikuroi is agriculturally important because it produces the phytohormones gibberellic acids (GAs) and causes bakanae (“foolish seedling”) disease of rice. The fungus also produces multiple other secondary metabolites, including pigments and mycotoxins. Here, we present a high-q...
Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V
2014-01-01
The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.
Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest
Hagen, Ferry; Ceresini, Paulo C.; Polacheck, Itzhack; Ma, Hansong; van Nieuwerburgh, Filip; Gabaldón, Toni; Kagan, Sarah; Pursall, E. Rhiannon; Hoogveld, Hans L.; van Iersel, Leo J. J.; Klau, Gunnar W.; Kelk, Steven M.; Stougie, Leen; Bartlett, Karen H.; Voelz, Kerstin; Pryszcz, Leszek P.; Castañeda, Elizabeth; Lazera, Marcia; Meyer, Wieland; Deforce, Dieter; Meis, Jacques F.; May, Robin C.; Klaassen, Corné H. W.; Boekhout, Teun
2013-01-01
Over the past two decades, several fungal outbreaks have occurred, including the high-profile ‘Vancouver Island’ and ‘Pacific Northwest’ outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals. PMID:23940707
Spread of Cryptococcus gattii into Pacific Northwest Region of the United States
Datta, Kausik; Bartlett, Karen H.; Baer, Rebecca; Byrnes, Edmond; Galanis, Eleni; Heitman, Joseph; Hoang, Linda; Leslie, Mira J.; MacDougall, Laura; Magill, Shelley S.; Morshed, Muhammad G.
2009-01-01
Cryptococcus gattii has emerged as a human and animal pathogen in the Pacific Northwest. First recognized on Vancouver Island, British Columbia, Canada, it now involves mainland British Columbia, and Washington and Oregon in the United States. In Canada, the incidence of disease has been one of the highest worldwide. In the United States, lack of cryptococcal species identification and case surveillance limit our knowledge of C. gattii epidemiology. Infections in the Pacific Northwest are caused by multiple genotypes, but the major strain is genetically novel and may have emerged recently in association with unique mating or environmental changes. C. gattii disease affects immunocompromised and immunocompetent persons, causing substantial illness and death. Successful management requires an aggressive medical and surgical approach and consideration of potentially variable antifungal drug susceptibilities. We summarize the study results of a group of investigators and review current knowledge with the goal of increasing awareness and highlighting areas where further knowledge is required. PMID:19757550
Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans
Staudt, Mark W.; Kruzel, Emilia K.; Shimizu, Kiminori; Hull, Christina M.
2010-01-01
During sexual development the human fungal pathogen Cryptococcus neoformans undergoes a developmental transition from yeast-form growth to filamentous growth. This transition requires cellular restructuring to form a filamentous dikaryon. Dikaryotic growth also requires tightly controlled nuclear migration to ensure faithful replication and dissemination of genetic material to spore progeny. Although the gross morphological changes that take place during dikaryotic growth are largely known, the molecular underpinnings that control this process are uncharacterized. Here we identify and characterize a C. neoformans homolog of the Saccharomyces cerevisiae BIM1 gene, and establish the importance of BIM1 for proper filamentous growth of C. neoformans. Deletion of BIM1 leads to truncated sexual development filaments, a severe defect in diploid formation, and a block in monokaryotic fruiting. Our findings lead to a model consistent with a critical role for BIM1 in both filament integrity and nuclear congression that is mediated through the microtubule cytoskeleton. PMID:20044015
Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest.
Hagen, Ferry; Ceresini, Paulo C; Polacheck, Itzhack; Ma, Hansong; van Nieuwerburgh, Filip; Gabaldón, Toni; Kagan, Sarah; Pursall, E Rhiannon; Hoogveld, Hans L; van Iersel, Leo J J; Klau, Gunnar W; Kelk, Steven M; Stougie, Leen; Bartlett, Karen H; Voelz, Kerstin; Pryszcz, Leszek P; Castañeda, Elizabeth; Lazera, Marcia; Meyer, Wieland; Deforce, Dieter; Meis, Jacques F; May, Robin C; Klaassen, Corné H W; Boekhout, Teun
2013-01-01
Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.
The Cryptococcus neoformans Capsule: a Sword and a Shield
O'Meara, Teresa R.
2012-01-01
Summary: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell. PMID:22763631
Cloyd, Raymond A
2015-04-09
Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.
Cloyd, Raymond A.
2015-01-01
Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems. PMID:26463188
Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.
2006-01-01
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans. PMID:23132495
Meyers, Gena Lee; Jung, Kwang-Woo; Bang, Soohyun; Kim, Jungyeon; Kim, Sooah; Hong, Joohyeon; Cheong, Eunji; Kim, Kyoung Heon; Bahn, Yong-Sun
2017-06-01
In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor; Kronstad, James
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.
Wang, Jing-Mei; Zhou, Qiang; Cai, Hou-Rong; Zhuang, Yi; Zhang, Yi-Fen; Xin, Xiao-Yan; Meng, Fan-Qing; Wang, Ya-Ping
2014-01-01
In addition to the typical size, Cryptococcus neoformans can enlarge its size to form titan cells during infection, and its diameter can reach up to 100 μm. Clinical reports about cryptococcal titan cells are rare. Most studies focus on aspects of animal models of infection with titan cells. Herein, we report the clinical and imaging characteristics and histopathologic features of 3 patients with titan cells and 27 patients with pathogens of typical size, and describe the morphological characteristics of titan cells in details. Histologically, 3 patients with titan cells show necrosis, fibrosis and macrophage accumulation. The titan cells appear in necrotic tissue and between macrophages, and have thick wall with unstained halo around them and diameters range from 20 to 80 μm with characteristic of narrow-necked single budding. There are also organisms with typical size. All 27 patients with normal pathogens show epithelioid granulomatous lesions. There is no significantly difference in clinical and imaging feature between the two groups. Cryptococcus neoformans exhibits a striking morphological change for the formation of titan cells during pulmonary infection, which will result in misdiagnosis and under diagnosis. The histopathological changes may be new manifestation, which need to be further confirmed by the study with animal models of infection and the observation of more clinical cases. Careful observation of the tissue sections is necessary.
Stephanie S. Gervasi; Patrick R. Stephens; Jessica Hua; Catherine L. Searle; Gisselle Yang Xie; Jenny Urbina; Deanna H. Olson; Betsy A. Bancroft; Virginia Weis; John I. Hammond; Rick A. Relyea; Andrew R. Blaustein; Stefan Lötters
2017-01-01
Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf
2008-05-15
The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M.more » nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.« less
Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy.
Małagocka, Joanna; Jensen, Annette Bruun; Eilenberg, Jørgen
2017-02-01
Among fungi from the order Entomophthorales (Entomophthoromycota), there are many specialized, obligatory insect-killing pathogens. Pandora formicae (Humber & Bałazy) Humber is a rare example of an entomophthoralean fungus adapted to exclusively infect social insects: wood ants from the genus Formica. There is limited information available on P. formicae; many important aspects of this host-pathogen system remain hitherto unknown, and the taxonomical status of the fungus is unclear. Our study fills out some main gaps in the life history of P. formicae, such as seasonal prevalence and overwintering strategy. Field studies of infection prevalence show a disease peak in late summer and early autumn. Typical thick-walled entomophthoralean resting spores of P. formicae are documented and described for the first time. The proportion of cadavers with resting spores increased from late summer throughout autumn, suggesting that these spores are the main overwintering fungal structures. In addition, the phylogenetic status of Pandora formicae is outlined. Finally, we review the available taxonomical literature and conclude that the name P. formicae should be used rather than the name P. myrmecophaga for ant-infecting fungi displaying described morphological features. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi.
Franzen, Anderson J; Cunha, Marcel M L; Miranda, Kildare; Hentschel, Joachim; Plattner, Helmut; da Silva, Moises B; Salgado, Claudio G; de Souza, Wanderley; Rozental, Sonia
2008-04-01
Melanin is a complex polymer widely distributed in nature and has been described as an important virulence factor in pathogenic fungi. In the majority of fungi, the mechanism of melanin formation remains unclear. In Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis, melanin is stored in intracellular vesicles, named melanosomes. This paper details the ultrastructural aspects of melanin formation, its storage and transportation to the cell wall in the human pathogenic fungus F. pedrosoi. In this fungus, melanin synthesis within melanosomes also begins with a fibrillar matrix formation, displaying morphological and structural features similar to melanosomes from amphibian and mammalian cells. Silver precipitation based on Fontana-Masson technique for melanin detection and immunocytochemistry showed that melanosome fuses with fungal cell membrane where the melanin is released and reaches the cell wall. Melanin deposition in the fungal cell wall occurs in concentric layers. Antibodies raised against F. pedrosoi melanin revealed the sites of melanin production and storage in the melanosomes. In addition, a preliminary description of the elemental composition of this organelle by X-ray microanalysis and elemental mapping revealed the presence of calcium, phosphorus and iron concentrated in its matrix, suggesting a new functional role for these organelles as iron storage compartments.
The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans.
Gardiner, Donald M; Cozijnsen, Anton J; Wilson, Leanne M; Pedras, M Soledade C; Howlett, Barbara J
2004-09-01
Sirodesmin PL is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). This phytotoxin belongs to the epipolythiodioxopiperazine (ETP) class of toxins produced by fungi including mammalian and plant pathogens. We report the cloning of a cluster of genes with predicted roles in the biosynthesis of sirodesmin PL and show via gene disruption that one of these genes (encoding a two-module non-ribosomal peptide synthetase) is essential for sirodesmin PL biosynthesis. Of the nine genes in the cluster tested, all are co-regulated with the production of sirodesmin PL in culture. A similar cluster is present in the genome of the opportunistic human pathogen Aspergillus fumigatus and is most likely responsible for the production of gliotoxin, which is also an ETP. Homologues of the genes in the cluster were also identified in expressed sequence tags of the ETP producing fungus Chaetomium globosum. Two other fungi with publicly available genome sequences, Magnaporthe grisea and Fusarium graminearum, had similar gene clusters. A comparative analysis of all four clusters is presented. This is the first report of the genes responsible for the biosynthesis of an ETP. Copyright 2004 Blackwell Publishing Ltd
Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain
2009-12-01
Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.
Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp
Silva-Bailão, Mirelle Garcia; Bailão, Elisa Flávia Luiz Cardoso; Lechner, Beatrix Elisabeth; Gauthier, Gregory M.; Lindner, Herbert; Bailão, Alexandre Melo; Haas, Hubertus; de Almeida Soares, Célia Maria
2014-01-01
Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity. PMID:25157575
Evaluating host resistance to Macrophomina crown rot in strawberry
USDA-ARS?s Scientific Manuscript database
Macrophomina crown rot, caused by the soilborne fungus Macrophomina phaseolina, is an emerging pathogen in California strawberry production. When established, the pathogen can cause extensive plant decline and mortality. Host resistance will be a critical tool for managing this disease and guiding ...
Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents
USDA-ARS?s Scientific Manuscript database
Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...
Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan
2013-01-01
Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.
de Garcia, Virginia; Zalar, Polona; Brizzio, Silvia; Gunde-Cimerman, Nina; van Broock, María
2012-11-01
Cryptococcus species (Basidiomycota) were isolated as the predominant yeast from glacial biomes of both Patagonia (Argentina) and the Svalbard archipelago (Norway). For a selected group of Cryptococcus belonging to Tremellales, assimilative profile, production of extracellular hydrolytic enzymes and ribosomal DNA internal transcribed spacer and large subunit (D1/D2) sequences were analysed. Cryptococcus victoriae, which was originally described from Antarctica, was the most frequently found species at both locations. High variability within the species was observed and described at the genotypic and phenotypic levels, two newly described species were found in both Patagonia and Svalbard: Cryptococcus fonsecae and Cryptococcus psychrotolerans. Two other new species were found only in Patagonia: Cryptococcus frias and Cryptococcus tronadorensis. Three additional new taxa were found, but they are not named as they were only represented by single isolates. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
False-positive cerebrospinal fluid cryptococcus antigen in Libman-Sacks endocarditis.
Isseh, Iyad N; Bourgi, Kassem; Nakhle, Asaad; Ali, Mahmoud; Zervos, Marcus J
2016-12-01
Cryptococcus meningoencephalitis is a serious opportunistic infection associated with high morbidity and mortality in immunocompromised hosts, particularly patients with advanced AIDS disease. The diagnosis is established through cerebrospinal fluid (CSF) cryptococcus antigen detection and cultures. Cryptococcus antigen testing is usually the initial test of choice due its high sensitivity and specificity along with the quick availability of the results. We hereby report a case of a false-positive CSF cryptococcus antigen assay in a patient with systemic lupus erythematosus presenting with acute confusion. While initial CSF evaluation revealed a positive cryptococcus antigen assay, the patient's symptoms were inconsistent with cryptococcus meningoencephalitis. A repeat CSF evaluation, done 3 days later, revealed a negative CSF cryptococcus antigen assay. Given the patient's active lupus disease and the elevated antinuclear antibody titers, we believe that the initial positive result was a false positive caused by interference from autoantibodies.
Rudd, Jason J.; Kanyuka, Kostya; Hassani-Pak, Keywan; Derbyshire, Mark; Andongabo, Ambrose; Devonshire, Jean; Lysenko, Artem; Saqi, Mansoor; Desai, Nalini M.; Powers, Stephen J.; Hooper, Juliet; Ambroso, Linda; Bharti, Arvind; Farmer, Andrew; Hammond-Kosack, Kim E.; Dietrich, Robert A.; Courbot, Mikael
2015-01-01
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection. PMID:25596183
Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin
2011-01-01
Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256
Yang, Jinkui; Wang, Lei; Ji, Xinglai; Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin
2011-09-01
Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.
The lipid language of plant-fungal interactions.
Christensen, Shawn A; Kolomiets, Michael V
2011-01-01
Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated. Published by Elsevier Inc.
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704
Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.
Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten
2015-10-13
Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.
Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.
USDA-ARS?s Scientific Manuscript database
Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...
USDA-ARS?s Scientific Manuscript database
We have fulfilled Koch’s postulates and conducted host range tests with Septoria lepidii Desm. on five geographical accessions of hoary cress. Host range results showed the fungus specific to Lepidium spp. and damaging to hoary cress. This fungus is potentially an important biological control agent ...
Three Colopterus beetle species carry the oak wilt fungus to fresh wounds on red oak in Missouri
Maya Hayslett; Jennifer Juzwik; Bruce Moltzan
2008-01-01
Beetles in the family Nitidulidae can transmit the oak wilt fungus, Ceratocystis fagacearum, to fresh wounds on healthy oak trees, leading to infection and disease development. Historically, nitidulid beetles have not been considered important vectors of the pathogen in Missouri. Studies were conducted in the spring of 2005 and 2006 to determine...
USDA-ARS?s Scientific Manuscript database
The entomopathogenic fungus Beauveria bassiana is a potential candidate for biological control of a variety of pests. The objectives of this study were isolate and identify the fungus from Kudzu bugs and determine its infectivity comparing with two highly pathogenic isolates including the Mississipp...
Bryce A. Richardson; Paul J. Zambino; Ned B. Klopfenstein; Geral I. McDonald; Lori M. Carris
2007-01-01
The white-pine blister rust fungus, Cronartium ribicola Fisch. in Rabenh., continues to spread in North America, utilizing various aecial (primary) and telial (alternate) hosts, some of which have only recently been discovered. This introduced pathogen has been characterized as having low genetic diversity in North America, yet it has demonstrated a...
Detection of Batrachochytrium dendrobatidis in endemic salamander species from central Texas.
Gaertner, James P; Forstner, Michael R J; O'Donnell, Lisa; Hahn, Dittmar
2009-03-01
A nested PCR protocol was used to analyze five endemic salamander species from Central Texas for the presence of the emerging pathogen, chytrid fungus (Batrachochytrium dendrobatidis). Chytrid fungus was detected from samples of each of the five species sampled: with low abundance, in the Texas salamander (Eurycea neotenes) (1 positive out of 16 individuals tested; 1/16), the Blanco River Springs salamander (E. pterophila) (1/20), the threatened San Marcos salamander (E. nana) (1/17), and the endangered Barton Springs salamander (E. sosorum) (1/7); much higher abundance was obtained for the Jollyville Plateau salamander (E. tonkawae) (6/14), which has recently been petitioned for addition to the USA endangered species list. With one exception, sequences of PCR products were identical to the 5.8S rRNA gene, and nearly so for the flanking internal transcribed spacer (ITS) regions of B. dendrobatidis which confirmed the detection of chytrid fungus, and thus demonstrated the presence of this pathogen in populations of endangered species in Central Texas. These confirmations were obtained from nonconsumptive tail clippings which confirms the applicability of historically collected samples from other studies in the examination of the fungus across time.
Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent
NASA Astrophysics Data System (ADS)
Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.
2017-02-01
The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.
Estrada-Bárcenas, Daniel A; Palacios-Vargas, José G; Estrada-Venegas, Edith; Klimov, Pavel B; Martínez-Mena, Alejandro; Taylor, Maria Lucia
2010-03-01
Mites and the mammal pathogenic fungus Histoplasma capsulatum are the major components of bat guano microbiota. Interactions between mites and H. capsulatum were evaluated under laboratory conditions. Acarid mites, mainly Sancassania sp., were the most abundant microarthropod in the sampled guano of the Mexican bat Tadarida brasiliensis mexicana and, based on its morphology, Sancassania sp. was similar to the cosmopolitan species Sancassania sphaerogaster. The mycophagous and vectoring activities of this mite were tested for H. capsulatum and two other fungal species, Sporothrix schenckii (pathogenic) and Aspergillus sclerotiorum (non-pathogenic). S. ca. sphaerogaster was able to reproduce in H. capsulatum and S. schenckii colonies, multiplying in great numbers under controlled fungal mycelial-phase culture conditions. H. capsulatum colonies were completely destroyed after 14 days of in vitro interaction with mites. In contrast, S. ca. sphaerogaster did not reproduce in A. sclerotiorum cultures. S. ca. sphaerogaster was found vectoring H. capsulatum, but not the two other fungal species studied.
Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo
2008-04-01
The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.
Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein
2011-01-01
Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, ...
Uncommon opportunistic fungal infections of oral cavity: A review
Deepa, AG; Nair, Bindu J; Sivakumar, TT; Joseph, Anna P
2014-01-01
The majority of opportunistic oral mucosal fungal infections are due to Candida albicans and Aspergillus fumigatus species. Mucor and Cryptococcus also have a major role in causing oral infections, whereas Geotrichum, Fusarium, Rhodotorula, Saccharomyces and Penicillium marneffei are uncommon pathogens in the oral cavity. The broad spectrum of clinical presentation includes pseudo-membranes, abscesses, ulcers, pustules and extensive tissue necrosis involving bone. This review discusses various uncommon opportunistic fungal infections affecting the oral cavity including their morphology, clinical features and diagnostic methods. PMID:25328305
García-Rodas, Rocío; Casadevall, Arturo; Rodríguez-Tudela, Juan Luís; Cuenca-Estrella, Manuel; Zaragoza, Oscar
2011-01-01
We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis. PMID:21915338
EBR1 genomic expansion and its role in virulence of Fusarium species
USDA-ARS?s Scientific Manuscript database
Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...
USDA-ARS?s Scientific Manuscript database
Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...
USDA-ARS?s Scientific Manuscript database
Sclerotinia sclerotiorum is an important soybean pathogen. The objectives of this study were to evaluate levels of resistance of soybean genotypes to the fungus, and to determine the effects of different incubation environments on host resistance and pathogen aggression. Two experiments were conduct...
Characterization of microsatellites in Fusicladium effusum, cause of pecan scab
USDA-ARS?s Scientific Manuscript database
Pecan scab, caused by the plant pathogenic fungus Fusicladium effusum, is the most destructive disease of pecan. Little is known of the population genetic diversity of this pathogen. In this study, microsatellites were mined from the F. effusum genome, and flanking primers were subsequently designed...
Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph
2015-09-01
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.
Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel
2011-01-01
Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438
The Interface between Fungal Biofilms and Innate Immunity.
Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E
2017-01-01
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Implications of climate change (global warming) for the healthcare system.
Raffa, R B; Eltoukhy, N S; Raffa, K F
2012-10-01
Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.
Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma
2005-01-01
Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706
Bohlooli, A; Okhovvat, S M; Javan-Nikkhah, M
2006-01-01
One hundred and eighteen isolates of Rhizoctonia solani were gathered from infected roots and hypocotyls of bean (Phaseolus vulgaris L.) grown in the fields of Tehran Province, Iran. Two isolates of the collected samples belonged to binucleate and 81 isolates to multinucleate of R. solani. The multinucleate isolates showed different anastomosis groups as AG-4 (subg. AG-4 HGI, AG-4HGII), AG-6 and AG-2. In greenhouse, pathogenicity tests carried out on bean cv. Naz in randomized design with 4 replications and each replication (pots) with 5 seeds of bean. Infection was done with seeds of wheat which were infected to the fungus with pasteurized soil. Results showed that the highest disease severity was caused by AG-4 (Rs21) isolates, whereas AG-4 (Rs74) isolates were weakly pathogenic with 90% and 21% infection, respectively. In this test the major pathogenic isolates belonged to AG-4 and they caused seed rot and damping-off of bean and AG-6 isolates were non-pathogenic. Five isolates of the fungus with major pathogenicity (Rs7, Rs18, Rs21, Rs62 and Rs71) selected and used for the reaction with different cultivars of bean. In this test, the cultivars and lines of bean (Pinto, red, white, green) studied in factorial experiment as randomized block design with 4 replications (pots). Results showed that none of the cultivars was completely resistant, however green bean cv. Sanry and pinto cv. Shad with number 4.8 disease severities had the highest susceptibility to seed rot and damping-off and red bean cv. Goli with 2.58 had the lowest susceptibility to the infection. Reaction of the cultivars and lines to the isolates of R. solani was significantly different at 1% level. Isolates of the fungus, Rs7, Rs21 with 84%, 90% pathogenicity was more virulent than the others.
Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies
Konrad, Matthias; Vyleta, Meghan L.; Theis, Fabian J.; Stock, Miriam; Tragust, Simon; Klatt, Martina; Drescher, Verena; Marr, Carsten; Ugelvig, Line V.; Cremer, Sylvia
2012-01-01
Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”). PMID:22509134
Tarman, Kustiariyah; Lindequist, Ulrike; Wende, Kristian; Porzel, Andrea; Arnold, Norbert; Wessjohann, Ludger A.
2011-01-01
In the search for bioactive compounds, 11 fungal strains were isolated from Indonesian marine habitats. Ethyl acetate extracts of their culture broth were tested for cytotoxic activity against a urinary bladder carcinoma cell line and for antifungal and antibacterial activities against fish and human pathogenic bacteria as well as against plant and human pathogenic fungi. The crude extract of a sterile algicolous fungus (KT31), isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex P.C. Silva exhibited potent cytotoxic activity with an IC50 value of 1.5 μg/mL. Another fungal strain (KT29) displayed fungicidal properties against the plant pathogenic fungus Cladosporium cucumerinum Ell. et Arth. at 50 μg/spot. 2-Carboxy-8-methoxy-naphthalene-1-ol (1) could be isolated as a new natural product. PMID:21556160
Hornbostel, V.L.; Zhioua, Elyes; Benjamin, Michael A.; Ginsberg, Howard S.; Ostfeld, Richard S.
2005-01-01
Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.
Chibucos, Marcus C; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu
2013-12-19
We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.
Eslaminejad, Touba; Zakaria, Maziah
2011-11-01
Roselle, or Jamaica sorrel (Hibiscus sabdariffa) is a popular vegetable in many tropical regions, cultivated for its leaves, seeds, stems and calyces which, the dried calyces are used to prepare tea, syrup, jams and jellies and as beverages. The main objectives of this study were to identify and characterise fungal pathogens associated with Roselle diseases based on their morphological and cultural characteristics and to determine the pathogenicity of four fungi infecting Roselle seedlings, namely Phoma exigua, Fusarium nygamai, Fusarium tgcq and Rhizoctonia solani in Penang. A total of 200 fungal isolates were obtained from 90 samples of symptomatic Roselle tissues. The isolates were identified based on cultural and morphological characteristics, as well as their pathogenicity. The fungal pathogen most frequently isolated was P. exigua (present in 45% of the samples), followed by F. nygamai (25%), Rhizoctonia solani (19%) and F. camptoceras (11%). Pathogenicity tests showed that P. exigua, F. nygamai, F. camptoceras and R. solani were able to infect both wounded and unwounded seedlings with different degrees of severity as indicated by the Disease severity (DS). R. solani was the most pathogenic fungus affecting both wounded and unwounded Roselle seedlings, followed by P. exigua that was highly pathogenic on wounded seedlings. F. nygamai was less pathogenic while the least pathogenic fungus was F. camptoceras, infecting only the unwounded seedlings but, surprisingly, not the wounded plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
The genome sequence of the Irish potato famine pathogen Phytophthora infestans
USDA-ARS?s Scientific Manuscript database
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to photosynthetic organisms such as brown algae and diatoms. Here, we report the genome sequence of P. infestans. The ~240 Mb genome...
USDA-ARS?s Scientific Manuscript database
Rice false smut, caused by Ustilaginoidea virens, is serious disease that affects grain yield and quality. In the present study, a method to purify, store, and evaluate pathogenicity of U. virens under controlled environmental conditions was developed. Yellow chlamydospores were collected from fresh...
USDA-ARS?s Scientific Manuscript database
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...
USDA-ARS?s Scientific Manuscript database
The Ascomycetous fungus Sclerotinia sclerotiorum is a devastating pathogen capable of infecting more than 400 plant species including many economically important crops. In order to gain a better mechanistic understanding of its non-specific host-pathogen interactions, random mutagenesis through Agro...
Nenad Mihelcic; James L. Hanula; Gary L. DeBarr
2003-01-01
Larvae of the Southern pine coneworm, Diorycha amateella (Hulst) (Lepidoptera: Pyralidae), were collected monthly during the growing seasons of 1996 and 1997 from loblolly pine, Pinus taeda L., seed orchards in Alabama, Florida, Georgia, South Carolina, and Virginia, and examined for pathogenic microorganisms. One fungus,
A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao
USDA-ARS?s Scientific Manuscript database
Background: The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches’ Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao’s meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle d...
USDA-ARS?s Scientific Manuscript database
Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity, and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multi-host pathogen that infects ...
Draft genome sequence of Fusicladium effusum, cause of pecan scab
USDA-ARS?s Scientific Manuscript database
Pecan scab, caused by the plant pathogenic fungus Fusicladium effusum, is the most destructive disease of pecan, an important specialty crop cultivated in several regions of the world. At this time, no other members of the family Venturiaceae (in which the pathogen resides) have been reported sequen...
Population biology of the forest pathogen Heterbasidion annosum:implications for forest management
M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns
1998-01-01
Heterobasidion annosumranks as one of the most destructive pathogens in North American coniferous forests. Understanding the populaÂtion biology of this fungus may facilitate unÂderstanding not only the basic biology of the organism, but also the general patterns of disease development,...
Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana
USDA-ARS?s Scientific Manuscript database
Little is known about the effects of dietary macronutrients on the capacity of insects to ward off a fungal pathogen. Here we tested the hypothesis that Mormon crickets fed restricted protein diets have lower enzymatic assays of generalized immunity, slower rates of encapsulation of foreign bodies,...
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a non-obligate plant pathogen of maize causing a number of specific diseases, including root rot, kernel rot, seed rot, stalk rot, and seedling blight. The saprophytic nature of this fungus, its production of the mycotoxin fumonisin, and complex relationship maize puts t...
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus is a pathogenic and opportunistic fungus that can infect several crops of agricultural importance and has the potential to produce carcinogenic mycotoxins such as aflatoxin. Predicted changes in global temperatures, precipitation patterns and carbon dioxide levels are expected to ...
USDA-ARS?s Scientific Manuscript database
The opportunistic plant pathogenic fungus Aspergillus flavus produces carcinogenic mycotoxins denominated aflatoxins (AFs). Aflatoxin contamination of agriculturally important crops such as maize, peanut, sorghum and tree nuts is responsible for serious adverse health and economic impacts worldwide....
Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.
Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa
2015-11-01
In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.
Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco
2018-03-01
Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.
DETECTION OF ZOONOTIC PATHOGENS IN WILD BIRDS IN THE CROSS-BORDER REGION AUSTRIA - CZECH REPUBLIC.
Konicek, Cornelia; Vodrážka, Pavel; Barták, Pavel; Knotek, Zdenek; Hess, Claudia; Račka, Karol; Hess, Michael; Troxler, Salome
2016-10-01
To assess the importance of wild birds as a reservoir of zoonotic pathogens in Austria and the Czech Republic, we sampled 1,325 wild birds representing 13 orders, 32 families, and 81 species. The majority belonged to orders Columbiformes (43%), Passeriformes (25%), and to birds of prey: Accipitriformes, Strigiformes, and Falconiformes (15%). We collected cloacal swabs from 1,191 birds for bacterial culture and 1,214 triple swabs (conjunctiva, choana, cloaca) for DNA and RNA isolation. The cloacal swabs were processed by classical bacteriologic methods for isolation of Escherichia coli , Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), and thermophilic Campylobacter spp. Nucleic acids isolated from triple swabs were investigated by PCR for West Nile virus, avian influenza viruses, and Chlamydia spp. We also tested tissue samples from 110 fresh carcasses for Mycobacterium spp. by PCR and we cultured fresh droppings from 114 birds for Cryptococcus spp. The most-frequently detected zoonotic bacteria were thermophilic Campylobacter spp. (12.5%) and Chlamydia spp. (10.3%). From 79.2% of the sampled birds we isolated E. coli , while 8.7% and 0.2% of E. coli isolates possessed the virulence genes for intimin (eaeA) and Shiga toxins (stx 1 and stx 2 ), respectively. Salmonella spp. were rarely found in the sampled birds (2.2%), similar to findings of MRSA (0.3%). None of the samples were positive for Cryptococcus neoformans , Mycobacterium spp., avian influenza viruses, or West Nile virus.
Springer, Deborah J.; Ren, Ping; Raina, Ramesh; Dong, Yimin; Behr, Melissa J.; McEwen, Bruce F.; Bowser, Samuel S.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu
2010-01-01
Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40–100 nm diameter ×500–3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12α mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN– mediated killing. PMID:20539754
Banks, Isaac R.; Specht, Charles A.; Donlin, Maureen J.; Gerik, Kimberly J.; Levitz, Stuart M.; Lodge, Jennifer K.
2005-01-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30°C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37°C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Δ and the csr2Δ mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target. PMID:16278457
Baker, Lorina G; Specht, Charles A; Donlin, Maureen J; Lodge, Jennifer K
2007-05-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.
Banks, Isaac R; Specht, Charles A; Donlin, Maureen J; Gerik, Kimberly J; Levitz, Stuart M; Lodge, Jennifer K
2005-11-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.
Turchetti, Benedetta; Selbmann, Laura; Blanchette, Robert A; Di Mauro, Simone; Marchegiani, Elisabetta; Zucconi, Laura; Arenz, Brett E; Buzzini, Pietro
2015-01-01
Twenty yeast strains, representing a selection from a wider group of more than 60 isolates were isolated from cold environments worldwide (Antarctica, Iceland, Russia, USA, Italian and French Alps, Apennines). The strains were grouped based on their common morphological and physiological characteristics. A phylogeny based on D1/D2 ribosomal DNA sequences placed them in an intermediate position between Cryptococcus saitoi and Cryptococcus friedmannii; the ITS1 and ITS2 rDNA phylogeny demonstrated that these strains belong to two related but hitherto unknown species within the order Filobasidiales, albidus clade. These two novel species are described with the names Cryptococcus vaughanmartiniae (type strain DBVPG 4736(T)) and Cryptococcus onofrii (type strain DBVPG 5303(T)).
USDA-ARS?s Scientific Manuscript database
Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...
Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha
2013-01-01
We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes. PMID:24356829
Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B
2016-03-01
The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.
Blundell, Ross D; Williams, Simon J; Arras, Samantha D M; Chitty, Jessica L; Blake, Kirsten L; Ericsson, Daniel J; Tibrewal, Nidhi; Rohr, Jurgen; Koh, Y Q Andre E; Kappler, Ulrike; Robertson, Avril A B; Butler, Mark S; Cooper, Matthew A; Kobe, Bostjan; Fraser, James A
2016-09-09
Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.
Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.
Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M
2017-11-07
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens. Copyright © 2017 Schmid-Siegert et al.
Draft genome sequence of Dactylonectria macrodydima, a plant pathogenic fungus in the Nectriaceae
USDA-ARS?s Scientific Manuscript database
Dactylonectria macrodidyma is part of the Nectriaceae, a family containing important plant pathogens. This species possesses the ability to induce disease on grapevine, avocado and olive. Here, we report the first draft genome of D. macrodidyma isolate JAC15-08. The assembled genome was 58 Mbp and c...
Occurrence of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwest.
C.A. Pearl; E.L. Bull; D.E. Green; J. Bowerman; M.J. Adams; A. Hyatt; W.H. Wente
2007-01-01
Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) is an emerging pathogen of amphibians that is associated with declines in at least four continents. We report results of disease screens from 271 field-sampled amphibians from Oregon and Washington. Chytridiomycosis was detected on 5 of 7 species and from 31 percent of all...
Toward the molecular cloning of the Septoria nodorum blotch susceptibility gene Snn2 in wheat
USDA-ARS?s Scientific Manuscript database
Septoria nodorum blotch is a disease of wheat caused by the necrotrophic fungus Parastagonospora nodorum. In the wheat-P. nodorum pathosystem, recognition of pathogen-produced necrotrophic effectors (NEs) by dominant host genes leads to host cell death, which allows the pathogen to gain nutrients an...
Assessing the cost of an invasive forest pathogen; A case study with oak wilt
Robert G. Haight; Frances R. Homans; Tetsuya Horie; Shefali V. Mehta; David J. Smith; Robert C. Venette
2011-01-01
Economic assessment of damage caused by invasive alien species provides useful information to consider when determining whether management programs should be established, modified, or discontinued. We estimate the baseline economic damage from an invasive alien pathogen, Ceratocystis fagacearum, a fungus that causes oak wilt, which is a significant...
USDA-ARS?s Scientific Manuscript database
Moniliophthora roreri is an unusual fungus and plant pathogen on many levels. Although M. roreri is an aggressive pathogen of cacao (Theobroma cacao), many species grouped in the genus Moniliophthora are considered endophytes. The morphology of M. roreri is confusing and for many years it was consid...
USDA-ARS?s Scientific Manuscript database
Soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi, was detected on Florida Beggarweed (Desmodium tortuosum) for the first time in Alabama in November, 2009. The pathogen was not observed in 2010 or 2011, probably because of the exceptionally dry, hot weather in the region. The pathogen ...
USDA-ARS?s Scientific Manuscript database
The basidiomycetous soilborne fungus Rhizoctonia (sensu lato) is an economically important pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including agronomic crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may...
USDA-ARS?s Scientific Manuscript database
We demonstrated that honey bee viruses, including Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV) and Isreali Acute Paralysis Virus (IAPV), could infect and replicate in the fungal pathogen Ascosphaera apis, which causes honey bee chalkbrood disease, uncovering a novel biological feature of...
USDA-ARS?s Scientific Manuscript database
Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understa...
Qi, Zhongqiang; Liu, Muxing; Dong, Yanhan; Yang, Jie; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang
2016-04-01
Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-01-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557
Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping
2014-07-01
We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.
Bat white-nose syndrome in North America
Blehert, David S.; Lorch, Jeffrey M.; Ballmann, Anne E.; Cryan, Paul M.; Meteyer, Carol U.
2011-01-01
* The newly described fungus, Geomyces destructans, causes an invasive skin infection in bats and is the likely agent of white-nose syndrome (WNS). * With immune system functions and body temperatures reduced during hibernation, bats may be unusually susceptible to a pathogenic fungus such as G. destructans. * WNS was first observed in a popular show cave near Albany, New York, leading some investigators to suspect that a visitor inadvertently introduced G. destructans at this site, triggering a wider WNS outbreak in North America. * Biologists trying to manage WNS within North American bat populations face major challenges, including the variety of susceptible host species, incredible dispersal capabilities of bats, difficulties in treating such populations, and persistence of the pathogen in their vulnerable underground habitats.
Trandem, Nina; Berdinesen, Ronny; Pell, Judith K; Klingen, Ingeborg
2016-02-01
Introducing the predatory mite Phytoseiulus persimilis into two-spotted spider mite, Tetranychus urticae, populations significantly increased the proportion of T. urticae infected with the spider mite pathogen Neozygites floridana in one of two experiments. By the final sampling occasion, the number of T. urticae in the treatment with both the predator and the pathogen had declined to zero in both experiments, while in the fungus-only treatment T. urticae populations still persisted (20-40 T. urticae/subsample). Releasing P. persimilis into crops in which N. floridana is naturally present has the potential to improve spider mite control more than through predation alone. Copyright © 2016 Elsevier Inc. All rights reserved.
Maxfield-Taylor, Sarah A; Mujic, Alija B; Rao, Sujaya
2015-01-01
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.
Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.
Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A
1993-04-01
Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.
Danesi, Patrizia; Firacative, Carolina; Cogliati, Massimo; Otranto, Domenico; Capelli, Gioia; Meyer, Wieland
2014-09-01
Cryptococcosis represents a fungal disease acquired from the environment with animals serving as host sentinels for human exposure. The aim of this study was to investigate the genetic characteristics of Cryptococcus isolates from veterinary sources (cats, dogs and birds) to understand their epidemiology and the genetic variability of the casual isolates. Mating-type PCR in connection with MLST analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex was used to genotype 17 C. neoformans isolates. In the absence of an MLST typing scheme Cryptococcus adeliensis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus and C. uniguttulatus strains were typed using M13 PCR fingerprinting. All C. neoformans isolates were MATα mating type, but hybrids possessed αADa and aADα mating and serotypes. Two C. neoformans molecular types VNI, VNIV and VNIII and VNII/VNIV hybrids were identified. Amongst the 66 non-C. neoformans strains investigated 55 M13 PCR fingerprinting types were identified. The wide variety of MLST types of C. neoformans and the occurrence of αADa and aADα hybrids in our study supports the notion of genetic recombination in the area studied. The heterogeneity of the non-C. neoformans isolates remains open to further investigations and should be taken into consideration when identifying emergent pathogens. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-12-01
Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.
Munafo, John P; Gianfagna, Thomas J
2011-06-08
Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6''' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.
Yin, Ziyi; Zhang, Xiaofang; Wang, Jingzhen; Yang, Lina; Feng, Wanzhen; Chen, Chen; Gao, Chuyun; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang
2018-05-04
The rice blast fungus Magnaporthe oryzae has eight regulators of G-protein signaling (RGS) and RGS-like proteins (MoRgs1 to MoRgs8) that exhibit both distinct and shared regulatory functions in the growth, differentiation and pathogenicity of the fungus. We found MoRgs7 with a unique RGS-seven transmembrane (7-TM) domain motif is localized to the highly dynamic tubule-vesicular compartments during early appressorium differentiation followed by gradually degradation. To explore whether this involves an active signal perception of MoRgs7, we identified a Gbeta-like/RACK1 protein homolog in M. oryzae MoMip11 that interacts with MoRgs7. Interestingly, MoMip11 selectively interacted with several components of the cAMP regulatory pathway, including Gα MoMagA and the high-affinity phosphodiesterase MoPdeH. We further showed that MoMip11 promotes MoMagA activation and suppresses MoPdeH activity thereby upregulating intracellular cAMP levels. Moreover, MoMip11 is required for the response to multiple stresses, a role also shared by Gbeta-like/RACK1 adaptor proteins. In summary, we revealed a unique mechanism by which MoMip11 links MoRgs7 and G-proteins to reugulate cAMP signaling, stress responses and pathogenicity of M. oryzae. Our studies revealed the multitude of regulatory networks that govern growth, development and pathogenicity in this important causal agent of rice blast. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wang, Yina; Toffaletti, Dena L.; Eugenin, Eliseo; Perfect, John R.; Kim, Kee Jun; Xue, Chaoyang
2013-01-01
Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection. PMID:23592982
C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia
Yamasaki, Sho; Matsumoto, Makoto; Takeuchi, Osamu; Matsuzawa, Tetsuhiro; Ishikawa, Eri; Sakuma, Machie; Tateno, Hiroaki; Uno, Jun; Hirabayashi, Jun; Mikami, Yuzuru; Takeda, Kiyoshi; Akira, Shizuo; Saito, Takashi
2009-01-01
Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus. PMID:19171887
Violi, Helen A; Menge, John A; Beaver, Robert J
2007-04-01
Plants support numerous root colonists that may share morphological characteristics with mycorrhizal fungi but may play different roles in the rhizosphere. To determine the function of one such root-colonizing fungus, Chaetomium elatum, the infectivity and composition of inoculum containing C. elatum were varied independently of and in association with the known mutualist Glomus intraradices under two light intensities. Maximum plant benefit occurred with mixtures of both G. intraradices and C. elatum and under high light intensity. Under low light intensity and in monoculture, C. elatum functioned as a weak pathogen that was able to kill host plants. Here, maximum plant mortality was associated with the highest levels of C. elatum infectivity. When G. intraradices was present, no negative impact of C. elatum was detected. Intraspecific interactions were important in predicting sporulation rates for both fungi, whereas no interspecific fungal interactions were detected. In the presence of G. intraradices, C. elatum appears to function as a "commensalistic associate," neither impacting plant growth nor sporulation by G. intraradices. Overall, C. elatum appears to be multifunctional, serving as both a rhizoplane and rhizophere fungus, opportunistically colonizing plant roots and only becoming pathogenic when resources are severely limited and intraspecific competition is high. This multifunctional strategy may be shared with other fungi that form similar structures in roots.
Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae
2014-01-01
Background Rice blast fungus Magnaporthe oryzae is one of the most devastating pathogens in rice. Avirulence genes in this fungus share a gene-for-gene relationship with the resistance genes in its host rice. Although numerous studies have shown that rice blast R-genes are extremely diverse and evolve rapidly in their host populations, little is known about the evolutionary patterns of the Avr-genes in the pathogens. Results Here, six well-characterized Avr-genes and seven randomly selected non-Avr control genes were used to investigate the genetic variations in 62 rice blast strains from different parts of China. Frequent presence/absence polymorphisms, high levels of nucleotide variation (~10-fold higher than non-Avr genes), high non-synonymous to synonymous substitution ratios, and frequent shared non-synonymous substitution were observed in the Avr-genes of these diversified blast strains. In addition, most Avr-genes are closely associated with diverse repeated sequences, which may partially explain the frequent presence/absence polymorphisms in Avr-genes. Conclusion The frequent deletion and gain of Avr-genes and rapid non-synonymous variations might be the primary mechanisms underlying rapid adaptive evolution of pathogens toward virulence to their host plants, and these features can be used as the indicators for identifying additional Avr-genes. The high number of nucleotide polymorphisms among Avr-gene alleles could also be used to distinguish genetic groups among different strains. PMID:24725999
Wang, Hong; Wang, Congcong; Li, Ya; Yue, Xiaofeng; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2013-01-01
Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae. PMID:24116181
Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí
2015-05-11
The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.
USDA-ARS?s Scientific Manuscript database
Angular leaf spot (ALS) caused by the fungus Pseudocercospora griseola is one of the most important diseases of common bean in Tanzania. Breeding for resistance to this disease is complicated by the variable nature of the pathogen. In Tanzania no thorough analysis of the variability of this pathogen...
USDA-ARS?s Scientific Manuscript database
Sclerotinia trifoliorum is recently reported as a new pathogen of chickpea in North America. The diversity and genetic structure of this heterothallic fungus is poorly understood. This study was designed to investigate the genetic structure and diversity of the pathogen. A collection of 133 isolates...
USDA-ARS?s Scientific Manuscript database
The pathogen causing soybean rust, Phakopsora pachyrhizi Syd., was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 200...
D. R. Smitley; L. S. Bauer; A. E. Hajek; F. J. Sapio; R. A. Humber
1995-01-01
In 1991, late instars of gypsy moth, Lymantria dispar (L.), were sampled and diagnosed for infections of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu & Soper and for gypsy moth nuclear polyhedrosis virus (NPV) at 50 sites in Michigan. Approximately 1,500 larvae were collected and reared from these sites, and no...
Identification of Rhizopus stolonifer as a Pre-emergence Seedling Disease Pathogen of Beta vulgaris
USDA-ARS?s Scientific Manuscript database
Rhizopus stolonifer, a common soil borne fungus in Michigan, is a known root rot pathogen on mature sugar beet. In 2008, Rs was isolated from a sugar beet seed lot showing consistently low germination rates in both the field and lab, and Rs was morphologically identified on malt extract agar. Much o...
Harbouring public good mutants within a pathogen population can increase both fitness and virulence.
Lindsay, Richard J; Kershaw, Michael J; Pawlowska, Bogna J; Talbot, Nicholas J; Gudelj, Ivana
2016-12-28
Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devastating consequences for infected hosts. We deploy cooperation theory and a novel synthetic system involving the rice blast fungus Magnaporthe oryzae . In vivo infections of rice demonstrate that M. oryzae virulence is enhanced, quite paradoxically, when a public good mutant is present in a population of high-virulence pathogens. We reason that during infection, the fungus engages in multiple cooperative acts to exploit host resources. We establish a multi-trait cooperation model which suggests that the observed failure of the virulence reduction strategy is caused by the interference between different social traits. Multi-trait cooperative interactions are widespread, so we caution against the indiscriminant application of anti-virulence therapy as a disease-management strategy.
Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.
El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T
2015-05-01
The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.
2014-01-01
Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. PMID:25225496
Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro
2015-03-01
The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. Copyright © 2014 Elsevier Inc. All rights reserved.
2010-08-01
Sphingomonas" Alphaproteobacteria"’h, Betaproteobacteriah. Sphingomonas"’ Alphaproteobacteriaah. Sphingomonas Paecilomyces A ureohasidium. Cryptococcus ...Paecilomyces A ureohasidium, Cryptococcus . Paecilomyces A ureohasidium Cryptococcus Aureobasiditim" Calosphaeria", Paecilomyces Rhodotorula"x
How Cryptococcus interacts with the blood-brain barrier.
Tseng, Hsiang-Kuang; Huang, Tseng-Yu; Wu, Alice Ying-Jung; Chen, Hsin-Hong; Liu, Chang-Pan; Jong, Ambrose
2015-01-01
Cryptococcus demonstrates predilection for invasion of the brain, but the mechanism by which Cryptococcus crosses the blood-brain barrier (BBB) to cause brain invasion is largely unknown. In order for Cryptococcus to cross the BBB, there must be a way to either cross human brain microvascular endothelial cells, which are the main constitute of the BBB, or go in between tight junctions. Recent evidence of human brain microvascular endothelial cell responses to transcellular brain invasions includes membrane rearrangements, intracellular signaling pathways and cytoskeletal activations. Several Cryptococcal genes related to the traversal of BBB have been identified, including CPS1, ITR1a, ITR3c, PLB1, MPR1, FNX1 and RUB1. In addition, Cryptococcus neoformans-derived microvesicles may contribute to cryptococcal brain invasion. Paracellularly, Cryptococcus may traverse across BBB using either routes utilizing plasmin, ammonia or macrophages in a Trojan horse mechanism.
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1985-01-01
New yeasts from the Ross Desert (dry valley area) of Antarctica include Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov. Cryptococcus socialis MYSW A801-3aY1 (= ATCC 56685) requires no vitamins, assimilates L-arabinose, cellobiose, D-glucuronate, maltose, melezitose, raffinose, soluble starch, sucrose, and trehalose, and may be distinguished from all other basidioblastomycetes by the combination of amylose production, cellobiose assimilation, and failure to utilize nitrate, D-galactose, myo-inositol, and mannitol. Its guanine-plus-cytosine content is 56 mol%. Cryptococcus consortionis MYSW A801-3aY92 (= ATCC 56686) requires thiamine, assimilates L-arabinose, D-glucuronate, 2-ketogluconate, salicin, succinate, sucrose, trehalose, and D-xylose, and may be distinguished from all other basidioblastomycetes by the combination of amylose production and failure to utilize nitrate, cellobiose, D-galactose, myo-inositol, and mannitol. Its guanine-plus-cytosine content is 56 mol%.
Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.
de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio
2015-11-01
Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong
2007-09-07
We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher ratesmore » of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.« less
Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii.
Liu, Juan; Li, Famei; Kim, Eun La; Li, Jian Lin; Hong, Jongki; Bae, Kyung Sook; Chung, Hae Young; Kim, Hyung Sik; Jung, Jee H
2011-08-26
Four new polyketides (1-4) were isolated from the fungus Paecilomyces variotii, which was derived from the jellyfish Nemopilema nomurai. The planar structures and relative configurations of these polyketides were elucidated on the basis of spectroscopic analyses, including 2D NMR experiments. The compounds showed inhibitory activity against pathogenic bacteria including methicillin-resistant Staphylococcus aureus 3089 and multi-drug-resistant Vibrio parahemolyticus 7001 with MIC values in the range 5-40 μg/mL.
Genes under positive selection in a model plant pathogenic fungus, Botrytis.
Aguileta, Gabriela; Lengelle, Juliette; Chiapello, Hélène; Giraud, Tatiana; Viaud, Muriel; Fournier, Elisabeth; Rodolphe, François; Marthey, Sylvain; Ducasse, Aurélie; Gendrault, Annie; Poulain, Julie; Wincker, Patrick; Gout, Lilian
2012-07-01
The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions. Copyright © 2012 Elsevier B.V. All rights reserved.
Expressed sequence tags from the flower pathogen Claviceps purpurea.
Oeser, Birgitt; Beaussart, François; Haarmann, Thomas; Lorenz, Nicole; Nathues, Eva; Rolke, Yvonne; Scheffer, Jan; Weiner, January; Tudzynski, Paul
2009-09-01
SUMMARY The ascomycete Claviceps purpurea (ergot) is a biotrophic flower pathogen of rye and other grasses. The deleterious toxic effects of infected rye seeds on humans and grazing animals have been known since the Middle Ages. To gain further insight into the molecular basis of this disease, we generated about 10 000 expressed sequence tags (ESTs)-about 25% originating from axenic fungal culture and about 75% from tissues collected 6-20 days after infection of rye spikes. The pattern of axenic vs. in planta gene expression was compared. About 200 putative plant genes were identified within the in planta library. A high percentage of these were predicted to function in plant defence against the ergot fungus and other pathogens, for example pathogenesis-related proteins. Potential fungal pathogenicity and virulence genes were found via comparison with the pathogen-host interaction database (PHI-base; http://www.phi-base.org) and with genes known to be highly expressed in the haustoria of the bean rust fungus. Comparative analysis of Claviceps and two other fungal flower pathogens (necrotrophic Fusarium graminearum and biotrophic Ustilago maydis) highlighted similarities and differences in their lifestyles, for example all three fungi have signalling components and cell wall-degrading enzymes in their arsenal. In summary, the analysis of axenic and in planta ESTs yielded a collection of candidate genes to be evaluated for functional roles in this plant-microbe interaction.
Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.
Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo
2014-01-01
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.
Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.
2011-01-01
Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208
Rhodes, Johanna; Desjardins, Christopher A; Sykes, Sean M; Beale, Mathew A; Vanhove, Mathieu; Sakthikumar, Sharadha; Chen, Yuan; Gujja, Sharvari; Saif, Sakina; Chowdhary, Anuradha; Lawson, Daniel John; Ponzio, Vinicius; Colombo, Arnaldo Lopes; Meyer, Wieland; Engelthaler, David M; Hagen, Ferry; Illnait-Zaragozi, Maria Teresa; Alanio, Alexandre; Vreulink, Jo-Marie; Heitman, Joseph; Perfect, John R; Litvintseva, Anastasia P; Bicanic, Tihana; Harrison, Thomas S; Fisher, Matthew C; Cuomo, Christina A
2017-09-01
Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically human immunodeficiency virus/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterize the major subdivisions, their relative diversity, and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii ( serotype AA) and of hybrids with C. neoformans var. neoformans (serotype AD) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil reveal that the previously "African" VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions; demonstrating the highly dispersive nature of this pathogen. Copyright © 2017 Rhodes et al.
Gilbert, Nicole M.; Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2012-01-01
ABSTRACT Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. PMID:22354955
Surfactant Protein D Facilitates Cryptococcus neoformans Infection
Geunes-Boyer, Scarlett; Beers, Michael F.; Heitman, Joseph; Wright, Jo Rae
2012-01-01
Concurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Furthermore, Cryptococcus neoformans has become a primary human pathogen, causing infection in seemingly healthy individuals. Although numerous studies have elucidated the virulence properties of C. neoformans, less is understood regarding lung host immune factors during early stages of fungal infection. Based on our previous studies documenting that pulmonary surfactant protein D (SP-D) protects C. neoformans cells against macrophage-mediated defense mechanisms in vitro (S. Geunes-Boyer et al., Infect. Immun. 77:2783–2794, 2009), we postulated that SP-D would facilitate fungal infection in vivo. To test this hypothesis, we examined the role of SP-D in response to C. neoformans using SP-D−/− mice. Here, we demonstrate that mice lacking SP-D were partially protected during C. neoformans infection; they displayed a longer mean time to death and decreased fungal burden at several time points postinfection than wild-type mice. This effect was reversed by the administration of exogenous SP-D. Furthermore, we show that SP-D bound to the surface of the yeast cells and protected the pathogenic microbes against macrophage-mediated defense mechanisms and hydrogen peroxide (H2O2)-induced oxidative stress in vitro and in vivo. These findings indicate that C. neoformans is capable of coopting host SP-D to increase host susceptibility to the yeast. This study establishes a new paradigm for the role played by SP-D during host responses to C. neoformans and consequently imparts insight into potential future preventive and/or treatment strategies for cryptococcosis. PMID:22547543
The link between rapid enigmatic amphibian decline and the globally emerging chytrid fungus.
Lötters, Stefan; Kielgast, Jos; Bielby, Jon; Schmidtlein, Sebastian; Bosch, Jaime; Veith, Michael; Walker, Susan F; Fisher, Matthew C; Rödder, Dennis
2009-09-01
Amphibians are globally declining and approximately one-third of all species are threatened with extinction. Some of the most severe declines have occurred suddenly and for unknown reasons in apparently pristine habitats. It has been hypothesized that these "rapid enigmatic declines" are the result of a panzootic of the disease chytridiomycosis caused by globally emerging amphibian chytrid fungus. In a Species Distribution Model, we identified the potential distribution of this pathogen. Areas and species from which rapid enigmatic decline are known significantly overlap with those of highest environmental suitability to the chytrid fungus. We confirm the plausibility of a link between rapid enigmatic decline in worldwide amphibian species and epizootic chytridiomycosis.
Ramularia collo-cygni--An Emerging Pathogen of Barley Crops.
Havis, Neil D; Brown, James K M; Clemente, Gladys; Frei, Peter; Jedryczka, Malgorzata; Kaczmarek, Joanna; Kaczmarek, Maciej; Matusinsky, Pavel; McGrann, Graham R D; Pereyra, Sylvia; Piotrowska, Marta; Sghyer, Hind; Tellier, Aurelien; Hess, Michael
2015-07-01
Ramularia collo-cygni is the biotic factor responsible for the disease Ramularia leaf spot (RLS) of barley (Hordeum vulgare). Despite having been described over 100 years ago and being considered a minor disease in some countries, the fungus is attracting interest in the scientific community as a result of the increasing number of recorded economically damaging disease epidemics. New reports of disease spread and fungal identification using molecular diagnostics have helped redefine RLS as a global disease. This review describes recent developments in our understanding of the biology and epidemiology of the fungus, outlines advances made in the field of the genetics of both the fungus and host, and summarizes the control strategies currently available.
Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai
2016-06-29
Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.
Kim, Min Su; Ko, Young-Joon; Maeng, Shinae; Floyd, Anna; Heitman, Joseph; Bahn, Yong-Sun
2010-08-01
Carbon dioxide (CO(2)) sensing and metabolism via carbonic anhydrases (CAs) play pivotal roles in survival and proliferation of pathogenic fungi infecting human hosts from natural environments due to the drastic difference in CO(2) levels. In Cryptococcus neoformans, which causes fatal fungal meningoencephalitis, the Can2 CA plays essential roles during both cellular growth in air and sexual differentiation of the pathogen. However the signaling networks downstream of Can2 are largely unknown. To address this question, the present study employed comparative transcriptome DNA microarray analysis of a C. neoformans strain in which CAN2 expression is artificially controlled by the CTR4 (copper transporter) promoter. The P(CTR4)CAN2 strain showed growth defects in a CO(2)-dependent manner when CAN2 was repressed but resumed normal growth when CAN2 was overexpressed. The Can2-dependent genes identified by the transcriptome analysis include FAS1 (fatty acid synthase 1) and GPB1 (G-protein beta subunit), supporting the roles of Can2 in fatty acid biosynthesis and sexual differentiation. Cas3, a capsular structure designer protein, was also discovered to be Can2-dependent and yet was not involved in CO(2)-mediated capsule induction. Most notably, a majority of Can2-dependent genes were environmental stress-regulated (ESR) genes. Supporting this, the CAN2 overexpression strain was hypersensitive to oxidative and genotoxic stress as well as antifungal drugs, such as polyene and azole drugs, potentially due to defective membrane integrity. Finally, an oxidative stress-responsive Atf1 transcription factor was also found to be Can2-dependent. Atf1 not only plays an important role in diverse stress responses, including thermotolerance and antifungal drug resistance, but also represses melanin and capsule production in C. neoformans. In conclusion, this study provides insights into the comprehensive signaling networks orchestrated by CA/CO(2)-sensing pathways in pathogenic fungi.
Jung, Kwang-Woo; Strain, Anna K; Nielsen, Kirsten; Jung, Kwang-Hwan; Bahn, Yong-Sun
2012-01-01
Maintenance of cation homeostasis is essential for survival of all living organisms in their biological niches. It is also important for the survival of human pathogenic fungi in the host, where cation concentrations and pH will vary depending on different anatomical sites. However, the exact role of diverse cation transporters and ion channels in virulence of fungal pathogens remains elusive. In this study we functionally characterized ENA1 and NHA1, encoding a putative Na+/ATPase and Na+/H+ antiporter, respectively, in Cryptococcus neoformans, a basidiomycete fungal pathogen which causes fatal meningoencephalitis. Expression of NHA1 and ENA1 is induced in response to salt and osmotic shock mainly in a Hog1-dependent manner. Phenotypic analysis of the ena1, nha1, and ena1 nha1 mutants revealed that Ena1 controls cellular levels of toxic cations, such as Na+ and Li+ whereas both Ena1 and Nha1 are important for controlling less toxic K+ ions. Under alkaline conditions, Ena1 was highly induced and required for growth in the presence of low levels of Na+ or K+ salt and Nha1 played a role in survival under K+ stress. In contrast, Nha1, but not Ena1, was essential for survival at acidic conditions (pH 4.5) under high K+ stress. In addition, Ena1 and Nha1 were required for maintenance of plasma membrane potential and stability, which appeared to modulate antifungal drug susceptibility. Perturbation of ENA1 and NHA1 enhanced capsule production and melanin synthesis. However, Nha1 was dispensable for virulence of C. neoformans although Ena1 was essential. In conclusion, Ena1 and Nha1 play redundant and discrete roles in cation homeostasis, pH regulation, membrane potential, and virulence in C. neoformans, suggesting that these transporters could be novel antifungal drug targets for treatment of cryptococcosis. PMID:22343280
USDA-ARS?s Scientific Manuscript database
Fungal plant pathogens exert much of their effect on plant cells through alterations in the host cell walls. However, biochemical proof for this change is difficult because of the relatively small number of cells that are affected by the pathogen in the bulk of host tissue. In this study, we examine...
S. Keitzer; Reuben Goforth; Allan Pessier; April Johnson
2011-01-01
Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for...
USDA-ARS?s Scientific Manuscript database
The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of ...
USDA-ARS?s Scientific Manuscript database
Field surveys in 2006 confirmed the rust fungus Phragmidium violaceum was widespread on Rubus armeniacus and R. laciniatus in the Pacific Northwest of the United States. The origin, evidence of a founder effect and dispersal pattern of this obligate biotrophic pathogen in the United States were inve...
Root diseases: primary agents and secondary consequences of disturbance
William J. Otrosina; George T. Ferrell
1995-01-01
The fact that endemic root disease causing pathogens have evolved with forest ecosystems does not necessarily mean they are inconsequential. A pathogen such as the P group of Heterobasidion annosum has become an intractable problem in many Sierra east side pine stands in California because the fungus is adapted to colonization of freshly cut stump surfaces. The S group...
Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi
W. R. Jacobi; R. D. Koski; J. F. Negron
2013-01-01
Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-12-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality
Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang
2017-01-01
The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370
A network approach to predict pathogenic genes for Fusarium graminearum.
Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan
2010-10-04
Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.
Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine.
Waller, Stefanie Bressan; Cleff, Marlete Brum; Serra, Emanoele Figueiredo; Silva, Anna Luiza; Gomes, Angelita Dos Reis; de Mello, João Roberto Braga; de Faria, Renata Osório; Meireles, Mário Carlos Araújo
2017-03-01
This work aimed to review the main plants of Lamiaceae family with activity against pathogenic fungi of medical and veterinary interest. Published studies in the main international databases between January 2002 and June 2016 showed that 55 botanical species belonging to 27 genus presented antifungal activity in different forms of extractions, mainly essential oils. Pathogenic fungi of Aspergillus spp., Candida spp., Malassezia spp., Cryptococcus spp., Sporothrix spp., Microsporum spp., Trichophyton spp. and Epidermophyton spp. genus were in vitro sensitive to several plants of Lamiaceae family. Chemical molecules isolated were described as promising use as antifungals in mycoses, highlighting estragole, 1,8-cineole, terpineol-4, γ-terpinene, among others. However, it should be alert to need of universal standardization in the laboratories tests with natural products. Copyright © 2017 Elsevier Ltd. All rights reserved.
A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao
Mondego, Jorge MC; Carazzolle, Marcelo F; Costa, Gustavo GL; Formighieri, Eduardo F; Parizzi, Lucas P; Rincones, Johana; Cotomacci, Carolina; Carraro, Dirce M; Cunha, Anderson F; Carrer, Helaine; Vidal, Ramon O; Estrela, Raíssa C; García, Odalys; Thomazella, Daniela PT; de Oliveira, Bruno V; Pires, Acássia BL; Rio, Maria Carolina S; Araújo, Marcos Renato R; de Moraes, Marcos H; Castro, Luis AB; Gramacho, Karina P; Gonçalves, Marilda S; Neto, José P Moura; Neto, Aristóteles Góes; Barbosa, Luciana V; Guiltinan, Mark J; Bailey, Bryan A; Meinhardt, Lyndel W; Cascardo, Julio CM; Pereira, Gonçalo AG
2008-01-01
Background The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches' Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. M. perniciosa, together with the related species M. roreri, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9× coverage) of M. perniciosa was analyzed to evaluate the overall gene content of this phytopathogen. Results Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that M. perniciosa has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that M. perniciosa have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in M. perniciosa genome survey. Conclusion This genome survey gives an overview of the M. perniciosa genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the M. perniciosa/cacao pathosystem. PMID:19019209
Vela-Corcía, David; Bautista, Rocío; de Vicente, Antonio; Spanu, Pietro D; Pérez-García, Alejandro
2016-01-01
The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus's agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.
Pigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans
Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo
2014-01-01
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553
Antas, Paulo R Z; Brito, Marcelly M S; Peixoto, Érika; Ponte, Carlos G G; Borba, Cíntia M
2012-01-01
Paecilomyces lilacinus is an emerging pathogenic fungus that can cause different clinical manifestations ranging from cutaneous and sub-cutaneous infections to severe oculomycosis. This review discusses infections caused by P. lilacinus, as well as their symptoms and correlates of immune responses, morphological characteristics of the fungus, therapies, in vitro susceptibility tests, laboratory diagnosis and the experimental models available. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Gallet, Romain; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Tharreau, Didier; Fournier, Elisabeth
2014-01-01
Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated. PMID:24474958
Gallet, Romain; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Tharreau, Didier; Fournier, Elisabeth
2013-01-01
Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated.
Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho
2017-06-01
The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Padhi, Srichandan; Das, Devaranjan; Panja, Suraj; Tayung, Kumananda
2017-06-01
Endolichenic fungi are microbes that inhabit healthy inner lichen tissues without any disease symptoms. They have been reported to produce new and interesting bioactive metabolites. In the present study, an endolichenic fungus frequently isolated from surface-sterilized lichen thallus of Parmelia caperata has been described. The fungus was identified as Aspergillus tubingensis based on morphological traits and ITS rDNA sequence. Crude metabolites extracted from the culture broth exhibited considerable antimicrobial activity against a panel of clinically significant human pathogens. The fungus showed optimum antimicrobial activity in PDB medium in day 7 of incubation period. PDB medium amended with 1 % NaCl and at alkaline pH was found to be optimal for antimicrobial metabolites production. Enhanced activity was observed when the fungus was exposed briefly to a heat shock of 60 °C during incubation. The metabolites showed optimum λ-max at 214 nm with an absorbance value of 1.589. Molecular characterization of the isolate was carried out by ITS phylogeny and ITS2 secondary structure analyses. The phylogenetic trees based on both ITS rDNA and ITS2 sequences showed the isolate within the clade A. tubingensis. Considering the ubiquity and ambiguity in identifying Aspergillus species of different lifestyles, a method to differentiate pathogenic and endophytic Aspergillus at species level was developed using ITS2 secondary structure analysis. The results showed common folding pattern in the secondary structures with a helix and a 5' dangling end found to be highly conserved. Certain features in the secondary structure like multi-bulges and a symmetric interior loop were observed to be unique which distinguish our isolate from other A. tubingensis.
Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species.
Brilhante, Raimunda Sâmia Nogueira; Caetano, Erica Pacheco de; Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Souza, Elizabeth Ribeiro Yokobatake; Alencar, Lucas Pereira de; Cordeiro, Rossana de Aguiar; Bandeira, Tereza de Jesus Pinheiro Gomes; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2015-01-01
The antifungal activity of some statins against different fungal species has been reported. Thus, at the first moment, the in vitro antifungal activity of simvastatin, atorvastatin and pravastatin was tested against Candida spp. and Cryptococcus spp. Then, in a second approach, considering that the best results were obtained for simvastatin, this drug was evaluated in combination with antifungal drugs against planktonic growth and tested against biofilms of Candida spp. and Cryptococcus spp. Drug susceptibility testing was performed using the microdilution broth method, as described by the Clinical and Laboratory Standards Institute. The interaction between simvastatin and antifungals against planktonic cells was analyzed by calculating the fractional inhibitory concentration index. Regarding biofilm susceptibility, simvastatin was tested against growing biofilm and mature biofilm of one strain of each tested yeast species. Simvastatin showed inhibitory effect against Candida spp. and Cryptococcus spp. with minimum inhibitory concentration values ranging from 15.6 to 1000 mg L(-1) and from 62.5 to 1000 mg L(-1), respectively. The combination of simvastatin with itraconazole and fluconazole showed synergism against Candida spp. and Cryptococcus spp., while the combination of simvastatin with amphotericin B was synergistic only against Cryptococcus spp. Concerning the biofilm assays, simvastatin was able to inhibit both growing biofilm and mature biofilm of Candida spp. and Cryptococcus spp. The present study showed that simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Latouche, G. Nicolas; Huynh, Matthew; Sorrell, Tania C.; Meyer, Wieland
2003-01-01
Cryptococcus neoformans is a pathogenic yeast that is currently divided into three varieties, five serotypes, and eight molecular types. The following report describes the use of PCR-restriction fragment length polymorphism (RFLP) analysis of the phospholipase B gene (PLB1) as a simple tool to differentiate between C. neoformans subgroups. A PLB1 fragment, 1,970 bp, was amplified and digested with either AvaI or HindIII. Both sets of profiles grouped the isolates into their respective varieties, but only the AvaI profiles allowed for the identification of the eight molecular types via the corresponding RFLP profiles A1 to A8. Digestion of the same fragments with HindIII resulted in RFLP profiles H1 to H5, which distinguished only between serotype A, AD, D, and B/C. Neither enzyme distinguished serotype B from serotype C. The serotype AD profile was a composite of the serotype A and D profiles. Further investigation showed that the serotype AD isolates used in this study are heterozygous, with one allele of PLB1 originating from a serotype A parent and the other from a serotype D parent. PMID:12676686
Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.
2012-01-01
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773
GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans*
Chitty, Jessica L.; Tatzenko, Tayla L.; Williams, Simon J.; Koh, Y. Q. Andre E.; Corfield, Elizabeth C.; Butler, Mark S.; Robertson, Avril A. B.; Cooper, Matthew A.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.
2017-01-01
Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans. Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections. PMID:28062578
Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.
Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader
2013-01-01
Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.
Eigenheer, Richard A; Jin Lee, Young; Blumwald, Eduardo; Phinney, Brett S; Gelli, Angie
2007-06-01
Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or beta-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography-mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans.
Andrew M. Minnis; Amy Y. Rossman; Nathan M. Kleczewski; S. Luke. Flory
2012-01-01
Many species of Bipolaris are important pathogens of grasses. This new species was isolated from Microstegium vimineum, an invasive plant in the USA. The fungus causes disease on Microstegium, but it also infects a wider range of hosts.
Nussbaumer, Thomas; Warth, Benedikt; Sharma, Sapna; Ametz, Christian; Bueschl, Christoph; Parich, Alexandra; Pfeifer, Matthias; Siegwart, Gerald; Steiner, Barbara; Lemmens, Marc; Schuhmacher, Rainer; Buerstmayr, Hermann; Mayer, Klaus F X; Kugler, Karl G; Schweiger, Wolfgang
2015-10-04
Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response. Copyright © 2015 Nussbaumer et al.
Dini-Andreote, Francisco; Pietrobon, Vivian Cristina; Andreote, Fernando Dini; Romão, Aline Silva; Spósito, Marcel Bellato; Araújo, Welington Luiz
2009-01-01
The Alternaria brown spot (ABS) is a disease caused in tangerine plants and its hybrids by the fungus Alternaria alternata f. sp. citri which has been found in Brazil since 2001. Due to the recent occurrence in Brazilian orchards, the epidemiology and genetic variability of this pathogen is still an issue to be addressed. Here it is presented a survey about the genetic variability of this fungus by the characterization of twenty four pathogenic isolates of A. alternata f. sp. citri from citrus plants and four endophytic isolates from mango (one Alternaria tenuissima and three Alternaria arborescens). The application of two molecular markers Random Amplified Polymorphic DNA (RAPD) and Amplified Fragment Length Polymorphism (AFLP) had revealed the isolates clustering in distinct groups when fingerprintings were analyzed by Principal Components Analysis (PCA). Despite the better assessment of the genetic variability through the AFLP, significant modifications in clusters components were not observed, and only slight shifts in the positioning of isolates LRS 39/3 and 25M were observed in PCA plots. Furthermore, in both analyses, only the isolates from lemon plants revealed to be clustered, differently from the absence of clustering for other hosts or plant tissues. Summarizing, both RAPD and AFLP analyses were both efficient to detect the genetic variability within the population of the pathogenic fungus Alternaria spp., supplying information on the genetic variability of this species as a basis for further studies aiming the disease control. PMID:24031413
Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract
NASA Astrophysics Data System (ADS)
Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.
2017-05-01
Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.
Wang, Jiaoyu; Zhang, Zhen; Wang, Yanli; Li, Ling; Chai, Rongyao; Mao, Xueqin; Jiang, Hua; Qiu, Haiping; Du, Xinfa; Lin, Fucheng; Sun, Guochang
2013-01-01
Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H2O2 resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2. PMID:23405169
Nakamura, Masayuki; Kuwahara, Hideto; Onoyama, Keisuke; Iwai, Hisashi
2012-08-01
Agrobacterium tumefaciens-mediated transformation (AtMT) has become a common technique for DNA transformation of yeast and filamentous fungi. In this study, we first established a protocol of AtMT for the phytopathogenic fungus Colletotrichum sansevieriae. Binary T-DNA vector containing the hygromycin B phosphotransferase gene controlled by the Aspergillus nidulans gpdA promoter and the trpC terminator was constructed with pCAMBIA0380 and used with three different strains LBA4404, GV3101, and GV2260 of A. tumefaciens. Transformants were most effectively obtained when GV2260 and C. sansevieriae Sa-1-2 were co-cultivated; there were about 320 transformants per 10(6) spores. When 1,048 transformants were inoculated on Sansevieria trifasciata, three transformants were found to have completely lost their pathogenicity and two transformants displayed reduced pathogenicity. All of the five transformants had a single copy of T-DNA in their genomes. The three pathogenicity-deficient transformants were subjected to thermal asymmetric interlaced polymerase chain reaction and the reaction allowed us to amplify the sequences flanking the left and/or right borders. The flanking sequences of the two transformants, M154 and M875, showed no homology to any sequences in databases, but the sequences of M678 contained motifs of alpha-1,3-glucan synthase, suggesting that the gene might contribute to the pathogenicity of C. sansevieriae. This study describes a useful method for investigating pathogenicity genes in C. sansevieriae.
Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.
Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang
2011-01-01
Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.
Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions
Brandl, Maria T.; Carter, Michelle Q.; Parker, Craig T.; Chapman, Matthew R.; Huynh, Steven; Zhou, Yaguang
2011-01-01
Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399
Is the pathogenic ergot fungus a conditional defensive mutualist for its host grass?
Wäli, Pauliina P; Wäli, Piippa R; Saikkonen, Kari; Tuomi, Juha
2013-01-01
It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation.